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EVOLUTIONARY STABILITY AND DYNAMIC STABILITY
IN A CLASS OF EVOLUTIONARY NORMAL FORM GAMES

by

Frang J. Weissing

Abstract:

A complete game theoretical and dynamical analysis is given for a class of evolutionary normal
form games which are called 'RSP—games’ since they include the well-known 'Rock—Scissors—
Paper’ game. RSP~games induce a rich selection dynamics, but they are simple enough to allow a
global analysis of their evolutionary properties. They provide an ideal illustration for the
irlllcongruities in the evolutionary predictions of evolutionary game theory and dynamic selection
theory.

Every RSP—game has a unique interior Nash equilibrium strategy which is an ESS if and only if
and only if the average binary payoffs of the game are all positive and not too different from one
another. Dynamic stability with respect to the continuous replicator dynamics may be
characterized by the much weaker requirement that the equilibrium payoff of the game has to be
positive. The qualitative difference between evolutionary stability and dynamic stability is
illustrated by the fact that every ESS can be transformed into a non—ESS attractor by means of a
transformation which leaves the dynamics essentially invariant.

In all evolutionary normal form games, evolutionary stability of a fixed point implies dynamic
stability with respect to the continuous replicator dynamics. Due to 'overshooting effects’, this is
enerally not true for the discrete replicator dynamics. In conirast to all game theoretical concepts
ancluding the ESS concept), discrete dynamic stabilily is not invariant with respect to positive
linear transformations of payoffs. In fact, every ESS of an RSP—game can both be stabilized and
destabilized by a transformation of payofis. Quite generally, however, evolutionary stability implies
discrete dynamic stability if selection 18 'weak enough’.

In the continuous-time case, the interior fixed point of an RSP-game is either a global
attractor, or a global repellor, or a global center. In contrast, the discrete replicator dynamics
admits a much richer dynamics including stable non-equilibrium behaviour. The occurrence of
stable and unstable limit cycles is demonstrated both numerically and analytically.

Some sgelection experiments in chemostats reveal that competition between different asexusl
strains of the yeast Saccharomyces cerevisiae leads to the same cyclical best reply structure that is
characteristic for RSP-games. Possibly, Rock-Scissors—Paper-games are also played in nos—
human biological populations.

I gratefully acknowledge many stimulating discussions with Josef Hofbauer and Karl Sigmund and
the helpful comments from Andreas Dress, Roy Gardner, Peter Hammerstein, John Nachbar, and
Reinhard Selten. I also want to thank the Center for Interdisciplinary Research, especially Frau
Jegerlehner, for a pleasant time with almost ideal working conditions, Most of all, I have to thank
Anke, who often had a hard time while I was struggling around with game equilibrium models.
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1. Introduction

There are two main approaches towards the phenotypic analysis of frequency dependent natural
selection. First, there is the approach of evolutionary game theory, which was introduced in 1973 by
John Maynard Smith and George R. Price. In this theory, the dynamical process of natural
selection is not modeled explicitly. Instead, the selective forces acting within a population are
represented by a fitness function, which is then analysed according to the concept of an
evolutionarily stable strategy or ESS. Later on, the static approach of evolutionary game theory has
been complemented by a dynemic stability analysis of the replicator equations. Introduced by Peter
D. Taylor and Leo B. Jonker in 1978, these equations specify a class of dynamical systems, which
provide a simple dynamic description of a selection process. Usually, the investigation of the
replicator dynamics centers around a stability analysis of their stationary solutions.

Although evolutionary stability and dynamic stability both intend to characterize the
long—term outcome of frequency dependent selection, these concepts differ considerably in the
*philosophies’ on which they are based. It is therefore not too surprising that they often lead to
quite different evolutionary predictions (see, e.g., Weissing 1983). The present paper intends to
illustrate the incongruities between the two approaches towards a phenotypic theory of natural
selection, A detailed game theoretical and dynamical analysis is given for a generic class of
evolutionary normal form games. In spite of its simplicity, this class is rich enough to uncover all
kinds of discrepancies between evolutionary stability and dynamic stability. In the course of the
analysis some light will be shed on the factors which are responsible for the inconsistencies in the
conclusions of the game theoretical and the dynamical approach.

Evolutionary stability and dynamic stability correspond quite well to another if the number of
pure strategies is small (Zeeman 1980, Weissing 1983). Discrepancies between these concepts may
only be observed at a mixed Nash equilibrium strategy involving at least three pure strategies.
Usually some form of cycling takes place around this equilibrium.! This suggests to have a closer
look at the children’s game Rock~Scissors—Paper, since this is the prototype example for a game
where all these requirements are met.

In its simplest vérsion, the Rock-Scissors—Paper game is modeled as a zero—sum game, which is
represented by the payoff matrix

0 1 -1

A=]-1 0 1]. (1.1)
1-1 0

It is a characteristic property of this game that strategy i is always the unique best reply to

strategy i-+I (counted modulo 3): Rock is optimal against Scissors, Scissors is optimal against

Paper, and Paper is optimal against Rock. This cyclical pattern is symbolized in the following

diagram:
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"Paper’
3

(12)

1 2
"Rock’ 'Scissors’
In fact, (1.2) corresponds to the flow of the replicator dynamics on the border of the strategy
simplex (see Figures 1 to 3), and it is plausible that a pattern like this implies the existence of an
interior fixed point which is the center of a flow cycling around it.

However, if modeled as a zero—sum game, the Rock—Scissors~Paper game has some undesirable
properties, which make it ill-suited as a ’counter—example’. It is easy to show that symmetric
constant—sum games do not admit evolutionarily stable strategies. This corresponds well to the fact
that interior fixed points of these games are always centers for the continuous and repellors for the
discrete replicator dynamics (see Akin & Losert (1984), Hofbauer & Sigmund (1988), as well as
Corollary 5.4 and Theorem 6.6 below).

We shall therefore leave the zero—sum context without abandoning the cyclical pattern
described by diagram (1.2). Generalizing (1.1), we shall consider payoff matrices of the form

A=[Z: Z: z:J, bi>aici. (1.3)
bl €2 a3

It will be shown that this is exactly the class of games to which diagram (1.2) does apply (see
Theorem 3.4). A symmetric 3x3 normal form game which can be put into form (1.3) will be called a
generalized Rock—Scissors—Paper game or simply an RSP—game. The evolutionary analysis of
this class of games will form the subject—matter of this paper.3

More specific generalizations of the *Rock—Scissors-Paper’ game have repeatedly entered the
literature. In particular, a one—parameter class of RSP—games plays a prominent role among the
’standard examples’ of evolutionary game theory. It is the class of e—perturbed Rock—~Scissors—
Paper games, which are characterized by payoff matrices of the form

0 1+4e -1
A =|-1 0 1+¢, e>-1, (1.4)
€ I+e -1 0
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or by rescaled versions thereof.3 Dating back to a paper of Maynard Smith (1977, quoting Dr. C.
Strobeck), these games have been used to illustrate the fact that evolutionary stability need not
imply dynamic stability with respect to the discrete replicator dynamics. In addition, they provide
a nice illustration for the effects of a change in payoff parameters on the stability of an interior
fixed point (see, e.g., Zeeman 1980).

An analysis of e—perturbed Rock—Scissors—Paper games shows, however, that this class of
3x3—games is not rich enough for our purposes. In fact, the notions of evolutionary stability and
‘continuous’ dynamic stability coincide for these games (see Corollary 6.7). Since we are interested
in getting oll possible types of discrepancies between these concepts, we have to conmsider
RSP-games in their most general form.

Certain aspects of the general class of RSP—games have previously been studied by Zeeman
(1980), Weissing (1983), and Hofbauer & Sigmund (1988):
~ Zeeman (1980) is mainly concerned with the classification of the phase portraits of evolutionary
3x3-games with respect to the continuous replicator dynamics. As a step towards this, he presents
a global analysis of the phase portraits of RSP—games, and he shows that they may be classified
according to the sign of a determinant. His results on RSP—games are contained in Section 5 below
(Theorem 5.6). The proof given here, however, is constructive and has the advantage of focussing
on the differences between evolutionary stability and dynamic stability.
— Complementing Zeeman’s results on ’continuous stability’, I investigated the conditions for
evolutionary stability and discrete local hyperbolic stability (Weissing 1983). These aspects will be
analysed in much more detail in Sections 4 and 6 below.
— In their excellent book on the replicator dynamics, Josef Hofbauer and Karl Sigmund (1988) give
the most complete survey of stability properties of RSP—games. The results presented — which
correspond to Theorems 3.4.2, 4.6.1, 5.6, and 6.8 below — extend to evolutionary stability as well as
to dynamic stability with respect to both replicator dynamics. Since Hofbauer and Sigmund are
focussing on more general dynamical aspects of natural selection, they do not prove their assertions,
although the proofs are often far from being straightforward. Nevertheless, I owe much to their
work. My own results and the analysis thereof have been improved considerably by adopting several
of the techniques proposed in their book.

In the present paper, RSP-games will be put into a conmtext that is more coherent and
systematic than in the publications cited above. To my knowledge, it is the first time that a
combined game theoretical and dynamical analysis is given for such a broad class of evolutionary
normal form games.

The structure of this paper aims at exemplifying how the general methods developed in
Hofbauer & Sigmund (1988) find natural applications in the analysis of concrete examples. By
putting them into a broader context, the known features of RSP-games will be presented in a way
that makes it easy to generalize them considerably.
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In addition to providing new proofs for the known features of RSP—games, the present paper
contains several results that do not have counterparts in the literature. In particular, almost all
results on the discrete replicator dynamics (Sections 6, 7) seem to be new. For example, the
occurence of supercritical Hopf bifurcations and ’closed limit curves’ has not been observed before
for the discrete replicator dynamics in two dimensions. Also the results on global discrete stability
and instability have apparently not been derived before. In a separate paper (Weissing 1990) it will
be shown that they apply quite generally to all evolutionary normal form games.

The main emphasis of the present paper will be put on elucidating the qualitative differences
between evolutionary stability and dynamic stability, which are so well exemplified by the class of
RSP—games. Among other things, the following results will be derived:

—  With respect to the continous replicator dynamics, every ESS is a global attractor, but an
asymptotically stable fixed point need not be an ESS. However, every asymptotically stable
fixed point of an RSP—game ~ even if it is not an ESS — can be transformed into an ESS of
another RSP—game by means of a transformation which leaves the phase portrait *essentially’
invariant. This shows that there is a qualitative difference between evolutionary stability and
dynamic stability: the ESS concept is not invariant with respect to dynamics—preserving
transformations of the state space (see Section 5.).

—  With respect to the discrete replicator dynamics, evolutionary stability is neither necessary nor
sufficient for dynamic stability. In fact, an ESS may be a global repellor, and a global attractor
need not be an ESS. In the discrete context, we get an additional qualitative difference between
evolutionary stability and dynamic stability: Whereas the ESS concept is invariant with respect
to positive linear transformations of the payoff matrix, the stability properties with respect to
the discrete replicator dynamics are very strongly affected by them. Indeed, any asymptotically
stable fixed point of the discrete replicator equation can be destabilized by means of a positive
linear transformation of payoffs (see Section 6).

— For the continuous replicator dynamics, local stability properties correspond perfectly to global
stability properties. Generic Hopf bifurcations and limit cycles do not occur (Theorems 5.6 and
5.8). In the context of the discrete replicator dynamics, the same holds true for the subclass of
‘circulant’ RSP—games (Theorem 6.8). In general, however, supercritical Hopf bifurcations do
occur, a fact which implies the existence of a more complicated attractor encircling the interior
fixed point(see Section 7). Because of their simplicity, RSP—games provide one of the rare
occasions where this phenonemon can be demonstrated analytically.

Taken together, these features show that RSP—games give an almost ideal illustration of the
incongruities between the game theoretical and the dynamical approach towards frequency
dependent natural selection. On the one hand, they are simple enough to allow an almost complete
analysis of their evolutionary characteristics. In fact, there are no simpler games where all kinds of
discrepancies between evolutionary stability and dynamic stability can be observed.4 On the other
hand, this class of games is rich enough to exemplify rather complex dynamical non—equilibrium

behaviour like convergence to a closed limit curve.



2. Notation and Basic Definitions

We are interested in a situation where the fitness of individuals is affected by the outcome of a
randomly assorted, binary, intra—specific interaction with the structure of an RSP-game. Each
participant in an interaction behaves according to one out of three pure strategies, which will be
called 'Rock’, *Scissors’, and 'Paper’ and numbered 1, 2, 3, respectively. Calculations with respect
to this numbering should always be understood modulo 3. Pure strategies will always be denoted by
the letters § and j, and the set of pure strategies will be denoted by I.

Mized strategies (i.e., frequency distributions over the set of pure strategies) will be identified
with the elements of the two~dimensional strategy simplez

A:={p€lRf|)ini=1}. (2.1)

Mixed strategies will be denoted by small bold—face letters like p or q.

The set of pure strategies which is given a positive weight by the mixed strategy p is called
the support of p and denoted by supp(p):

supp(p) == {ie | p;>0}. (2.2)

As usual, the pure strategy ¢ € I will be identified with the mixed strategy e'€ A, the support of
which consists of the single element i. Accordingly, the pure strategies correspond to the three
*corners’ of the strategy simplex. A mixed strategy p€ A will be called a completeley mized or an
interior strategy, if it has a *full support’, i.e., if supp(p) = .

The individuals interacting in an RSP-game form a population, the state of which is
characterized by the frequency distribution of the pure strategies which are currently used by its
members. Accordingly, a population state corresponds to a mixed strategy, the population strategy.
A population, the state of which is given by population strategy p € A, will be called a
p—population.

A 3x3-matrix A =(a;;) of the form (1.3) will be interpreted as the payoff matriz of an
evolutionary normal form game. Since a Symmetric bimatrix game is completely specified by the
payoff matrix of player 1, we shall often identify an evolutionary game with this payoff matrix. The
matrix entries are called the binary payoffs of the evolutionary game, and aj should be
interpreted as the expected fitness of an individual using pure strategy i due 1o its interaction with
an individual using pure strategy J

Selection i8 frequency dependent whenever individual fitness is determined by the outcome of an
evolutionary game. In fact, the fitness of an individual using pure strategy ¢ depends on p, the
population strategy. Assuming that interacting individuals are assorted at random with respect to
the strategies used, the individual fitness of an ‘+strategist’ in a p—population is given by
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Fi(P) = IJ) a'ijpj = (AP)i (2.3)

((Ap); denotes the i’th component of the vector Ap. ). The vector

F(p) := Ap = | c1p1 + aapa + baps

bip1 + capa + aspy

a1+ bapa + C:Ps]
H

the components of which are given by Fi(p), is called the fitness vector at p.

The fitness of an individual behaving according to mixed strategy q in a p-population is given
by
Hqp) =% ¢Fi(p) = a-F(p) , (2.5)

where the dot denotes the Euclidean scalar product. F(q,p) may also be interpreted as the mean
fitness of a sub—population the strategy mix of which is described by q. The function
F:Ax A—R which is defined by (2.5) is the fitness function of the evolutionary game. It
corresponds to player 1’s payoff function of the symmetric bimatrix game (A,AT), where AT
denotes the transpose of the matrix A.

The mean fitness of a p—population is given by
Hp) =% p-F(p) = Hpp), (2.6)

and the term Fi(p)——F(p) will be interpreted as the relative fitness of strategy i in a
p—population.

The replicator dynamics intend to give a dynamic model of natural selection. There are two
versions of it: a discrete one for the case of discrete and non—overlapping generations, and a
continuous one for overlapping generations merging into another. Both versions are based on the
assumption that the growth rate of a pure strategy is proportional to its relative fitness. A detailed
derivation of the replicator dynamics and a discussion of the underlying assumptions may be found
in Weissing (1983) and in Hofbauer and Sigmund (1988).

The continuous version of the replicator dynamics is given by a system of differential equations
on the strategy simplex, which is called the continuous replicator equation:

b =p (F(p)~Fp)), iel. (27)

The discrete version of the replicator dynamics may be represented by a system of recursion
equations, called the discrete replicator equation:

pi’ =p ;_'(—(ip‘?l, iel, (2.8)
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where p’ € A denotes the population strategy of an offspring population, the parents of which had
p€ A as their population strategy.

