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a b s t r a c t

The Biconjugate A-orthogonal residual stabilized method named as BiCORSTAB was pro-
posed by Jing et al. (2009), where the numerical experiments therein demonstrate that the
BiCORSTAB method converges more smoothly than the Bi-Conjugate Gradient stabilized
(BiCGSTAB) method in some circumstances. In order to further stabilize the convergence
behavior and hopefully to accelerate the convergence speed of the BiCORSTAB algorithm
when it has erratic convergence curves, a quasi-minimal residual variant of the BiCORSTAB
algorithm, named as QMRCORSTAB, will be developed and investigated for solving non-
symmetric systems of linear equations borrowing the same further-smooth-effect idea for
the QMRCGSTAB method. Numerical experiments on typical sets of both sparse and dense
matrices will show that the proposed QMRCORSTAB method shares attractive smoother
effect over its basic parent and also outperforms its counterpart.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Krylov subspace methods with preconditioning techniques are widely used for iterative solution of large sparse linear
system

Ax = b, (1)

where A is a nonsymmetric n × n matrix, and b is an n-vector. One of the most popular iterative methods for the above
system is the generalized minimum residual (GMRES) method proposed by Saad and Schultz [1,2]. The method tries to find
appropriate approximate solution which minimizes the residual over the m-dimensional Krylov subspace x0 + Km(A, r0)
generated by A and an initial residual r0 = b−Ax0 with an initial guess x0. However, it turns to impractical whenm becomes
large because of the growth of memory and computational requirements as m increases. To limit the cost of GMRES, it is
often restarted after each cycle of m iterations, which produces the restarted GMRES method denoted by GMRES(m) [1].
Restarting GMRES deteriorates convergence significantly. Several techniques have been proposed in the past few years that
attempt to tackle this kind of problem; see, to name a few, [3–6] for recent work on deflation and augmentation accelerating
techniques.

Another well-known popular Krylov subspacemethod for solving this system is the Biconjugate Gradient (BiCG) method
proposed by Fletcher [7]. However, the BiCG method shows irregular convergence behavior. Many ingenious methods have
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been devoted to improving the performance of the BiCG method, such as the Conjugate Gradient Squared (CGS) method
developed by Sonneveld [8], the van der Vorst’s Biconjugate Gradient stabilized (BiCGSTAB) method [9], the BiCGSTAB2
methodbyGutknecht [10], the BiCGSTAB(l)methodby Sleijpen and Fokkema [11], and theGeneralized Product-typemethod
based on BiCG (GPBiCG) method introduced by Zhang [12].

Recently, a new family, named Biconjugate A-orthogonal Residual (BiCOR) family, of efficient short-recurrence methods
for solving the system of linear equations (1), was proposed by Jing, Huang, Zhang, et al. [13] and Carpentieri, Jing and
Huang [14]. The BiCOR family of solvers shows their competitiveness with other popular Krylov solvers in use today in
different scientific and engineering applications [15,16], especially whenmemory is a concern. The first variant of the BiCOR
family of iterativemethods—the BiCORmethod, givesmuch smoother convergence behavior and often converges faster than
the BiCG method. Based on certain product-type variants of the BiCG method, Jing, Huang, Zhang, et al. [13] presented the
ConjugateA-orthogonal Residual Squared (CORS)method and the BiconjugateA-orthogonal Residual stabilized (BiCORSTAB)
method. The same residual polynomial of the BiCOR method is still used in the CORS method, i.e., the BiCOR residual
polynomial is squared in the CORS method. Therefore, the convergence of the CORS method may be more erratic than
that of the BiCOR method when the BiCOR method has irregular convergence behavior. In order to overcome this kind
of convergence problem, the BiCORSTAB method has been established sharing the same strategies with the BiCGSTAB
method. While the BiCORSTAB method works well in many cases, it still has quite erratic oscillation in some difficult
problems; see e.g., the experiments reported in [13] on the HB/young1c matrix problem from aero research applications
in the Harwell/Boeing collection [17]. Based on the idea of BiCORSTAB, various generalized methods have been proposed
such as GPBiCOR [18] and BiCORSTAB2 [19].

