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chapter II

Computational Methodology

C. Arnarez

Department of Molecular Dynamics, University of Groningen, The Netherlands 



Abstract

In this chapter I will first introduce the general principles of the compu-
tational approach used in this thesis. The main theory and equations of 
molecular dynamics will then be discussed, followed by an overview of 
the definitions and parameterization of molecular interactions. In the final 
section, I will present the general simulation set-up as used in the studies 
included in this thesis
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“There are currently three types of science: 
theoretical and experimental of course, which 
have to count now with computational. This 
latter would not exist without theoretical stud-
ies, and would not make sense without experi-
mental results.”

— Wanda Andreoni, Zernike Chair Lecture, 2011

Computational sciences

Since the invention of the computer 
— ENIAC, the first programmable computer 
with electronic switches built by the United 
States Army to compute ballistics, and lat-
er to conduct calculations on the hydrogen 
bomb [37] — and the demonstration of its 
potential for using mathematical methods to 
process vast computations, the field of com-
putational sciences and numerical methods 
has risen to become an intellectual disci-
pline by itself. The miniaturization and fine-
tuning of electronic components, as well as 
the decrease in production cost, has lead to 
the rapid popularization of computers that 
we know today. Uncountable theories have 
been converted into algorithms in the past 
half-century; with the exponential increase 
of computational power and the revolution 
brought about by parallel computing, com-
putational sciences have grown to be a pow-
erful and indispensable tool. Computational 
methods are now applied daily in a wide 
range of established fields, such as: market 
prediction, fluid dynamics, nuclear engineer-
ing, medical imaging, behavioral anthropolo-
gy and sociology, and, of course, chemistry, 
which is the field we will evolve in this thesis. 

In computational chemistry, simula-
tions are used to provide knowledge about 

the time and/or conformational evolution of 
molecules. Many techniques coming from 
a large variety of theoretical fields have 
been developed and different approaches, 
as well as levels of representation, are em-
ployed. Roughly, two main branches can 
be defined: the methods applying quantum 
mechanics to describe particles, including 
ab initio, density functional and (semi-)em-
pirical methods; and the methods employ-
ing classical mechanics, including molecular 
dynamics and molecular mechanics. 

The technique exclusively used in the 
studies presented in this thesis is molecu-
lar dynamics (MD). MD as we know it today 
was initially designed and tested in the mid-
fifties. The first example of an MD simulation, 
describing a very simple system composed 
of a linear string made of 64 particles, was 
published in 1955 [38]. The forces result-
ing from the interactions between particles 
were described by non-linear potentials. 
Very quickly, the complexity of systems 
studied through this emergent technique 
increased: simulation of a two-dimensional 
system composed of spheres was published 
in 1957 [39] — often considered to be the 
first real MD paper — and the basis of the 
approach was finalized two years later [40]. 
This technique is now daily used as a com-
plement to experiments, explaining at an 
atomic level the experimental observations, 
or as a quicker technique (in opposition to 
time- and resources-consuming series of 
experimentations) to narrow the range of ex-
periments to perform by eliminating improb-
able and unfavorable research directions. 
Alternatively, MD simulation is a solution of 
choice to study fine interactions between 
molecules, something unreachable experi-
mentally. This fact earned MD the nickname 
of “computational microscopy”.

Molecular Dynamics

Equations of motion: MD is a widely 
used technique to study the time evolution 
of atoms, described as point particles, and 
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thus the conformational space accessible to 
them. Different flavors of MD exist; the most 
common ones employ classical mechanics 
to describe the particles’ interactions and 
displacements. In classical MD, Newton’s 
laws of motion are applied to each particle in 
the system of interest: 

Fi = mi · r̈i(t) 	 (2.1)

Here Fi = mi · r̈i(t)is the force, Fi = mi · r̈i(t) the mass 
and r̈i the acceleration of the particle i with 
the coordinates ri and at time t. The force is 
obtained from the derivative of the potential 
Vi felt by the particle i:

Fi(t) = −∂Vi(t)

∂ri(t)
 	 (2.2)

Solved numerically — most of the 
time through massively parallelized compu-
tations — these equations are used to pre-
dict the positions of the interacting particles 
every step of the period of time simulated. 
Thus, a trajectory of the system is gener-
ated and statistical mechanics can be used 
to compute macroscopic properties. To in-
tegrate the equations of motion, different 
methods can be applied; in this section, we 
will concentrate on two of the integrators 
implemented in the GROMACS simulation 
package [41,42] used to generate the data 
presented in this thesis: the md and sd in-
tegrators.

