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EXTENDED REPORT

MEFV mutations affecting pyrin amino acid 577
cause autosomal dominant autoinflammatory

disease

Monique Stoffels, "> Agata Szperl,* Anna Simon, "3 Mihai G Netea, ">

Theo S Plantinga,""? Marcel van Deuren,'? Sylvia Kamphuis,® Helen J Lachmann,®
Edwin Cuppen,” Wigard P Kloosterman,” Joost Frenkel,® Cleo C van Diemen,*
Cisca Wijmenga,* Marielle van Gijn,” Jos W M van der Meer'-*>

ABSTRACT

Objectives Autoinflammatory disorders are disorders
of the innate immune system. Standard genetic testing
provided no correct diagnosis in a female patient from a
non-consanguineous family of British descent with a
colchicine-responsive autosomal dominant periodic fever
syndrome. We aimed to unravel the genetic cause of the
symptoms.

Methods Whole exome sequencing was used to screen
for novel sequence variants, which were validated by
direct Sanger sequencing. Ex vivo stimulation with
peripheral blood mononuclear cells was performed to
study the functional consequences of the mutation.
mRNA and cytokine levels were measured by
quantitative PCR and ELISA, respectively.

Results Whole exome sequencing revealed a novel
missense sequence variant, not seen in around 6800
controls, mapping to exon 8 of the MEFV gene
(c.1730C>A; p.T577N), co-segregating perfectly with
disease in this family. Other mutations at the same
amino acid (c.1730C>G; p.T577S and ¢.1729A>T,
p.T5775) were found in a family of Turkish descent, with
autosomal dominant inheritance of familial
Mediterranean fever (FMF)-like phenotype, and a Dutch
patient, respectively. Moreover, a mutation (c.1729A>G,;
p.T577A) was detected in two Dutch siblings, who had
episodes of inflammation of varying severity not
resembling FMF. Peripheral blood mononuclear cells from
one patient of the index family showed increased basal
interleukin 18 mRNA levels and cytokine responses after
lipopolysaccharide stimulation. Responses normalised
with colchicine treatment.

Conclusions Heterozygous mutations at amino acid
position 577 of pyrin can induce an autosomal dominant
autoinflammatory syndrome. This suggests that T577,
located in front of the C-terminal B30.2/SPRY domain, is
crucial for pyrin function.

INTRODUCTION

Autoinflammatory disorders are disorders of the
innate immune system characterised by recurrent
episodes of fever and systemic inflammation, with
localised inflammation predominantly affecting
serosal surfaces, skin, joints and eyes. Attacks are
often self-resolving, and there are no signs of auto-
antibodies or infection.' 2

There are a number of inherited autoinflammatory
syndromes, such as familial Mediterranean fever
(FMF), tumour necrosis factor receptor-associated
periodic syndrome, hyperimmunoglobulinaemia D
and periodic fever syndrome (also known as mevalo-
nate kinase deficiency), cryopyrin-associated periodic
syndromes (CAPS), Blau syndrome, deficiency of the
interleukin (IL)-1 receptor antagonist (DIRA), pyo-
genic arthritis, pyoderma gangrenosum and acne
(PAPA). In other cases, the genetic background is
uncertain or multifactorial, such as periodic fever
with aphthous stomatitis, pharyngitis and cervical
adenitis (PFAPA), or thought to be unlikely, such as
Schnitzler syndrome. Despite similarities in symp-
toms, the clinical picture is often different, as well as
the mode of inheritance, duration, frequency of
attacks, and response to treatment.”> > In addition,
many patients suspected of having autoinflammatory
disease do not fulfil diagnostic criteria for the known
syndromes or test negative for the known mutations.
Therefore, correctly diagnosing these patients can be
challenging, often shown by the long period needed
for diagnosis.”*

In a family with an autosomal dominant autoin-
flammatory disorder, standard genetic testing did
not provide a diagnosis. We aimed to reveal the
genetic cause of the undiagnosed symptoms in this
family by using a hypothesis-free, exome-wide
sequencing approach.

