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Model Reduction of port-Hamiltonian Systems as Structured Sytems

Rostyslav V. Polyuga and Arjan van der Schaft

Abstract— The goal of this work is to demonstrate that of the controllability Gramian leads in this case to the error
a specific projection-based model reduction method, which pound in theH, norm [19]. The preservation of the first
provides an 7, error bound, tums out to be applicable to port- o qer structure can be further shown to preserve the port-
Hamiltonian systems, preserving theport-Hamiltonian structure . - . .
for the reduced order model, and, as a consequencpassivity. Ham!ltpnlan structure for the r_educed order model, implying
passivity and stability properties.

I. INTRODUCTION In Sectionll we provide a description of the method used.

I . he application of this method to port-Hamiltonian systems
The port-Hamiltonian approach to modeling and contro

. . IS considered in Sectiohl .
of complex physical systems has arisen as a systematic

and unifying framework during the last twenty years, see
[20], [13], [21] and the references therein. The port-
Hamiltonian modeling captures the physical properties of In the systems and control literature the most usual rep-
the considered system including the energy dissipatioresentation of physical and engineering systems is the first
stability and passivity properties as well as the presenaader representation, possibly with a feed-through tém

Il. DESCRIPTION OF THE METHOD

of conservation laws. Another important issue the port- . — Ay B
Hamiltonian approach deals with is the interconnection of the T = Azt Dby, @
physical system with other physical systems creating the so- y = Czx+ Du,

called physmal network. In real qpphc_:atmns the d|men3|or‘®ith #(t) € R, u(t) € R™ y(t) € RP, and
of such interconnected port-Hamiltonian state-space syste S ¢ R7*n. B € RUXM, ' € RPXT, D e RPXM

rapidly grow both for lumped- and (spatially OIiSCretizecl)constant matrices. At the same time in many applications

distributed-parameter model§. Therefore an_lmportant ISS'lJﬁegher order structures naturally arise. One important class
concerns (structure preserving)odel reductionof these

. . . ; of structured systems is the class of so-called second order
high-dimensional models for further analysis and control.

systems described by the system of equations
The goal of this work is to demonstrate that a specificy ! 4 y quat

projection-based model reduction method, which provides Mi+ Di+ Kx = Bu,
an H. error bound, turns out to be applicable to port-

Hamiltonian systems, preserving thert-Hamiltonian struc-

ture for the reduced order model, and, as a consequena@th =(t) € R™2 wu(t) € R™, y(t) € R?, M,D, K €
passivity Preservation of port-Hamiltonian structure wasR™/2*"/2 B ¢ R"/2x™ (' ¢ RP*"/2, For mechanical ap-
studied in [10], [16], [9], [21] and the references thereinplications the matriced/, D and K represent, respectively,
along with the preservation of moments in [11], [15]. Recerithe mass(or inertia), dampingand stiffnessmatrices, with
work [14] presents a summary of latest structure preserviny invertible. Of course, the matri® and the vectot in
model reduction methods for port-Hamiltonian systems. Fd@) are different from those inlj. The system2?) can be
an overview of the general model reduction theory we refegadly represented in the formij.

y = Cu )

to [1], [18]. In general model reduction methods appliedXpgroduce
In this paper we are looking at port-Hamiltonian systemseduced order models of the form

as first order systems which are a subclass of so-called & = Az, + Bu

structured systems. Structured systems, studied in [19], are ’ 3)

defined using notion of differential operator. The projection { yr = Crzp+Dru,

of such systems onto a dominant eigenspace of the appigith » <« n, z.(t) € R", u(t) € R™, y,(t) € RP, A, €
priate controllability Gramian results in the reduced ordegrxr p ¢ Rr*m (¢ RP*" D, € RP*™ The second
model which inherits the underlying structure of the fullhigher) order structure2f for the reduced order models

order model. In fact, the frequency domain representatiqjite often fails to be extracted fron8) Therefore special
structure preserving methods are required.
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Hamiltonian structure for the reduced order model, and, afown to be the left upper block of the reachability Gramian

a @nsequence, passivity. of the corresponding first order systef).(
Using Parseval’s theorem, the Gramiaf) ¢an be consid-
A. System representation using differential operators ered in the frequency domain:
In order to proceed we need the following notation. Let 1 o0
K(s), P(s) be polynomial matrices im: W = o / x(iw)z(iw)*dt, (8)
7T
l —0o0
K(s) = ZstJ, Kj e R™, where the star denotes the conjugate transposec@ngd is
J=0 the Laplace transform of the time signaft) (for simplicity

l
P(s)=>» P;s’, Pje R™™"
j=0

of notation, quantities in the time and frequency domains are
denoted by the same symho).