The term fitness has a somewhat different interpretation in the two contexts: In the discrete
case, the fitness of a character should be interpreted as the expected number of offspring of the
individuals bearing this character. Correspondingly, only non-—negative numbers make sense as
fitness values. For the continuous replicator equation, there are no such restrictions on the fitness
parameters, since the fitness of a character corresponds to its growth rate which may be positive or
negative.

In what follows, we are interested in the fixed points of the replicator dynamics given by (27
and (2.8). A fized point is a stationary solution of the replicator dynamics, i.e.,, a population
strategy p € A, which satisfies the conditions

B=0 (ot p=p) forall ic1, (29)

respectively. It is obvious that the discrete and the continuous version of the replicator dynamics
have the same set of fixed points, and that a fixed point p* of (2.7) or (2.8) is characterized by:

F(p*) = Fp*) for i€ supp(p*). (2.10)

If p* is a pure strategy, (2.10) always holds true. Pure strategies will be called the trivial fized
points of the replicator dynamics.

Notice that a completely mixed strategy p* is an interior fized point if and only if the fitness
vector in p* is a scalar multiple of the vector 1:= (1,1,...,1), ie,if

F(p*) = A1 ( where A = F(p+)). (2.11)

3. Nash Equilibrium Strategies of RSP-Games

In this section it will be shown that RSP—games may be characterized as those evolutionary 3x3
normal form games, for which the border of the strategy simplex does contain neither a Nash
equilibrium strategy nor a nontrivial fixed point of the replicator dynamics. From this result it will
be easy to derive that every RSP-game has a unique interior Nash equilibrium strategy.
Subsequently, the coordinates of the interior fixed point will be characterized in terms of the entries
of the payoff matrix.
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DeririTioxn 3.1: Nash equilibrium strategies.

A mixed strategy p* is called a Nash equilibrium strafegy or simply a Nash strategy if the strategy

. T
pair (p*,p*) is a symmetric Nash equilibrium point of the symmetric normal form game (4,A").
Equivalently, p* is a Nash strategy if it is a best reply to itself, i.e. if it satisfies the

Nash condition: Fp*.p*) 2 Kq,p*) foral qe A. 3.1)

For the interpretation of this concept, the reader is referred to van Damme (1987) or to
Harsanyi & Selten (1988). The following proposition is a special case of the so—called Fundamental

Lemma of non—cooperative game theory:

ProposITION 3.2: Characterization of Nash strategies.

p* is a Nash equilibrium strategy if and only if the following conditions are satisfied:

Fp*)=Fp*) for i€ supp(p*), (3.2a)
F(p*) < F(p*) for i supp(pe). (3.2b)

A comparison between (3.2) and (2.10) shows that every Nash strategy is a fixed point of the
replicator dynamics. For a completely mixed strategy p*, condition (3.2b) is empty. Accordingly,
p* is an interior Nash strategy if and only if it is an interior fixed point of the replicator dynamics,
i.e., if and only if (2.11) holds true. On the other hand, fixed points of the replicator dynamics may
be characterized as interior Nash strategies of substructures of A (see the proof of Theorem 3.4).

The following existence theorem is of fundamental importance. A proof of part 1. can be found
in the classical paper of Nash (1951).

Tueorew 3.3: Existence of Nash equilibrium strategies.

1. For every evolutionary game there exists at least one Nash strategy.

2. If the border of the strategy simplex does not contain a Nash strategy, there exists a unique
interior Nash strategy.

Proor of Part 2.;

Since border Nash strategies do not exist, part 1. of the theorem implies the existence of at least
one interior Nash strategy. Suppose that there are two interior Nash strategies, pt and p3.

By (2.11), this means that the fitness vectors F(pj) and F(p3) are scalar multiples of the vector
1. The linearity of F (see (2.3)) implies that F{p) is also a scalar multiple of 1 for every strategy
p of the form: p = upt + 4,p3.
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Correspondingly, all points of the intersection of the line L through pt and py with the strategy
simplex A are Nash equilibrium strategies as well. Since the intersection of L with the border of
A is not empty, the border of A contains at least one Nash strategy.

This contradiction shows that the interior Nash strategy is unique.

TxEQREM 3.4: Characterization of RSP—games.

L. A symmetric 3x3 normal form game is an RSP~game if and only if it has neither border Nash
equilibrium strategies nor nontrivial border fixed points.
2. Every RSP-game has a unique interior Nash equilibrium strategy.s

PROOF:

A. By (8.2), a symmetric normal form game 4 = (a;;) does not admit a pure Nash equilibrium
strategy if and only if every column of A contains a on-diagonal element which is larger than
the corresponding diagonal entry of 4, i.e., if and only if the following holds true for every
i€l

4> for at least one k# 4. (3.3)

B. A comparison of (2.10) and (3.2) shows that A does not admit a nontrivial border fixed point,
if and only if none of its 2x2—restrictions has an interior Nash strategy. Here, a 2z2-restriction
of A is defined to be a 2x2 payoff matrix

A=) (04

which results from A by removing one of its pure strategies from consideration.

It is easy to see that a symmetric 2x2 normal form game Ai' bas an interior Nash strategy if
and only if (o;~a;) and (a..—-a,l ) have the same sign. Consequently, 4;; does not admit an
interior Nash strategy if (a,ﬁ—aji) and (ajj—a,1 j) differ in sign. Let us say that the pure
strateg i dominates the pure strategy j if

& 2 ay and &

i 2 a., (3.5)

JT Ul
with at least one of these inequalities being strict. Accordingly, Ai' does not admit an interior
Nash strategy if and only if one of its two pure strategies dominates the other.

C. It is clear from the definition of an RSP-game that none of its three pure strategies is a best
reply to itself. Accordingly, RSP~games do not have pure Nash strategies.
On the other hand, all three 2x2—restrictions of an RSP—game have a dominating pure
strategy. For example, 'Rock’ dominates *Scissors’, if 'Paper’ is removed from consideration.
Therefore, RSP-games do not admit non—trivial border fixed points.
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D. Let now A= (a.1 .} denote a symmetric 3x3 normal form game which has no pure Nash
strategies and no non—trivial border fixed points.
Since pure strategy I is not a Nash strategy, the first column of A contains an element which
is larger than the diagonal entry a,. Without loss in generality, we may assume @y, > g,
(3.5) applied to the 2x2—restriction A,y yields a4, 2 a,, since otherwise 4, would admit an
interior Nash strategy.
In view of (8.3), the last inequality implies 4,, > a,,, since otherwise strategy 3 would be a
pure Nash strategy of A. Applying (3.5) to the 2x2-restriction A,,, we get a,, > a4, which in
turn implies a;; > a,,. Finally, we get a, > a,, by applying (3.5) to 4,. Summarizing all
this, we have derived the following inequalities:

Qg1 > Gy 2 Gy, Ggg > Gy 2 By Gy > Gy3 2 Gy (36)

which imply that A is the payoff matrix of an RSP—game.

E. Since RSP~games do not admit border Nash strategies, Theorem 3.3(2) shows that every
RSP—game has a unique interior Nash strategy.5

In order to calculate the Nash strategies of a symmetric normal form game A = (arlj) , it is
often useful to consider a rescaled version of that game. We shall perform a positive linear
transformation of A, which is given by

= Al = (Bpligts) ERY A > 0. (3.1

4 i 4

A positive linear transformation is called homogeneous, if s is a constant multiple of the vector 1.
Two evolutionary games will be called pl-eguivalent if one can be transformed into the other by
means of a positive linear transformation.

PropPoSITION 3.5: Invariance with respect to positive linear transformations.

Pl-equivalent evolutionary normal form games have the same fixed points and the same Nash
equilibrium strategies.

PROOF:

Let A =(3;;) be defined by (3.7) and let F denote the fitness function induced by A. A simple
calculation shows that F is related to ¥ via

Fap)=AHap) + pp, g PEA, (3.8)

where the dot denotes the Euclidean scalar product. This implies
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a,p) - F(p,p) = A-( F(a,p) — F(p,p) ) - (3.9)

Setting q = e!, and denoting by ¥ and F the fitness vector and the mean fitness induced by A,
we get

E(p) - Hp) = A-( F(p) - Fp) ) - (3.10)
In view of A >0, (2.10) and (3.2) show that A and A have the same sets of fixed points and
Nash equilibrium strategies. ¥k

A slightly weaker version of this theorem is essential for ’classical’ normative game theory: In
normative game theory, payoffs are interpreted in terms of the utility concept of von Neumann and
Morgenstern (see Luce & Raiffa 1957). This implies that payoffs are only well—defined up to
homogeneous positive linear transformations. Consequently, it is a basic demand of normative game
theory that all its solution concepts should be invariant with respect to this class of
transformations.

Let us now focus again attention on the class of RSP~games. First, notice that the class of
RSP-games is invariant under positive linear transformations of the payoff matrix. According to
(1.3), every RSP—game is induced by a triple (a,b,c) of vectors which satisfy

a,b,c € R®, bi >a ¢ for iel. (3.11)

A triple of vectors satisfying (3.11) will be called an RSP—triple. Whenever we want to emphasize
the dependence of an RSP-game A on its generating RSP—triple (a,b,c) we shall write
4 = A(ab,c). Accordingly, A(a,b,c) is given by

(3.12)

a b c3
b1 2 a3

A(a,b,c) = [Cl ay b3

It will be useful to simplify a given RSP—game A = A(a,b,c) by means of a positive linear
transformation, which transforms the diagonal of 4 into zero. Setting A =1 and g=-a in (3.7),
we get a reprensentation of A in the form

A=A+ A, (3.13)

where A; is pl-equivalent to A and where A denotes the matrix

A= A(a,3,3) = | a; ay a3

a1 62 a3

(3.14)

a; 6 a;}
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Since A, is pl-equivalent to A4, it is also an RSP~game. It is given by
0 fr-m
Ay= A0~ =|-1 0 G, (3.15)
B -1
where f and 7 denote non—negative vectors which are defined by
B = bi—a,l >0, 7= 6~ 20, i€l (3.16)

For a given RSP-game, the decomposition (3.13) is unique. A, will be called the interactive
component of A, whereas A, will be addressed as the non—interactive component of A. I A
coincides with A, i.e., if its non—interactive component is zero, it will be called an essential
RSP-game or an RSP—game in essential form.

It is obvious from the definition of mean fitness that it splits according to

Fp) = Fy(p) + F(p), pEA, (3.17)

where F, and F, denote the mean fitness functions induced by A, and A, Fy(p) will be called
the interactive component of mean fitness at p.

Let p* denote the unique interior Nash strategy of A. Since A is pl-equivalent to A, p* s
also the unique interior Nash strategy of A,. We shall now characterize p* in terms of the entries
of Ay, which are given by (3.16).

For the rest of this paper, the determinant of A, will play a crucial role. It is easy to see that
it is given by
det(4,) = 8,88, — 177273 (3.18)

(a) det(A,} = 0:

In order to characterize p*, let us first consider the case det(4,) = 0. In view of (3.18), this is
equivalent to 7,7,7; = §,6,8; > 0 which implies that the vector 7 is strictly positive.

On the other hand, the kernel of A, ker(4,), is nontrivial, i.e., there exists a real vector y € R3,
y# 0, such that A;y = 0. In coordinates, this is equivalent to

Bay2 = Y3¥a Bs¥s = My By = ¥, (3.19)

In view of ﬂi >0 and 7 > 0, all components of vectors in ker(4,) have the same sign.
Accordingly, the linear space ker(A,) corresponds to a straight line through 0 which completely
belongs to R} UR3, the union of the positive and the negative orthants of R3. Each such line has a
unique intersection point with the strategy simplex. Let us denote the umique element of
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Anker(A,) by p+ Since p* belongs to the kernel of A,, the fitness vector at p* coincides
with the zero vector. In view of (2.11) and Theorem 3.4.2., this implies that p* is the unique
interior Nash equilibrium strategy of A,.

We have shown that p* is characterized by setting p* =y in (3.19) together with the condition
that its components are positive and sum up to 1.

{b) det(A4,) #0:

Let us now assume that det(4,) # 0. This implies the existence of A;!, the inverse of the matrix
A,. (2.3), (2.6) and (2.11) applied to A, and F, lead to

p* = A A;'1, where A = Fy(p*) = (1-4;1) ! (3.20)
A simple calculation shows that

1 BaBs + 173 + B3,

A= 8.8, + + 4 } 3.21
) [ﬁiﬂi MY @20

Note that for det(A,) =0 as well as for det(4,) # 0 the following holds true:

sgn[Fy(p*)} = sgnldet(4,)] = sgnlB,B8,8-1,7,73), (3.22)

i.e,, the determinant of A, has the same sign as the interactive component of the mean
equilibrium payoff.

4. Evolutionary Stability in RSP-Games

In this section, we shall characterize the evolutionarily stable strategies of RSP—games. It will be
shown that a Nash equilibrium strategy p* is an ESS if and only if ﬂi 1> % holds true for all
i € I and the terms ﬂi +177% do not differ too much from one another in a sense to be made precise
below. For p* to be an ESS it is necessary but not sufficient that det(A,), the determinant of the
interactive component of the RSP—game 4, is strictly positive.

DeFinITION 4.1: Evolutionarily stable strategies.

A mixed strategy p* € A is an evolutionarily stable strategy or ESS if it satisfies the following two
conditions:
1.- Nash condition :

F(p%p*) 2 F(q,p*) forall qe A (4.1a)

2. ESS condition :

F(p*,p*) = ¥(q,p*) for q# p* implies F(p*q) > F(q,q). (4.1b)
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For the motivation of this concept see Maynard Smith (1982) or Weissing (1983). Since an ESS
is a Nash equilibrium strategy satisfying the additional condition (4.1b), the ESS concept can
formally be interpreted as a ’refinement’ of the Nash equilibrium concept for symmetric normal
form games (e.g., van Damme 1987).

A comparison of (4.1) with (3.9) shows that the concept of an evolutionarily stable strategy is
invariant with respect to positive linear transformations of the payoff matrix. This implies that the
unique interior Nash strategy of an RSP—game A is an ESS of A if and only if it is an ESS with
respect to the interactive component A, of A.

The following theorem provides a characterization of evolutionarily stable strategies by means
of a single "local’ condition, which plays an important role in the study of dynamic stability with
respect to the continuous replicator dynamics. A proof of this theorem may be found in Hofbauer &
Sigmund (1988) or in Weissing (1983).

TreoneM 4.2: Characterization of evolutionarily stable strategies.

1. p* is an ESS if and only if there exists a neighbourhood Uof p* in A such that

F(p*,q) > Fq,q) forall qe U, q# p* (4.2)

2. An interior Nash equilibrium strategy is an ESS if and only if (4.2) holds true globally, i.e., if it
holds true for U = A.

In Weissing (1990) it is shown that it is useful to introduce some notions of evolutionary
instability. Specializing the definitions given there to the case of an interior Nash equilibrium
strategy we get:

DEFINITION 4.3: Uniform evolutionary instability.

Let p* denote an interior Nash strategy of the evolutionary normal form game A.
1. p* is called uniformly evolutionarily unstable if the following holds true:

F(p*,q) ¢ F(q,q) forall ge A. (4.3)

2. p+ is called definitely evolutionarily unstable if

F(p*,q) < F(q.,q) forall qe A, qfp~ (44)

3. p* is called a definite Nash strategy, if it is either evolutionarily stable or definitely
evolutionarily unstable.
4. p* is called neutral Nash strategy if

F(p*,@) = F(q,q) forall q€ A. (4.5)
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The terminology chosen is motivated by the next proposition where it is shown that the
definiteness of an interior Nash strategy corresponds to the definiteness of the quadratic form which
is induced by the payoff matrix A. In order to show this, let us interpret the population states
q# p* as disturbances of the equilibrium state p*. Accordingly, they may be described as
displacements of the form q = p* + x, where x is an element of the hyperplane

n
B = {xeR" | Ix =0}, (46)

which may be interpreted as the *tangent plane’ to the strategy simplex A. Representing q in the
form q = p* + x and using the definition of the fitness function, we get:

¥q,q) — ¥(p*,q) = x- Ap* + x- Ax. 4.7
For an interior fixed point, (2.11) yields
x-Ap*=Ax-1=0 forall xe RS (4.8)

From Theorem 4.2 together with (4.7) and (4.8), we get the following result:

PropoSITION 4.4: Characterization of interior ESS’s.

