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Synthesis of Dissipative Systems Using Quadratic
Differential Forms: Part |

Jan C. WillemsFellow, IEEE,and H. L. TrentelmanSenior Member, IEEE

Abstract—The problem discussed is that of designing a con- onal complement of the plant behavior. These conditions feature
troller for a linear system that renders a quadratic functional prominently also in [4]-[6].
nonnegative. Our formulation and solution of this problem is com- We will cast the development completely in the language
pletely representation-free. The system dynamics are specified by . . S0 .
a differential behavior, and the performance is specified through of _behawors and the associated quadratic dlfferentlfal forms.
a quadratic differential form. We view control as interconnection: ~ This not only allows a clean problem statement, but it results
a controller constrains a distinguished set of system variables, the in a formulation that is representation-free and flexible in the
control variables. The resulting behavior of the to-be-controlled  algorithms that can be used for verifying the existence and
variables is called the controlled behavior. The constraint that the ;4 specification of the controller. Other references where the

controller acts through the control variables only can be succinctly . . . .
expressed by requiring that the controlled behavior should be Hoo-problem in a behavioral setting has been discussed before

wedged in between the hidden behavior, obtained by setting the are [4], [5], [1], [11], and [10].
control variables equal to zero, and the plant behavior, obtained A frequently asked question is what the arguments are of ap-
by leaving the control variables unconstrained. The main result proaching problems from a behavioral point of view. The ad-
is a set of necessary and sufficient conditions for the existence ofyaniages are many. Undoubtedly the most important one is that
a controlled behavior that meets the performance specifications. _. . ;
The essential requirement is a coupling condition, an inequality '€ the cohcepts _and ideas are representatlon-fr_ee, they allow
that combines the storage functions of the hidden behavior and 0 treat a wide variety of model classes, more directly ema-
the orthogonal complement of the plant behavior. nating from from modeling. In particular, they allow to deal
Index Terms—Behaviors, controller implementability, coupling with state space models and Fr,anslfer functiorjs as special cases
condition, dissipative systems, hidden behavior, quadratic differ- Of @ more general model specification. Behaviors are also much
ential forms, storage functions. better suited for treating system interconnections. The signal
flow graph philosophy that underlies input—output thinking is
actually inappropriate for many physical interconnections, for
instance for electrical circuits, mechanical systems, fluidic sys-
HE subject of this paper is shaping the behavior of a lineams, etc. The present paper uses quadratic differential forms
system by attaching a controller to it. Conditions are dén performance criteria, thus also showing what is the appro-
rived that make it possible to render the system dissipative, fgfiate notion for performance specifications of polynomial ma-
example, contractive, or passive. This problem is basically whgites for system models. In summary, both as a mathematical
is usually called thé{.-problem. We show that it can be reforframework, as well as for dealing with physical systems, the
mulated in an elegant way as that of finding a behavior thatlighavioral point of view is simply a richer and more rational
wedged in between two given behaviors and makes a quadrateting. As a consequence of this, behavioral concepts are also
differential form nonnegative. The “upper bound” results frormmore easily generalized, witness the recent flurry of activity in
the fact that the controlled behavior must be physically realighis area aimed at PDEs.
able, and hence included in the (unconstrained) plant behaviorA few words about notation. We use the standard notation
The “lower bound” expresses in a subtle way the restriction th@gt, R %"= etc. When a dimension is not specified (but, of
the controlled behavior must be implementable by a controllesurse, finite), we writd®, R***, R***, etc. We typically use
that acts through the control variables only. The conditions fefe superscript (for example inR*) when generic elements of
solvability use the theory of dissipative systems and their asshat space are denoted by The set of real one-variable poly-
ciated storage functions. The surprising aspect of the main resiginials in the indeterminatgis denoted byR[¢] and real ra-
is a coupling condition among certain storage functions, motienal functions byR(¢), with obvious modifications for vec-
than reminiscent of the clever coupling condition between thers, matrices, and two-variable polynomials. The set of infin-
solutions of algebraic Riccati equations that first appeared itely differentiable maps frorR to R® is denoted by (R, R*),
the classic paper [2]. Our solvability conditions also require thnd its subspace consisting of the compact support elements by
dissipativeness of the hidden behavior and of a suitable orth@(R, R"). The set of square integrable maps firo R" is de-
noted asC»(R, R™), with obvious modifications for other (co-)
Manuscript received February 1, 2000; revised February 12, ZOOO,AugustgﬂmainS' Sometimes, when the domain and co-domain are ob-
2001, and August 30, 2001. Recommended by Associate Editor M. E. Valchéious, we simply write€>°, D, L». TheH.-norm of a matrix
The authors are with the Institute for Mathematics and Computing Sciengg, < Re***(¢) is defined ag|G||x.. = SUD,cc; R, (5)>0 IG(3)]|.

I. INTRODUCTION

9700 AV Groningen, The Netherlands (e-mail: J.C.Willems@math.rug.nl; : e .
H.L Trentelman@math.rug.nl). n|'_he operator cql stacks_vectors or matrices; dim denotes dimen-
Publisher Item Identifier S 0018-9286(02)01095-4. sion, and rowdim, coldim denote, respectively, the number of

0018-9286/02$17.00 © 2002 |IEEE



54 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 47, NO. 1, JANUARY 2002

to-be-controlled

variables v PLANT CONTROLLER

control variables

Fig. 1. Plant and controller configuration.

rows or columns of a matrixtiag(D;, Ds, ..., D, ) formsthe [ll. CONTROLLER IMPLEMENTABILITY
block-diagonal matrix withDy, D-, ..., D, on the diagonal.