METHODS

Patients

Family 1

A female patient (IV:5) from a non-consanguineous
family of British descent with an apparent auto-
somal dominant inherited periodic fever syndrome
(figure 1A) had recurrent episodes of synovitis,
pleuritis or peritonitis, and skin rash (figure 2A)
since the age of 6 (table 1). Her grandfather (II:2)
had inflammatory episodes of fever, arthritis, pleur-
itis, peritonitis and skin rash from the age of 10.
His father, two of his siblings and his daughter
(mother of the proband; 1I1:4) had similar attacks.
They experienced a beneficial response to colchi-
cine. However, initial DNA mutation screening for
MEFV exons 2, 5, 10 as well as TNFRSFR1A exons
2,3,4,5, 6,7 and NLRP3 in at least two family
members did not show mutations.
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Figure 1 MEFV mutations. (A) The mutation found in patients in family 1 is a heterozygous autosomal dominant c¢.1730C>A mutation (shown in
the chromatogram), leading to a p.T577N amino acid substitution. (B) Pedigree of family 2: ¢.1730C>G; p.T577S. (C) Pedigree of family 4:
¢.1729A>G; p.T577A. (A—C) Clinically affected family members are indicated in black. A diagonal line indicates that the individual is deceased.
Males and females are indicated by squares and circles, respectively. Arrows indicate the proband. * represents genetic confirmation of clinical data,
whereas ** represents genetic confirmation, but no symptoms are displayed yet because of very young age of the individuals. Question marks
indicate that no information is available about these individuals. The + in family 4 indicates that these individuals carry a p.P3695/p.R408Q complex
allele. (D) The p.T577 amino acid position in front of the B30.2 domain of the pyrin protein is indicated with a red star. Most familial Mediterranean
fever mutations are in the B30.2 domain (solid arrow). The open arrows indicate previously described MEFV mutations with dominant phenotype.

This study was approved by the local ethics committee; provided protocol. After PCR amplification of enriched pro-

patients gave informed consent. ducts, the quality was verified on the Bio-Rad Experion instru-
ment followed by paired-end sequencing on the HiSeq2000
Exome sequencing: library generation, reference alignment with 100 bp reads. Image files were processed using standard
and variant calling [lumina base-calling software, and generated reads were ready
Genomic DNA samples were randomly fragmented using nebu- for downstream processing after demultiplexing.
lisation. Bar-coded adapters were ligated to both ends of the The reads were aligned to the human reference genome build
resulting fragments, according the standard NEBNext DNA 37 using Burrows-Wheeler alignment.® To clean aligned data
Library Prep Master Mix Set for Illumina protocol (New and perform variant calling, we applied Picard duplicate

England Biolabs, UK).® Fragments with an average insert size of ~ removal and The Genome Analysis Toolkit” quality score recali-
220 bp were excised using the Caliper XT gel system, and bration, indel realignment and unified genotyper. Using snpEff
extracted DNA was amplified by PCR. The quality of the (http:/snpeff.sourceforge.net), variants were annotated with
product was verified on the Bio-Rad Experion instrument.  information from dbSNP132, 1000 Genomes Project (phase 1,
When this met the criteria, the product was multiplexed in an 2 and 3) and Ensembl build 37.64, which are all integrated into
equimolar pool of four similar products. This pool was hybri-  the pipeline MOLGENIS Compute developed by the Genomics
dised to the Agilent SureSelect All exon V2 kit, according to the ~ Coordination Center of the Department of Genetics, University

Figure 2 Skin complications. An
evanescent urticaria-like skin rash seen
in individual IV:5 in family 1 (A) and
individual 11:1 (B) and II:2 in family 4 (C).
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Table 1 Clinical characteristics

Current families

Family 1 Family 2 Family 3* Family 4*

c.1730C>A; ¢.1730C>G; c.1729A>T; c.1729A>G;
Characteristic FMF p.T577N p.T577S p.T577S p.T577A
Inheritance Autosomal recessive Autosomal dominant  Autosomal ? ?

dominant
Ethnic background Mediterranean (Turkish, Arab, Armenian, Jewish, British Turkish Dutcht Dutch
Italian)

Colchicine ++ ++ ++ NA ]
responsiveness
Fever ++ ++ ++ NA ++
Serositis ++ ++ ++ NA Arthritis
Skin lesions ++ Erysipelas-like erythema + Faint evanescent - NA ++

rash
Hepatosplenomegaly +— - - NA ++
Anaemia +/— - - NA ++
Psychomotor delay - - - NA + (I1:1)
Duration of episodes 2-3 days Days to weeks 1-1.5 weeks NA weeks

*In families 3 and 4, additional non-classic MEFV mutations were found: p.T2671 and p.P3695/R408Q, respectively.

tDutch patient of French origin.