In the simplest implementation of the 
md integrator in GROMACS, a Leapfrog al-
gorithm is applied to solve the differential 
equation constituting Newton’s second law 
of motion (Eq. 2.1). This algorithm gets its 
name from the fact it updates positions and 
velocities of particles at equidistant time 
points — defined by the integration time 
step Δt — positioned in such a way that they 
“leapfrog” over each other: the positions ri 
are updated at each time point t, while ve-
locities, ṙi, at each half time point T + ½ Δt. 
The solutions of the equations of motion for 

each particle can be written as: 

ṙi

(
t+

1

2
∆t

)
= ṙi

(
t− 1

2
∆t

)
+ r̈i(t) ·∆t

ri(t+∆t) = ri(t) + ṙi

(
t+

1

2
∆t

)
·∆t

	

(2.3)

A slightly different algorithm called 
Velocity-Verlet was recently implemented in 
GROMACS. It is closely related to the leap-
frog integration but with the difference that 
it calculates both positions and velocities at 
the same time frame. This algorithm is used 
only when extremely accurate integration is 
required (forces and velocities are known for 
the whole step, which is required for some 
applications), since it comes with a slightly 
higher computational cost. These integra-
tors imply a deterministic description; mean-
ing two different simulations started from 
the same initial configuration (positions and 
velocities) will generate the same trajectory 
(i.e. sample exactly the same conformational 
space).

Sampling the relevant phase space 
that is accessible to a system is one of 
the main challenges in MD simulations. 
Integrating these equations is computation-
ally very demanding, especially for many in-
teracting particles. This cost can be dimin-
ished by omitting degrees of freedom of the 
system irrelevant to the hypotheses tested 
— excluding the solvent for instance, which 
in most cases composes the majority of the 
system but is of a limited interest. In that 
case, the effects of these missing degrees 
of freedom can be mimicked by reintroduc-
ing energy through stochastic or fluctuating 
forces applied to the rest of the particles 
composing the system. With this approach, 
the time reversibility of the previous integra-
tors and the analytical identity (determinism) 
is lost.

The leapfrog-based sd — for stochas-
tic dynamics — integrator implemented in 
GROMACS adds friction and noise terms to 
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αi =

(
1− γi

mi
·∆t

)
 	 (2.5)

In these equations, Fi = mi · r̈i(t) the mass of 
the particle i, 
αi =

(
1− γi

mi
·∆t

)
 is the friction constant, kB 

the Boltzmann constant, T the temperature, 
and nG

i  the added noise extracted from a 
standard normal distribution.

Statistical ensemble and boundary 
conditions: Besides its approximate way(s) 
of describing particles and dynamics, MD 
has further intrinsic limitations. For instance, 
the simulation box must be large enough to 
avoid any boundary artifacts induced at its 
edges that would arise from having either 
vacuum or walls surrounding the simulated 
system. A solution to this problem lies in 
the replication of the box in all directions, 
the so-called periodic boundary conditions. 
System sizes should still be chosen large 
enough however, to avoid artifacts such as 
self-interaction with periodic images for in-
stance, resulting in a non-physical ordering.

Like for an experimental system, well-
defined state conditions have to be select-
ed. This is the case for temperature T and 
pressure p for instance, together with the 
number of particles N. To maintain these 
quantities at a desired value, thermostats 
and barostats have been developed (see be-
low). Simulations can then be run in various 
statistical ensembles; we will mention here 
only the canonical (NVT, conserved number 
of particles, volume and temperature) and 
isothermal-isobaric (NpT, conserved number 
of particles, pressure and temperature) sta-

tistical ensembles. More general ensembles 
can be described, but are not used in any of 
the work presented here and are beyond the 
scope of this chapter.