; : Consider the linear time-invariant differential plant shown
The proofs are collected in Sections VIl and VIII. b

in Fig. 1. It has two types of terminals: terminals carrying
to-be-controlled variablesy and terminals carryingontrol
variablesc. Assume that there areto-be-controlled variables

We have discussed dynamical systems from a behaviogald ¢ control variables. In the classical controller configura-
point of view extensively before [7], [13], [14]. We restricttion, the to-be-controlled variables combine the exogenous
our background remarks in the paper in order to introduce tHisturbance inputs and the to-be-controlled outputs, while the
required concepts and notation and to ensure readability aymhtrol variables combine the sensor outputs and the actuator
continuity of the flow of ideas. Also, we introduce the requirethputs. A feedback controllermay be viewed as a signal
background material only at the point that it is needed to alloprocessor that processes the sensor outputs and returns the
smooth reading. actuator inputs. It is the synthesis of such feedback processors

A subsetB C €><(R, R* defines a linear time-invariant dif- that is traditionally viewed as control design. However, we
ferential system (briefly, differential systemor adifferential will look at control from a somewhat broader perspective, and
behavio) if there exists a polynomial matri® € R***[¢(] we consider any law that restricts the behavior of the control
such thatB = {w € €=(R, R*)|R(d/dt)w = 0}. By £* variables as a controller. The motivation of this alternative
we denote the set of linear time-invariant differential systemtrmulation of control is two-fold. The main motivation is a
and by £* those withw variables [in other words, with behav-practical one: many controllers, for example, physical devices
iors B C €°°(R, R")]. This class of systems is a very generahs dampers, heat insulators, matched impedances, etc., simply
one, with nice mathematical structure. It includes finite-dimergo not act as signal processors. For a more elaborate discussion
sional constant linear state systems, systems described byofahis point of view, we refer to [14]. The second motivation
tional transfer functions, or by linear differential equations witls of a theoretical nature. We will see in Theorem 1 that our
auxiliary (latent) variables, etc. Important is to note that whiltormulation allows to view control as the design of a behavior
we define®B ¢ £* as the kernel of a differential operat®, that is wedged in between two given behaviors. This is a
is oftennot specifiedn this way. We speak aboutkernel rep- strikingly simple and appealing formulation indeed.
resentatiorwhen8 < £" is represented byR(d/dt)w = 0, We now turn to the question what controlled behaviors can be
with B = {w € €=(R, R") | R(d/dt)w = 0}, the represen- achieved. We refer to this problemaantrollerimplementation
tation through which we have definetf. Another representa- The problem may actually be considered as a basic question in
tion is alatent variable representatigulefined through polyno- engineering design: a behavior is prescribed, and the question is
mial matricesk and M by R(d/dt)w = M(d/dt)¢, with 8 = whether this behavior can be achieved by inserting a suitably de-
{w € €2(R, R*|3¢ ¢ €°(R, R") such thatR(d/dt)w = signed subsystem into the overall system. Before the controller
M(d/dt)¢}. This is the type of model that usually results fronacts, there are two behaviors of the plant that are relevant: the be-
first principles modeling, with thevs the vector of variables havior Pru € £°7¢ (called thefull plant behavioy of the vari-
that the model aims at, and tlis the vector of auxiliary vari- ablesv andc combined, and the behavi@t (called theplant
ables introduced in the modeling process (for example state vdag¢havio) of the to-be-controlled variables (with the control
ables). The behavidB is then called thenanifesbehavior, and variables eliminated). Hence
Bran = {(w, £ EQ“’R,RW“Rddtw:Mddtﬁ, o e
ol boavion Tho fact hats e| o %)fuu e o 4335. Prun ={(v, ¢) € €*(R, R™) | (v, o)

IIl. LINEAR DIFFERENTIAL SYSTEMS

rect consequence of the all-importatimination theoremThis satisfies the plant equatiops
states the following. Le®’ ¢ £7+¥. Define P={ve R, R")|Ice R, R°)
B = {w e €°(R, R") | (w, w') € B such tha(v, ¢) € Pru}-

for somew’ € €°(R, R")}. By the elimination theoren® € £°. The controller restricts the
control variableg and (assuming that it is a linear time-invariant
differential system) is described bycantroller behaviorC <
£¢. Hence

ThenB € £¥. The setf” is hence closed under intersec
tion, addition, and projection. Moreover, fdf € R* *¥[¢],
B ¢ £ implies F(d/dt)B ¢ £, andB’ ¢ £ implies
(F(d/dt))~1B’ € £7 (this inverse is a set theoretic inverse). C = {c € €=(R, R°) | csatisfies the controller equations
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After the controller is attached, we obtain thentrolled be- IV. MAIN PROBLEM FORMULATION

havior X defined by In this section, we state in a self-contained form, the problem

K ={ve€R,R"|3ceCsuchthalv, ¢) € P} treated in this paper and the main result. The control specifi-
cation is expressed by a quadratic functional in the to-be-con-
trolled variables whose integral needs to be nonnegative, ex-
pressing, for instance, disturbance attenuation and stability of
the controlled system.

Note that, again by the elimination theorekh,e £'. We say
that C implementskC if the above relation holds betwee&h
and K.

We now discuss the following question:

For whatXC € £' does there exists g A. Preamble
C € £¢ thatimplementC? ) In order to formulate this problem mathematically, we need
a few more preliminaries about differential systems, quadratic
This question has a very simple and elegant answer: it depenlifferential forms, and dissipative systems. We have taken a few
only on the manifest plant behavi®rand on the behavior con- shortcuts with regard to the definition of behaviors, dissipativity,
sisting of the plant trajectories with the control variables pstorage functions, etc. In particular, the solutions of the differen-
equal to zero. This behavior is denoted &y and is called the tial equations under consideration are assumed to be infinitely
hidden behaviarlt is defined as differentiable. We also assume that the systems that we deal with
(the plant, the controlled behavior, the hidden behavior, etc.) are
N ={veP[(v, 0) € Prun}- controllable. Next, when dealing with infinite integrals, we often
assume, to avoid convergence issues, that the trajectories have
compact support. For this reason, it is convenient to introduce
Theorem): Let Py € £ be the full plant the notation® N ® := B N D(R, R)*. These assumptions
behavior,P € £ the manifest plant behavior, are made partly for convenience of exposition. We will briefly
v . . v mention later how our results should be adapted when we con-
and\’ € £ the hidden behavior. Thefd € £7 is sider solutions inZk¢, when the controllability conditions are

Theorem 1 (Controller Implementability

implementable by a controll€r € £ acting not met, and when we include trajectories(inin the definition
on the control variables if and only if of a dissipative system.

