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Model Reduction of port-Hamiltonian Systems as Structured Systems

Rostyslav V. Polyuga and Arjan van der Schaft

Abstract— The goal of this work is to demonstrate that
a specific projection-based model reduction method, which
provides anH2 error bound, turns out to be applicable to port-
Hamiltonian systems, preserving theport-Hamiltonian structure
for the reduced order model, and, as a consequence,passivity.

I. INTRODUCTION

The port-Hamiltonian approach to modeling and control
of complex physical systems has arisen as a systematic
and unifying framework during the last twenty years, see
[20], [13], [21] and the references therein. The port-
Hamiltonian modeling captures the physical properties of
the considered system including the energy dissipation,
stability and passivity properties as well as the presence
of conservation laws. Another important issue the port-
Hamiltonian approach deals with is the interconnection of the
physical system with other physical systems creating the so-
called physical network. In real applications the dimensions
of such interconnected port-Hamiltonian state-space systems
rapidly grow both for lumped- and (spatially discretized)
distributed-parameter models. Therefore an important issue
concerns (structure preserving)model reductionof these
high-dimensional models for further analysis and control.

The goal of this work is to demonstrate that a specific
projection-based model reduction method, which provides
an H2 error bound, turns out to be applicable to port-
Hamiltonian systems, preserving theport-Hamiltonian struc-
ture for the reduced order model, and, as a consequence,
passivity. Preservation of port-Hamiltonian structure was
studied in [10], [16], [9], [21] and the references therein,
along with the preservation of moments in [11], [15]. Recent
work [14] presents a summary of latest structure preserving
model reduction methods for port-Hamiltonian systems. For
an overview of the general model reduction theory we refer
to [1], [18].

In this paper we are looking at port-Hamiltonian systems
as first order systems which are a subclass of so-called
structured systems. Structured systems, studied in [19], are
defined using notion of differential operator. The projection
of such systems onto a dominant eigenspace of the appro-
priate controllability Gramian results in the reduced order
model which inherits the underlying structure of the full
order model. In fact, the frequency domain representation
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of the controllability Gramian leads in this case to the error
bound in theH2 norm [19]. The preservation of the first
order structure can be further shown to preserve the port-
Hamiltonian structure for the reduced order model, implying
passivity and stability properties.

In SectionII we provide a description of the method used.
The application of this method to port-Hamiltonian systems
is considered in SectionIII .

II. DESCRIPTION OF THE METHOD

In the systems and control literature the most usual rep-
resentation of physical and engineering systems is the first
order representation, possibly with a feed-through termD

{

ẋ = Ax + Bu,

y = Cx + Du,
(1)

with x(t) ∈ R
n, u(t) ∈ R

m, y(t) ∈ R
p, and

A ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n, D ∈ R

p×m

constant matrices. At the same time in many applications
higher order structures naturally arise. One important class
of structured systems is the class of so-called second order
systems described by the system of equations

{

Mẍ + Dẋ + Kx = Bu,

y = Cx,
(2)

with x(t) ∈ R
n/2, u(t) ∈ R

m, y(t) ∈ R
p, M, D, K ∈

R
n/2×n/2, B ∈ R

n/2×m, C ∈ R
p×n/2. For mechanical ap-

plications the matricesM, D andK represent, respectively,
the mass(or inertia), dampingand stiffnessmatrices, with
M invertible. Of course, the matrixD and the vectorx in
(2) are different from those in (1). The system (2) can be
easily represented in the form (1).

In general model reduction methods applied to (1) produce
reduced order models of the form

{

ẋr = Arxr + Bru,

yr = Crxr + Dru,
(3)

with r � n, xr(t) ∈ R
r, u(t) ∈ R

m, yr(t) ∈ R
p, Ar ∈

R
r×r, Br ∈ R

r×m, Cr ∈ R
p×r, Dr ∈ R

p×m. The second
(higher) order structure (2) for the reduced order models
quite often fails to be extracted from (3). Therefore special
structure preserving methods are required.