$Good response to anakinra. Symbols ranging from — to ++ indicate the absence or (degree of) presence of the mentioned symptoms.

FMF, familial Mediterranean fever; NA, not enough clinical data available from family 3.

of Groningen, Groningen, The Netherlands (http:/wiki.gcc.rug.
nl/wiki/GeeStart).®  Variant  pathogeneity —predictions were
obtained with PolyPhen V2.0, SIFT and Align GVD.*~'2

Exome sequencing: step-wise filtering of sequence data

For our analysis we used a ‘linkage-based strategy’ analysis.'®
We chose all sequence variants (SVs) shared between two
affected, related individuals (21 905 SVs). We excluded all var-
iants that (1) had been reported in the dbSNP131 (including the
1000 Genomes Project) and in a private set of two unrelated
samples (2225 SVs left), (2) mapped to the intronic regions of
the genes, except to splice sites (565 SVs left), and (3) were
present in the olfactory receptor genes'* and high copy number
genes.”> We further reduced our dataset to 151 SVs by remov-
ing all variants in the homozygous state (dominant disease
model), present on the X chromosome (autosomal model), and
by using the updated SeattleSeq Annotation tool'® removing
additional variants present in the 1000 Genomes Project but not
yet present in the dbSNP131, at this point of the analysis.
Finally, we removed all variants predicted as ‘benign’ by
PolyPhen implemented in the SeattleSeq Annotation tool,'®
resulting in 125 SVs for further consideration.

Validation of mutations

Variations were validated by direct Sanger sequencing and ana-
lysed using DNA Variant Analysis software (Mutation Surveyor).
To validate the presence of mutations in MEFV in affected
patients of family 1, DNA was isolated from whole blood, and
conventional PCR and Sanger sequencing of exon 8 were per-
formed. Primer sequences are available upon request.

Additional patients

Retrospectively, three other patients/families had been linked to
mutations at this location of the MEFV gene in our centres
shortly before or simultaneously with family 1; details are
included in the Results section (figure 1 and table 1). In families
2 and 3, it was discovered by sequencing the entire MEFV gene,
and in family 4 it had been discovered via a sequencing array of

120 inflammasome-related genes. This had been achieved by
generating a bar-coded whole genome fragment library for the
index patient, which was enriched for the coding regions of
these 120 genes using a custom Agilent 1M microarray, and the
enriched library was sequenced on the SOLiD4 sequencer as
described previously.!” This array did not yield mutations in any
of the other genes.

In vitro cytokine production

We characterised the immune responses of peripheral blood
mononuclear cells (PBMCs) from one affected family member
(family 1, 1II:4) and one healthy control subject. PBMCs were
isolated using Ficoll-Paque PLUS (Bio-Sciences AB). A total of
5%10° cells in RPMI 1640 medium (Dutch modification;
Invitrogen, Paisley), supplemented with 1 mM sodium pyruvate
(Sigma-Aldrich), 2 mM t-glutamine (Merck) and 50 pg/ml gen-
tamicin (Centrafarm), were incubated in round-bottomed
96-well plates (Greiner) at 37°C. After 24 h of incubation with
various stimuli, supernatants were collected and stored at —80°C
until further analysis. In another experimental setup, cells were
stimulated for 3 h with 1pg/ml lipopolysaccharide (LPS)
(Sigma; Escherichia coli serotype 055:B5, and purified as
described elsewhere'®), followed by 15 min with 1 mM ATP to
induce IL-1 release.’

Cytokine assays

Cytokine concentrations in supernatants were measured using
commercial ELISA kits from R&D Systems (IL-1a, IL-1B) or
PeliPair Reagent sets from Sanquin (IL-6), according to the man-
ufacturer’s instructions.

Quantitative reverse transcriptase-PCR

Freshly isolated PBMCs (1x10°) were incubated with various
stimuli at 37°C. Total RNA was extracted using TRIzol reagent
(Invitrogen), subjected to DNAse treatment (Ambion DNA-free
Kit; Invitrogen) and reverse-transcribed into cDNA (iScript
cDNA Synthesis Kit; Bio-Rad, Hercules, California, USA).
Quantitative reverse transcriptase-PCR for human IL-1f and
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Bo-microglobulin was performed using an Applied Biosystems
7300 real-time PCR system. Primer sequences are available
upon request.