For the Lanczos-type product methods are often faced with apparently irregular convergence behaviors, along with the
associated problems of round-off errors, in practice, a method with smoother convergence behavior is more desirable [20].
In such cases, Freund proposed the QMR method [21], and its transpose-free variant (TFQMR) [22] by quasi-minimizing
the residual norms generated by the CGS method. Similarly, an approach called QMRCGSTAB to smooth the highly erratic
convergence behavior of the BiCGSTAB method was proposed by Chan, Gallopoulos, Simoncini et al. [23]; for related
references, we refer to [24,25,20,26–30]. In this paper, combining the best of the BiCORSTAB method and the QMR-type
strategies [21,22], a quasi-minimal residual variant of the BiCORSTAB method, named QMRCORSTAB will be developed
to overcome the irregular convergence behavior of the BiCORSTAB method having in mind the idea for the development
of the QMRCGSTAB method [23]. Moreover, explicit formulations of the approximate residual vectors at each iteration
will be provided for both the QMRCORSTAB and QMRCGSTAB methods, whereas the true residual vectors are used for the
implementation of the QMRCGSTAB method in [23]. It will be numerically demonstrated that the proposed new variant—
QMRCORSTAB outperforms its counterpart—QMRCGSTAB as well as its basic parent—BiCORSTAB in certain circumstances.
It is remarked that almost simultaneously Abe and Sleijpen [31] independently developed the hybrid BiCR variants for
solving nonsymmetric linear systems by replacing the BiCG part in the residual polynomial of the hybrid BiCG methods
with BiCR [32], but the comparison of the BiCOR family of solvers [13] and the hybrid BiCR variants [31] is not the emphasis
of this paper.

The remainder of the paper is organized as follows. A brief description of the BiCORSTAB method is recalled in Section 2
and its quasi-minimal residual variantwith explicit formulations of the approximate residual vectors provided each iteration
is presented in Section 3. Numerical experiments on typical sets of both sparse and dense matrices are reported to show
the smoother effect of the QMRCORSTAB method than the BiCORSTAB method as well as the associated efficiency obtained
over the QMRCGSTAB method in Section 4. Finally, some perspectives are made in Section 5.

Throughout this paper, we denote by AT and AH the transpose and conjugate transpose of A, respectively. ⟨x, y⟩ = xHy
denotes the Euclidean inner product with ∥x∥ denoting the Euclidean norm ∥x∥ =

√
xHx. For p ∈ R+, [p] is the integer part

of p. The nested Krylov subspace of dimension k generated by A from v is of the form

Kk(A, v) = span

v, Av, A2v, . . . , Ak−1v


.

2. The BiCORSTAB algorithm

Given an initial guess x0 to the complex nonsymmetric linear system (1), we consider an oblique projectionmethod onto
Km(A, v1) and orthogonal to Lm(A, w1), taking v1 =

r0
∥r0∥2

and w1 is arbitrary, provided ⟨w1, Av1⟩ ≠ 0, which is often

chosen to be equal to Av1
∥Av1∥22

. The biconjugate A-orthogonal residual (BiCOR) algorithm seeks an approximate solution xm
from the affine subspace x0 + Km(A, v1) of dimensionm by imposing the Petrov–Galerkin condition

b − Axm ⊥ Lm,

where Lm = AHKm(AH , w1). Exploiting the glorious idea of the BiCGSTAB [9] method, Jing, Huang, Zhang, et al. [13]
developed the BiCORSTAB algorithm. The BiCORSTAB produces iterates whose residual vectors satisfy

ri = ψi(A)φi(A)r0,

and direction vectors are defined as

pi = ψi(A)πi(A)r0,
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in which,ψi, φi and πi are Lanczos-type polynomials of degree less than or equal to i satisfying φi(0) = 1. Specifically,ψi(t)
is defined by the simple recurrence ψi+1(t) = (1 − ωit)ψi(t) in which the scalar ωi is to be determined. The pseudocode
for the left preconditioned BiCORSTAB algorithm [13] is shown as in Algorithm 1.

Algorithm 1 Left preconditioned BiCORSTAB method.
1: Compute r0 = b − Ax0 for some initial guess x0 .
2: Choose r∗0 = P(A)r0 such that


r∗0 , Ar0


≠ 0, where P(t) is a polynomial in t . (For example, r∗0 = Ar0).