Different ways exist to algorithmically 
constrain a system to a fixed temperature. 
A relatively efficient method is to rescale the 
velocities obtained after solving the equa-
tions of motion, as is done with the popular 
Berendsen thermostat [43]. In that case, the 
temperature deviation exponentially decays 
to the desired temperature:

dT

dt
=

T0 − T

τT
 	 (2.6)

with T0 the reference temperature one 
wants the system to evolve in, T the instanta-
neous temperature and τT the coupling con-
stant. This approach, although intuitive and 
simple, does not reproduce a correct NVT 
ensemble since it “cuts out” the fluctuations 
of the kinetic energy. However, the extent of 
the deviation is inversely proportional to the 
number of particles simulated, and becomes 
negligible for the system sizes studied in this 
thesis. Other approaches generating a cor-
rect kinetic energy distribution (temperature) 
exist, such as the Velocity-Rescale algo-
rithm [44] which corrects the kinetic energy 
distribution by adding a stochastic term to 
the Berendsen equation above.

The concept of exponential decay can 
be similarly used to correct the pressure in 
the case of isothermal-isobaric ensemble. 
The Berendsen barostat [43] leads to an ex-

Newton’s equations of motion, which become:

ṙi

(
t+

1

2
∆t

)
= ṙi

(
t− 1

2
∆t

)
· αi + r̈i(t) ·∆t+

√
kBT

mi
(1− α2

i ) · nG
i

ri(t+∆t) = ri(t) + ṙi

(
t+

1

2
∆t

)
·∆t

	  (2.4)

with
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ponential decay of the pressure deviation: 

dp

dt
=

p0 − p

τp
 	 (2.7)

where p denotes the instantaneous pressure 
of the system, p0 the reference pressure, 
and τp the coupling constant. The barostat 
algorithm rescales the particle positions and 
box dimensions depending on the system’s 
compressibility. The rescaling matrix can be 
diagonal (with equal components on the di-
agonal) in the case of an isotropic coupling, 
but can be more complex in the case of 
semi-isotropic or anisotropic coupling and 
with different compressibility values for each 
dimension. Most systems presented in this 
thesis contain interfaces (i.e. bilayers) and 
require a semi-isotropic pressure coupling.

Interaction potentials: The strength 
of interaction between particles is central 
to the MD method, and is defined through 
interaction potentials from which the forces 
are computed according to Equation 2.2. 
Two types of interactions are described: 
bonded and non-bonded.

The bonded interactions are repro-
ducing the chemical links existing between 
particles in a molecule; bond (2-particle 
terms) and angle (3- and 4-particle terms) 
potentials keep the overall topology of a 
compound. Many different potential forms 
can be used to describe these interactions, 
the simplest form being the harmonic poten-
tial:

Vbond, angle(X) =
1

2
kX · (X −X0)

2
	

(2.8)

where X is the oscillating quantity, X0 its 
equilibrium value and kX the related force 
constant. This description is of course 
the simplest implemented; more complex 
forms of bonded potentials can be defined. 
Sometimes bonded interactions are con-
strained to a fixed equilibrium value; typically 
to remove vibrations with high frequencies 
that get difficult to integrate using large time 

steps (> 1 fs).

The non-bonded interactions de-
scribe terms extending from the bonded 
terms, and are thus thought to reflect the 
direct environment. Different types of inter-
actions can be encountered: the London’s 
dispersion forces describing the interac-
tions between neutral particles, to which 
electrostatic interactions can be added if 
the particles are charged. Depending on 
the force field different ways of handling hy-
drogen bonds have been implemented (e.g. 
through explicit potentials), but are more 
commonly described as electrostatic inter-
actions through the partial charges carried 
by the atoms. Even though more complex 
and detailed potentials have been derived, 
the Lennard-Jones (LJ) potential, compu-
tationally robust and easy to implement, is 
commonly used to describe the first type (in-
teractions between particles). The Coulomb 
potential is used to describe the second 
(treatment of electrostatic if the particles are 
charged). These potentials have the follow-
ing respective analytical forms: 

VLennard-Jones(Dij) =
Aij

d12ij
− Bij

d6ij

 	
(2.9)

VCoulomb(dij) =
1

4πε0
· qiqj
εrdij

	  (2.10)

where dij is the distance between particles i 
and j, ε0 the dielectric permittivity of vacuum. 
Five parameters need to be defined in these 
equations: the dielectric constant of the me-
dia εr, fixed in most cases to the experimen-
tal value of the solvent, the (partial) charges 
q of each particle i and j, and the interaction 
parameters Aij and Bij. These latter param-
eters are specific to each particle pair. 

The equilibrium values and associ-
ated force constants describing the bonded 
interactions, as well as the parameters de-
scribing the non-bonded interactions, are 
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gathered in large libraries called force fields. 
The definition of these force fields is depen-
dent on the philosophy against which they 
were parameterized. General parameteriza-
tion procedures are detailed in the next sec-
tion.