Let p* denote a completely mixed Nash equilibrium strategy of the evolutionary normal form

game A. Then the following holds true:

1. p* is an interior ESS if and only if the quadratic form induced by A is negative—definite when
restricted to R’g, i.e., if and only if

x-Ax <0 forall xeRY, x#0. (4.9)

2. p* is uniformly evolutionarily unstable if and only if this quadratic form is positive—
semidefinite on IR% It is definitely evolutionarily unstable if and only if the form is positive—
definite, and it is a neutral Nash strategy if and only if the form is identical to zero on
this subspace.

There is a canonical isomorphism between [R% and B*! which may be characterized by the
nx(n—1)-matrix

1 0.+ 0
Do 6i.for i<n

P= . s D R pi.;z J (4.10)
00+ 1 J -1 for i=n
R R |
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(8; denotes the 'Kronecker delta’). With the help of P it is possible to transform the quadratic
form x-Ax on IR% to a quadratic form y‘A.y on R&7L, According to the transformation rules
for quadratic forms, it is given by the (n—1)x(n—1)—matrix

A*=PAP. (4.11)
It is easy to see that the entries of A= (a;j) are given by

o} 1= O Oy anj+ 8o (4.12)
Let now A denote an RSP—game, the interactive component of which is given by 4,, and let
p* denote the unique interior Nash strategy of these games. Note that

PPAP=P 4P, (4.13)
i.e., the quadratic forms on ®* induced by A and A, do not differ from another.

Theorem 4.4 shows that the definiteness of the Nash strategy p* corresponds to the
definiteness of the quadratic form induced by A" on ®"L. It is well-known that the sign of this
form can be derived from the sign of the eigenvalues of the symmetric matrix s = A.+(A')T: the
quadratic form induced by 4" is positive (negative) definite if and only if all eigenvalues of s
are positive (negative).

The sign of the eigenvalues of a symmetric 2x2—matrix can easily be derived from the signs of
its trace and its determinant. Since the determinant of S‘, det(S‘), is equal to the product of its
eigenvalues while its trace, tr(S'), corresponds to their sum, we obtain the following result:

COROLLARY 4.5:

1. The interior fixed point p* of an RSP-game is a definite Nash strategy if and only if
det(S") > 0.

2. p* is an ESS if and only if det(S") > 0 > tr(S").

3. p* is definitely evolutionarily unstable if and only if det(S") >0 and tz(5") > 0.
p* is a neutral Nash strategy if and only if det(S)) = tr(S‘) =0.

A simple calculation shows that " is of the form

. _ —26 (5—67—6;
5= [61—5736; 1__252 ] , (4.14)

where the 6i, i=1,2,3, denote the terms

bi=f - (4.15)
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Trace and determinant of S" are given by

tr(S") = —2(6,+63) , (4.16)
det(S") = 46,65~(6:—62-63)% (4.17)

Since we are free to rename pure strategies, there is no loss in generality if we assume
|61 2 162] 2 |83 . (4.18)

In view of the inequality between the arithmetic and the geometric mean it is easy to derive the
following implication from (4.17):

det(S‘) >0 = sgn(6) = sgn(8;) = sgn(b3) # 0. (4.19)

(3.18) together with (4.15) shows that det(4,) > 0, if all &, are positive. On the other hand,
det(A,) < 0 holds true, if all the & are negative. Therefore, (4.19) can be strengthened to

det(S") > 0 =» sgn(8) = sgn(det(4,)) # 0 for ie 1. (4.20)
Ifall & have the same sign, the determinant of s may be written as

det(S") = [(VTBT-+VTBT) = | &[] [| 61|~/ TET~TET)?] - (421)

It is obvious from (4.18) that the second factor in (4.21) is positive. If all § have the same
sign, we therefore get

sgn[det(S")] = sgnl (VTB+VTBT) - VTBIT ] - (4.22)

(4.22) motivates to introduce the term

o(4y) = ﬁﬁ , (4.23)
2 3

which will be called the skewness of the RSP—game A4, In view of (4.18), the skewness of A may
be interpreted as a measure for the variance between the three numbers VI8, VT%&[, and [5.
Note that o(4,) is smaller than one if and only if

(VT8 + VT&T) > VToT 2 V& 2 YT, (4.24)

i.e.,if and only if the three numbers {[5;], /5, yand T8 correspond to the lengths of the sides
of a triangle. (Josef Hofbauer made me aware of this fact.)

The combination of (4.20), (4.22), and (4.23) yields

det(S") > 0 & o{4,) <1 and sgn(4,) = sgn(det(4,)) # 0. (4.25)
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On the other hand, det(S") =0 in combination with tr(S) = 0 leads to

$" =0 = sgn(8) = sgn(det(4,)) = 0, i€ L. (4.26)

In view of Corollary 4.5, (4.25) and (4.16) together with (4.26) yield the main result of t his section:

THEOREM 4.6: Evolutionary stability in RSP—games.

1. The unique interior Nash strategy p* of an RSP~game A is an ESS if and only if

o(4,) <1 and sgn[ﬂi+1—7i] = sgn[det(A4,)] > 0 for ie L (4.27)
2. p* is definitely evolutionarily unstable if and only if

o(4,) <1 and sgn[ﬁi+1—7i] = sgn[det(4,)] < 0 for i€ L (4.28)
3. p* is a neutral Nash strategy if and only if

sgn[ﬂi+1~7i] = sgn[det(A,)] = 0 for ie I (4.29)

Note that ﬂi 1% corresponds to the sum of the binary payoffs which the players get in the
RSP~game A, whenever an i—strategist is paired with an (i+1)—strategist. Accordingly, p* is an
ESS if and only if the skewness of A4 is smaller than one and if the mean payoffs to the players in
4, is always positive whenever different pure strategies meet one another. In view of (3.21), it is a
necessary condition for p* to be an ESS that the interactive component of mean fitness in p* is
positive. Notice also that (4.29) is equivalent to

A +4T =0, (4.30)

i.e., p* is a neutral Nash strategy if and only if A, is a zero—sum game.

5. Stability with Respect to the Continuous Replicator Dynamics

In this section it will be shown that the stability behaviour of the interior fixed point p* of an
R5P-game A depends crucially on the sign of the determinant of its interactive component 4, :
When det(4,) > 0, p* is hyperbolically stable and even a global attractor. For det(4,) =0, p*
is a global center, and the interior of the strategy simplex is filled with periodic orbits. When
det(A,) < 0, p* is hyperbolically unstable and a global repellor. This characterization will help to
elucidate the discrepancies between evolutionary stability and *continuous’ dynamic stability since
the sign of det(4,) corresponds to the sign of the equilibrium payoff with respect to 4, .
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In this section we deal with a continuous dynamical system, which is induced by an
autonomous differential equation of the form

p=vA). (5.1)

vA: A IR’; denotes a vector field on A where for each given point p€ A the space IRIS should be

interpreted as the tangent space to A at p. The vector field is continuously differentiable and
given by the continuous replicator dynamics, i.e., by

vi{(®) = 5 (F(p) - Fp)), iel. (52)

A comparison of (5.2) with (3.10) shows that the continous replicator dynamics is essentially
invariant with respect to positive linear transformations of the payoff matrix A. In fact, if the
payoff matrices A and A are related according to (3.7) we have
A 4

(p) = 2 v%(

v p) forall pe A, (5.3)

i.e.,, the tangent vectors given by the two vector fields are collinear for all p . This implies that the
dynamical systems induced by these two vector fields have the same phase portrait. The orbits of
the two systems coincide — they are only passed with different velocities.

In particular, an RSP-game A is pl—equivalent to its interactive component A4,. In this case,
we even have A =1, which implies that A and A, induce identical continuous replicator
dynamics. Without loss in generality, we may therefore assume that A coincides with A, e,
that it is an RSP—game in essential form.

In the rest of this section, we shall mainly be interested in the stability of fixed points: A fixed
point p* of a continuous dynamical system is called (Lyapunov) stable if orbits starting near p*
do not go too far away from p*. A fixed point p* is called attractive if nearby starting orbits are
attracted by p*. p=is called neutrally stable if it is stable but not attractive, and it is called
asymptotically stable if it is both stable and attractive. An interior fixed point p* will be called a
global attractor if it is stable and if it attracts all interior orbits. It will be called a global repellor if
all interior non~equilibrium orbits converge to the boundary of the strategy simplex. Finally, it will
be called a global center if it is neutrally stable and if the interior of the strategy simplex is filled
with periodic orbits. Formal definitions of these concepts of dynamic stability can be found in every
textbook on ordinary differential equations (e.g., Hirsch & Smale 1974).

A rather elegant technique for proving stability as well as instability of a fixed point p*of a
dynamical system is that of constructing a Lyapunov function for it. Formally, a Lyapunov Junction
is a smooth scalar function V which has a strict local maximum in p* and which has locally a
definite sign along the orbits of the dynamical system. In order to make the last condition more
precise, let {p(t)} denote an orbit of (5.1). At each point p=p{t), the derivative of the map
t» V(p(t)) is given by
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V(p) = 3 5(0) v (p) = grad V(p)-v(p). (5.4)

V increases near p* along the orbits of (5.1), if and only if V(p)> 0 for all p# p* from a
neighbourhood U of p*. If V has a strict local maximum in p*, the fixed point p* is
asymptotically stable in this case. p* is unstable, if V decreases along nearby orbits, i.e., if
V(p) <0 for peU, p#p* It is neutrally stable, if V is a constant of motion near pe, i.e., if
V(p) =0 for peU. All these resuits and their implications for global stability may be found in
many textbooks on dynamical systems (e.g., Bhatia & Szegd 1967).

Let p* be an interior fixed point of (5.1). The scalar function V: A —R defined on int(A),

the interior of A, by
*
V(a) =1 (¢)1 (5.5)

is a promising candidate for a Lyapunov function for the continuous replicator dynamics (5.1). In
fact, it has a unique maximum in p*, and its time derivative at an interior strategy q is given by

V(q) = V(q) (F(p*,q) — F(q,9)). (5.6)

This shows that the function defined by (5.5) is a Lyapunov function for p*, whenever p* is a
definite Nash equilibrium strategy. Considering the remarks above, we get the following result,
which is an obvious generalization of a theorem first proved by Hofbauer, Schuster & Sigmund
(1979) and Zeeman (1980):

THeorem 5.1: Evolutionary stability and dynamic stability.

For a definite or a neutral Nash equilibrium strategy p* of an evolutionary normal form game A
the notions of evolutionary stability and dynamic stability with respect to (5.1) coincide in the
following sense:

1. If p* isan ESS of 4, it is an asymptotically stable fixed point of (5.1).

2. If p* is definitely evolutionarily unstable, it is a repellor with respect to (5.1).

3. If p* is a neutral Nash strategy, it is neutrally stable for (5.1).

For an interior definite Nash strategy, the local stability properties derived in Theorem 5.1
translate into global stability properties. In order to see this, let us write q in (5.6) in the form
q=p*+x, where x € Ry. Considering (4.7), (4.8), and (4.13), we get

V(p*+x) =—V{p* + x) x- Ax = - V(p* + x) x- A x . (5.7)

Proposition 4.4 shows that the scalar function V defined by (5.6) is a global Lyapunov function for
p*, whenever p* is a definite interior Nash strategy. This yields:
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COROLLARY 5.2: Interior ESS’s and global dynamic stability.

Let p* denote an interior fixed point of the evolutionary normal form game A.
L. If p* isan ESS of 4, it is a global attractor of (5.1).

2. If p* is definitely evolutionarily unstable, it is a global repellor for (5.1).

3. If p* is a neutral Nash strategy, it is a global center for (5.1).

Let now A denote an RSP—game, let A, be its interactive component, and let 6i, 1=1,23,
be defined by (4.15), i.e., 6i = ﬂi+1_7i‘ Recall that the skewness of A, o(4,), is given by
(4.23). Let us set o(Ao) :=1/2, if 6, = 6, = 63 =0. In view of Theorem 4.6, A will be called a
balanced RSP—game if

o(Ag) <1 and sgn[ﬂi+l—7i] = sgn[det(4,)] forall 1€ 1. (5.8)

Together with Theorem 4.6, Corollary 5.2 yields:

ProPosITION 5.3; Stability in balanced RSP-—games.

Let p* denote the unique interior fixed point of the balanced RSP—game A. Then the following

holds true:

1. p* is an ESS if and only if det(4;) > 0. In this case, p* is a global attractor with respect to
the continuous replicator dynamics (5.1).

2. p* is definitely evolutionarily unstable if and only if det(A4,) < 0. In this case, it is a global
repellor of (5.1).

3. p* is a neutral Nash strategy if and only if det(4;) = 0. In this case, it is neutrally stable. In
fact, it is a global center for (5.1).

It will be shown below that the dynamical features described in the preceding theorem are quite
typical for RSP—games: the unique interior fixed point is either a global attractor, or a global
repellor, or a global center with respect to the continuous replicator dynamics. The perfect
correspondence between evolutionary stability and ’continuous’ dynamic stability will be lost,
however, as soon as we leave the class of balanced RSP—games.

In order to show this, we shall first consider a subclass of the class of balanced RSP-games. An
RSP-game A will be called a perfectly balanced RSP-game, if the Ji do not differ from one
another, i.e., if

& = Biyq = = const =: 6. (5.9)
Note that we have o(4,) =1/2< 1 for a perfectly balanced RSP—game and it is clear that the

parameter § has the same sign as det(4,). This justifies the terminology chosen: every perfectly
balanced RSP-game is a balanced game.

51

(a) e=05 (b) e=—-04
1 2 {
=0
() ¢ :
1 T
FIGURE 1: Continuous dynamic stability in e~perturbed Rock—Scissors—Paper

games.

p* is an ESS and a global attractor.

p* is definitely evolutionarily unstable

and a global repellor.

p* is a neutral Nash strategy and a global center.
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The e-perturbed Rock~-Scissors—Paper games defined by (1.4) form a typical class of
perfectly balanced RSP—games. In that case, § corresponds to the parameter ¢, and we have

sgn{det(A(e))] = sgn(e) . (5.10)

Accordingly, the interior fixed point of an e~perturbed Rock—Scissors—Paper game is an ESS if and
only if ¢> 0, and the notions of evolutionary stability and asymptotic stability with respect to
(5.1) coincide (see Figure 1).

Constant—sum RSP-games form another class of perfectly balanced RSP-games. Slightly
generalizing the concept as it is usually defined in game theory, a symmetric normal form game will
be called a constant--sum game if

Ay=—A7, (5.11)

i.e., if its interactive component A, is a zero—sum game. From what has been shown above, we
get:

COROLLARY 5.4: Stability in constant-—sum RSP-games.

1. An RSP—game 4 is a constant—sum game if and only if it is a balanced RSP-—game for which
det(4,) = 0 holds true.

2. Constant—sum RSP—games do not admit an ESS. Their unique interior fixed point is always a
global center with respect to (5.1).

In order to show that all RSP—games have similar stability properties with respect to the
continuous replicator dynamics, we shall introduce a class of transformations by which every
unbalanced RSP—game can be transformed into a balanced one: A barycentric transformation of the
strategy simplex is a homeomorphism x» *x from A to itself, which is induced by a positive
vector x and which is defined by

Ty = TN (7,>0 forall ie1). (5.12)

It is easy to see that — up to a change in velocity — the transformation defined by (5.12)
transforms the replicator dynamics (5.2} into another replicator dynamics which is induced by the
payoff matrix (see Zeeman 1980)

AT := A.diag(x) (5.13)

x! denotes the vector x7! := h.,77Y), and dia y) denotes a diagonal matrix, the diagonal
1 n & L3S £
of which is given by the vector Y)
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The elements of A” = (a?j) are characterized by

oY = a .1l (5.14}

We say that A" was derived from 4 by means of a barycentric transformation.

We have det(A™) = det(4)-det[diag(x")]. Therefore, the determinants of A and A¥ arc

related via

det(4") = ;l-%ﬂ det(4) . (5.15.

Since x is a positive vector, it is clear that A" is an RSP-game in essential form, if and only i
A is an RSP—game in essential form.

THEQREM 5.5: Transformation into perfectly balanced games.