3: for i = 1, 2, . . . do
4: solve Mzi−1 = ri−1
5: ẑ = Azi−1
6: ρi−1 =


r∗0 , ẑ


7: if ρi−1 = 0,method fails
8: if i = 1 then
9: p0 = r0
10: solve Mzp0 = p0
11: q0 = ẑ
12: else
13: βi−2 =


ρi−1/ρi−2


×


αi−2/ωi−2


14: zpi−1 = zi−1 + βi−2


zpi−2 − ωi−2zqi−2


15: qi−1 = ẑ + βi−2


qi−2 − ωi−2zqi−2


16: end if
17: solve Mzqi−1 = qi−1
18: ẑqi−1 = Azqi−1
19: αi−1 = ρi−1/


r∗0 , ẑqi−1


20: s = ri−1 − αi−1qi−1
21: check norm of s; if small enough: set xi = xi−1 + αi−1zpi−1 and stop
22: zs = zi−1 − αi−1zqi−1
23: t = ẑ − αi−1 ẑqi−1
24: ωi−1 = ⟨t, s⟩ / ⟨t, t⟩
25: xi = xi−1 + αi−1zpi−1 + ωi−1zs
26: ri = s − ωi−1t
27: check convergence; continue if necessary

for continuation it is necessary that ωi−1 ≠ 0
28: end for

3. The QMRCORSTAB algorithm

The algorithm to be proposed in this section is derived from the BiCORSTAB algorithm, inspired by the QMRCGSTAB
algorithm [23] which combines virtues of BiCGSTAB and quasi-minimal principle. The vectors si and ri+1 generated by
Algorithm 1 are as follows:

si = ri − αiApi, ri+1 = si − ωiAsi. (2)

We set

ym =


pi, m = 2i − 1, for i = 1, . . . , [m + 1/2]
si, m = 2i, for i = 1, . . . , [m/2]. (3)

Similarly,wm and δm are defined as

wm =


ri, m = 2i − 1, for i = 1, . . . , [m + 1/2]
si, m = 2i, for i = 1, . . . , [m + 1/2], (4)

δm =


αi, m = 2i − 1, for i = 1, . . . , [m + 1/2]
ωi, m = 2i, for i = 1, . . . , [m/2]. (5)

With these settings, Eq. (2) is translated into a single equation

Ayk = (wk − wk+1)/δk, k = 1, . . . ,m. (6)

Reformulate Eq. (6) into matrix form as

AYk = Wk+1Bk, (7)

where Yk = [y1, y2, . . . , yk] ,Wk+1 = (w1, w2, . . . , wk, wk+1) and Bk is the (k + 1)× k bidiagonal matrix, i.e.,

Bk =


1

−1 1
. . .

. . .

−1 1
−1

 × diag


1
δ1
,
1
δ2
, . . . ,

1
δk


.
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Onemain relation thatwe shouldmention here is that the columns of Yk andWk will span the same subspace ofKk(A, r0),
where the basis of span {Yk} is generated by the BiCORSTAB method. Any vector xk in x0 + Kk(A, r0) can be written as

xk = x0 + Ykzk, for zk ∈ Ck.

Hence, using Eq. (7) andw1 = r0, the residual can be written as

rk = r0 − AYkzk = Wk+1(ek+1
1 − Bkzk), (8)

where ek+1
1 = (1, 0, . . . , 0)T ∈ Ck+1. In fact, the columns of Wk+1 are not orthogonal to each other. We can multiply Wk+1

from the right-hand side by a scaling matrix to make its each column have a 2-norm equal to unity. Let this scaling matrix
be the inverse of the matrixΣk+1 = diag(σ1, σ2, . . . , σk+1) and set σk = ∥wk∥, then we can rewrite Eq. (8) as

rk = Wk+1Σ
−1
k+1(σ1e

k+1
1 − Hk+1zk), (9)

where Hk+1 = Σk+1Bk.
The ideal solution is to determine zk by minimizing the 2-norm of the right-hand side of Eq. (9). We apply the strategy

of the QMR method to Eq. (9), i.e., we solve the least-squares problem minz
σ1ek+1

1 − Hk+1z
.