We call’B € £° controllableif for all w1, ws € B, there

exists aI’ > 0 and aw € B such thatw(t) = w;(¢) for

t < 0andw(t+T) = ws(t) for t > 0. Denote the controllable

Theorem 1 shows that can beanybehavior that is wedged €lements of€®, £% by £2,.. £2,.;. For controllable systems
in between the given behavioh§ and?. The necessity of this (0nly), BND specifies® € £* uniquely:® is the€>-closure
condition is quite intuitiveX’ C P states that the controlled be-of N D if and only if % is controllable.
havior must be part of the plant behavior. Logical, since the con-Behaviors® € £°* are described by a differential equa-
troller merely restricts what can happen. The condifiop A~ tion of the formR(d/dt)w = 0, typically with rowdim(R) <
states that the behavio¥’ must remain possible, whatever beoldim(RR). Mathematically,(d/dt)w = 0 is then called an
the controller. This is quite intuitive also, since the subbehavigpder-determinedystem of equations. This results in the fact
of the plant behavior that is compatible with= 0, hence when that some of the components®of= (w;, wz, ..., wy) are un-
the controller receives no information on what is happening fienstrained. The number of unconstrained components, an in-
the plant, must remain possible in the controlled behavior, whigger “invariant” associated wit, is called theinput cardi-
ever controller is chosen. This observation has important congélity. It is defined by the map: £* — 7, that associates with
quences in control: in order for there to exist a controller th& € £°, m(B), its number of free, “input,” variables (“input”
achieves acceptable performance, the hidden behavior mustah be interpreted intuitively in the usual sense see [7] and Sec-
ready meet the specifications, sinitere is simply no way to tion VI-A). Itis easily proven that the systef € £ described
eliminate it by means of conttoThe fact that the hidden be-by R(d/dt)w = 0 has input cardinality(8) = w — rank(R).
havior must meet the control specifications has been observedVe use the abbreviations BF for “bilinear form,” QF for
before in &, context for example in [3], [4], and [6]. A note- “quadratic form,” BDF for “bilinear differential form,” and QDF
worthy special case i = 0. This means that the to-be-confor “quadratic differential form.” QFs play an important role
trolled variables are observable (in the precise way this termitislinear system theory: as performance criteria, as Lyapunov
used in the behavioral context) from the control variables. VWnctions, etc. In the context of behavioral differential systems,
refer to this condition aull information control In this case, quadratic functionals are most naturally formulated as BDFs
any sub-behaviok € £¥ of P is implementable. and QDFs. These notions are key elements in the behavioral
Theorem 1 reduces control problems to finding the controllegpproach to control. They are now briefly introduced (more
behaviork directly. Of course, the problem of how to actuallydetails can be found in Section VI-C and in [15]). In the present
implementX needs to be addressed at some point. In particulagction, we only consider the elements that are needed in the
the question when a particular controlled behavior can be impfermulation of the main problem that we discuss in this paper.
mented by a feedback processor remains a very important onélThe QF onR® induced by the matrixs = S7 ¢ R®***
and will be discussed in Part II. is denoted bygs(z) = |z|3 = z7Sz. WhenS = I, the
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subscript in|z|% is usually deleted. Denote the signature oB. Problem Formulation
S by sign(S) = (0_(5), 04(9)), with o_(S) and o,.(S)

the number of negative and positive eigenvalues aespec-
tively. Of course,sign(S) = sign(gs) (see Section VI-C
for the notion of the signature of a QF). Th&-norm of mathematical problem that we will solve in this paper.

. +oo H
z € L2(R, R®), /(JZ.7 [a]? dt), is denoted bylz||z,(m re):  The QDFQs with X = X7 € R™ defines theweighting
Note that single bars refer to norms on Euclidean spacg§nctionalthat enters in the control performance. Denote by

whille doub!e bars'refer to norms dy. BF's'and QF’'sin thg ian(%) = (o (%), o4 (X)) its signature. The problem that we
setting of differential systems are parametrized very effectlveiflve in this paper may succinctly be formulated as follows:

by two-variable polynomial matrices. Ldt € R*1*"2[(, 7],
written out in terms of its coefficient matrices as the (fi-

nite) sum®(¢, 1) = Xk, ecz, Pr,¢C*n. It induces the map | PROBLEM FORMULATION:
Lo: €°(R, R*1) x €2(R, R") — ¢€>(R, R), defined by Let A, P € £, and® = T € R™ nonsingularP

cont’

Equipped with the notions of the behavior of a differential
system, of the input cardinality, of the signature of a symmetric
matrix, and of a dissipative system, we are able to formulate the

¥ T e is called theplant behavior, N the hidden behavior,
Lo(w, ws) = . éze:z <W w1> k£ <ﬁ w2> ' andQ@yx the weighting functional. The problem is to
& +
find X € £, (called thecontrolled behavior) such
This map is called thebilinear differential form (BDF) that:
. . at:
induced by . Whenw; = w», = w, Lg induces ' N
the map Qo: C€(R,R*) — €<(R,R), defined by 1. NcKcP (implementability),
Qo(w) = Lo(w, w), i.e., 2. Kis X-dissipative oR_  (dissipativity),
J T & 3. m(K) =04(%) (liveness).
2t = 3 (G) one ()
k,£€Z

) . o . . We now explain informally the interpretation of these condi-
This map is called t;m]uadratlc*dlfferenual form (QDF)n-  tions. The first condition has been explained in Theorem 1. The
duced byd. Denoted™ (1), ¢) as®*((, 7). Note that when con- jncjysionkc ¢ 7 signifies that the controlled behavior is physi-
sidering QDFs, we may as well assume thadefining Qs IS c4)ly possible: the controller merely restricts the plant behavior.
symmetric, thatigb = &%, i.e., &xe = 27, forall k, £ € Z+.  \yg view this agealizability. The inclusion’C > A" is more
:Q(Sjg?)?ge@n;a?if; = Qu/2)@+e-) eNtalls symmetry without g6 1t means that the controlled behavior is implementable