Force field parameterization: As men-
tioned before, different levels of resolution 
can be used to describe interactions be-
tween chemical compounds: from quantum 
methods describing interactions on their 
smallest length- and time-scales, to contin-
uum approaches focusing on macroscopic 
quantities. Following this scale, the most 
common approaches used in MD simulations 
are situated in the middle: the interactions 
are described at atomistic, or near-atomistic 
resolution. By ignoring quantum-chemical 
degrees of freedom (e.g., electrons), the in-
ter particle interactions are effective. Three 
ways of parameterizing these interactions 
are commonly used: a bottom-up approach, 
extracting parameters from extensive se-
ries of quantum calculations; a top-down 
approach, which uses quantities measured 
experimentally; and finally a mix between 
the two previous approaches. In the latter 
approach, one typically uses as a first step 
a bottom-up approaches to define an initial 
set of parameters for a compound, and in a 
second iterative step a top-down approach 
to tune the parameters to converge towards 
reproducing specific experimental data. 
Both bottom-up and top-down approaches 
have a number of shortcomings:

•	 Quantum calculations cannot be used to 
define interactions between compounds 
in all possible chemical environments, and 
are limited in size (particle-wise) due to the 
high computational cost. 

•	 Experiments are in most of the cases lim-
ited to the observation of macroscopic 
quantities, containing many inextricable 
components and averaged over many mol-
ecules and long time-scales (unreachable 
by simulations), which do not necessarily 
convey the fine interactions between com-

pounds.

The final set of parameters is there-
fore not unique, and not transferable be-
tween different force fields. 

Not surprisingly, a large number of 
force fields are currently available in the liter-
ature, each of them designed and developed 
against a certain philosophy, giving more or 
less importance to theoretical calculations 
and/or focusing their top-down approaches 
on different experimental quantities and/or 
oriented towards certain type of compounds 
(lipids, proteins, DNA, etc.). Here again dif-
ferent levels of resolution can be defined: 
atomistic force fields use atoms as interac-
tion centers, whereas coarse-grained (CG) 
force fields group atoms together in beads, 
which are then used as interaction cen-
ters. Commonly used atomistic force fields 
for biomolecules are AMBER, CHARMM, 
Gromos and OPLS (for a detailed definition 
and comparison between the philosophies 
behind these different force fields, see [45]). 
The most popular biomolecular CG force 
field is the Martini model developed in the 
laboratory of Prof. Marrink [46]. The work 
presented in this thesis makes extensive use 
of this model. It will be presented in more de-
tail in the next section.

The Martini force field

The idea of coarse-graining: The power 
of MD resides in its capacity at accessing 
a level of detail extremely challenging to 
reach experimentally, namely interactions 
between atoms themselves. But this knowl-
edge comes at a rather high computational 
cost. Analyzing interactions between protein 
and lipids, for instance, requires long simula-
tions of multi-component systems, as many 
binding/unbinding events have to be ob-
served before obtaining sufficient statistics. 
However, for such studies, the finest details 
of the interactions might not be needed. For 
instance, the fastest motion present in the 
system (vibrations of bonds involving hydro-
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gen atoms for instance) is limiting the inte-
gration time step of the equations of motion; 
in practice and in common cases, this time 
step is on the order of the femtosecond. The 
number of steps to reach the hundreds of 
nanoseconds or the microseconds needed 
by a lipid to bind the protein surface and ex-
change with other lipids of the bilayer is thus 
tremendous, and the actual time needed to 
perform such simulations is not feasible in 
most cases. 

One solution to extend the sampling 
simulation time scale is to describe interac-
tions and particles in a coarser way, mak-
ing use of CG force fields [47]. Instead of 
computing interactions between each atom 
composing a molecule, groups of atoms are 
gathered together and treated as a unique 
interaction center, possessing the properties 
of the chemical group it replaces. By per-
forming such a conversion, the number of 
particles composing the system is drastical-
ly reduced, allowing the simulation of larger 
systems, and the highest frequency motions 
present in the system are now considerably 
reduced by the increased weight of the par-
ticles, allowing the use of a larger integration 
time step (several tens of femtoseconds).