It is easy to verify that the BiCORSTAB iteratesxk satisfy the following form:

xk = x0 + Ykzk, with zk = H−1
k (σ1ek1) = (δ1, δ2, . . . , δk)

T , (10)

defining Hk to be the k × kmatrix obtained from Hk+1 by deleting its last row. Then Eq. (10) can be rewritten as:xk =xk−1 + δkyk. (11)

Since Hk+1 is an upper Hessenberg matrix, QR decomposition with Givens rotations is the best way for us to choose.
Moreover, exploiting Lemma 4.1 in [22], the QMRCORSTAB iterates satisfy the relations

xk − xk−1 = c2k (xk − xk−1), (12)

θk =
wk+1

τk−1
, ck =

1
1 + θ2k

, τk = τk−1θkck. (13)

Setting

dk ≡
1
δk
(xk − xk−1) =

1
c2k δk

(xk − xk−1), (14)

ηk ≡ c2k δk, (15)

the above expression for xk becomes

xk = xk−1 + ηkdk. (16)

From Eqs. (11)–(14), a recurrence relation from dk can be extracted as

dk = yk +
θ2k−1ηk−1

δk
dk−1. (17)

In practice, stopping criterion for convergence check is usually based on the 2-norm ∥rk∥2 of the residual vector rk
associated with xk. However, the residual vectors rk’s are not explicitly shown in the QMRCORSTAB method as well in the
QMRCGSTAB method [23]. The following inequality provides an upper bound on the residual norm

∥rk∥ ≤
Wk+1Σ

−1
k+1

 σ1ek+1
1 − Hk+1zk

 ≤
√
k + 1 |τ | .

However, in practical algorithmic implementations, we would prefer to choose the updated residual norms for the stopping
criterion. Moreover, in order to reduce the number of matrix–vector multiplications in practice instead of computing the
true residual vector rk = b − Axk at each iteration in [23], we can update the approximate residual vectors rk explicitly as

rk = rk−1 − ηkek, where ek = Adk (18)

by left multiplying Eq. (17) by A on both sides, namely,

Adk = Ayk +
θ2k−1ηk−1

δk
Adk−1 (19)

and together with Eqs. (6) and (16).
Algorithm 2 is a version of the left preconditioned QMRCGSTAB method with explicit approximate residual vectors

updated per iterations, which is not available in the original QMRCGSTAB method in [23]. Combining Eqs. (3)–(5) and
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Algorithm 2 Left preconditioned QMRCGSTAB method.
1: Compute r0 = b − Ax0 for some initial guess x0 .
2: Choose r∗0 such that


r∗0 , r0


≠ 0.

3: Solve MzBG0 = rBG0 .

4: Set θ0 = η0 = 0; τ =

zBG0  ; zd0 = e0 = 0; rBG0 = r0 .

5: for i = 1, 2, . . . do
6: ρi−1 =


r∗0 , z

BG
i−1


7: if ρi−1 = 0,method fails
8: if i = 1 then
9: p0 = rBG0
10: solve Mzp0 = p0
11: else
12: βi−2 =


ρi−1/ρi−2


×


αi−2/ωi−2


13: zpi−1 = zBGi−1 + βi−2


zpi−2 − ωi−2 ẑvi−2


14: end if
15: v̂i−1 = Azpi−1
16: solve Mẑvi−1 = v̂i−1
17: αi−1 = ρi−1/


r∗0 , ẑvi−1


18: si−1 = rBGi−1 − αi−1v̂i−1

19: zsi−1 = zBGi−1 − αi−1 ẑvi−1

20: θi =
zsi−1

 /τ ; c = 1/

1 +θ2i ;τ = τθic

21: ηi = c2αi−1

22: zdi = zpi−1 +
θ2i−1ηi−1
αi−1

zdi−1

23: xi = xi−1 +ηizdi
24: ei = v̂i−1 +

θ2i−1ηi−1
αi−1

ei−1

25: ri = ri−1 −ηiei
26: check norm ofri; if small enough then stop
27: t̂ = Azsi−1
28: ωi−1 =


t̂, si−1


/

t̂, t̂


29: solve Mẑt = t̂
30: rBGi = si−1 − ωi−1 t̂
31: zBGi = zsi−1 − ωi−1 ẑt

32: θi =

zBGi  /τ ; c = 1/

1 + θ2i ; τ = τθic

33: ηi = c2ωi−1

34: zdi = zsi−1 +

θ2i ηi
ωi−1

zdi
35: xi =xi + ηizdi

36: ei = t̂ +

θ2i ηi
ωi−1

ei
37: ri =ri − ηiei
38: check convergence; continue if necessary
39: end for

Table 1
Computational cost per iteration for the un-preconditioned (preconditioned) BiCORSTAB,
QMRCGSTAB and QMRCORSTAB methods.