' . by a controller that acts through the control variables only.
— * W XW W

I__et<1> _.(I) € R [.C’ n] and’s € 200“.“ The SYSt?MB. IS That the controlled behavidf must beX-dissipative is the
said to balissipative with respect o, (briefly, o-dissipative) basic control design specification. As is well-known, by suit-
ably choosing, it implies disturbance attenuation, or passiva-

if [T°Qs(w)dt > 0forallw e BnD. Itis said to be

dissipative orR_ with respect t@) ¢, (briefly, ®-dissipative on | N :

ISstpaty W P o, (briefly Issipativ tion. The fact thak-dissipativity is required to hold oR_, and
not just onR, implies stability of the controlled behavior (see

R )if [°_Qa(w)dt > 0forallw € B ND. Dissipativity
C’Section IV-C).

on R_ is analogously defined. Obviously, dissipativity Bn

or R, implies dissipativity. As we shall see in Section IV- _ _

dissipativity onR_ combines dissipativity on the whole & ' N liveness requirement states thai(3) components of

with stability. v must remain free in the controlled behavior. It expresses that
For an intuitive interpretation, identifs(w)(t) with the Fhe controlled system must gtlll pe able to accept free gxogenous

power, the rate of energy, delivered to the system at tiaad INPUts: the controlled behavior is not allowed to restrict the ex-

ff:f Qs (w) dt with the total net energy delivered to the syster@genous inputs directly, it only serves to shape the influence of

by taking it through the history. Dissipativity states that the the exogenous inputs on the endogenous outputs. The following

system absorbs energy during any historyBrthat starts and Proposition shows that the liveness condition is equivalent to the

ends with the system at rest. Dissipativity Bn states thaat requirement that in the controlled behavior there are as many

any timethe net flow of energyp to that timehas beeiintothe free variables as possible.

system. Proposition 2: Let B € £¢ . and® = &1 € R"™¥ be
Note that the definition of dissipativeness makes perfect semgznsingular. Assume thas is ®-dissipative Thenm(B) <

for QDFs that involve derivatives in the variables. However, o (®).

this paper we only consider dissipative systems with respect torhe problem statement can thus be rephrased as

Qo with constantd = ®7 € R"*¥, Note that in this case

Qa(w) = |w|%. We have limited our definition of dissipative- - )

ness to controllable systems. Obtaining a satisfactory general- | When does there exist there a controlled behavior

ization of this notion to noncontrollable systems (yielding for that isX-dissipative orR_ and of maximal input

example a nice synthesis for passive electrical circuits) is still a

matter of ongoing research.

cardinality?
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C. Examples V. MAIN RESULTS
We now illustrate the problem formulation by means of im- In order to state the solution to the problem formulated above,
portant examples. we need a couple of more preliminaries: the notion of a storage
1) Disturbance attenuation. In the important case of function, and orthogonality of behaviors.
‘Hoo-disturbance attenuation we have = (d, f) )
with d exogenous disturbance inputg, endogenous A StorageFunctions
to-be-controlled outputs, an@x(v) = |d|? — |f|%, Let B € £, ¢ € &* € RY[(,n], and¥ = ¥* €

2)

3)

whenceX = diag(ly, —I;). In this case € £I ., is R"*[¢, n]. ThenQy is said to be astoragefunction for B

>-dissipative onR_ andn(K) = o (X)(= d) if and with respect to the supply rat@s if the dissipation inequality

only if in X, d is input, f is output and thé<..-norm of (d/dt)Qyw(w) < Q¢(w) holds for allw € B. For f: A — R,

the transfer function frond to f in K, G4, satisfies f > 0 meansf(t) > 0Vt € A. There is an immediate relation

|Ga—slln.. < 1 (see Section VI-A for a definition of between dissipativity and the existence of a storage function,

the notion of transfer function in a behavioral settingwith its sign related to half-line dissipativity.

and Part |l for a proof of these claims). Proposition 3: Let 8 ¢ £7 , and® = &* € R"™"[, 7).

Passivation.A similar story holds, with disturbance at-Then®B is ®-dissipative if and only if there exist = ¥* ¢

tenuation replaced by passivity, when= (e, f) (c for R"*"[(, n] such that)y is a storage function fdB with respect

“effort,” f for “flow”) and Qs(e, f) = el f, with ¢ f,  to the supply rat&€s. FurthermoreB is ¢-dissipative oriR_

the “power” flowing into the plant through theth ex- if and only if Q¢ can be taken to be nonnegative & i.e.,

ogenous port or terminal, whenég = (1/2)[2 1. In  Qu(w) > 0forallw € B, and®-dissipative o, if and only

this case € £7 ., is X-dissipative orR_, andm(K) = if Qy can be taken to be nonpositive &h

o+ (¥)(= e = £) ifand only if there is a component-wise ~ The theme of the above proposition is a recurrent one: itiden-

input—output partitior{u, y) of v = (e, f) such that for tifies a “global” statement (dissipativity: an inequality involving

alll < i < e = f£, eithere;, or f;, isinput, and the other is an integral oveR) with a “local” statement (the dissipation in-

output, and the transfer function fromto y in K, G, equality: an inequality that ipoint-wiseon R). Intuitively, the

is positive real, i.e.(F,—,(\) + Gny (X) > 0 for all proposition states that a system globally dissipates supply along

A € C, with Re()\) > 0 (see Part Il for a proof of these any trajectory on the whole & if and only if this dissipation

claims). can be brought into evidence through a storage function whose
Of course, in these examples, dissipativityRanleads rate of increase does not exceed, point-wise in time, the rate

to stability robustness for terminations along ther- of supply delivered to the system. The storage function is far

minals that satisfy the small gain or the passive operatm unigue, but much is known about the set of possible storage

conditions. These well-known implications to stability rofunctions. We will return to this in Section V-D.