Looks of the Martini model: “Martini” is 
one of these CG force fields, developed by 
the group of S.J. Marrink at the University of 
Groningen. Initially developed to simulate lip-
ids and cholesterol [48,49], it has since been 
extended to many types of molecules such 
as proteins [50], carbohydrates [51], DNA 
and various polymers, and includes now an 
extensive library of solvents and small mol-
ecules. Martini inherited its appellation from 
the nickname of the city of Groningen, which 
possesses a tower with the same name; but 
it has been also suggested to be linked to 
“the universality of the cocktail with the same 
name: how a few simple ingredients can be 
endlessly varied to create a complex palette of 
taste” [46], which seems to fit given the ex-
tent of its development, and its intensive and 
successful use.

The Martini CG force field follows the 
principles previously enunciated: it gathers 
groups of two to six atoms in beads (cf. Fig. 
2.1A). The hallmark of the Martini philoso-
phy is that beads are parameterized to re-
produce a thermodynamic quantity deter-
mined experimentally, namely the partition 
free energy. This quantity directly relates to 
the partition coefficient of a chemical com-
pound, measuring the difference of solubility 
between aqueous and apolar phases. This 
parameterization philosophy has the main 
advantage to be derived from an experimen-
tal observable, and in consequence makes 
the model to perform closer to experimental 
behavior.

Eighteen different particle types were 
initially defined (slightly more in recent devel-
opments [50]), separated in four categories: 
apolar (C), neutral (N), polar (P) and charged 
(Q); each type has subdivisions to smoothly 
grade from extremely hydrophobic (aliphatic 
tails of lipids for instance) to completely hy-
drophilic (ions for example). The Martini ap-
proximation goes further by defining only ten 
(twenty counting the S particle interaction 
levels) levels of non-bonded interactions, 
modeled as LJ potentials, between these 
beads (Fig. 2.1B). In addition, charged beads 
interact through a Coulomb potential with a 
relative dielectric screening constant εr = 15. 
Some standard MD parameters were tested 
and tuned to obtain a maximal efficiency: for 
example, the non-bonded potentials are ar-
tificially shifted to reach at a cutoff rcut = 1.2 
nm, after which no interactions are calcu-
lated.

Advantages and limitations of Martini: The ap-
proximations inherent of the Martini model 
lead to its main advantage: the speed-up 
of simulations. A rough estimation leads to 
a gain of three to four orders of magnitude. 
This gain results from three main factors:

•	 Fewer calculations have to be performed 
per step since the number of particles is 
drastically reduced.
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•	 The decrease in the number of degrees 
of freedom and removal of fast vibrational 
motion smoothens the potential energy 
surface, allowing the use of a larger time 
step without inducing integration errors, 
and making the model extremely flexible to 
external constraints.

•	 The smoothened energy landscape affects 
the dynamics of the processes simulated, 
increasing in most cases their kinetics 
(lower energetic barriers to overcome) by 
removing friction.

Furthermore, by limiting the size of the CG 
groups to a handful of atoms, the general 
chemistry of the molecules is conserved, al-
lowing Martini’s extensive diversification in 
term of types of compounds.

But the simplicity of the Martini ap-
proach also carries several intrinsic prob-
lems:

•	 The smoothened free energy surface con-
sequently affects the diffusion of com-
pounds. A comparison of the diffusion rate 
of various compounds showed no sys-
tematic shift due the CG description, but 
a wide spread that depends on the chemi-
cal details of the system simulated [52]. 
Therefore, the time scale in Martini simula-
tions has to be interpreted with care.

•	 The loss of structural details excludes the 
study of fine interactions such has spe-
cific hydrogen bonding. For instance, the 
conservation of the secondary structure of 
proteins has been shown to require elas-
tic networks, the so-called ElNeDyn ap-
proach [53], linking the backbone beads 
by long bonds with weak force constants. 
Consequently, the Martini protein descrip-
tion does not allow for changes in second-
ary structure.

•	 Grouping atoms into beads reduces the 
overall entropy of the system, and the 
missing energy component has to be rein-
troduced in the enthalpy term (G = H - TS, 
where H and S are the enthalpic and en-
tropic components of the free energy G, 
and T the temperature; this specific prob-
lem will be addressed in more details in 
Chapter VI).

•	 The purposely-restricted number of inter-
action levels induces its limitations too, 
leading to over/underestimated interaction 
strengths between certain compounds and 
a possible error accumulation proportional 
to the size of the interacting compounds.