Method MVPs DOTs AXPYs Preconditioner solve

BiCORSTAB 2 4 10 (11) 2
QMRCGSTAB 2 6 12 (14) 2
QMRCORSTAB 2 6 15 (17) 2

Eqs. (13), (16)–(19), it is straightforward to derive the QMRCORSTAB algorithm, whose pseudocode with left preconditioner
is illustrated as in Algorithm 3. In Algorithm 2 and Algorithm 3, the rBG and rBO represent the residual vectors respectively
generated by the BiCGSTAB and BiCORSTAB methods. Similar to the notation in Algorithm 1, a prefix z is added to precon-
ditioned variables, and a hat symbol ˆ is used for matrix–vector products.

A comparison of the computational cost per iteration for the BiCORSTAB, QMRCGSTAB and QMRCORSTAB methods is
given in Table 1, whereMVPs,DOTs and AXPYs denote the number of matrix–vector products, the number of inner products
and the number of operations of the form ‘‘(scalar) × (vector) + (vector)’’, respectively. It is noted from Table 1 that the
QMRCORSTABmethod needs more DOTs and AXPYs than both the QMRCGSTAB and BiCORSTABmethods, but the numerical
experiments in the coming section will verify the advantages of the QMRCORSTAB method over both the QMRCGSTAB
and BiCORSTAB methods from the points of view of smooth convergence behavior and fast convergence rate in most
circumstances.
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Algorithm 3 Left preconditioned QMRCORSTAB method.
1: Compute r0 = b − Ax0 for some initial guess x0 .
2: Choose r∗0 = P(A)r0 such that


r∗0 , Ar0


≠ 0, where P(t) is a polynomial in t . (For example, r∗0 = Ar0).

3: Solve MzBO0 = rBO0 .

4: Set θ0 = η0 = 0; τ =

zBO0  ; zd0 = e0 = 0; rBO0 = r0 .

5: for i = 1, 2, . . . do
6: ẑ = AzBOi−1
7: ρi−1 =


r∗0 , ẑ


8: if ρi−1 = 0,method fails
9: if i = 1 then
10: p0 = rBO0
11: solve Mzp0 = p0
12: q0 = ẑ
13: else
14: βi−2 =


ρi−1/ρi−2


×


αi−2/ωi−2


15: zpi−1 = zBOi−1 + βi−2


zpi−2 − ωi−2zqi−2


16: qi−1 = ẑ + βi−2


qi−2 − ωi−2 ẑqi−2


17: end if
18: solve Mzqi−1 = qi−1
19: ẑqi−1 = Azqi−1
20: αi−1 = ρi−1/


r∗0 , ẑqi−1


21: si−1 = rBOi−1 − αi−1qi−1

22: zsi−1 = zBOi−1 − αi−1zqi−1

23: θi =
zsi−1

 /τ ; c = 1/

1 +θ2i ;τ = τθic

24: ηi = c2αi−1

25: zdi = zpi−1 +
θ2i−1ηi−1
αi−1

zdi−1

26: xi = xi−1 +ηizdi
27: ei = qi−1 +

θ2i−1ηi−1
αi−1

ei−1

28: ri = ri−1 −ηiei
29: check norm ofri; if small enough then stop
30: t = ẑ − αi−1 ẑqi−1
31: ωi−1 =


t, si−1


/ ⟨t, t⟩

32: solve Mzt = t
33: rBOi = si−1 − ωi−1t
34: zBOi = zsi−1 − ωi−1zt

35: θi =

zBOi  /τ ; c = 1/

1 + θ2i ; τ = τθic

36: ηi = c2ωi−1

37: zdi = zsi−1 +

θ2i ηi
ωi−1

zdi
38: xi =xi + ηizdi

39: ei = t +

θ2i ηi
ωi−1

ei
40: ri =ri − ηiei
41: check convergence; continue if necessary
42: end for

Table 2
Parameter settings for Example 4.1.