RESULTS
Genetic cause of the autoinflammatory disease in family 1
We used whole exome sequencing in two patients from family 1
(IV:S and 1I:2). We aligned the raw sequencing to the human
reference build 37, obtaining 27 Gb of high-quality reads. The
mean on-target coverage was 76-fold and 135-fold for patients
I1:2 and 1V:35, respectively, of which 92% and 93%, respectively,
was covered at least 10 times, indicating high-quality data. The
concordance of sequenced data with genotyping data
(HumanCytoSNP-12 beadchip; lllumina) was 99.9%. We identi-
fied approximately 31 600 SVs of high quality per individual
which, after filtering, resulted in a list of 125 candidate SVs
present in both patients. One of these was a mutation in exon 8,
c.1730C>A, of the MEFV gene (NM_000243.2), resulting in a
missense mutation, p.T577N, in the pyrin protein (figure 1D).
Considering the colchicine responsiveness and the autoinflam-
matory phenotype, this was the most likely candidate. As shown
in figure 1A, Sanger sequencing confirmed the co-segregation of
the mutation within the affected family members only. More
importantly, this mutation was not found in 396 healthy Dutch
controls, in addition to 500 Dutch controls from the GoNL
Project, the CEU and YRI population from the 1000 Genomes
Project,”® 200 Danish and 120 UK controls, and the ESP5400
dataset. Neither could we detect this mutation in over 1000
patients with unexplained autoinflammatory symptoms.

Pyrin mutations in the same amino acid position in additional
families with autoinflammatory diseases

Shortly before or simultaneously, three different mutations
affecting the same amino acid location of pyrin were detected by
our group in three other patients/families (figure 1 and table 1).
After sequencing the whole gene, we found a ¢.1730C>G
(p.T577S) mutation in the MEFV gene (without other MEFV
gene mutations) in a family of Turkish descent (family 2, figure
1B). This family presented with an FMF-like phenotype, good
therapeutic effect of colchicine, and also an autosomal dominant
inheritance pattern.

In two other patients/families, the mutation was found in
combination with an additional non-classic MEFV gene variant.
By sequencing the entire MEFV gene, we detected a ¢.1729A>T
(p.T577S) mutation in association with ¢.800C>T (p.T267I) in
a Dutch patient with an autoinflammatory phenotype (family 3:
Infevers database: http:/fmf.igh.cnrs.fr/ISSAID/infevers/search.
php?n=1; no additional data available).

The fourth family is also of Dutch ethnic background, with a
severe autoinflammatory phenotype in an autosomal dominant
inheritance pattern (family 4, figure 1C). DNA from the index
patient was sequenced by an array for the coding region of 120
inflammasome-related genes. This revealed a ¢.1729A>G
(p.T577A) mutation, in association with a p.P369S/R408Q
complex allele. No other predicted pathogenic variants were
detected. Since the age of 26 months, the index case (II:1) had
recurrent skin rash (figure 2B,C) and episodes of arthritis
and fever, accompanied by hepatomegaly, massive splenomegaly
and severe anaemia (haemoglobin 3.5 mmol/l), resulting in delay
of growth and psychomotor development. Other abnormalities
included lymphadenopathy and conjunctivitis. Biopsy of the skin
rash showed urticaria. Standard genetic testing for CAPS and
DIRA was negative. Under anakinra treatment, this patient
rapidly achieved sustained remission with near normalisation of

haemoglobin (6.5 mmol/l) within 1 month, improved growth
and improvement in psychomotor development. His mother
(I:2) had experienced repeated inflammatory attacks since the
age of 6, albeit less severe than her son’s. These episodes
included fever, arthritis, anaemia, skin rash and splenomegaly.
She had had erythema nodosum as a child, and also oral and
vaginal aphthosis (HLA-B51 negative). She also had colitis,
which, on biopsy, showed chronic inflammation with granu-
lomas. Her disease responded well to anakinra. A brother of the
proband (II:2) showed symptoms similar to the index patient
from 4 days after birth, with failure to thrive, delayed psycho-
motor development, fever, urticarial skin rash, anaemia and
hepatosplenomegaly. A brief trial of colchicine was not success-
ful, but anakinra relieved the symptoms.