•	 Finally, the standard Martini water model is 
not capable of explicitly screening electro-
static interactions, being essentially a neu-
tral LJ fluid. Instead, the relative dielectric 
constant εr is used as implicit screening 
factor. Note that a polarizable Martini wa-
ter model is also available [54], however, at 
the expense of larger computational cost. 
In this thesis, only the standard model has 

Figure 2.1 | Martini in a nutshell. A) Mapping of 
various compounds, from their atomistic repre-
sentations (united atoms, ball and sticks) to their 
respective Martini representations (superim-
posed transparent balls). B) The ten different LJ 
potentials — representing the ten possible levels 
of interactions — used in the Martini CG force 
field. Note that interactions between “S” particles 
are not reported here for clarity.
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been used.

Despite these limitations, the Martini model 
has been successfully applied to study a 
wide range of (bio)molecular processes. For 
a recent review, see Marrink & Tieleman [52].

Standard methods common to the simu-
lations presented in this thesis

Parameters for CG simulations: Unless 
stated otherwise, all simulations present-
ed in this thesis were performed using the 
GROMACS simulation package version 
4.0.x [41] and 4.5.x [42]. The systems were 
described with the Martini CG force field for 
biomolecules (version 2.0) [46], its extension 
to proteins (version 2.1) [50] together with 
the ElNeDyn approach [53], which defines 
an elastic network between the backbone 
beads to control the conformation (second-
ary structure) of a protein. Elastic networks 
were built on each subunit of the protein 
complexes separately, i.e. springs are not 
present between the subunits. The integrity 
of the protein is only dependent on non-
bonded interactions. Extend of the ElNeDyn 
network was 0.9 nm and the force constant 
of the springs was set to 500 kJ.mol-1 nm-2. If 
not otherwise mentioned, conventional sim-
ulation setups associated with the use of the 
Martini force field were used. That includes 
an integration time step of 20 fs (systems 
containing proteins) to 40 fs (systems con-
taining only lipids) for production runs and 
non-bonded interactions cutoff at a distance 
rcut = 1.2 nm. The LJ potential is shifted to 
zero from rshift = 0.9 nm to rcut. The electro-
static potential is shifted from rshift = 0.0 nm to 
rcut. For each system the proteins, lipid bilay-
er and solvent (water and salt) were coupled 
independently to external temperature baths 
using a Berendsen thermostat [43] with a re-
laxation time of τT = 0.5 ps. In the simulations 
performed in a NpT ensemble, the pressure 
was weakly coupled (Berendsen barostat 
[43]) using a relaxation time of τp = 1.2 ps 
and a semi-isotropic pressure scheme. For 
the studies presented in Chapter III to V, the 

md integrator was used. The approach pre-
sented in Chapter VI required the use of the 
sd integrator for reasons explained later.

Resolution transformation: To convert a 
CG configuration to a fine-grained (FG) con-
figuration, we used the resolution transfor-
mation method implemented in an in-house 
modified version of GROMACS version 3.3.1 
[55]. The systems were cooled down from 
an initial temperature of 1000 K to the de-
sired target temperature in 30 ps of simu-
lated annealing, during which the atomistic 
particles were coupled to their correspond-
ing CG beads through harmonic restraints. 
Subsequently, the coupling was gradually 
removed within a time span of ~30 ps. These 
annealing simulations were carried out in the 
NVT ensemble. Constraints were replaced 
by regular bonds, and an integration time 
step of 1 fs was used. To control the tem-
perature, stochastic coupling with an inverse 
friction constant τT = 0.1 ps was applied. The 
other parameters for the resolution transfor-
mation were set to the standard values (see 
Rzepiela et al. [55] for details). 

Parameters for atomistic simulations: 
Unless stated otherwise, proteins in the at-
omistic simulations were described with the 
54A7 parameter set of the Gromos force 
field [56]. For the lipids we used an in-house 
version of a new 53A6-based lipid force field 
[57]. The SPC water model [58] was used to 
model the aqueous solvent. Temperature 
and pressure coupling were applied in a 
similar manner as in the CG simulations, with 
time constants τT = 0.1 ps and τp = 1 ps, re-
spectively. Non-bonded interactions within 
0.9 nm were updated at every time step, and 
interactions between 0.9 and 1.4 nm every 
10 steps. The long-range electrostatic inter-
actions were computed with the PME algo-
rithm [59]. In the simulations continued from 
reverse transformations, an integration time 
step of 1 fs was used for production runs. §