Set γ β Gridsize

1 [50:10:80] −100 15
2 50 −[100:100:400] 15
3 50 −100 [15:2:21]

4. Numerical experiments

In this section, we report three typical sets of numerical experiments with the BiCORSTAB, QMRCGSTAB and
QMRCORSTAB methods. For the detailed comparison and analysis of the BiCGSTAB and QMRCGSTAB method, we refer
to [23]. The sets of test matrices are respectively obtained from a partial differential operator for a three-dimensional
convection–diffusion problem discretized by finite difference scheme, numerical solution of boundary integral equations
in radar-cross-section calculation of three-dimensional objects in electromagnetic scattering by the Method of Moments,
and the University of Florida Sparse Matrix Collection [17]. The experiments have been carried out in double precision
floating point arithmetic withMATLAB (Version 7.0.4.365 (R14) Service Pack 2 with License Number 254509) on PC-Intel(R)
Core(TM) i7-3630QM CPU 2.40 GHz, 8 GB RAM. Here we use Iters and Trr to denote the number of iterations and log10 of
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Table 3
Comparison results for Example 4.1 with different parameter settings in Table 2. (The values
in bold indicate the best therein.)

Method BiCORSTAB QMRCORSTAB QMRCGSTAB
Parameter setting Iters Trr Iters Trr Iters Trr

Set 1 (γ )

50 101 −8.001 104.5 −8.5407 132.5 −8.0433
60 90 −8.0127 84.5 −8.0097 106 −8.2199
70 96.5 −8.0307 89.5 −8.1069 113.5 −8.5615
80 110.5 −8.0916 94.5 −8.1603 125.5 −8.2991

Set 2 (β)

−100 101 −8.001 104.5 −8.5407 132.5 −8.0433
−200 134.5 −8.6469 146 −8.1091 211.5 −8.1112
−300 336.5 −8.189 210.5 −8.0177 673 −8.0056
−400 – −5.8637 – −6.4624 – −1.496

Set 3
(gridsize)

15 101 −8.001 104.5 −8.5407 132.5 −8.0433
17 61.5 −8.8828 58.5 −8.3004 160 −8.0513
19 174.5 −8.3285 157 −8.0968 217.5 −9.8828
21 97.5 −8.0487 93.5 −8.7525 259.5 −8.2377

the final true relative residual 2-norm defined as log10
∥b−Axfinal∥2

∥r0∥2
, respectively. It is noted from Table 1 that the number of

MVPs is twice Iters. In all the context, a zero initial guess is taken. The stopping criterion used here is that the 2-norm of
the approximate residual be reduced by a factor (referred to as targeted backward error Tol) of the 2-norm of the initial
residual, i.e., ∥rk∥2/∥r0∥2 ≤ Tol, or when Iters exceeded the maximal iteration number (referred to as MAXIT ). Whenever
the considered problem contains no right-hand side to the original linear system Ax = b, let b = Ae, where e is the n × 1
vector whose elements are all equal to unity, such that x = (1, 1, . . . , 1)T is the exact solution. The convergence histories
showMVPs (on the horizontal axis) versus 2-norms of the approximate relative residuals (on the vertical axis) in all figures.
A symbol ‘‘–’’ is used to indicate that the method did not meet the required Tol before MAXIT or did not converge at all.

4.1. A three-dimensional convection–diffusion problem

In this problem, the necessity for the development of the QMRCORSTAB method as well as its efficiency obtained will be
justified in comparisonwith its counterpart—theQMRCGSTABmethod [23] and its basic parent—theBiCORSTABmethod [13]
by contriving some testingmatrices generated by the central finite difference scheme to discretize a three-dimensional (3D)
convection–diffusion equation [23]

L(u) = −1u + γ (xux + yuy + zuz)+ βu

on the unit cube with different settings for the parameters γ , β and gridsize (representing grid size) involved. The resulting
coefficient matrix is then of order n = gridsize3. For typically comprehensive comparison, three sets of parameter settings
are designed by varying the parameters γ , β and gridsize separately as shown in Table 2. For the convenience of observing
influences of different values of these three parameters on the solvability of these involving three iterative solvers, each set
starts with the basic parameter setting of γ = 50, β = −100, and gridsize = 15 as taken for the Example 4 in [23]. As will
be noticed for these specifically designed experiments that for this operator, not only large values in magnitude of γ but
also β will add the unfavorable solvable difficulty for the BiCGSTAB-type methods; see [23,33,34] for related discussions.