Every RSP-game A=A, in essential form can be transformed into a perfectly balanced
RSP—game B, by means of a barycentric transformation. B, is also a game in essential form, and
the determinants of the RSP~games A, and By do not differ in sign:

sge[det(Bo)] = sgn[det(4,)] . (5.16)
PRoOF;
Let the RSP~game A = A, be of the form
0 B -7
4y = [—’71 0 ﬂsJ , (5.17)
bi-12 0

where ﬂi > 0, %20 for i=1,2,3. Let us also consider an auxiliary RSP-game in essential form,
Co, which is defined by

0 -p
Gy = [—ﬂa gl ’YZJ . (5.18)
7 B 0

Let r* denote the unique interior fixed point of Cj. By (2.11) this means that Cyr* is a scalar
multiple of 1:

Cor* = A 1, where A = r*- Cyr». (5.19)
After multiplication with (~1), the coordinate representation of (5.19) is given by
Pt —mry ==,

Byt — 113 = A, (5.20)
Birg— 7wt =X
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(5.20) motivates the following definition of By:

0 fyrg -1amt
Bo:= -1 0 Byt |. (5.21)
Byt -1 0

We have By = AT, where the vector = is defined by

m=(r)7 my= ()t ry = () (5.22)

(5.20) implies that B, is a perfectly balanced RSP-game: 6= -A, if §=§(B,) is defined by
applying (4.15) to B,. This shows that A, can be transformed into a perfectly balanced
RSP-game by means of a barycentric transformation.

The only thing that remains to be shown is (5.16). This, however, follows directly from (5.15).
* %k ¥

Let Ao and By be given as above. Since the phase portrait of vA0 is the homeomorphic
image of the phase portrait of vBO, we get the following corollary from Theorem 5.3, which — due
to its importance — will be stated as a theorem:

TxEOREM 5.6: 'Continuous’ dynamic stability in RSP—games.

Let p* denote the unique interior fixed point of the RSP-game A. Then the following holds true:

1. p* is asymptotically stable for (5.1) if and only if det(4,) > 0. In this case, p* is even a
global attractor for the continuous replicator dynamics.

2. p* is unstable for (5.1) if and only if det(4,) < 0. In this case, it is even a global repellor for
the continuos replicator dynamics.

3. p* is neutrally stable for (5.1) if and only if det(4,) = 0. In this case, it is a global center for
the continuous replicator dynamics.

Theorem 5.6 is illustrated in Figure 2 by a one—parameter family of RSP-—games which are
ziven by payoff matrices of the form

0 1 ¢1
Ao(q):=[¢—1 0 1], (<1, (5.23)
9 (9 0

{t is easy to see that all these games have the same interior fixed point p* = (}44), and that the
sign of det[4,(¢)] is equal to the sign of (.
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(a) ¢=07 (b) ¢(=-1
3 3
. T Lx
(c) ¢=0
3
1 H
FIGURE 2: Continuous dynamic stability in the one-parameter family of

RSP-games which are given by (5.23).

& §20:
(e) ¢=0:

p* is a global attractor but not an ESS.
p* is a global repellor but not definitely
evolutionarily unstable,

P* is a global center but not a neutral
Nash strategy.
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Note that for ¢ > 0, p* is a global attractor for the continuous replicator dynamics, but it is
not an ESS since 6§, = (-8 is a negative number (see Theorem 4.6). A comparison of Figures 1(a)
and 2(a) gives an idea of why p* is not an ESS: In Figure 2(a), the interior orbits approach the
fixed point p* on spirals with a high ’eccentricity’. All interior trajectories converge to p*, but
they do so in a non—monotonical way. Near the ’minor axis’ of the spiral, a trajectory comes very
close to p*. Time and again, however, it departs from p* on its way to the 'major axis’ of the
spiral. Such a behaviour is typical for attractors of the replicator dynamics which are not
evolutionarily stable. In fact, evolutionarily stable strategies may be characterized as those stable
fixed points of the continuous replicator dynamics which attract nearby orbits (locally) in a
monotonical way.

A comparison of Theorems 4.6, 5.3, and 5.6 shows that it is just the class of balanced
RSP—games, where the concepts of evolutionary stability and ’continuous’ dynamic stability
coincide. Whenever an RSP—game with det(4,) > 0 is balanced, the continuous replicator
dynamics generates orbits with an ’eccentricity’ which is small enough to ensure that the interior
fixed point is approached in a monotonical way. If, however, one or more of the éi are negative, or
if the skewness of A, is larger than one, the interior fixed point is not evolutionarily stable since
there are always time periods where the trajectories temporarily depart from p».

These observations have some important consequences: It is easy to construct an RSP—game
which is not balanced but for which det(4,) > 0 holds true. For example, it is sufficient to choose
b, 8,, and &, all positive and in such a way that oA), the skewness of 4, is larger than one.
For any such game, the unique interior fixed point p* is a global attractor (Theorem 5.6), but it is
not an ESS since (4.27) is not satisfied. According to Theorem 5.5, there exists a barycentric
transformation which transforms p* into the interior fixed point of a perfectly balanced
RSP—game B. Since by (5.16) det(B) > 0, the interior fixed point of B is an ESS (Theorem 5.3).

We have shown that there are Nash strategies which are not evolutionarily stable but which
can nevertheless be transformed into an ESS (and vice versa) by means of a barycentric
transformation of the state space — although barycentric transformations leave the dynamical
features of the continuous replicator dynamics essentially invariant. This result, which is illustrated
by Figure 3, will be stated as a Corollary:

CorOLLARY 5.7: Evolutionary stability and barycentric transformations.

The concept of evolutionary stability is not invariant with respect to barycentric transformations of
the strategy simplex.

We shall close this section by having a look at the linearization of (5.1) at the interior fixed
point p*. Let

D= DvA(p‘) (5.24)

57
a
(a) , () ,
{ 2 i )
Ficure 3: Transformation of an

by means of a barycentric transformation of the state space.

(3) Unbalanced RSP—game with payoff matrix and interior fixed

(b)

point given by:

010

A:Aoz{g 8 éJ P* = (thi1d)

p* is a global attractor, since det(4,) =5 > 0.

p* is not an ESS, since o{4,) = 3/2>1.

Perfectly balanced RSP i i interi
xed point gomecs ! —game with payoff matrix and interior

010
B=5= 00 1|, @i

q* is a global attractor and an ESS of B.

Notice that B may be obtained from A b
barycentric transformation which is i y meaxs of the
vector x = (5,1,1). which i3 induced by the positive

evolutionarily unstable fixed point into an ESS
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denote the derivative of the vector field vA at p* It is well-known that the stability behaviour

of p* with respect to (5.1) is closely related to the sign of the real paris of the eigenvalues of D
(see, e.g., Hirsch & Smale 1974): A fixed point is asymptotically stable, if the real parts of all
eigenvalues of D are negative, and it is unstable, if at least one of the eigenvalues of D has a
positive real part. p* is called a hyperbolic fized point, if all the eigenvalues of D have a non—zero
real part. A hyperbolic fixed point is stable if and only if all the eigenvalues of D are lying in the
left half of the complex plane. In such a case, nearby orbits converge to p* at an exponential rate,
and the fixed point will be called hyperbolically stable. Slightly abusing terminology, p* will be
called hyperbolically unstable, if at least one eigenvalue of D has a positive real part.

If B is identified with R by means of the canonical isomorphism P described in (4.10),
the linear map D can be characterized by its Jacobian matriz with respect to the canonical
coordinates of KL, It should cause no confusion, if this matrix is also denoted by the letter D.
It is shown in Weissing (1983) that the (n—1)x(n—1) Jacobian matrix D = (d j) of the vector field
(5.2) at an interior fixed point is given by

&y=pp(at;~Epgof;), (5.25)

where the summation extends over keI, k< n A" = (a1;) denotes the (n~1)x(n—1) matrix given
by (4.11). Note that in view of (4.13) it does not matter whether we consider the linearisation with
respect to A or with respect to A,

1t is obvious from (5.25) that the Jacobian D takes an especially simple form, if p* coincides
with the barycenter m of the strategy simplex, which is defined by

m:.= .}. 1= (%,%,&) . (526)

Following Zeeman (1980), an RSP—game will be called a central game, if its unique interior fixed
point coincides with the barycenter m. In view of (2.11), an RSP-game A is a central game if
and only if its row sums are equal to one another. The interactive component A, of a central
RSP—game A is also a central game. More precisely: 4 is a central game if and only if

= ﬂi = Y%y =const=:p, for ie[. (5.27)

A simple caiculation under consideration of (5.25) and (4.13) shows that for a central RSP—game
the Jacobian D at the interior fixed point p* = m is of the form

Dzﬁ[ Bit Oyt 127 262+ Pt 1r+27s ] (5.28)
Br=25-271— 13 Br20+ 71— 713 | .
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Using (5.27), it is easy to see that the trace and the determinant of D are given by

tr(D) =-4¢n, (5.29)
det(D)= ¢ ( 7* + B-7). (5.30)

It is well-known that the trace of a matrix corresponds to the sum of its cigenvalues while the
determinant is identical to their product. Note that (5.29) and (5.30) imply

det(D) > [tr(D))% {5.31)

From this, we get immediately that the eigenvalues of D are complex conjugate to another.
Correspondingly, their real parts have the same sign as tr(D). In view of (5.29), the interior fixed
point m is hyperbolically stable if 1> 0, and it is hyperbolically unstable if 5 < 0.

For any vector y € R? let € R denote the arithmetic mean of y, ie,
Y::%!i)yi=m-y. (5.32)

If A= A(ab,) is a central RSP—game, and if § and 17 are given by (3.16), we get from (5.27):
n=f=B-F=b+t-21. (5.33)

Combining this with the previous arguments, we have shown that:

ProposiTior 5.8; Hyperbolic stability in central RSP—games.

Let A= A(ab,c) be a central RSP—game. Then the following holds true:

1. The interior fixed point p*=m of A is hyperbolically stable with respect to the continuous
replicator dynamics if and only if the arithmetic mean of the vectors b and c is larger than
the arithmetic mean of the.vector a, i.e., if

+B+8>x. (5.34)

2. p* is hyperbolically unstable if and only if 3 is larger than the mean of 5 and .

What has been shown above for central RSP—games can be applied to every RSP—game, since
every RSP—game A can be centralized, i.e., transformed into a central RSP—game A" by means
of a barycentric transformation. In fact, 4% is a central game, if x is defined by

o= (p)7 el (5.35)

where p* denotes the unique interior fixed point of A.
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(3.18) and (5.27) imply that 5 and det(A4,) have the same sign for central games:

sgnldet(4,)] = sga(n) = sgnl 55 -1]. (5.36)

Correspondingly, the barycenter of a central game is hyperbolically stable if and only if
det(4,) > 0. On the other hand, (5.15) shows that the sign of the determinant of an RSP—game is
not changed by a barycentric transformation. Accordingly, the centralization of a given RSP—game
and the application of Proposition 5.8 to it yields:

TxEORENM 5.9: Hyperbolic stability in RSP—games.

Let A be an RSP-game, and let A, denote its interactive component. Then the following holds
true:

1. The eigenvalues of the linearization at p* are complex conjugate to one another.

2. The unique interior fixed point p* of A is hyperbolically stable if and only if det(4,) > 0.

3. p* is hyperbolically unstable if and only if det(4,) < 0.

Theorem 5.9 implies that a Hopf bifurcation (see, e.g., Marsden & McCracken 1976, Hassard,
Kazarinoff & Wan 1981) occurs, whenever a change in one of the parameters of an RSP-game leads
to a transition of the determinant of A, through zero (see, e.g., Figure 2). Theorem 5.6 shows that
RSP—games do not admit isolated periodic orbits. This implies that the Hopf bifurcation necessarily
is a degenerate one, since non—degenerate Hopf bifurcations imply the existence of an attracting or
a repelling closed orbit (see, e.g., Marsden & McCracken 1976). The conclusion that RSP—games do
not admit non—degenerate Hopf bifurcations for the continuous replicator dynamics does nof,
however, imply that RSP-games form a 'degenerate’ class of evolutionary games. In fact, this
phenonemon is typical for arbitrary evolutionary 3x3—games: Zeeman (1980) as well as Hofbauer
(1981) have shown that all Hopf bifurcations are degenerate in the case n = 3. Isolated periodic
orbits occur only in higher dimensions (i.e., n> 4 ).

6. Stability with Respect to the Discrete Replicator Dynamics

In this section, the stability of the interior fixed point p* with respect to the discrete replicator
dynamics (2.8) will be analysed. It will be shown that — like in the continuous time case — p* is a
global repellor if det(A4,), the determinant of the interactive component of A, is smaller than
zero. In case that det(A4,) > 0, however, the situation is different. In contrast to the continuous
time case, stability of p* can be affected by positive linear transformations of payoffs: p* can
always be stabilized and destablized with respect to (2.8) by means of a positive linear
transformation of payoffs. In particular, this implies that evolutionary stability of p* is neither
necessary nor sufficient to ensure stability with respect to the discrete replicator dynamics.
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The class of ’circulant’ RSP—games will be analysed in some detail. For this class, the situation
with respect to the discrete replicator dynamics is very similar to the picture that emerged for the
continuous dynamics: local stability of the interior fixed point implies global hyperbolic stability,
local instability implies global hyperbolic instability, and the parameter regions for stability and
instability are separated by a submanifold of codimension one for which the interior fixed point is a
global center.

To begin with, we shall give an equivalent representation of the discrete replicator equation
(2.8) in terms of a difference equation:

Ap:=p —p=wi(p). (6.1)

In this form, the discrete replicator dynamics is — like in the continuous case — induced by a
vector field wA: A— IR%, the components of which are given by

w‘?(p) =p Pp) - Fp ) iel (6.2)

Ap)
A comparison of (6.2) with (5.2) shows that
A vAgm
wi(p) = == (6.3)
F(p)
A and vA are collinear, and for each simplex point p the

Accordjngity, the two vector fields w
vectors v (p) and wA(p) only differ in their lengths.

A simple calculation shows that (6.2) is ’well-behaved’ with respect to barycentric
transformations of the state space A: a barycentric transformation (5.12) of the strategy simplex
transforms (6.2) into another discrete replicator dynamics, which is induced by the payoff matrix
(5.13). Since every RSP—game can be centralized, i.e., transformed into a cenéral RSP—game by
means of a barycentric transformation of A, we shall restrict our attention to central games.
Recall that an RSP—game is central if and only if its unique interior fixed point p* coincides with
the barycenter m of the simplex.

The stability concepts used in this section should be understood analogously to those used in the
continuous case. The linearization of (6.1) at p* = m will be denoted by Ji:

Jo = DwA(p‘). {6.4)
In view of (6.3) it is easy to see that J, = DwA(p') is related to D= DvA(p') by means of

Jo= [ ;(P‘) ]'l' D. (6.5)
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It is well-known that in the discrete case the stability behaviour of p* is closely related to the
spectral radius of the associated linear map

Ji=Jy+1d (6.6)

( Id denotes the identity map ). In fact, p* is asymptotically stable, if all eigenvalues of J, have
a modulus smaller than one, and it is unstable, if at least one eigenvalue of J, exceeds one in
modulus. p* is called hyperbolically stable, if all the eigenvalues of J, are located strictly within
the unit circle, and it is called hyperbolically unstable, if at least one of the eigenvalues of J, hasa
modulus larger than one.

As described in Section 2., only non—negative fitness values make semse in the discrete
generations context. Accordingly, the RSP—game A = A(a,b,c) will be called admissible for the
discrete replicator dynamics, if A is a non—negative matrix, i.e., if

b>a2¢20 for iel. (6.7)

Let A, = A(0,—7) be an essential RSP—game, and let a¢ [R3 denote a vector. If a is
interpreted as the generating vector for the basic component A, of an RSP—game, the pair (4,,a)
induces an RSP-game A = A(A,,a), which is given by

A(4,a) == A, + A(a,a,3) . (6.8)

The vector a € R° will be called admissible Jor Ay, if A(A,a) is an is admissible RSP—game for
the discrete replicator dynamics. a is admissible for A, if and only if

22720, (6.9)

where these vector inequalities should be understood component—wise.
Let now A = A(a,b,c) be a central RSP—game, let J, denote the linearization of (6.1) at the
interior fixed point p*=m of A, and let J, be given by (6.6). In view of Theorem 5.9(1) and
(6.6), the eigenvalues of J, (and also those of J, ) are complex conjugate to one another. From this

it is easy to derive (see Weissing 1983) that the interior fixed point is hyperbolically stable with
respect to (6.1) if and only if the following inequality holds true:

x(p*) := det(D) + F(p*) - tr(D) < 0. (6.10)

p* is hyperbolically unstable, if and only if the inequality—sign in (6.10) is reversed.
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1t is clear that for any payoff matrix A4, _F-(m) corresponds to the arithmetic mean of the
entries of A. Together with (5.33) we get

Fm) =} (3+5+8) = {-n+ 3. (6.11)

Remember that tr(D) and det(D) are given by (5.29) and (5.30). Together with (6.11) and
(5.33), this yields:

xp") =418 7-2(B-7 ] (6.12)

Combining all this, we have shown that:

ProPOSITION 6.1: Discrete hyperbolic stability in central RSP~games.