bustness of controlled systems is one of the main motiva-

tions of the problem discussed in this paper. B. Orthogonal Behaviors

Frequency weighting. Another performance spec- We also need the orthogonal complement of a controllable
ification that fits in our problem formulation is to behavior, with orthogonality viewed with respect to a BDF in-
consider|d|* — | f|?, with d and f related to the “phys- duced by a constant matrix. Lét € R**¥, andB;, B, €
ical” exogenous input disturbancé and endogenous £7 . B, and B, are said to berthogonal with respect to
to-be-controlled outpuy”’ by Q(d/dt)d’ = P(d/dt)d, Ly (briefly, ®-orthogona) if [*°° Le(wy, w2)dt = 0 for all
N(d/dt)f = D(d/dt)f’, with P and D square, ), € B,ND andw, € B,ND.We denote this a8, Ls Bo.
nonsingular, and Hurwitz. The dynamical relationset8 € £7_ , and define th&-orthogonal complemef-=
betweend andd’, and betweerf and f’ allow frequency of 8 as

weighting, while the Hurwitz assumptions allow to

conclude from the stabilityl € £, = f € L (that gls _ {w € €(R, R%)
will result from dissipativity onR_), the desired sta-

bilty & € £, = f' € L, of the controlled system.

In passivation, such QDF's with derivatives allow to

consider expressions for the powerlgs(d/dt)q. These

occur in mechanical systems, withi the force, andy It is easy to see thaB+ € £° . When® = I, we denote
the position, and 7, q) the to-be-controlled variables. 1 4 simply asL. Note that81e = (&B)L = (&)1 B+ (-1

In the present paper, we have limited our attention enotes the set-theoretic inverse), an@ i nonsingular, then
QDF's in the performance of the controlled system o8 = (%LQ)L@TW.

the form@)s; with X a constant matrix. Of course, it is of  In order to state our main result, we need the following propo-
interest to be able to treat performances of the fam sition.

with ¥ = ¥* € R"[¢, n] directly, without rewriting Proposition 4: Let & € R"*", andB,, B, € £I .. Then
this QDF in terms of a constant matrix (which is alwayshere exists a € R"*¥[¢, #] such that(d/dt) Ly (w1, we) =
possible, see Section VI-C). We will deal with this in alg(wq, we) for all wy € By andw, € B, if and only if
sequel paper. B, Lo B2. Moreover, VU is essentially unique, in the sense

+oo
/ Lo(w, w')dt =0

—o

forallw’e%mij}.
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that if ¥y, W, € R"*¥[(, 5] both satisfy this equality, then X-dissipativity of K onR_ combined withm(K) = o (%), im-
Ly, (w1, w2) = Ly, (w1, wy) forall w; € B; andw, € B,.  plies that= is (—)-dissipative orR. . In addition, K C P
The idea of the above proposition is again the equivaleneplies P> c K1=. Therefore(—X)-dissipativity of P>
of a “local” and a “global” property, this time for orthogo-on Ry is also a necessary condition for the existenceCof
nality. We call the BDFLy (or simply W) of this proposition, As already mentioned, both these elements of the solution are
[('By, B,); ¢|-adapted present in [4] and [5]. What makes (1) a surprising result is
_ the coupling ofQy,, andQg | throughLg . |, thus
C. Main Result strengthening the required nonnegativity of the storage func-
Equipped with these additional preliminaries, the notion oftions Q.. and—Q\ppLZ , and coupling the dissipativeness of
storage function and existence of an adapted BDF, we are akfeand?=. This condition is analogous to (but a representa-
to state the solution of the problem formulated in Section IV-Bion-free generalization of) the remarkable condition coupling
This problem allows an explicit and representation-free solgelutions of algebraic Riccati equations that first appeared in
tion, involving the storage functions associated with dissipativie instant-classic paper [2].
systems in a subtle way. Our main result, Theorem 5, is stated merely as an exis-
tence result. Since storage functions are in an essential way
nonunique, the theorem leaves unanswered which storage
K e L7, described in the problem formulation exists functions yield likely candidates for satisfaction of the coupling

Theorem 5 (Main Results): The controlled behavioy

if and only if the following conditions are satisfied: condition (1). Next, we state a result that avoids this drawback,
. o but, in order to do so, we need some details on the set of storage
1. N is Z-dissipative, functions

2. PLs=is(-X)-dissipative,

3. there exisW, Uy, Uir pivy € RY[C, 7, D. The Available Stage and theRequired Supply

As stated in Proposition 35 € £¥ . is ®-dissipative if

defining and only if there exists a storage fun::‘zt%n,. There are many
e astorage functiod)w, for " as a storage functions. For example, ¥; and ¥, both induce
Y-dissipative system, i.e., storage functions, then so does their convex combination
d a¥; + (1 — @)Uy for 0 < o < 1. Important for our aims,
7 Quy(v1) £ Qs(vr) forv € N, however, is the existence ektremestorage functions, as stated

in the following proposition.

i 1
o astorage functio®y , for P== Proposition 6: Let 8 ¢ £7 . and® = &* ¢ R**¥[(, ],

as a(—>)-dissipative system, i.e., and assume tha®B is ®-dissipative. Then there exist storage
d . functions Qginr and Qg-» induced by Winf suwe ¢
P Qu . (v2) £ —Qx(v2) forv, € P, R**¥[{, n], such that for any other storage functi@y, there

hOIdSQ\pinf(w) S Q\p(w) S Q\Ijs\l}) (w) fOI’ a” w e %

L3y, Y.
o andthel(V, P~); Y]-adapted BDF These extreme storage functions are respectively called the

L\I/((\,’ plsy’ i.e., available stoage (Qyinc ) and theequired supplyfQ y=uw» ). This
d nomenclature stems from the following variational interpreta-
g7 L\v((\‘,ﬁ#x)(vh v2) = Lnx(v1, v2), for tion as storage functions generated by trajectories that maximize

the supply extracted from, respectively, minimize the supply de-
livered to, a system

Quan (w)0) =sup (- [ Qo) )