Model reduction of second order systems was studied in
[6], [12], [5], [4], along with the use of the Krylov methods
in [2], [17], [8], [3]. In this work we are using the method of
[19] which provides anH2 error bound and turns out to be
applicable to port-Hamiltonian systems, preserving the port-
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Hamiltonian structure for the reduced order model, and, as
a consequence, passivity.

A. System representation using differential operators

In order to proceed we need the following notation. Let
K(s), P (s) be polynomial matrices ins:

K(s) =

l
∑

j=0

Kjs
j , Kj ∈ R

n×n,

P (s) =

l
∑

j=0

Pjs
j , Pj ∈ R

n×m,

where K is invertible, K−1P is a strictly proper rational
matrix andl is the order of the system (l = 1 for (1) and
l = 2 for (2)). Then K( d

dt ), P ( d
dt ) denote the differential

operators

K( d
dt ) =

l
∑

j=0

Kj
dj

dtj
, P ( d

dt ) =

l
∑

j=0

Pj
dj

dtj
.

The systems (without a feed-through term) can be now
defined by the following set of equations:

Σ :

{

K( d
dt)x = P ( d

dt)u,

y = Cx,
(4)

whereC ∈ R
p×n.

This is a more general representation of (1), (2), which
allows for derivatives of the inputu.

B. Reachability Gramian

Recall from [1] that for the first order stable system (1)
the corresponding (infinite) reachability Gramian is defined
as

W :=

∞
∫

0

eAτBBT eAT τdτ. (5)

This Gramian is one of the central objects in the math-
ematical systems theory. It is a symmetric positive semi-
definite matrix which satisfies the following Lyapunov equa-
tion

AW + WAT + BBT = 0. (6)

The eigenvalues of the Gramian W are measures of the
reachability of the system (1).

The Gramian (5) can be rewritten as

W :=

∞
∫

0

x(t)x(t)T dt (7)

for x(t) being the state of the corresponding (first order)
system when the inputu is the δ-distribution. Indeed, the
solution of ẋ = Ax + Bu, x(0) = 0, to the inputu(t) =
Iδ(t) is given asx(t) = eAtB.

In a similar way as in (7) the reachability Gramians
of higher order systems can be defined. In particular, the
reachability Gramian of the second order system (2) can be

shown to be the left upper block of the reachability Gramian
of the corresponding first order system (1).

Using Parseval’s theorem, the Gramian (7) can be consid-
ered in the frequency domain:

W =
1

2π

∞
∫

−∞

x(iω)x(iω)∗dt, (8)

where the star denotes the conjugate transpose andx(iω) is
the Laplace transform of the time signalx(t) (for simplicity
of notation, quantities in the time and frequency domains are
denoted by the same symbolx).

The transfer function of (4) in the frequency domain is
given as

G(s) = CK(s)−1P (s),

while the input-to-state and the input-to-output maps are

x(s) = K(s)−1P (s)u(s), y(s) = G(s)u(s).

For the input being the unit impulseu(t) = δ(t)I it follows
that u(s) = I and the about expressions read

x(s) = K(s)−1P (s), y(s) = G(s).

In the time domain we have

trace
{

∞
∫

0

y(t)y(t)T dt
}

= trace
{

∞
∫

0

Cx(t)x(t)T CT dt
}

= trace
{

CWCT
}

.

Using the notation

F (s) := K(s)−1P (s)

and the Parceval’s theorem we obtain for the frequency
domain

trace
{

∞
∫

0

y(t)y(t)T dt
}

=

trace
{

C
(

1
2π

∞
∫

−∞

F (iω)F (iω)∗dω
)

CT
}

.

This reasoning results in the conclusion that the reachability
Gramian of a system with the corresponding order is given
in the frequency domain as

W = 1
2π

∞
∫

−∞

F (iω)F (iω)∗dω. (9)

C. Model reduction procedure

Model reduction of the systems (4), as explained in [19],
is based on the projection of (4) on the dominant eigenspace
of a GramianW of the statex.