The transfer function of4) in the frequency domain is
where K is invertible, K ' P is a strictly proper rational given as

matrix and/ is the order of the systeni & 1 for (1) and G(s) = CK(S)—lp(S%
l = 2 for (2)). Then K (%), P(4) denote the differential _ .
operators while the input-to-state and the input-to-output maps are

. l d ] ! & x(s) = K(s) "' P(s)u(s), y(s) = G(s)u(s).

K(f) = ZO Kjw’ PGE) = ;ij' For the input being the unit impulset) = §(¢)! it follows
= - thatu(s) = I and the about expressions read

The systems (without a feed-through term) can be now .
defined by the following set of equations: z(s) = K(s)” P(s), y(s)=G(s).

5 K($)z = P(4)u, " In the time domain we have

y = Chu,

) - o0
t ty(t)" dt ¢ Ca(t)z(t)" T dt
whereC' € RP*™, race{o/y( Ju(t)" dt} race{o/ o (t)a(t) }

This is a more general representation af, (2), which

— T
allows for derivatives of the inpui. = trace{CWCT}.

Using the notation
B. Reachability Gramian F(s) = K(s)"'P(s)

Recall from [1] that for the first order stable systef) ( , .
the corresponding (infinite) reachability Gramian is define(:]jmd the Parceval's theorem we obtain for the frequency

as N omain
T TT
W = /eA BBTeA Tdr. (5) trace{/y(t)y(t)Tdt} =
0 0
This Gramian is one of the central objects in the math- L i ) o T
ematical systems theory. It is a symmetric positive semi- trace{c(ﬂ/ F(iw)F(iw)"dw) C* }.
definite matrix which satisfies the following Lyapunov equa- —00
tion . . This reasoning results in the conclusion that the reachability
AW +WA" + BB® =0. (6)  Gramian of a system with the corresponding order is given

The eigenvalues of the Gramian W are measures of th2 the frequency domain as

reachability of the systemi. °°
The Gramian §) can be rewritten as W= L / F(iw)F(iw)* dw. 9)
W= /x(t):v(t)Tdt (7) C. Model reduction procedure
0 Model reduction of the systemd)( as explained in [19],

for x(t) being the state of the corresponding (first orders based on the projection off on the dominant eigenspace
system when the input is the §-distribution. Indeed, the of a GramianiV of the statex.
solution of & = Az + Bu, x(0) = 0, to the inputu(t) = The eigenvalue decomposition of the corresponding
I5(t) is given asz(t) = e B, GramianW gives

In a similar way as in {) the reachability Gramians _ T .
of higher order systems can be defined. In particular, the W =VAVE, A =diag(h1, As). (10)
reachability Gramian of the second order syst@ncan be whereA € R"*" is a diagonal matrix containing the real
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eigenvalues of the Gramidiv’ in decreasing order, arld €  where the Gramian is diagontll’ = A:

R™*" is an orthogonal matrix. oo
Choosing the dimension of the reduced order madel A = QL F(iw)F(iw)*dw,
leads to the partitioning Wioo
A = diag(Ay, As), V = [Vi, Val, 11 T
mg( 1 2) [ 1 2] ( ) Al _ % F1 (zw)Fl (zw)*dw,
where Ay € R"™*", Ay, € Rn=)x(n=7) 17 c Rnxr Y, ¢ ke
Rnx(n—r)_ 0o (15)
An orthogonal basis for the dominant eigenspace of di- Ay = & [ By(iw)Fy(iw)*dw,
mensionr is used to construct a reduced order model: —0
A FRYA - ~ i 0 R R
XA] : Kll(ﬁ)x = Pi(dt)ua (12) 0 — % FQ(iW)Fl (iw)*dw,
g = iz, .
where A where F(s), F(s) come from the splitting according to
Tz eR", C1 = CVy € RP*T, the dimension of the reduced order modelfofs), which
l & is nothing but the defined before matrik(s) in the new
Kn(d) = ZKjw’ Kj = VIK;Vi e R™7, coordinates: )
0 2 Fi(s) T T -1
] F(s)=|x =V F(s)=V'K(s)" P(s). (16)
H(d s d > T rXm FQ(S)
P(dy=>%" jog D =ViP R