@) where the supremum is taken over @lle ‘B such thatw A

is nonnegative for alt; € A" andv, € P17, w € B (A denotesoncatenationw; A w, is defined by(w; A

wa)(t) = wi(?) for t < 0, and (wy A wa)(t) = wa(t) for
Note that the storage functions in (1) are well-defined by the> 0), and
assumed dissipativeness/stand?>, and that¥ \/ p+) is 0
well-defined by Proposition 4, sinc¥” C P. Qs (w)(0) = inf </ Qs (1) dt)
The surprising condition in the above result is the required —o0

nonnegativity of (1). We refer to this condition as theu- where the infimum is taken over all € 98 such thaibvAw € B.
pling condition It implies in particular that)y,. is nonnega- The supremum and infimum in these expressions should be un-
tive on A/, which shows thatV is X-dissipative orR_, clearly derstood as follows. We are considering a particulag 5 and
(since C K) a necessary condition for the existenceXof would like to find out what) ginc (w) andQ=w(w) are. Obvi-
It also implies thaQy_,  is nonpositive or+=, which in  ously, using shift-invariance, it suffices to specifnc (w)(0)
turn shows thafP+= is (—X)-dissipative orR,. It is not dif- and Qg-w (w)(0). These formulas show how to interprét*
ficult to see that this is also a necessary condition for the exrdW*"?: fix the past (or future) of a trajectory to being that of
istence ofK. In fact, it can be shown (see Proposition 12) that, concatenate with the future (or past) of any other trajectory

U1 EN, U2 EPLE,
such that that the QDF

Q‘I’,\f (Ul) - Q‘I/,/

o, (v2) + 2Ly (v1, v2)

2]

W, Pty
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w € B, and take the supremum (or infimum) over @llsuch VI. BACKGROUND MATERIAL

thatw A w (or w A w) also belongs tés. . : " .
WA (Ord A w) 9 In this section, we collect the additional background material

E. An Alternative Formulation of the Main Result that is used in the proofs.

We now reformulate Theorem 5 using extreme storage fu

. n,&.— More on Differential Systems
tions

We have already discussed kernel and latent variable repre-

Theorem 7 (Alternative formulation of the main |  sentations. In the proofs we also use image and state represen-

main): The controlled behavi#f € £7__. described tations. These are now introduced, but first we review the notion
of observability. Assume that the signal space is a product space,

in the problem formulation exists if and only if the . . .
P Y with the first components; observedrariables, and the second

following conditions are satisfied: componenty. to-be-deducedtariables. Thenw, is said to be
1. N is Z-dissipative, observable fromy; in B € £717%%2 if (wy, wh), (w1, wh) €
: i g 8 implies w4, = w}. Observability is equivalent to the ex-
2. PL=is (—¥)-dissipative, _ 2 2 N
IS (~x)-dissipativ istence off" € R">*¥1[¢] such that(w;, we) € ‘B implies
3. the QDF wy = F(d/dt)w,. We call alatent variable systeR{(d/dt)w =
e (1) — Quint (v3) + 2L« v, v M(d/dt)¢ observableif the latent variabled are observable
Quyye (1) Qppiz( 2) Vo mimy (V10 02) (2) | from the manifest variables in the full behaviorB,. This

is the case if and only if there existsla € RE™(>¥(¢) such
that (w, ) € By implies ¢ = D(d/dt)w. Equivalently,
where if and only if M has a polynomial left inverse}/*, hence

. \I/j\l;P € RV [¢, ] induces the required MT(S)M(S) = I, in which casel = Mr‘(d/dt)R(d/dt)w
recovers fromw € B.

A very useful characterization of controllable systems is that

is nonnegative for alt; € A" andv, € PL=,

suppIyQ\I,(s\gp for A" as a>-dissipative

system, they are precisely the systems that admitraage representa-
e Ut e RX¥[¢, ] induces the available tion, a latent variable representation of the farme= M (d/dt)¢,
PE N with manifest behavio®3 = im(M (d/dt)). It can be shown
storageQ\I,i;iE forP—= asa that®B € L2, if and only if it admits an image representa-

tion, in fact, if and only if it admits an observable image rep-

(—X)-dissipative system, _ T .
resentation. Theontrollable partof a behavior is defined as

* Vi, pin) € RTVIC, 7] induces the follows. LetB € £¥. There exist$8’ € £¢ ., B’ C 9B such
[(V, PL=); Y]-adapted BDALy . thatB” ¢ £7 ., B"” C B impliesB” C B/, i.e, B isthe
PR largest controllable sub-behavior contained®n Denote this

The QDF (2) is uniquely defined of” x P>, system asB...:. It can be shown thaB...; is the closure in

the €°-topology of 8 N D.

The main result in its above form is a fully explicit condition Let 8 € £%. Then there exists a permutation of the com-
for the existence of the desired controlled behawigrsince ponents of the vectow = (wy, wa, ..., wyp)) Of system
T, \If;;‘iz, and ¥, 5., can readily be computed fromvariables, such that it can be divided into the two sub-vectors
representations dP and A/. This will be illustrated for the w = (u, y), with « free, andy bound. This means that for
case thatPr,; is given in state-space representation in Part lhny ©» € €™(R, IR‘“‘“(“)), there exists a finite-dimensional
Additional computational aspects will be discussed elsewheadfine subspace af € €=(R, R4™®)), such thatu, v) € B.
and are based on LMIs, AREs, and spectral factorizatioBguivalently,» € €>=(R, R4m)) and (d*/dt*)y(0) for
and their generalization to behavioral representations ahdc 7, then specify they € €>(R, RY™®) such that
QDFs. The algorithms form an interplay between one- and twWa, y) € 2% uniquely. Moreoverm(5) = dim(w), but the
variable polynomial matrices. Because of length limitationfput—output partition itself is not unique. A kernel representa-
we are unable to deal with algorithms here. They will be th#n is aninput—output representatiof (d/dt)y = Q(d/dt)u,
subject of a follow-up paper. w = (u, y) if P is square andet(P) # 0. We refer to the

We end this section with a result about the dynamic order ofatrix of rational functionsP~1@ as thetransfer function
the controlled behavior. We denote h{B) the dimension of from « to y, and denote it a&7,,..,,.