The eigenvalue decomposition of the corresponding
GramianW gives

W = V ΛV T , Λ = diag(Λ1, Λ2). (10)

whereΛ ∈ R
n×n is a diagonal matrix containing the real
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eigenvalues of the GramianW in decreasing order, andV ∈
R

n×n is an orthogonal matrix.

Choosing the dimension of the reduced order modelr

leads to the partitioning

Λ = diag(Λ1, Λ2), V = [V1, V2], (11)

where Λ1 ∈ R
r×r, Λ2,∈ R

(n−r)×(n−r), V1 ∈ R
n×r, V2 ∈

R
n×(n−r).

An orthogonal basis for the dominant eigenspace of di-
mensionr is used to construct a reduced order model:

Σ̂ :

{

K̂11(
d
dt)x̂ = P̂ ( d

dt)u,

ŷ = Ĉ1x̂,
(12)

where

x̂ ∈ R
r, Ĉ1 = CV1 ∈ R

p×r,

K̂11(
d
dt ) =

l
∑

j=0

K̂j
dj

dtj
, K̂j = V T

1 KjV1 ∈ R
r×r,

P̂ ( d
dt ) =

l
∑

j=0

P̂j
dj

dtj
, P̂j = V T

1 Pj ∈ R
r×m.

This model reduction method by construction preserves
the second or higher order structure of the full order model
Σ in (4) for the reduced order model in (12)

Suppose the polynomial matrix̂K(s) has the following
splitting corresponding to the dimension of the reduced order
model

K̂(s) = V T K(s)V =

[

V T
1 K(s)V1 V T

1 K(s)V2

V T
2 K(s)V1 V T

2 K(s)V2

]

=:

[

K̂11(s) K̂12(s)

K̂21(s) K̂22(s)

]

.

Let L(s) be the polynomial matrix

L(s) := (K̂11(s))
−1K̂12(s). (13)

If the reduced order system has no poles on the imaginary
axis, sup

ω
‖L(iw)‖2 is finite. Then the model reduction

method results in the followingH2 error bound.

Theorem 1:[19] Consider the full order structured system
Σ in (4) and the reduced order structured systemΣ̂ in (12).
Then the error system

E = Σ − Σ̂

satisfies the followingH2 error bound

‖E‖2
H2

6 trace{Ĉ2Λ2Ĉ
T
2 } + κ trace{Λ2}, (14)

whereκ is a constant depending onΣ, Σ̂, and the diagonal
elements ofΛ2 are the neglected smallest eigenvalues ofW :

κ = sup
ω

‖(Ĉ1L(iω))∗(Ĉ1L(iω) − 2Ĉ2)‖2,

Ĉ2 = CV2.

The frequency domain representation of the Gramian (9)
results in the following expressions [19] in the coordinates,

where the Gramian is diagonalW = Λ:

Λ = 1
2π

∞
∫

−∞

F̂ (iω)F̂ (iω)∗dω,

Λ1 = 1
2π

∞
∫

−∞

F̂1(iω)F̂1(iω)∗dω,

Λ2 = 1
2π

∞
∫

−∞

F̂2(iω)F̂2(iω)∗dω,

0 = 1
2π

∞
∫

−∞

F̂2(iω)F̂1(iω)∗dω,

(15)

where F̂1(s), F̂2(s) come from the splitting according to
the dimension of the reduced order model ofF̂ (s), which
is nothing but the defined before matrixF (s) in the new
coordinates:

F̂ (s) =

[

F̂1(s)

F̂2(s)

]

= V T F (s) = V T K(s)−1P (s). (16)

The expressions (15) are of the direct use in the proof of
the error bound in Theorem1. The proof of Theorem1 can
be found in [19] and is also sketched in [14].