7=0 The expressionslf) are of the direct use in the proof of

This model reduction method by construction preserve@eferm(; pou;gd in '(Ij’heorlem. -Lhe Er(()jof ofl'lé'lheorenl can
the second or higher order structure of the full order modge ound in [19] and is also sketched in [14].

¥ in (4) for the reduced order model II'].Z) 1. APPLICATION OF THE METHOD TO
Swpose the polynomial matri¥((s) has the following PORT-HAMILTONIAN SYSTEMS
iﬁ)(l)létg;g corresponding to the dimension of the reduced order Consider linear port-Hamiltonian systems [20], [7]
. VK (s)Vi VUK (s)V: ) & = (J-R)Qz+ Bu,
K(S) _ VTK(S)V _ lT (S) 1 lT (S) 2 YpHS : { - BTQ a7)
VIK (Vi VT K (s)Va = .

e (s) e (s) As discussed in [15], [14], there exists a coordinate transfor-
— S H12 mation S, z = Sxz;, such that in the new coordinates
Koi(s)  Kao(s) .
: . QRQr=5Q5=1. (18)
Let L(s) be the polynomial matrix
. 2 By defining the transformed system matrices as
L(S) = (Kll(s)) K12(S). (13) JI — 871J57T7 RI — SileiT,B] — SilB,
If the reduced order system has no poles on the imaginaf§f obtain the transformed port-Hamiltonian system
axis, Slip||L(iw)|‘2 is finite. Then the model reduction i = (Ji— RD)ar + Bru, .
method results in the followin@{s error bound. y = B}F:cf, (19)

Theorem 1:[19] Consider the full order structured system . ) ]
%) in (4) and the reduced order structured systerin (12).  With energyH (z;) = 5||x[|*. System (L9) can be rewritten

as
Then the error system A Lir— (Ji— R)er = B, o0
£=x-% y = Bfuwr,
satisfies the followings error bound which is of the form 4) with
€117, < trace{CoAoCT } + k& trace{As},  (14) K(%) = I%—(J;—Ry),
wherex is a constant depending d&y ¥, and the diagonal P(%) = Bi,
elements of\, are the neglected smallest eigenvaluedif c = BT
k= supl|/(CiL(iw))*(C1L(iw) — 2C5) |2, The Gramian of the transformed port-Hamiltonian system
. w 20
CQ = Cva ( ) o0
The frequency domain representation of the Gram@n ( W= /:vl(t)xl(t)Tdt (22)

results in the following expressions [19] in the coordinates, 4
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can be decomposed using the eigenvalue decomposition &g projection of such (first order) systems onto the dom-
shown in (10) with the splitting as in 11) according to the inant eigenspace of the corresponding reachability Gramian
chosen dimensiom of the reduced order model . results in the reduced order model which is shown to preserve
This leads to the main result. the port-Hamiltonian structure, and therefore passivity and
Theorem 2:Consider a full order port-Hamiltonian stability. General error bound derived in [19] is adopted to
system 17) and construct; asin (11) using the eigenvalue port-Hamiltonian systems.
decomposition of the Gramiar2() of the transformed port-  An extension of the method when the full order system
Hamiltonian systemZ0). Then ther*” order reduced system is projected on the dominant eigenspace of the product
of the observability and reachability Gramians with the
relation to Lyapunov balancing as well as the applications
of other methods preserving higher order structure to port-
Hamiltonian systems are left for future research.

A j?[ e j]—R[ i]—l-B]u,
YpHS : A (A . ) (22)
Yy = lela

with the interconnection matrlceEI By, energy matnxQI,
dissipation matrices?; and output matrixC; given as
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