Functional studies

Since the T577 mutations are located in exon 8, just before the
PRY-SPRY domain of pyrin, we hypothesised that it might alter
the structure of the protein. However, a western blot of PBMC
lysates from patient III:4 from family 1 did not show any differ-
ences in banding pattern compared with the control (not
shown), indicating that the mutation did not affect the electro-
phoresis characteristics.

To study the functional consequences of the T577N mutation,
we isolated PBMCs from this patient and a healthy volunteer.
First, we examined IL-1p mRNA levels. As shown in figure 3A,
PBMCs obtained from the T577N patient without colchicine
treatment showed an almost six times higher expression of basal
IL-18 mRNA. With colchicine treatment, expression levels fell
and resembled control levels, indicating that colchicine acts on
the expression of IL-18 mRNA and that this mutation causes
higher IL-1p expression levels, either directly or indirectly.

Next, to evaluate functional consequences of T577N at the
protein level, we performed LPS stimulation studies. As shown
in figure 3B, cells from the patient secreted more of the proin-
flammatory cytokines, IL-1B and IL-6, after 3 h of LPS and LPS
+ATP stimulation than cells from the control, even under col-
chicine treatment. After 24 h incubation in medium and with
LPS (figure 3C), T577N PBMCs obtained from the patient
without treatment showed higher production (not shown) and
secretion of cytokines (IL-1B, IL-1c, IL-6), compared with the
control. Treatment with colchicine normalised IL-1B secretion
to control levels. In response to low-dose LPS, only the PBMCs
from the patient not taking colchicine secreted excessive
amounts of cytokines, illustrating that the cells bearing the
mutation are more easily triggered to produce cytokines. This
effect is most pronounced for IL-18.

DISCUSSION

In this study, we show that alteration of the amino acid threo-
nine at position 577 of pyrin, the protein associated with FMF,
causes an autosomal dominant autoinflammatory phenotype
including fever and systemic inflammation. In our patients, this
disorder has some similarities to FMF but also clear differences
(table 1 shows the comparison between the classic phenotype of
FMF and our patients). FMF is a well-characterised autoinflam-
matory disease with autosomal recessive inheritance, in which
(homozygous or compound heterozygous) mutations are most
often located in the B30.2 domain. Our data suggest that T577
is crucial for pyrin function, as four different novel DNA var-
iants detected in patients with autoinflammatory disease from
different populations affect the same amino acid and are able to
cause disease in the heterozygous form.
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Figure 3 Ex vivo inflammasome IL-1B mRNA

stimulation. Peripheral blood ¢
mononuclear cells (PBMCs) were
incubated for 3 h with 1 ug/ml
lipopolysaccharide (LPS) or RPMI, after
which the medium was removed. Cells
were incubated for an additional

15 min with either RPMI or 1 mM ATP
(A,B). In another experiment (C), cells
were stimulated for 24 h with 1 or

10 ng/ml LPS. After incubation, the
plates were spun, supernatants c IL-1p
collected and mRNA was isolated. 6000

(A) IL-1B mRNA expression in cells 2000

from one patient from family 1, under
colchicine treatment (red bar) or not
(black bar), and cells from a control 300
(white bar). Basal mRNA levels for 200
IL-1B in the patient without treatment 100
are 5.7 times higher than control basal 0
IL-18 mRNA levels. Under colchicine S

fold expression/control

2000

pg/ml

N
treatment, these levels appear to s ¢

normalise to control values.

(B) Increased cytokine production by
PBMCs after 3 h LPS stimulation and
15 min of ATP. (C) The PBMCs of the
untreated patient are more sensitive to
24 h LPS stimulation, especially at
low-dose LPS. IL-1B secretion
normalises to control levels, when the
patient is under colchicine treatment.

To date, the precise structure and function of pyrin have not
been fully resolved. It consists of an N-terminal pyrin domain, a
B-box, bZIP basic, coiled-coil domains and a B30.2/SPRY
domain (figure 1D).*"">* The crystal structure of this B30.2
domain was elucidated by Weinert et al,** who showed that
many FMF-associated pyrin mutations are in close vicinity of a
predicted peptide-binding site, suggesting that these are prob-
ably involved in altering binding properties of the B30.2
domain. However, the crystal structure of the remaining part of
pyrin is unknown, which makes it impossible to perform pre-
dictive modelling of the T577 mutation effects. On the basis of
the hypothetical presence of coiled coils,”® we suggest it will
lead to a structural change significantly affecting protein func-
tion/oligomerisation.