Let A be a central RSP—game and let p* = m denote its unique interior fixed point. Then the

following holds true:
1. p* is hyperbolically stable with respect to the discrete replicator equation (6.1) if and only if

(B> 167 (6.13)

9. p* is hyperbolically unstable with respect to (6.1) if and only if
(BT <ib71- (6.14)
If B~75<0, wehave 3> 72> B>0 and f-7> 0. In view of (6.14), this is sufficient to imply
hyperbolical instability of the interior fixed point. If P—7>0, the interior fixed point is
hyperbolically stable provided that 3 is 'large enough’. It is clear that one can always achieve this

by a positive linear transformation of payoffs. On the other hand, one can also almost always
achieve hyperbolic instability by choosing 3 ’small enough’. This will be shown next.

A simple calculation using the equalities ﬁi =% 1€ I, yields
1 B = | =
1Br=13%%4, H 07 (6.15)
Together with (6.12) and 7= B-7, we get another formula for x(p*):
x(p*) =113 )1: Nh+1~ (37 ] (6.16)

Remember that p* is hyperbolically stable if and only if x(p*) < 0 and that it is hyperbolically
unstable if and only if x(p*) > 0.
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If 7=pF-9<0, we have Tig12 ﬂi >0,iel In view of > %, (6.16) implies that p* is
hyperbolically unstable since

x(P)23366 >0, if 7<0. (6.17)
Let us now analyse the case 7> 0. (6.16) shows that p* is hyperbolically stable if and only if
- 1

P* is hyperbolically unstable if and only if the inequality sign in (6.18) is reversed. (6.18) motivates
the definition:

1 .
W(Ao) = 3 [}E 7i7i+1]' if >0. (6.19)

If o(4,)=0, p* is hyperbolically stable if > % and it is never hyperbolically unstable.
Note that ¢(4,) = 0 if and only if at least two component of the vector 7 are equal to zero. If
@(A,) > 0, there are always admissible vectors a such that

TEA<T+ ¢4,), (6.20)

ie., such that p+ is hyperbolically unstable for the RSP-game A = A(Aj,a). For example, the
vector a = 7 is admissible for A4,, and p= is hyperbolically unstable for the RSP-game A(4,,7)
if ¢(4,) > 0. On the other hand, the interior fixed point of A = A(A,,a) is hyperbolically stable
if a is 'large enough’ in the sense that

> 7+ ¢4,). (6.21)

Recall that for central RSP—games we have
sgn() = sgn[det(4,)] = sgnl§-(B + ¢) — 3. (6.22)

Together with the above observations we get:

CoroLLARY 6.2: Discrete hyperbolic instability in central RSP—games.

Let 4= A(ab,c) = 4(A,,a) be a central RSP—game and let p*=m.

1. If det(4,) <0, p* is hyperbolically unstable with respect to the discrete replicator dynamics
(6.1) irrespective of the vector a.

2. K det(4))>0 and oA) =0, p* is hyperbolically stable with respect to the discrete

- replicator dynamics if and only if a » 7,3% 17

3. If det(4,) >0 and p(4,) >0, p* is hyperbolically unstable with respect to (6.1) if and only
if (6.20) holds true. In particular, it is hyperbolically unstable for a = 7. On the other hand,
Pp* is hyperbolically stable if a is large enough in the sense that (6.21) holds true.
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All these results can easily be generalized to non—central RSP—games. In fact, every RSP—g@e
A = A(a,b,c) = A(A,a) with interior fixed point p* can be centralized by.' a barycentn.c
transformation, the gemerating vector x of which is given by (5.35). It is obvious that A is
transformed into the central RSP—game

AT = A" b ") = A((4,)7 "), (6.23)

where a”, b, ¢" and (Ao)7r are given by

L T=b. T.=c.ptr (6.24)
aj.—ajpj,bj. bJp},cJ &P}
.= 4. Fom yopr. (6.25)
ﬁj _ﬁj P}r'YJ 7,] PJ

Notice that sgn[det(A4,™)] = sgn[det(4,)], that a” can be made arbitrarily large by increasing

i i = i et:
a, and that }]3 7?7?_'_1 = 0 is equivalent to Il) N%+41 0. From this we g

THEOREM 6.3: Discrete hyperbolic stability in RSP—games.
Let A, be an RSP—game in essential form, and let p* denote its interior fixed point. .
1. If det(A,) <0, p* is hyperbolically unstable with respect to the discrete replicator dynamics
for all RSP—games that have A, as their interactive component.
i i A(A 2
2. If det(4,) >0 and §7i7i+1 =0, p* is hyperbolically stable for all RSP-games A(A,3a)
with a> 9, a7 i
3. If det{(4,) >0 and 7.7, > 0, there exists a real number ¥(A;) > 7-p*2 0 such that p
’ 0 UL ES R e b < WA and
is hyperbolically unstable for all admissible RSP—games A(A4,a) with a-p 0
hyperbolically stable for all A(A4,,a) with a-p* > ¥(4,).

The two main conclusions of Theorem 6.3 will be stated as a corollary:

COROLLARY 6.4: Evolutionary stability and discrete dynamic stability.

1. The concept of discrete stability, i.e., stability with respect to (6.1), is not invariant with
respect to positive linear transformations of the payoff matrix.

2. Evolutionary stability is neither necessary nor sufficient for discrete stability. In fact, an ESS
may be hyperbolically unstable with respect to (6.1), and a hyperbolic attractor with respect to
(6.1) need not be an ESS.

The potential discrete instability of an evolutionarily stable strategy i's illustratf'zd in
Figure 4. An orbit starting at po = (0.25, 0.25, 0.5) is shown there for (a) the discrete replicator
dynamics and a small value of %, (b) the discrete replicaotr dynamics and a large value of %, and
(c) the continuous replicator dynamics.
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(a) a=1

(b) a=3-1

FIGURE 4:

Discrete dynamic instability of an evolutionarily stable strategy.

Figure 4 is based on the central RSP—game A = A(A;,a), where:

0 21
Ay=|-1 0 2| and a=A-y=2A-1
2-1 0

C is a constant~level curve of the scalar function V (see (5.5));
the initial vector p,:= (0.25, 0.25, 0.5) belongs to C.

(3)
(b)
(©)

a=: p* is hyperbolically unstable with respect to (6.1).

The vector attached to p, is so large that it 'overshoots’ C.

a=37: p* is hyperbolically stable with respect to (6.1).
Overshooting does not occur.

Orbit of the contfnuous replicator dynamics starting at p,,.
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Figure 4 is based on an e—perturbed Rock—Scissors—Paper game with ¢ > 0. As has been
shown in Section 5, the interior fixed point p*=m isan ESS and a global attractor with respect
1o the continuous replicator dynamics. The initial vector p, belongs to the closed curve C, which
is a constant—level curve of the scalar function V that was defined in (5.5). Since p* is an ES§,
V is a global Lyapunov function for the continuous replicator dynamics.

By definition, this means that the trajectories of (5.1) cross constant—level curves like C from
the outside to the inside with respect to C. Equivalently, the vectors of the vector field vA point
sinward’ for all points on C. Since the vector field wA of the discrete replicator dynamics is
collinear to v, the vectors wA(p) also point inward when attached to points p on C.
However, in view of (6.3) and (6.11), the length of a vector wA(p) is negatively correlated with &
For small values of %, the length of w”(p) may be so large that p'=p+ W (p) lies outside the
closed curve C (see Figure 4(a)). Overshootings like this, which are closely connected with the the
value of 3 (see Figure 4(b)), are the reasons for the potential instability of an ESS with respect to

the discrete replicator dynamics.

Theorem 6.3 indicates that for det(4,) > 0 we can always find an a that is large enough to
prevent overshootings. (In Weissing (1990), this result is generalized to the class of all evolutionary
normal form games.) On the other hand — neglecting the border case 21) %ip1 = 0 —overshootings
leading to instability do always occur if the vector a is not significantly larger than 7.

In Section 5. we saw that for the continuous replicator dynamics the local stability properties of
the interior fixed point of an RSP—game correspond perfectly to global stability properties. We shall
now turn to this question for the case of the discrete replicator dynamics (6.1).

Again, global stability properties will be analysed by constructing suitable Lyapunov {functions
for (6.1). As in the continuous time case, a Lyapunov function is a scalar function W: AR,
which has a strict local maximum in p* and which changes in a definite way along the orbits of
the dynamical system. The last condition means that the change along orbits, YW, should either
be positive near p*, or negative near p*, or identical to zero near p*. VW is defined by

YW(p) := W(p) - W(p) - (6.26)

The *standard’ Lyapunov function V: A — R for the continuous replicator dynamics — which
is given by (5.5) — is also very useful in the context of the discrete replicator equation. In fact, V
can always be used for demonstrating discrete instability of p+, if p* is uniformly evolutionarily
unstable. On the other hand, V is a global discrete Lyapunov function whenever p* is an ESS
and the vector a is 'large enough' to prevent overshootings. These results — which hold true for
general evolutionary normal form games — are derived in Weissing (1990). The following theorem
combines those results in Weissing {1990) which are relevant for RSP—games:
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THEOREM 6.5: Evolutionary stability and global discrete stability.

Let p* denote an interior Nash strategy of an evolutionary normal form game A, Then the

following holds true:

1. If p* is the unique interior Nash strategy, and if p* is uniformly evolutionarily unstable, it is
3 global repellor for the discrete replicator dynamics for all games A = (4,,a) such that the
vector a is admissible for 4.

2. If p* is an ESS, there exists an admissible vector a* such that p* is a global attractor for
the discrete replicator dynamics for all games A = (A,a) with a)a*

Theorem 6.5 directly applies to the class of balanced RSP—games, since the interior fixed point
of a balanced RSP—game is always either an ESS or uniformly evolutionarily unstable (Proposition
5.3). On the other hand, every RSP—game can be transformed into a balanced one by means of a
barycentric transformation of the state space (Theorem 5.5), and barycentric transformations do
not change the dynamic features of the discrete replicator dynamics. Consequently, Theorem 6.5
yields:

THEOREM 6.6: Discrete global stability in RSP—games.

Let A, be an RSP—game in essential form, and let p* denote its interior fixed point.

L If det(4,)<0, p* is a global hyperbolic repellor with respect to the discrete replicator
dynamics for any RSP—game 4 = A(A,,a) the interactive component ofwhich is given by 4,

2. If det(4,) >0, there exists an admissible vector a*e R? for 4, such that p* is a global
hyperbolic attractor with respect to the discrete replicator dynamics for all RSP—games
A(Aya) with a ) a*.

The example in Figure 4 shows that even for an ESS of a perfectly balanced, central RSP-—game
the function V is in general not a discrete Lyapunov function. There is, however, a class of
RSP—games which is so simple in structure that a global discrete Lyapunov function can be found
for all parameter constellations. It is the class of ’circulant’ RSP-games, the properties of which
will be analysed next.

An RSP—game A4 = A(a,b,c) will be called a circulant RSP-game if the vectors a, b, and ¢

are all scalar multiples of the vector 1. Accordingly, an RSP—game is circulant if and only if its
payoff matrix is a *circulant matrix’ (see, e.g., Davis 1979), i.e., if A is of the form

abec
A=lcab|, b>adc. (6.27)
bca
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It is clear that circulant RSP—games are central, perfectly balanced games, and that the class of
these games includes the e—perturbed Rock—Scissors—Paper games which are defined by (1.4).

Setting
f:= b-a, 7:=a-c, and §:= f—, (6.28)

we get from (6.22):

sga] det(4,) ] = sgn(8) = sga T —a]. (6.29)
On the other hand, a simple calculation based on (6.12) shows that x(p*) is given by
x(p*) =4[ a? - bc]. (6.30)

Now Theorem 5.3, Theorem 6.1, and Theorem 6.6 taken together provide a nice characterization of
evolutionary stability and dynamic stability in circulant RSP—games:

COROLLARY 6.7: Stability in circulant RSP-games.
Let A denote a circulant RSP~game given by (6.27). Then the following holds true:
1. The interior Nash strategy p* = m is an ESS if and only if

a< (b+c)/2, (6.31)

i.e., if and only if ¢ is smaller than the arithmetic mean of b and c. o
2. p* is a global hyperbolic attractor with respect to the continuous replicator dynamics if an.d
only if (6.31) holds true. It is a global center if a = (b+c¢)/2, and it is a global hyperbolic

repellor if a > (b+¢)/2. ' ' ’
3. p* is hyperbolically stable with respect to the discrete replicator dynamics (6.1) if and only i

a3 < be, (6.32)

i.e., if @ is smaller than the geometric mean of & and c. .
p* is hyperbolically unstable if and only if a2 > be. If a2 (b+¢)/2, it is a global hyperbolic

repellor for the discrete replicator dynamics.

For circulant RSP—games, it is the inequality between the arithmetic and the geometric mean
which leaves room for a discrepancy between ’discrete’ and ’continuous’ stability to occur. In fact,
the interior fixed point is a hyperbolic attractor for the continuous replicator dynamics and at the
same time a hyperbolic repellor for the discrete replicator equation if

JEE < a<i+7-c-. (6.33)
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We shall now prove a theorem which shows that for circulant RSP—games there is a perfect

correspondence between local discrete stability and global discrete stability:

TxEOREM 6.8: Global discrete stability in circulant RSP—games.

Let A4 denote a circulant RSP—game given by (6-27). Let p*=m denote its interior fixed point.

Then the following holds true:

1.
2.
3.

If a? < be, p* ig a global hyperbolic attractor for the discrete replicator dynamics.

If a2 > be, p* is a global hyperbolic repellor for (6.1).

If a? = be, p* is a global center for (6.1), i.e., the interior of the strategy simplex is filled with
closed invariant curves encircling p+.

Figure § illustrates how the phase portrait of the discrete replicator dynamics changes near
a = ybe. In (c), each orbit is iterated for only about 100 generations. Obviously, each of the closed

invariant curves surrounding p* consists of many orbits of (6.1), since each orbit has only a
countable number of elements. In my numerical simulations, I have never observed a finite non—

equilibrium orbit corresponding to a periodic trajectory. Instead, the simulations suggest that each

orbit is dense on the closed invariant curve to which it belongs.

PrOOF of THEOREM 6.8:

A: In view of Corollary 6.7.3, we may concentrate on the case g < (b+¢)/2. We shall therefore

assume that (6.31) holds true and that the interior fixed point p* = m isan ESS of A.
Theorem 6.8 will be proved by constructing a suitable global Lyapunov function for (6.1). We
shall consider the scalar function W:int{A) — R, which is defined by

. Q- 4q
W(q): q1q

o 4€ int(A) . (6.34)

{Josef Hofbauer and Karl Sigmund directed my attention to this function.) It will be shown
that the interior fixed point p*=m of A is the only critical point of W, and that it is a
strict global minimum of W. Moreover, YW has a definite sign along the orbits of the
discrete replicator dynamics (6.1). In fact, we shall show that the sign of VW(q) is
independent of ¢, and that it is given by

sgn[VW(q)] = sgn[a® — b¢] . (6.35)
Accordingly, W increases along the orbits of (6.1) if and only if a2 > be; W decreases along

the orbits of (6.1) iff a2 < bc; and it is a constant of motion if and only if a?= be. The
assertions of Theorem 6.8 follow immediately from these properties.

7

(2) a=1.99

(b) a=12.01

Fi6uRg 5:

(¢) a=2.00

Discrete dynamic stability in a family of circulant RSP—games:

a4l
Ale)==11a4d4}, 4>a21.
41

(a) a<ybc: p* is a global hyperbolic attractor.

The diagram shows the orbit starting at p, := (0.05,0.05,0.90).

{b) a> bc: p* is a global hyperbolic repellor.

The diagram shows the orbit starting at p, := (0.35,0.35,0.30).