the minimal state representation’sf (see Section VI-A). The notion of state occurs naturally in the context of behav-
Theorem 8:Let N, P € £' ., and letz = ¥7 € R™" ioral systems, and has been extensively discussed in [8] and

be nonsingular. If there exists a controlled beha¥ioe £ . [12]. Even though it did not enter the problem formulation nor

such thatV' C X C P, K is S-dissipative ori®_, andm(K) = its solution, it is used forcefully in the proofs. A state system

o4(X), then there exists suchkawith n(K) < n(N) +n(P). is a latent variable system, in which the latent variable has the
It is easy to prove that(N'), n(P) < n(Pra). The bound property of statei.e., if (w1, x1), (w2, T2) € By are such

given above therefore yields, in particulat) < 2n(Pgn). thatzi(0) = x2(0), then(wy, z1) A (w2, z2), the concatena-

In the full information casediscussed in Part Il, we obtain, intion of (w1, 1) and(w», x2) att = 0, belongs to the closure

fact,n(K) < n(Prn). (in the topology of£!°°) of Bg,y. A state system is said to be
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if and only if w = RY(—d/dt)¢ is an image representation

such thatz(0) = xo. It is said to beminimalif the state has of B~. Also, R(d/dt)w = 0 is a full row rank kernel repre-
minimal dimension among all state representations that have emtation of8 € £, if and only if w = RT(—d/dt){ is
same manifest behavior. It can be shown that a state systerarisobservable image representatioribf. Their driving vari-
minimal if and only if it is trim and observable. In particular,able and output nulling representations are related as follows:

there then exist € RY™®) <% (¢) such thate = X (dt/dt)w
for (w, ) € By and such that for alby € RU™®), there
existsw € 9B such thateo = X (d/dt)w(0). The polynomial
matrix X € R**"[£] is said to induce atate magor B € £*

(d/dt)x = Az + Bu, w = Cx + Du is a driving variable
representation o if and only if (d/dt)» = —ATz + CTw,

0 = BTz — DTw is an output nulling representation 2.
Their input/state/output representations are related as follows:

if X(d/dt)w is a state for3, meaning that the full behavior (d/dt)x = Az + Bw;, wy = Cz + Dwy, w = (wq, wy) IS an
{(w, X(d/dt)w)|w € B} has the state property. A state majnput/state/output representation®fif and only if (d/dt)z =

is minimal if and only if it induces a trim state representation.—A? > + CTw/, wh =

T T,/ (A / /
Bz — DYwl, w' = col(w], wh)

A latent variable system has the state property if and onlyi§ an input/state/output representation®f-. It follows that
its full behavior can be represented by a differential equatiaii®) = p(BL), p(B) = n(B~L), andn(B) = n(BL). ltalso

that is zeroth order inv and first order inz, i.e., by Ryw =

shows that for any € R*(®)*¥[¢] that induces a minimal state

Moz + M, (d/dt)z, with Ry, My, M, constant matrices. Theremap for3, there existsZ € R*(®)x¥[¢] that induces a minimal
are many, more structured, state representations as, for instastate map fof3-+, such that

a driving variable representatiofd/dt)z = Az + Bd, w =

Cz + Dd, with d an, obviously free, additional latent variable;

an output nulling representatiofd/dt)z = Az + Bw, 0 =
Cz + Dw; or aninput-state-output representatiog/dt)z =

(3 (2)) (2(3)) -

for all w; € B andw, € B+. This yields in particular Propo-

Ax+Bu,y = Cx+ Du, w = (u, y), the most popular of them sition 4. We call a pair of polynomial matricést, Z) that
all. Every systenf8 € £°* admits such a representation aftemduce minimal state maps fé8, B and satisfy the above
a suitable permutation of the componentsuofind a suitable equality, amatched pairof minimal state maps fof3, B1).

choice of the state.
There are a number of importaimteger“invariants’ asso-

ciated with behaviors. In Section I, we already discussed tR€(, n) =

Hence, if (X, Z) is a matched pair of minimal state maps
for (%8, B<1) and ® a constant square matrix, thdr, with
XT(¢)Z(n)® yields a[(B, BLe); @]-adapted

input cardinalitym, i.e., the number of input components, oBDF.

free variables. Other integer invariants are the number of mani-A system® ¢ £* is said to bememoryless w;, w, € B
fest variables itself, the number of output components, and tingplies that the concatenation A w, belongs to the'*°-clo-
number of state variables. These are formally given by the magage of25. Obviously®s is memoryless if and only if it admits

w, m, p, n: £° — N defined by
w(B) =w, if B¢ £”
n(B) =the number of free (input) variablesh
pP(B) =w(®8) — n(*B), the number of bound (output)
variables inB
n(*8) = the minimal number of state variables
(the McMillan degree) of B.

a kernel representatidiyw = 0 with Ry € R***. Let®B € £°*
and assume thaX(d/dt) induces a minimal state map for it.
Thememoryless pardf B ¢ £, denotedB nemoryless, IS de-
fined asB memoryless = {w € B | X (d/dt)w = 0}. Itis easy to
see thatB emoryiess € £ and that it is memoryless. In terms
of an output nulling representation &, it is described by =
Bw, 0 = Dw. This is a kernel representation #.emoryless
and shows thai(*B ,emoryless ) = dim(ker(col(B, D))).

A state map X(d/dt) is thus minimal if and only if B- More on Dissipative Systems

rowdim(X) = n(B). The input cardinalitym(®8) equals

The notion of state discussed in Section VI-A can be inter-

the number of inputs in every input—output, input/state/outpytreted intuitively asnformation statelt formalizes the memory
or driving variable representation with a minimal number aéf a system. For dissipative systems, we have met another no-

driving variables. Fof8 € £°

cont?

it also equals the number oftion that is intuitively also related to the memory: the storage

latent variables in any observable image representatidB.of function. These two concepts, state and storage, are intimately
The output cardinality equalank(R) of any kernel represen- connected, as explained in the following proposition.

tation of B8, and the number of outputs in every input—output or Proposition 10: Let5 ¢ £¥

. and letX € R**¢[{] induce

con

input/state/output representation. 28t,,,. be the controllable a state map fof3. Assume thafs is ¢-dissipative with® =

part of B. Thenm(Beont) = m(B), n(Beont) < n(B), with
n(B.ont) = n(B) if and only if B is controllable. Also,
B e L8 B C B, andm(B’) = n(B) imply B’ = Boows.
The following result is used in the proofs.