The exact function of pyrin in inflammation is still under dis-
cussion. The protein, or at least part of it, is found in the
nucleus of granulocytes and dendritic cells,>® 27 where it might
activate NF-kB. Pyrin is also found in the cytoplasm of mono-
cytes, interacting with tubulin and colocalising with microtu-
bules.”® Through the pyrin domain, it can interact with ASC
(apoptosis-associated speck-like) protein, which is involved in
inflammasome complex formation,?® thereby activating IL-1.
Experimental findings fit with two possible mechanisms: either
pyrin inhibits IL-1B activation by competing with caspase-1 for
ASC3%33 or it forms an inflammasome complex by itself,>*3¢
reviewed more extensively by Masters et al.> Although we
cannot pinpoint the exact mechanism, our data show that the
dominant T577N mutation results in increased cytokine secre-
tion after LPS stimulation, which normalises when the patient is
receiving colchicine treatment. This suggests that T577N
imparts a gain of inflammatory function, contributing to the
growing body of evidence that MEFV mutations are
gain-of-function rather than loss-of-function mutations, as previ-
ously hypothesised on the basis of recessive inheritance of FMF.
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Although FMF is known to be an autosomal recessively inher-
ited disease,>” *® it is known that in some patients only one
(classical) mutation in the MEFV gene has been found or that
the inheritance pattern in the family is more compatible with
autosomal dominant inheritance.>® To explain these observa-
tions, several reasons have been suggested: missing of the
second mutation because of, for example, incomplete screening
of the gene, presence of a large deletion, copy number varia-
tions (shown not to play a role*®) or location in intron or pro-
moter sequences; concomitant presence of a mutation in
another autoinflammatory gene,*'™** or modifications at the epi-
genetic? or post-translational level; pseudo-dominance (which
might arise in offspring of a heterozygous carrier and a homozy-
gous patient)**™*; mosaicism®® (where individuals have cells of
different genotypes). In the present cases, one may argue that
these patients had a digenic disease with an as yet unidentified
autoinflammatory gene mutation. However, the T577 mutation
appears to be able to cause a true autosomal dominant pheno-
type; neither the whole exome sequencing in family 1 nor the
array of 120 inflammasome-related genes in family 4 revealed a
mutation in another innate immunity-related gene. Although in
families 3 and 4, the patients do carry the T577 mutation in
combination with another mutation in the MEFV gene, patient
I:2 in family 4 shows that the T577 mutation is sufficient to
cause disease. There have been a few other reports of MEFV
mutations that also appear to cause an FMF phenotype in the
heterozygous state—for example, a heterozygous H478Y muta-
tion in a Spanish family,’' and a number of mutations in exon
10, such as M694V and R653H or a deletion of M694.4* 46 47

It is well known from several hereditary autoinflammatory
diseases that the character and severity of the phenotype can
vary considerably, despite mutations in the same gene.”> For
example, a wide spectrum of disease associated with mutations
in the NLRP3 gene is now recognised as CAPS, but previously
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described as three separate clinical diseases.” Another example is
mevalonate kinase deficiency, in which severely affected patients
have multisystemic disease with risk of death early in childhood,
whereas more common mutations only cause the episodic fever
syndrome, HIDS.? Recently discovered MVK mutations in disse-
minated superficial actinic porokeratosis seem to expand the
spectrum even further.’> The present study suggests that MEFV
gene mutations are also linked to a spectrum of manifestations, in
addition to the classical phenotype of FME. At this time, we hesi-
tate as to whether to use a name such as ‘pyrin-associated periodic
syndrome’ to include this broader continuum of disease, or to des-
ignate this as an atypical form of FME.

In summary, we describe four missense mutations that alter
pyrin T577 in four families. It causes a characteristic autoinflam-
matory disease, which can be controlled with colchicine or IL-1
blockade. This suggests that the phenotype associated with
MEFV gene mutations is more diverse than just FMF.
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