(¢) a=ybe: p* is a global center. Five orbits are shown which
indicate the closed invariant curves encircling p*.
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B:

First, we shall show that W has a global minimum in p*. A simple calculation yields that
q- Aq may be represented in the form

q-Aq = a + (b+o-20)(q,q; + 0,9 + 0:9)- (6.36)

Therefore, W(q) may be written as
4L 1

T (6.37)

W(q) = a-—— + (b+c-2a)- ( +

mqws

In view of (6.27) and (6.31) this shows that W is a positive linear combination of the two
scalar functions W, and Wj, which are given by

1

1 1,1
Wia) = q192¢3

and Wiq) =4+ 5+ ¢ (6.38)

Notice that Wy(q) is the inverse of the third power of the geometric mean of gq, whereas
Wi{q) is the inverse of the harmonic mean of q. It is well-known that the geometric as well
as the harmonic mean have a strict global maximum in the barycenter m of the simplex.
Correspondingly, W; and W; both h ve a strict global minimum in m. Being a positive
linearcombination of W; and W, W also has a strict global minimum in p* =m

We shall use the method of Lagrange multipliers in order to show that p* is the only critical
point of W. Therefore, we consider the term

i) 1 1
75 W@~ 2% gl =-F e Wi(q) + (b+c-20) T] - X, (6.39)
where A denotes a Lagrange mulitplier. Setting (6.39) equal to zero for i€ I, we get

A=2%q=~[W(Q) + 22 Wiq)] (6.40)
and

a-Wi(q)-(1-3g) = (b+c-20)- ¢+ [Wy(a) — (¢) 7] (6-41)

Let us assume that q # m and that ¢ minimizes g Then we have g < 1/3 and
Wy(q) < 3/¢, which implies

Wia) - (g)? < (3——) <o (6.41a)

Therefore the right—hand side of (6.41) is negative whereas the left—hand side is negative. This
contradiction shows that (6.41) is only compatible with q = m: p*=m is the only critical
point of W in int(A).

In order to prove (6.35), we shall first derive an indicator function for the sign of VW. Let us
define two auxiliary functions M: R —R and P: IR3 — R by

M(z) := z- 4z, P(z):= 22,2, x€R" (6.42)
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Using these functions, W(q) may be written as

W(q) = 1{}{%} geint(A). (6.43)

Let %s now choose a fixed strategy q€int(A), q# m. Denote the fitness vector at q by
yeR', ie

y:=Fq)=A4q. (6.44)

From the definition (2.8) of q’ we get

P(q) = P(q)-ua{%:- (6.45)

This implies
W(a) = P} = wio) Ma Mo (5.4
and
TW(a) = W(@)-W(a) = F1Y-[M@)M@) - P) . (647

A few simple calculations yield

M(q")- [M(q))* = ¥(q) , (6.48)
where ¥(q) is given by
V() = o g3) + (o+e)E qq 10y, ) - (649)
Combining (6.47) and (6.48), we get:
sgn[VW(q)] = sgn[¥(q)—P(y)] . (6.50)

: We shall now derive an explicit representation of the expression ¥(q)-P(y). The following

identities will be used:

Yad, = Ydd,,, (6.51)
Tda0= T4h (6.52)
Wt = F4%11640 = F 49152 = F 4441942 (6:53)
Y =g+ ¥qge,, tYedy, (6:54)
p) qi’éiH =3gq  +3dg, +ang, (6.55)
Yodyy = Tad, +Yaq,, + a0 (6.56)
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(6.51), (6.52), and the last two equalities in (6.53) are consequences of the fact that pure
strategies are counted modulo three. The other equalities result by multiplying the left hand
sides by the factor ?qi (which is equal to one). Using (6.51) to (6.56), it is easy to derive the
following formulae:

2,,2 2 2
Yoy = Y- (agtbg 1 +eg o)

a2-(!i:qg )+ (b’+c’)-(§qi2qi’+1 )+ (6.57)
+ 2ab-( ¥ 61 ) + 2ae-( ¥ &¢ 1) + 2bc- 4,050, ,

Yagptitipr = Fqay(ag+beheg g) (ag  +bg gteq)
(a®+bc)-( z g¢, 1)+ ec( ¥ ge, )+ (6.58)
+ ab-( 3 4841 ) + (P+ +abtactbe)- g,0,05

o,

pacy

=
!

= (agtba oy g) (ag 1 +bg  o+eq)-(ag y+bgteq )
2 2 2

abe-(T ) + (ab+ctca)- (B g, ) +

+ (a’c+b2a+c2b)-( )1: qiqiz+1 ) + (a3+ba+c3+3abc)-q1q2q3

i

abe-(Tgf ) +
1
+ (a?b+b2c+ cPa+tac+-bat ¢2b) - ( % Ge, 1)+
+ (abc+a®b+b%c+c?a)-( B e, 1)+ (6.59)
i i+1
2,4 12 3
+ (abe+a?c+bla+c?b)-( )i}qqu_l )+
+ (6*+ 83+ c3+3abet+alb+b2c+ cPa+ ac+Bat c2b)- g,0,4

Combining (6.57), (6.58), and (6.59), we get that ¥(q)—P(y) is of the form:

¥(q)-P(y) = o,( )1: ‘I: )+ oy ( }1: qfqil+1 ) + ay( 21: qizqi2+1 )+
+or(Bag )+ o a0 (6.60)

where the coefficients o; are given by

o, = a®—abc = a-(a’=bc), (6.61)
oy = 20’ + (b+c)- ac — (abc+a®b+b%etc’a) = b-(a’—bc), (6.62)
0y = a-(b*+c%) + (b+¢)- (a’+bc) — (62b+b%c+ Pata’c+b2a+c?h) = 0, (6.63)
oy = 20% + (b+c)- ab— (abeta®c+bPatc?h) = - (a—be), (6.64)

9y = 2abc + (b+c)- (B+c+abtbetca) — (63+b6%+c3+3abe+t (b+c)(a?+ be)+ab*+ ac?)

abe + bc? + b~ a® — a®b— a’c = — (a+b+c)-(a’=bc). (6.65)

This completes the proof of Theorem 6.8.
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On the basis of (6.61) to (6.65), it is easy to see that W(q)-P(y) may be put into the form

¥(q) = P(y) = (a™~bc)( a-®1(q) + b-Do(q) + c-D5(q) ), (6.66)

where the functions d>i(q) are given by

*(0) = (¥ ¢ ) - 0,005 (6.67)
Poa) = (2 )~ 010a0s (6.68)
*o(a) = (2gq 1)~ a0y (6.69)
We want to show that
sgn[VW(q)] = sgn[¥(q)~P(y)] = sgn[a’~bc] (6.70)

for all q# m. In view of (6.50) and (6.66), (6.70) is a consequence of
®.(q) >0 for il and q¢ m. (6.71)

The proof of Theorem 6.8 will be completed by showing that (6.71) holds true.

: Let us first show that &®,(q) >0 holds true for q# m: Jensen’s inequality applied to the

convex function f(y) := y* yields for n = 3:
1 1 1
1rnGlet = aei=k (612
with equality only for q = m. On the other hand, we have
1
0,959, = P(q) ¢ P(m) = bid (6.73)

with equality only for q = m. Taken together, (6.72) and (6.73) yield (6.71) for i = 1.
Considering 1= 2, a simple calculation using (6.55) shows that

®a) = (B gjgy 1)~ (B gg, ) (6.74)

Jensen’s inequality applied to the convex function f(y) := y? yields (6.71) for i= 2.
The corresponding result for i=3 follows immediately in view of the symmetry of the
expressions (6.68) and (6.69).
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7. Compiex Attractors of the Discrete Replicator Dynamics

In the last section we saw that for circulant RSP—games the dynamical features with respect to the
discrete replicator equation are ’qualitatively’ closely analogous to those obtained for the
continuous replicator dynamics. In both cases there are only three types of global dynamic
behaviour: the interior fixed point p* is either a global attractor, or a global repellor, or a global
center. For the discrete as well as for the continuous dynamics, the parameter region P, for which
p* i8 & center is a submanifold of codimension ome in parameter space which separates the
parameter regimes for stability and instability. Whenever P, is crossed tramsversally by a
one—parameter family of circulant RSP-games, a Hopf bifurcation does occur which is degenerate
(see below) since the games in 7, do not admit isolated closed invariant curves encircling the
interior fixed point. For circulant RSP-games, the main difference between the discrete and the
continuous replicator dynamics is a quantitative one in that the stability of the interior fixed point
changes at different parameter constellations for the two dynamics: at P, = { (g,b,¢) | a = ¥}
for the discrete dynamics, and at P, ={(g,b,¢) | a=(b+c)/2} for the continuous replicator
equation.

In this section, we shall demonstrate that the perfect qualitative correspondence between the
continuous and the discrete replicator dynamics does not extend to the class of all RSP-games.
This is illustrated by an example in Figure 6. In that example, the interior fixed point is locally
hyperbolically unstable with respect to the discrete replicator dynamics, but it is not a global
repellor. Instead, there exists an invariant simple closed curve C encircling the interior fixed point
which attracts all interior non—equilibrium orbits. C as well as the region enclosed by it are
invariant sets for the discrete replicator equation. This phenonemon will be analysed more closely
in the present section.

A simple closed curve which is invariant and attractive (or repulsive) will be called an
attractive (repulsive) closed limit curve since its properties are similar to those of the limit cycles of
a continuous dynamical system. By definition, a limit cycle is a simple closed curve which is the o—
or the w-limit set for at least one outside orbit (see e.g. Hirsch & Smale 1976). We shall avoid the
term ‘cycle’ in the discrete time context since a cycle is usually associated with a periodic motion.
Obviously, a countable orbit of a discrete dynamical system cannot fill a continuum. Accordingly,
each limit curve consists of many orbits and in most cases none of them is a periodic one. Usually,
the dynamical behaviour on a closed limit curve consists of a complicated pattern of quasi—periodic
motions.

In many cases, closed limit curves encircling a fixed point arise from a discrete Hopf bifurcation.
Such a bifurcation occurs within a one~parameter family (G} of two—dimensional discrete
dynamical systems whenever an associated family (p;) of fixed points loses itg stability at a
critical parameter value = pu, since a pair of complex conjugate eigenvalues cross the unit circle.
This means thai p‘; is a hyperbolic attractor for u < g, and a hyperbolic repellor for y > Ly {2
more exact definition of a Hopf bifurcation will be given below).
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(a)

{b)

.
( (d)
3
[4
1 2 1 2
FIGURE 6: Existence of a cloged limit curve for the discrete replicator dynamics.

This figure shows some orbits of (6.1) for the central RSP-game

(a)
(b)

(d)

9.00 10.00 11.50

10.00 11.50 9.00
A= .
15.85 4.65 10.00

Qrbit starting at p = (0.01, 0.01, 0.98}
(iterated for 20,000 generations).

Orbit starting at p = (0.33, 0.33, 0.34) o

(36,000 generations; only every third generation ig shown).
Superimposition of the orbits in (a) and (b)

{only every fifth generation is shown).

Orbit starting at p = (0.461, 0.461, 0.078) which closely
approximates the closed limit curve C
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In essence, there are three types of discrete Hopf bifurcations:

(a)  Subcritical Hopf bifurcations.
For ’subcritical’ parameter values, i.e., for parameter values z which are slightly smaller
than the critical value p,, the stable fixed point p;; is encircled by a repelling closed limit
curve C " which circumscribes the domain of attraction of p*. The family (Cp) of closed
curves shrinks to the fixed point Pl (and the domains of attraction get smaller and
smaller) if 4 tends towards g, from below.

(b)  Supercritical Hopf bifurcations.
For ’supercritical’ parameter values x which are slightly larger than the critical value oy
the unstable fixed point p* is encircled by an attracting closed limit curve € which
circumscribes the *domain of repulsion’ of P The family (Cﬂ) shrinks to the fixed point
P if p tends towards g, from above.

(¢)  Degenerate Hopf bifurcations.
This is a class of Hopf bifurcations where closed limit curves do not arise. Instead, a picture
like that obtained for circulant games (see Theorem 6.8) is rather typical: the center p/:o is
surrounded by a family of closed invariant curves, and no closed invariant curves exist near
P for p# py.

Figure 7 indicates that the attracting closed limit curve of Figure 6 also results from a discrete
supercritical Hopf bifurcation. It is the aim of this section to give an analytical proof for this
assertion. In view of Theorem 6.3, it is easy to see when a discrete Hopf bifurcation does occur in
the RSP-game context. In fact, the eigenvalues of the interior fixed point of an RSP—game with
respect to the discrete replicator dynamics cross the unit circle of the complex plane whenever we
have:

det(A4;) > 0, §7i7i+1 >0, and a-p*=¢(4,) (7.1)

As in most other applications, it is not difficult to judge whether a discrete Hopf bifurcations
occurs. However, it is usually quite intricate to classify a given Hopf bifurcation and to demonstrate
that it is of the supercritical type.

The Hopf bifurcation illustrated by Figure 7 occurs in a one—parameter family of discrete
replicator dynamics (’l”)p'>0 arising from the family of central RSP-games which are given by

[/ b ¢
4 =] ¢ a bi,b>a>c c23u>0. (7.2)
b +3u 3y a

Proposition 6.1 indicates that a discrete Hopf bifurcation occurs at the critical value

2
-2 o

(b)

(d)

FIGURE T:

A discrete supercritical Hopf bifurcation (occuring at po = 1.40)
which is induced by the one—parameter family of central RSP—games

given by:
b c
4 = g a b],where a=10,b=115¢=9.
# b+3p c3p a

Orbit starting at p = (0.01, 0.01, 0.98) for:

a) p= 1401,
b U= 141,
c b= 145,

(c) corresponds to the example in Figure 6. See text for details.
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In fact, the interior fixed point p"‘ =m of 4 Y is a discrete hyperbolic attractor for pu < 4, while
it is a hyperbolic repellor for x> by For p=p, the eigenvalues of the linearization of ’l at
p; are one in modulus, i.e., they belong to the unit circle in the complex plane.

The numerical example in Figure 7 suggests that the Hopf bifurcation at u, is a supercritical
one: For parameter values u which are slightly larger than 4y, an attracting closed limit curve
arises, the 'radius’ of which increases with increasing distance of p# to pu,. We have seen that this
phenonemon is typical for a supercritical Hopf bifurcation.

In the rest of this section, we shall complement the numerical results of Figures 6 and 7 by
proving analytically that — at least for certain parameter constellations — the Hopf bifurcation
described above is of the supercritical type. More precisely, we shall show:

Tueonem 7.1: Existence of supercritical discrete Hopf bifurcations.

Let (7,) denote the one—parameter family of discrete replicator dyndmics arising from the family
(A ) of central RSP—games which are given by (7.2). Suppose that a is related to b and ¢ via

6? = be— §-{bc)?, (7.4)
and that

b<ic (7.5)

Then, the critical value g, for (1;4) is given by

by = Il‘(b"c)r (7'6)

and the discrete Hopf bifurcation occuring at g, is of the supercritical type.

The significance of conditions (7.4) and (7.5) will become clear from the proof of Theorem 7.1.
(7.4) is not really needed, but the proof is simplified considerably if it holds true. (7.5) ensures that
the matrix A remains non—negative for all 4 which are slightly larger than gz, Notice that the
set of parameter constellations (a,b,c) satisfying (7.4) and (7.5) is not empty. For example, the
triple (13,17,11) satisfies (7.4) and (7.5) as well as the inequalities in (7.2).

Let us state the main conclusion of Theorem 7.1 as a corollary:

COROLLARY 7.2: Existence of attracting closed limit curves.
There are discrete replicator dynamics which are induced by RSP—games and which admit an
attracting closed limit curve.
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To my knowledge, this is the first time that closed limit curves are described for the discrete
replicator dynamics. There is, however, an 'indirect’ proof of their existence in higher dimensions.
Hofbauer & Iooss (1984) have shown that a supercritical Hopf bifurcation for the continuous
replicator dynamics induces a bifurcation of the same type for the discrete replicator equation if
selection is ’weak’ enough. This result is not applicable here, since supercritical Hopf bifurcations
do not occur for the continuous replicator dynamics if only three pure strategies are involved like in
our RSP—games (see Hofbauer 1981).