III. APPLICATION OF THE METHOD TO
PORT-HAMILTONIAN SYSTEMS

Consider linear port-Hamiltonian systems [20], [7]

ΣPHS :

{

ẋ = (J − R)Qx + Bu,

y = BT Qx.
(17)

As discussed in [15], [14], there exists a coordinate transfor-
mationS, x = SxI , such that in the new coordinates

QI = ST QS = I. (18)

By defining the transformed system matrices as
JI = S−1JS−T , RI = S−1RS−T , BI = S−1B,

we obtain the transformed port-Hamiltonian system
{

ẋI = (JI − RI)xI + BIu,

y = BT
I xI ,

(19)

with energyH(xI) = 1
2‖xI‖

2. System (19) can be rewritten
as

{

IẋI − (JI − RI)xI = BIu,

y = BT
I xI ,

(20)

which is of the form (4) with

K( d
dt) = I d

dt − (JI − RI),

P ( d
dt) = BI ,

C = BT
I .

The Gramian of the transformed port-Hamiltonian system
(20)

W :=

∞
∫

0

xI(t)xI(t)
T dt (21)
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can be decomposed using the eigenvalue decomposition as
shown in (10) with the splitting as in (11) according to the
chosen dimensionr of the reduced order model .

This leads to the main result.
Theorem 2:Consider a full order port-Hamiltonian

system (17) and constructV1 asin (11) using the eigenvalue
decomposition of the Gramian (21) of the transformed port-
Hamiltonian system (20). Then therth order reduced system

Σ̂PHS :

{

˙̂xI = (ĴI − R̂I)x̂I + B̂Iu,

ŷ = ĈI x̂I ,
(22)

with the interconnection matriceŝJI , B̂I , energy matrixQ̂I ,
dissipation matriceŝRI and output matrixĈI given as

ĴI = V T
1 JIV1, R̂I = V T

1 RIV1, Q̂I = I,

B̂I = V T
1 BI , ĈI = BT

I V1,

is a port-Hamiltonian system as well as the first order system.
Furthermore the error system

E = ΣPHS − Σ̂PHS

satisfies the followingH2 error bound

‖E‖2
H2

6 BT
I V2Λ2V

T
2 BI + κ trace{Λ2}, (23)

where κ is a constant depending onΣPHS , Σ̂PHS and
the diagonal elements ofΛ2 are the neglected smallest
eigenvalues ofW :

κ = sup
ω

‖(BT
I V1L(iω))∗(BT

I V1L(iω) − 2BT
I V2)‖2,

L(s) = (V T
1 (JI − RI)V1 − Is)−1V T

1 (JI − RI)V2.

Proof: Projection of the transformed port-Hamiltonian
system (20) leads to the reduced order system

{

I ˙̂xI − (ĴI − R̂I)x̂I = B̂Iu,

ŷ = ĈI x̂I ,

which is of the form (12), preserving the first order structure
of (20), as well as (17). This further results in the reduced
order model (22) where ĴI is clearly skew-symmetric and
R̂I is symmetric and positive semi-definite. MoreoverĈI =
B̂T

I Q̂I . Therefore the reduced order system (22) is port-
Hamiltonian. The error bound (23) follows directly from
Theorem1.

Note that the reduced order system (22) is automatically
passive because of the preservation of the port-Hamiltonian
structure. See also [20], [7].

IV. CONCLUSIONS

In this paper we considered a representation of port-
Hamiltonian systems using a notion of a differential operator.

The projection of such (first order) systems onto the dom-
inant eigenspace of the corresponding reachability Gramian
results in the reduced order model which is shown to preserve
the port-Hamiltonian structure, and therefore passivity and
stability. General error bound derived in [19] is adopted to
port-Hamiltonian systems.

An extension of the method when the full order system
is projected on the dominant eigenspace of the product
of the observability and reachability Gramians with the
relation to Lyapunov balancing as well as the applications
of other methods preserving higher order structure to port-
Hamiltonian systems are left for future research.
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