No preconditioning was used. Here, we set Tol = 10−8 and MAXIT = 2000. The comparative figures are listed in
Table 3 and the convergence histories are displayed in Figs. 1–3 correspondingly to the three sets of parameter settings.
The QMRCORSTAB method outperforms the QMRCGSTAB method in all cases in terms ofMVPs, especially when β = −300
in Set 2 (β) and gridsize = 21 in Set 3 (gridsize). For the comparison between theQMRCORSTAB and BiCORSTABmethods, the
former indeed adds dramatically favorable smoothing effect to the latter, since the latter has irregular convergence behaviors
along its convergence history. And with the increasing values in magnitude of these three parameters, the QMRCORSTAB
method turns to be better than the BiCORSTABmethod in terms ofMVPs. In addition, it is observed in the last plot of Fig. 2 and
the last line for Set 2 (β) in Table 3, all the three solvers cannot converge to the targeted accuracy because of stagnancy for the
case of β = −400 in Set 2 (β), which means the yielding problem associated with this case becomes more difficult to solve
for the three solvers. However, the QMRCORSTAB method can converge to the accuracy of Tol = 10−6 with MVPs = 1788
while the other two solvers cannot in this case.

4.2. Electromagnetic problems

The second set of linear systems arises from the numerical solution of boundary integral equations in radar-cross-
section (RCS) calculation of 3D objects in electromagnetic scattering. The underlying mathematical model is called the
Electric Field Integral Equation (EFIE). We point the reader to, e.g., [35, page 25] for a thorough description of this model.
The EFIE formulation can be applied to arbitrary geometries, including those with open surfaces and cavities, hence it
is very popular in scattering analysis. The Method of Moments discretization gives rise to indefinite and ill-conditioned
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Fig. 1. Convergence histories of Example 4.1 with Set 1 (γ ) in Table 2.

Table 4
Set and characteristics of test matrix problems (listed in order of increasing size).

Example Size Frequency (MHz) Geometry

1 1080 47.47 Guide
2 1699 57.14 Satellite
3 1980 710.87 Paraboloid
4 4932 158.34 Cylinder

systems that are notoriously tough to solve by iterative methods, compared to other surface integral formulations for the
same application [36]. The pertinent data matrix A is dense, complex, non-Hermitian; the right-hand side b varies with the
frequency and the direction of the illuminating wave.

In earlier work, the authors have reported on the remarkable robustness and efficiency of the BiCORSTAB method
for solving this problem class [15,37]. In this section we analyse numerically the effect of the quasi-minimal residual
strategy by running MATLAB experiments on selected matrix problems. In Table 4 we summarize the characteristics of
the linear systems that we considered in our experiments, corresponding to electromagnetic scattering from four different
geometries. Although not large, their solution demanded considerable computer resources in MATLAB. e.g., storing the
pertinent linear system for the cylinder problem (Example 4) requires around 370Mb RAMwhen symmetry is not exploited.
Larger problems would need a Fortran implementation of the solvers. However, the selected problems are representative
of realistic RCS calculation and are difficult to solve for iterative methods due to indefiniteness of the data matrix. On the
small satellite problem (Example 2, n = 1699), the un-preconditioned BiCORSTAB method required 1305.5 iterations to
reduce the initial residual by eight orders of magnitude starting from the zero vector and using a physical right-hand side;
the QMRCORSTAB method required 1289 iterations and the QMRCGSTAB method 1406 iterations. On the largest system,
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Fig. 2. Convergence histories of Example 4.1 with Set 2 (β) in Table 2.

Table 5
Comparison results for solving dense problems in electromagnetics in Example 4.2. (The
values in bold indicate the best therein.)

Method BiCORSTAB QMRCORSTAB QMRCGSTAB
Example Iters Trr Iters Trr Iters Trr

1 90 −8.0300 84.5 −8.3221 89.5 −8.0658
2 246.5 −8.0444 244 −8.0613 255.5 −8.0015
3 168.5 −8.2342 144.5 −8.0544 156.5 −8.3216
4 82.5 −8.1291 81.5 −8.0029 87 −8.0148

the cylinder problem (Example 4), the BiCORSTAB method required 1540.5 iterations, the QMRCORSTAB method 1461.5
iterations and the QMRCGSTAB method 1493.5 iterations. Therefore, preconditioning is critically needed. The choice of
effective preconditioning methods for boundary integral equations is a difficult issue on its own hand, see e.g. discussions
in [36]. In our experiments, we preconditioned the linear system by using a multilevel inverse-based incomplete LU
factorization. We point the reader to [38] for a detailed description of this preconditioner, and to [39] for an assessment
of its performance for solving the EFIE formulation. The preconditioner was computed from a sparse approximation to the
dense coefficient matrix, constructed by retaining the, say k, largest entries per column of A. We chose k < 100 for every
problem, and tuned this parameter according to the size of the system to solve.