Before we come to the proof of Theorem 7.1, we shall cite some general results on discrete Hopf
bifurcations from dynamical systems theory (see e.g. Guckenheimer & Holmes 1983, Chapter 3.5).
Consider a one—parameter family of two—dimensional discrete dynamical systems G, that has a
smooth family of fixed points p* at which the eigenvalues of the linearization DG (p*) are
complex conjugate to another. Suppose that A(y) denotes one of the two eigenvalues of DG#(p;‘)
and that A(u) is a smooth function of u. A discrete Hopf bifurcation occurs at the parameter
B = i, if the family of eigenvalues A(x) crosses the unit circle of the complex plane at p, witha
positive velocity, i.e., if the following two conditions hold true:

M)l =1, (1)
Gz, = v >0 (7:8)

(7.7) and (7.8} imply that (for u mnear the bifurcation point u,) the fixed point p;‘ is
hyperbolically stable for u < p, and hyperbolically unstable for u > g, Bifurcation structures
associated with eigenvalues A{y,) which are third or fourth roots of unity have some special
features (see looss 1979). Let us neglect these resonance cases and assume that

M) #1 for j=1,2,3,4, (1.9)

or equivalently

Mes) £R, M) £i-R and Re(A(uo)) # —4 (7.10)

A famous theorem from the theory of dynamical systems (see Marsden & McCracken 1976,
Tooss 1979, Guckenheimer & Holmes 1983) states that under the conditions (7.7), (7.8), and (7.9)
there is a smooth change of coordinates H so that the expression of HOG#on—l in polar
coordinates has the form:

HoGﬂoH‘l(r,a) = (r(1+ W p—p,)~wr?), O+s+ir?) + Q(r,6), (7.11)

where
= |arg(A(u))| # 0 (7.12)

denotes the argument of A{y,), whereas €r,6) collects all higher—order terms.



82

Notice that the first component of (7.11) can be represented in the form
r'=r(1+ Wup) - wr?) + Qr6). (7.13)

Consequently, for w# 0 a third—order approximation may be written as

AT = D () — 12 (7.14)

Depending on the sign of w, the truncated dynamical system (7.14) has either for all <y or
forall u> g, afixed point rp > 0 which is given by:

=] 2w I sgnv) = sgauen) 40 (7.15)

For those 4 for which sgn(w) = 8gn(u—ity), (7.14) can be written in the form
Ar = ru-( (rﬁ)’——r"’). (7.14a)

(7.14a) shows that the stability of r* also depends on the sign of w: r is an attractor if w>0
and a repellor if w < 0. Obviously, r* is the radius of a circle which is invariant with respect to
the third—order approximation of HoG oH-1, and the circle is an attractive {a repulsive) closed
limit curve if and only if ™ is an attractor (a repellor) of (7.14a).

These considerations show that the sign of the Hopf parameter w is of crucial importance for
the dynamical behaviour of the bifurcating system: The Hopf bifurcation is supercritical if w is
positive, and it is subcritical if w ig negative. Nothing definite can be said if the Hopf parameter of
the bifurcating system is equal to zero. In this case, higher order terms have to be considered.
'Generically’, the bifurcation is again either supercritical or subcritical (see Iooss 1979). In
applications, however, the condition w =0 often implies that the Hopf bifurcation is a degenerate
one (as in the case of circulant RSP-games).

We shall now present a formula (see (7.19)) which allows us to calculate the Hopf parameter of
a bifurcating system by having a closer look at the higher order terms of the bifurcating map G
near the fixed point p* . This formula may be derived by transforming G . to 'normal form’ (see
Tooss 1979). A complex coordinate version of it was developed by Wan (1978). In slightly modified
form, the real coordinate version given below may be found in Guckenheimer & Holmes (1983).

The calculation of the Hopf parameter w is simplified considerably, if the linear part of the

bifurcating system G K k21— R? at the fixed point P is in real Jordan form. Let us call the
R2—coordinates Jordan coordinates if DGﬂo(pl‘lo) is of the form

DG, (73 = [ Fol A2, where 3 = agu). (7.16)
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Suppose that a Jordan coordinate representation of Glto is given by

G o9) = [ 424 (7.17)

where f and g are scalar functions. Let us for the rest of this section use the convention that

terms like f. g Or hi" denote (higher order) partial derivatives of f, g, and h with respect to
17 J’ ]

the #th and pth coordinate which are evaluated at the fixed point p/‘to’ eg.

L =0 . 1
fip0= Hz‘az—/f(Pﬂo)» Or B3 = I B(P#°)~ (7.18)

Now the Hopf parameter w can be obtained from the formula (Guckenheimer & Holmes 1983,
p.163):

=g [Relgye ) + F 11T 1l -ReE) ), ()

where 50’ {A, £ EC, and £, are given by:

2
¢, = 12X (7.20)

€, =3 (T Tt 280) + (8 84— 2(1)), (1.21)
€y = (fr+ f30) + 1+ (84t 839)s (7.22)
§o = 1 (i~ Tor= 2819) + i+ (81— Bog+ 210,)), (7.23)
€y = (Bt t81a+8ag0) + - (8118135 L115—La0)- (7.24)

Notice that A := A(y,) and therefore |[A| =1, i.e,

A X = (Re(A)? + (Im(A))?* = 1. (7.25)
It is easy to see that this implies
[1=A]% = 2-(1-Re(})), (7.26)
and

On the other hand, (7.25) yields

Re(X?) = 2.(Re(A))? ~ 1, (7.28)
Im(X?) = 2-Re(A)-Im(}). (7.29)
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Applying (7.27), (7.28), and (7.29), it is easy to see that the parameter ¢, is of the form:

Re(£,) = Re(A)-(2-Re(A)-1) - 3, (7.30)

Im(¢) = ~1m(3)-(2-Re(A)-1) -y RO (7.31)

In order to calculate the other parameters ¢ L EB, {c, and ED, we have to know some of the
higher order derivatives of the functions f and g

If we want to apply (7.19) to a Hopf bifurcation arising in the context of the discrete replicator
dynamics, we have to proceed as follows: First, the bifurcating replicator equation has to be
transformed to a discrete dynamical system on R2. Then, we have to calculate the linearization at
the interior fixed point. Transforming the linearization into real Jordan form gives us Jordan
coordinates and the representation (7.17). On the basis of f and- g, we may then calculate the ¢s
and the Hopf parameter w.

Let (2 ) denote any one—parameter family of discrete replicator equations p'=1 (p} which
is induced by a one-parameter family of central evolutionary 3x3 normal form games (A#). Then
’l#: A — A is a mapping which is given by

7+ (4 P)i

@) =—’ﬂﬁp—, PEA, i€l (7.32)

Each mapping ‘lﬂ has an interior fixed point in the barycenter m of the strategy simplex. Setting
P=m+3x z€R}, we get #=p —m= 'lu(m+z) —m. Accordingly, the discrete dynamical
system 2 on A can be transformed to an equivalent system S# on a subset A s of R3, where
AS and 'S/f AS_’ ¢ are defined by

Ag:={z€R} | m+se A}, (7.33)

Sﬂ(z) = ’lﬂ(m+z) —-m, s€Ag. (7.34)

Each mapping 5;; has a unique interior fixed point in the zero vector 0. If we identify R3 with
R? by means of the canonical isomorphism P :R3—R? (see (4.10)), we get an equivalent
representation G/‘ of 'I/‘ on a subset Ag of R2. Obviously, Ag and gﬂ: Ag—o Ag are given by

Ag = P(AS)’ Gﬂ = P"oSpcP. (7.35)

In essence, Gu(zl,z,) results from Su(zl,zz,zs) by replacing z; by —z~z, and by discarding the
‘third component of the vector S#(z).
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The linearization of §, at its unique interior fixed point 0 (which corresponds to p* =m )
0 - . . I3 »
is given by (6.6), (6.5), and (5.25). Let us suppose that the linearization of 9#0 is in real Jordan
form and that {f and g denote the components of g’m with respect to these Jordan coordinates:

9,(z9) = ({=y), 8(z4) ). (7.36)
It is easy to see that the scalar functions f and g are of the form

f
f(zy) = " 74 -3 (7.37)

8(z.y) =5§{%}—§, (7.38)

where the common denominator d(z,y} corresponds to mean fitness. In particular, we have
C:=d(0) = F(m). (7.39)

Notice that
1(0) = g(0) = 0, (7.40)

since 0 is a fixed point of § . In order to get the Hopf parameter w, we have to evaluate some
higher order partial derivatives of f and g at the interior fixed point 0. Since { and g are
rational functions, the expressions for these partial derivatives are quite cumbersome. We shall
crcumvent this problem by deriving some recursive formulae for the terms fi P gij’ fiij’ and gii_i
which make it superfluous to calculate the partial derivatives of f and g explicitly.

It is easy to see that the numerators and the denominator of f and g are polynomials of
degree two, the derivatives of which are easy to calculate. In particular, all those partial derivatives
of nf, n8, and d vanish which are of third and higher order. Using this fact together with (7.39)
and (7.40), the quotient rule of differentiation yields the following formulae for the partial
derivatives of { evaluated at the origin:

1 f
fi ='C'(“i_’-}'di ), (7.41)
=l oo hd—td —td 7.42
B = o (n— 4y —fid;~1d;), (1.42)
=1 - —2f. d. -1.d. 7.43
fii i U'( f_jdii 2fidij 2f1 de flldj )- (7.43)

Of course, the corresponding expressions for & § 7 and B;;i ate completely analogous.
Notice that by definition the linarization Juo of gm at 0 is of the form

= [fi f?} 7.44
Jﬂo_ [Sx 82]) (7.44)
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If we are dealing with Jordan coordinates, a comparison of (7.44) and (7.16) yields

=Re(}), fy=—-Im(}), (7.45)
gr=1Im(}), g»=Re(}). (7.46)

We shall see later that the calculation of ¢ " 513’ and EC is simplified considerably if these
expressions are inserted into (7.42).

All these preparatory remarks hold true for any Hopf bifurcation arising in a one-parameter
family of discrete replicator equations. We have presented them in some generality in order to
indicate how the techniques for calculating the Hopf parameter w can be applied to 3x3 normal
form games which go beyond the class of RSP~games. Let us now apply these considerations to the
class of RSP—games which is given by (7.2).

ProoF of THEOREM 7.1:

A: Let from now on denote (% ) >0 the one—parameter family of discrete replicator dynamics
which is induced by the family (Ap) of central RSP—games given by (7.2). Let (G ) be the
corresponding family of mappings which is defined by (7.35). With respect to canomcal
R2—coordinates, the linearization DG {0) of § at its umique interior fixed point 0 is
characterized by a matrix Jl‘ which is defined by (6.6), (6.5), and (5.25). Let A(u) denote one
of the two complex conjugate eigenvalues of J and suppose that Mu) is chosen in a way
that makes it smoothly dependent on the parameter p.

From the results of Section 6 we know already that the parameter , which is defined by
(7.3) is a candidate for being the critical value for a discrete Hopfbifurcation, since

<1 for p<py
AW =1 for u=po. (7.47)
>1 for p> po
Of course, it is necessary that A ] is an admissible (i.e., a non—negative) payoff matrix for the
discrete replicator dynamics. For this {0 be true, we need ¢ 3u,, and we shall even require
¢ > 3y, since we are also interested in u’s which are slightly larger than . It is easy to see
that ¢ > 3y, is equivalent to:

be > a1 > be~ 4 o{b—c). (7.48)

Together with (6.6) and (6.5), (5.28) implies that the matrix J” is given by

1 [ 20+b—p b~—c+u]

J[i=3_-_0 ~bte-p 2atctu (7.49)

where C denotes the mean fitness at the interior fixed point p*=m

=

o)
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C:= Fm) = §-(a+b+c). (7.50)

We have already shown that the eigenvalues A(y) and A(u) of J e complex conjugate to
another. Consequently, the modulus of A(p) corresponds to the square root of the determinant
of J#’ and (7.8) is equivalent {o:

a— (det(J)) > (7.51)
In view of
g—# (det(s,)) = 2F >0, (7.52)

all criteria for the occurrence of a discrete Hopf bifurcation at p, are fulfilled.

Inspection of (7.49) shows that J o is already in real Jordan form if its diagonal elements are
equal to another, i.e., if

20+ b—py=2a+ c+ fiy, (7.53)
or equivalently

Accordingly, we are already dealing with Jordan coordinates if (7.3) and (7.53) are satisfied
simultaneously, i.e., if @, 5, and ¢ are related to another according to:

a? = be ~ §-(b—c)>. (7.55)

If (7.55) holds, (7.48) is equivalent to

¢> b (7.56)

Notice that (7.56) corresponds to (7.5), and that (7.55) is identical to (7.4). Accordingly,
assumption (7.4) allows us to circumvent the awkward procedure of transforming §  to
Jordan coordinates, whereas (7.5) guarantees that A is an admissible payoff matrix for the
discrete replicator dynamics for all x4 which are slightly larger than x,. Let us from now on
suppose that these two conditions aresatisfied.

A comparison of (7.48) with (7.16) shows that the eigenvalue A(g,) at the critical value g, is
given by

A= Mpg) = grp ((a+0) —i-(5-0)). (7.57)

(It is important to take that eigenvalue of J  which has a negative imaginary part, since
otherwise (7.16) and (7.49) would not conespond to another.)
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It is obvious from (7.57) that A is neither real nor purely imaginary. On the other hand, (7.56)
together with ¢ < a implies a+c¢> b. It is easy to see that this inequality yields

[Tm(A)| < |Re(A)]. (7.58)

(7.58) implies that (7.10) holds true, i.e., that A is neither a third nor a fourth root of unity:
the Hopf bifurcation i8 non—resonant if (7.4) and (7.5) are satisfied.

i~

Let us now consider the coordinate representation (7.36) of ¢ . Since the canonical RZ-
coordinates are already Jordan coordinates, it is easy to calculate the scalar functions f and
g- In view of (7.37) and (7.38), they are determined by:

nf(z,y) = 4+ C + H2a+b)z + Yb-c)y + (a—c)2* + (b~c)zy, (7.59)
18(z,9) := §- C— -0z + Y2a+ )y — (b-a)y® — (b—c)zy, (7.60)
d(z,y) = C— (bre-2a)(zP+y*+ay) — o (32°3y’~z+y). (7.61)

Notice that (7.61) yields
di=—-d; = by = ul-(b—c) (7.62)

[

On the basis of (7.42), we shall now calculate the terms fij and gij' In order to do this, let us
introduce the notation

Njji=nf—4d N§i=nb—fd (7.63)
Now, (7.42) together with (7.45), (7.46), and (7.62) leads to the expressions
= LD 2. Re(h) ), (7.64)
£y = (N, + - (Re(A)+1Im(1)) ), (7.65)
= (Nl 2.4 Tm(3) ), (7.66)
= (N8, = 2.5 Tm(}) ), (7.67)
5= (N8, = - (Re(1)-Tm()) ), (7.68)
82 = & ( N8, + 2.4 Re()) ). (7.69)

It is easy to calculate the terms ij and N§j. In view of (7.59), (7.60), and (7.61), we get
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N = L(2a + 56— T¢), (7.70)
N, = —2.(a=2b+ o), (1.1
N, = §-(a—b + 50), (1.72)
N&, = §-(—4a + 50— o), (7.73)
NE, = —2.(a + b—2¢), (1.74)
N§, = 4-(2a—7b + 5¢). (1.15)

E: We shall now calculate the terms ¢, {;, and §, by inserting (7.64) to (7.69) into (7.21) to
(7.23). The resulting formulae will be simplified by considering

Im(A) = — g,/ C (1.76)
and the following identities:

N+ N = N (.77)
Ngu + N%z = N%z» (7.78)
N - nL, = -3.n8, (1.79)
NE, —NE, = 3-N£,‘ (7.80)

fA, EB, and §, are given by:
Re(¢,) = - N§2 + 2-Im(A)- (Re(A)-Im(})), (7.81)
Im(¢,) = N{,+ 2.Im(})- (Re(3)+Im(})), (1.82)
Re(é,) = 5 LN 4 20 Tm(2)- (Re(A)+Im(A)), (7.83)
Im(¢,) = o L N8, —2.1m())- (Re(A)-Im())), (7.84)
Re(¢,) = - m-m%,, (7.85)
Im(¢,) = popr2NE, (7.86)

G: Inserting (7.71) and (7.74) into (7.83) to (7.86), we get in view of (7.25):

6617 = 3o [ -a(e-grae-o), (7.87)
F1617 = g 1617 + - (mO)* [ S5 22). (7.88)

Replacing Im(A) by (7.76), this implies

FIg 12817 = B [30-0 4 3(a-0+ (259 (007, (7.89)
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Finally, notice that Re( foﬁ ,&p) is given by

Re(€,¢,¢,) = Re(£;)Re(€,)Re(€,) ~ Re(é,)Im(¢, )Im(¢,) (7.90)
~ Im(¢,)Re(¢, JIm(£,) - Im(¢, ) Im(€, Re(€,).

In view of (7.19), the only thing that is missing for the calculation of the Hopf{ parameter w is
an expression for the parameter fD. This will be derived next.

Using (7.43) together with (7.45), (7.46), and (7.62), we get the following formula for £ :

Re(£)) = = o ( 0"t + 4-Re(X) - (dytdyy) ), (7.91)

Im()) = = ( 77ty + 4-Im(3)-(d;+d,5) ), (7.92)
where o’ and 7’ are defined by

0" = 3(f~8a9) — 21810 + (L840 (7.93)

7= 3(fyytgy) — 2Afytey) + (f+820) (7.94)

Inserting (7.64) to {7.69) into (7.93) and (7.94) and considering (7.76), we get the following
simplified expressions for Re({)) and Im(¢p):

Re(¢,) = p-Re()) + o-Im(}), (7.95)
Im(¢)) = (p+7)-Im(}), (7.96)

where p, o, and 7 are given by

p = 16-(Im()))? — 4-ukdaz (7.97)
=L (3t _n8 { N8 f_n8
o= ( 1" 22) - 2(N12“N12) + (Nn_Nu) ’ (7'98)
1 f f f
Ti=r [3(N22+Ng11) — 2N +N8) + (Nu'*’N%z)}- (7.99)

From (7.95) and (7.96), we get

Re(X-£) = p + Im(})- (- Re(}) + 7-Im(})). (7.100)

We are now in the position to calculate the Hopf parameter w by inserting (7.89), (7.90), and
(7.100) into (7.19). For example, we get w=0.012 for the parameter constellation
(a,b,¢) = (13,17,11).

The proof of Theorem 7.1 will be completed by showing that w is positive for oll parameter
constellations satisfying (7.4) and (7.5). Without loss in generality, we may assume c¢=1,
since the discrete replicator dynamics is not affected if the payoff matrix is multiplied by the
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FIGURE 8: With ¢ normalized to one, the Hopf parameter w is depicted as a

function of & (1<b<5/3 ). For all admissible 5, the Hopf
parameter is positive, i.e., the Hopf bifurcation is a supercritical one.

positive scalar 1/c. For any b which is compatible with (7.5) (ie, 1<b< 5/3), the
parameter a is fully specified by (7.4). Accordingly, the paramter w may be interpreted as a
function of b. In Figure 8, w is depicted as a function of 4. Obviously, we have w(b) > 0

for all b with 1 < b < 1.667. This completes the proof.
* k¥

From Figures 6 and 7, one might get the impression that the attracting closed limit curve arising
from a discrete Hopf bifurcation as described above is a global attractor in the sense that it attracts
all interior non—equilibrium orbits. Figure 9 shows that this impression is not necessarily correct.

The example in Figure 9 is based on a central RSP—game of the form (7.2) where (g,b,c) is given
by (13,17,11). A discrete supercritical Hopf bifurcation occurs at the critical value p,=3. For
admissible parameter values y which are slightly larger than 3 (Figure 9 shows the case u = 3.25 ),
an attracting closed orbit C arises which attracts all mearby orbits including all those orbits
starting in the region which is enclosed by C. However, C is not a global attractor. Instead, it is
encircled by another invariant closed curve C’ which is a repulsive limit curve for the discrete
replicator dynamics. Figure 9 indicates that there are {wo atiractors (the limit curve C and the
boundary of the strategy simplex) whose domain of attraction is separated by C.
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FIGURE 9: A discrete replicator dynamics with two attractors.
This figure shows some orbits of (6.1) for the central RSP-game

(3)
(b)

(d)

11.00 13.00 17.00

4 _ [1300 1700 1100
" l2675 125 1300 ]

Orbit starting at p=(0.33,0.33,0.34). It converges to the
attracting closed limit curve C.

Orbit starting at p = (0.05,0.05,0.90). It is repelled by C’
and it converges to the limit curve C.

Orbit starting at p= (0.049,0.049,0.902‘). It is also repelled
by C’ and it converges to the boundary of the strategy simplex.

Superposition of the three orbits.

93

8. Are RSP—Games Played in Biological Populations?

In the previous sections, the class of RSP—games was studied for purely theoretical reasons. 1 hope
that it has become clear that these games are ideally suited for exemplifying the various
incongruities between the game theoretical and the dynamical approach towards frequency
dependent selection. However, RSP—games form a generic class of games and more than 1.5% of
all 3x3 normal form games belong to this class.? It should, therefore, not be too surprising to find
RSP-like game structures in biological populations. It is quite conceivable that, for example, strain
A of a bacterial species outcompetes strain B in direct competition, strain B outcompetes strain
C and strain C outcompetes strain A. A situation like this has, in fact, been observed during
selection experiments in a chemostat.

A ’chemostat’ is basically a device that enables a microbial culture to be maintained in
permanent exponential growth in a constant and homogeneous environment (see, e.g., Dykhuizen &
Hartl 1983). The growth medium is a chemically defined salt solution supplemented with a source
of carbon and energy. Concentrations of the components of the fresh medium entering the growth
chamber are such that only one (the limiting nutrient) is exhausted by the culture. Competition for
the limiting resource leads to selection between different strains of microorganisms. Since it is fairly
easy to follow a chemostat for several hundred generations, this device has proven valuable for
detecting very slight selective differences between pairs of gemotypes. In fact, chemostat
experiments are sufficiently reproducible that differences in growth rates as small as 0.5% per
generation are readily detected in replicate experiments (Dykhuizen & Dean 1990).

Quite often, long—term selection experiments in a chemostat yield rather unexpected results
(see, e.g. Dykhuizen 1990). Charlotte Paquin and Julian Adams (1983), for example, analysed the
competition between different asexual strains of the yeast Saccharomyces cerevisiae in a glucose—
limited chemostat. All strains originated from an ancestral strain and they only differed from
another by having accumulated a different number of mutations in the course of the experiment.
Let us concentrate on their first experiment with a haploid yeast population and let Hi denote the
strain isolated in gemeration 4. (Virtually the same results were obtained for a diploid yeast
population.) Paquin and Adams carefully analyzed the pairwise competition between strains Hyy ,
H,,, and H,, which, compared to the ancestral strain H, , presumably had accumulated 0, 2
and 3 adaptive mutations respectively. As expected, each strain had a ’selective advantage’ when
compared to the previous one: H,,, outcompeted Hj, in pairwise competition, and Hyy in turn
outcompeted H,,, . Rather unexpectedly, however, selection advantage was not transitive since the
older strain H,, outcompeted the derived strain H,y, in direct competition. It is tempting to
speculate that the yeast populations in Paquin and Adams’ experiments evolve under frequency
dependent selection with the same intransitivities in pairwise competition that are so characteristic
for the class of RSP—games.
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Hm

Figure 10: Orbit of the continuous replicator dynamics induced by the
RSP—game (8.1).
The experiments described above were performed with large {(about 5-10° individuals per
population) asexual populations with a very short generation time (about six generations per day).
These are precisely the circumstances to which the continuous replicator dynamics does apply.

Paquin and Adams (1983, Table 1) determined the relative fitness of the three strains Hy, , H,,,
and Hy,, in pairwise competition. Their results may be summarized by the payoff matrix
1.00 1.18 0.88
A =[085 1.00 116 | , (8.1)
1.13 0.86 1.00

where the pure strategies 1,2 and 3 correspond to the strains H,, H,), and H,;, respectively.
Let us assume that the RSP-matrix A of relative fitness values is pl—equivalent to the matrix of
absolute fitness values and that selection is indeed linearly frequency dependent (i.e., that the
fitness function is given by (2.3)). Then a stable polymorphism of all three strains is to be expected
(see Figure 10). Unfortunately, Paquin and Adams never put all three strains in competition. Thus,
it remains unclear whether the theoretical prediction will be experimentally confirmed or not.

Like many other authors in the chemostat literature, Paquin and Adams notice a discrepancy
between their results and the ’classical’ predictions of (frequency independent) selection theory.
However, they do not ascribe their results to frequency dependent selection but to other
evolutionary forces like epistatic interactions between different muations. In my view, the
possibility of frequency dependent selection is grossly underestimated in the chemostat literature.
In a situation where the ’external’ (abiotic) environment is held as constant as possible, the
selective forces should to a large extent be governed by intraspecific interactions which, almost
invariably, lead to frequency dependent selection. Many puzzling results in the chemostat literature
(e.g. Helling et al. 1987, Bennett et al. 1990) can be explained much more naturally if frequency
dependent selection is taken into consideration.
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Notes:

1. It can be shown that a Nash equilibrium in the barycenter m of the strategy simplex is an ESS
if and only if the trajectories of the continuous replicator equation starting close to m are
attracted monofonicelly by m (with respect to the usual Eucledian metric). One might
conjecture that m can only be a non-ESS attractor, if some form of cycling takes place, i.e. if
the Jacobian of the continuous replicator dynamics at m is not diagonalizable in the real
domain. The following payoff matrix provides a counter—example to that conjecture:

0 19 1
A=119 0 1
1 19 0

In that example, m is an attractor which is not an ESS. The eigenvalues of the Jacobian at
m are real and distinct { ~1/60 and —19/60 ). Accordingly, the Jacobian is diagonalizable and
there is no cycling around m.

2. RSP—games form a generic class of symmetric normal form games, i.e. a class of games of full
dimension. If the elements of a 3x3 payoff matrix A are drawn at random from a uniform
distribution, an RSP-game will result with probability 1/64.

3. Adding 7:=—¢/2 to the e—perturbed Rock—Scissors—Paper game

0 1+e -1
A,=4-1 0 I+ey, e>-l, (1.4a)
1+e -1 0
yields an RSP—game of the form
n 1—5 ~l47
B =|-149 g 1-q|, fn<1/2 (1.4b)
Tl a4 g
Dividing B’I by 1-7 and setting
_ _ €
b= = gy
one arrives at the RSP—game
6511
Cs=|-1 6 1}, -1<é<], (1.4c)
11 6

which is payoff equivalent to Aé and B'I .

4. Theorem 3.4. shows that, in evolutionary 3x3 normal form games which are not RSP—games, a
discrepancy between evolutionary stability and continuous dynamic stability is always
associated with the the existence of nontrivial border fixed points of the replicator dynamics.
Non—RSP examples are in that sense more complicated than the games analyzed in this paper.
However, they may show some additional features that are missing in the context of RSP—
games. Zeeman (1980), for instance, presents a nice example which is based on the payoff

matrix
0 6 4
A=1-3 0 5}.
-1 3 0
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Here, the barycenter m is an attractor that coexists with the unique ESS which is given by the
pure strategy 1. Although m is not an ESS, its domain of attraction is larger than that of the
ESS. The fact that m is not a global atiractor points out another qualitative difference
between evolutionary stability and dynamic stability: A completely mixed ESS is always a
global attractor for the continuous replicator dynamics (see Corollary 5.2) whereas completely
mixed non—ESS attractors may coexist with boundary attractors.

5. An alternative proof may be based on the theorem of Poincaré—Hopf (see e.g. Hofbauer &
Sigmund 1988, Chapter 19). This theorem can be applied to a slight modification of the flow
which is induced by an RSP-game on the border of the strategy simplex (see (1.2)21. As a result
one gets that the sum of the Poincaré—indices of the interior fixed points of the replicator
dynamics is equal to one, the Euler characteristic of the strategy simplex. This implies the
existence of at least one interior fixed point which is automatically a Nash equilibrium strategy.
In view of the uniqueness result in Theorem 3.3, there exists a unique interior fixed point, and
the Poincaré-index of this fixed point is equal to one. If this fixed point is regular, we get some
additional information: the fixed point is necessarily either a sink, a source, or a center.

References

Akin, E. (1983): Hopf bifurcation in the two locus genetic model. Providence, R.I.: Memoirs
Amer. Math. Soc. No. 284.

Akin, E., and V. Losert (1984): Evolutionary dynamics of zero—sum games. J. Math. Biology
20: 231-258.

Bennett, A.F., K.M Dao and R.E. Lenski (1990): Rapid evolution in response to high—~temperature
selection. Nature 346: 79-81.

Bhatia, N.P., and G.P. Szegd (1967): Dynamical Systems: Stability Theory and Applications.
Berlin: Springer—Verlag.

Damme, E. van (1987): Stability and Perfection of Nash Equilibria. Berlin: Springer—Verlag.
Davis, P.J. (1979): Circulant Matrices. New York: John Wiley & Sons.
Dykhuizen, D.E. (1990): Mountaineering with microbes. Nature 346: 14—15.

Dykhuizen, D.E. and A.M. Dean (1990): Enzyme activity and fitness: Evolution in solution.
Trends in Ecology and Evolution 5: 257-262.

Dykhuizen, D.E., and D.L. Hartl (1983): Selection in chemostats. Microbiology Reviews
47: 150-168.

Guckenheimer, J., and P. Holmes (1983): Nonlinear Oscillations, Dypamical Systems, and
Bifurcations of Vector Fields. Berlin: Springer—Verlag.

Hassard, B.D., N.D. Kazarinoff, and Y.H. Wan (1981): Theory and Applications of Hopf
Bifurcation. Cambridge: Cambridge University Press.

Harsanyi, J.C., and R. Selten (1988): A General Theory of Equilibrium Selection in Games.
Cambridge, Mass.: The MIT Press.

Helling, R.B., C.N. Vargas and J. Adams (1987): Evolution of Escherichia coli during growtk in a
constant environment. Genetics 116: 349—358.

97
Hirsch, M., and S. Smale }g1974): Differential Equations, Dynamical Systems, and Linear Algebra.
New York: Academic Press.

Hofbauer, J. (1981): On the occurrence of limit cycles in the Volterra—Lotka equation. Nonlinear
Analysis 5: 1003—1007.

Hofbauer, J., and G. Iooss (1984): A Hopf bifurcation theorem for difference equations approxim—
ating a differential equation. Monatsh. Mathem. 98: 99-113.

Hofbauer, J., P. Schuster, and K. Sigmund (1981): A note on evolutionarily stable strategies and
game dynamics. J. theor. Biol. 81: 609—612.

Hofbauer, J., and K. Sigmund (1988): The Theory of Evolution and Dynamical Systems.
Cambridge: Cambridge University Press.

Tooss, G. (1979): Bifurcation of Maps and Applications. Amsterdam: North--Holland.

Tooss, G., and D.D. Joseph (1981): Elementary Stability and Bifurcation Theory. Berlin:
Springer—Verlag.

Losert, V., and E. Akin (1983): Dynamics of games and genes: Discrete versus continuous time.
J. Math. Biology 17: 241-251.

Luce, R.D., and H. Raiffa (1957): Games and Decisions. New York: John Wiley & Sons.

Marsden, J., and M. McCracken (1976): The Hopf Bifurcation and its Applications. Berlin:
Springer—Verlag.

Maynard Smith, J. (1977): Mathematical models in population biology. In: D.E. Matthews
gEd.): Mathematics and the Life Sciences. Lecture Notes in Biomathematics 18. Berlin:
pringer—Verlag; pp. 200—221.

Maynard Smith, J. (1982): Evolution and the Theory of Games. Cambridge: Cambridge
University Press.

Maynard Smith, J., and G. Price (1973): The logic of animal conflicts. Nature246: 15-18.
Nash, J. (1951): Non—cooperative games. Annals of Mathematics 54: 286—295.

Paquin, C.E.,and J. Adams (1983): Relative fitness can decrease in evolving asexual populations of
S. cerevisiae. Nature 306: 368—371.

Selten, R. (1983): Evolutionary stability in extensive two—person games. Mathem. Social Sciences
5: 269-363.

Taylor, P., and L. Jonker (1978): Evolutionarily stable strategies and game dynamics. Mathem.
Biosciences 40: 145—156.

Wan, Y.H. (1978): Computations of the stability condition for the Hopf bifurcation of
diffeomorphisms on R3. SIAM J. Appl. Math. 34: 167~175.

Weissing, F.J. (1983): Populationsgenetische Grundlagen der Evolutioniren Spieltheorie. Bielefeld:
Materialien zur Mathematisierung der Einzelwissenschaften, Vols 41 & 42.

Weissing, F.J. (1990): On the relation between evolutionary stability and discrete dynamic
stability. Manuscript.

Zeeman, E.C. (1980): Population dynamics from game theory. In: Global Theory of Dynamical
Systems. Springer Lecture Notes in Mathematics 819: 471-497.