We clearly see from the results of Table 5 and from the convergence histories shown in Fig. 4 the good potential of the
quasi-minimal residual strategy to smooth the residual and to improve the performance of the BiCORSTAB method to some
extent. In most of our runs, the QMRCORSTAB method outperformed the QMRCGSTAB method.



1752 D.-L. Sun et al. / Computers and Mathematics with Applications 67 (2014) 1743–1755

Fig. 3. Convergence histories of Example 4.1 with Set 3 (gridsize) in Table 2.

Table 6
Set and characteristics of test matrix problems (listed in alphabetical order).

Group and name Size Nonzeros Problem kind

Bai/rdb5000 5000 29,600 Computational fluid dynamics problem
HB/sherman5 3312 20,793 Computational fluid dynamics problem
Quaglino/viscoplastic1 4326 61,166 Viscoplastic collision problem
HB/young3c 841 3,988 Acoustics problem

4.3. Test problems from University of Florida Sparse Matrix Collection

Finally, in order to further demonstrate the advantages gained by applying the quasi-minimal residual strategy to the
BiCORSTABmethod, a fewmore but not extensive test problems as listed in Table 6 are borrowed in theMatrixMarket format
from the University of Florida Sparse Matrix Collection [17] to compare the QMRCORSTABmethod with the BiCORSTAB and
QMRCGSTAB methods. The targeted backward error is Tol = 10−8 and MAXIT = 4000 for all tests. No preconditioning was
used except for Quaglino/viscoplastic1, where an ILU(0) preconditioner was implemented to ensure the convergencewithin
a reasonable amount of iterations.

Numerical results are presented in Table 7 and the corresponding convergence histories are shown in Fig. 5. It is
demonstrated again that the QMRCORSTAB method shares much smoother convergence behavior than the BiCORSTAB
method and it is better than (at least almost the same as) the latter in terms of MVPs. Moreover, the QMRCORSTAB method
is quite competitive with its counterpart—the QMRCGSTAB method in such kinds of problems.
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Fig. 4. Convergence histories on the dense matrix problems from Electromagnetics applications in Example 4.2.

Table 7
Comparison results for Example 4.3. (The values in bold indicate the best therein.)

Method BiCORSTAB QMRCORSTAB QMRCGSTAB
Matrix problem Iters Trr Iters Trr Iters Trr

Bai/rdb5000 306.5 −8.2221 234.5 −8.0325 263 −8.006
HB/sherman5 2719.5 −8.1856 2670 −8.0568 3412.5 −8.0293
Quaglino/viscoplastic1 403.5 −8.0804 408.5 −8.0966 404.5 −8.1061
HB/young3c 947.5 −8.8996 897 −8.3103 954.5 −8.041

5. Conclusions

In this paper, we have developed a QMRCORSTAB method based on the quasi-minimization of the residual using
standard Givens rotations that lead tomethodswith short-term recurrences and smooth convergence curves. The numerical
experiments verified that theQMRCORSTABmethod convergesmore smoothly than the basic BiCORSTABmethod, especially
gives better performance when the BiCORSTAB method has irregular convergence behaviors with oscillations along the
convergence history. However, it is commented that along with our experimental implementation, the QMR-type variants
are observed to be sensitive to system properties, right-hand side and preconditioner chosen; see [40–42] for relevant
issues and analyses. Also as pointed out by Simoncini and Szyld [6] that it is still challenging to substantially improve the
performance of Krylov subspace method on large applications, when no a priori information on the problem is available.
By the way, all the above algorithms can be implemented with various deflated and augmented techniques to accelerate
convergence speed [3,5], which is another further issue to be discussed.
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Fig. 5. Convergence histories of Example 4.3.
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