Proposition 9: For 81, B, € £, m(B1+B>) =mn(B1)+
m(%g) — m(%l n %2)

®T € R, Let U € R"*¥[(, ] induce a storage function
Qy for B as a®-dissipative system. TheRy is a memoryless
function of the state, i.e., there exists a mathix = K ¢
Rrowdim(X)xrowdim(X) gych thatQy (w) = |X(d/dt)w|% for
w € B. In particular,8 is ®-dissipative onR_ if and only
if there existsk = K7 e Ru®)»a(®) g > 0, such that

These representations and integer invariants of a behaVi&i(d/dt)w|% is a storage function.
and of its orthogonal complement are closely related. In partic-The following corollary is an immediate consequence of this

ular, R(d/dt)w = 0 is a kernel representation & < £?

cont

proposition.
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Corollary 11: Let B, B, € £7 . and® = &7 € R**¥, The expressiony ;= |ff(=)? — Y5z, | ()%, with
and assume thd8; C %2“’. Assume thatl € R*¥[¢, 5] is the f;F's and f; s linear functionals orV defines a QF on
such that the BDEy induces d(%81, B,); ®]-adapted BDF, V. In fact, a QF can be expressed in this way if and only if
i.e., (d/dt)Ly(wy, w2) = wi Pws for wy € By andwy € its rank is finite. If f5, o, ..., /i, /i, fos ..., fr are
B, (by proposition 4 such & exists). Assume thaX;, X, € independent (in which case both. andn. are individually
R*>¥[£] induce state maps fdB; and*B,, respectively. Then minimal over all such decompositions ¢fy as a sum and
there exists a matrigy € Rrowdm(X)xrowdim(X2) gych that  difference of squares), then the pair of nonnegative integers
. (n_,ny) is called thesignature of ¢|y, and denoted as
_ d d sign(qlv) = (o _(qlv), o1 (q|v)). The rank ofq|y equals
Lu(ws, wz) = <X1 <@> wl) N <X2 <E) w2> a_(é|\|/))+ a+((q|\/().| A)\ QF( (Ln)ﬂ)%n is always of| the form
z — =Sz for someS = ST € R*™. We call this the QF
forw, € B; andws € By, induced byS. The rank and the signature of this QF are equal
In general, there is no immediate relation between dissip@- that of S, defined as the paife_(S), o (S)) consisting
tivity of 8 and®B-++, unlessn(B) = o, (Qq). The following of the number of negative and positive eigenvaluesSoff

proposition deals with this very relevant special case. S = ST € R™® andV is a linear subspace @&, then
Proposition 12: Let B € £f , and® = &7 € R"*" be S|V denotes the QF oW defined byz — z7Sz. If V is a
nonsingular. Assume tha{®8) = o (®). Then matrix such thaV = im(V), then sigiiS|v) = sign V7 SV).
1) B is ®-dissipative if and only if81< is (—®)-dissipa- The following matrix lemma relates the signatures of the
tive. QFs induced by a matri¥) on the linear subspacds and
2) B is ®-dissipative ofR_ if and only if B+ is (—®)-dis- L? = {z € R*|+"QL = 0}. These relations play an
sipative onR .. important role in the proof of the main theorem.

3) If B is d-dissipative orR_, then every storage function Lemma13:Letl C R" be alinear subspace afid= Q* €
Qy for 9B as ad-dissipative system satisfiggy (w) > 0 R**". There holds
for w € B, and every storage functioy- for BL*

as a(—®)-dissipative system satisfiggy (w) < 0 for - (@l +e) =o4+(QlL) +0-(Q) — dim(L)
w e Ble, + dim(L Nker(@))

4) Let(X, Z) be a matched pair of minimal state maps for o4 (Ql 1e) =0 (QIL) + 04(Q) — dim(L)
(3B, BL). If | X(d/dt)w|% is a storage function fo3 + dim(L Nker(Q)).

as ad-dissipative system, witlk = K7 ¢ R:B)x(®)

nonsingular, then-|Z(d/dt)®wl|3,_. is a storage func-  We now discuss BFs and QFs in the context of differential

tion for B-Le as a(—®)-dissipative system. behaviors. There is a one-to-one relation between the BDF

5) Moreover, if8 is ®-dissipative oriR_, then everyK' = Lg and the BF on€><(R, R"') x €><°(R, R"*) defined by

KT € Rr®>a®) such thay X (d/dt)w| is a storage (wy, ws) +— La(wr, w2)(0), and between the QDB and

function satisfiesx” > 0. the QF on€>°(R, R¥), defined byw — Q4(w)(0). The ranks
We call the pair of storage functior(&)y, Qg ), for respec- and signatures of a BDF or QDF are defined by this correspon-
tively B andBL+, with Qu(w) = |X(d/dt)w|%, Qu-(w) = den.ce.. _Both.L¢, anq Qo are of f|n|te_ rank, although they act
|Z(d/dt)®w|%, (X, Z) a matched pair of minimal state map$n infinite-dimensional spaces. This can be seen as follows.
for (B, BL), and with P = —K~!, a &-matched pair of Associate wWith®(¢, 1) = Zy, ecz, Px, «(*n° € R [(, ],
storagefunctions This matching of storage functions is guarihe matrixmat(®), defined as the infinite block-matrix whose
anteed whem(8) = o, (®) and K is nonsingular, the latter (¥ + 1, £ + 1)th block equalsby, ¢, and with the one-variable

certainly being the case 8 is ®-dissipative oriR_. polynomial matrix P(§) = ez, Pi&*, the block-column
matrix mat(P), defined as the infinite block matrix whose

(k 4+ 1)th block equalsP;.. These matrices, while infinite,

have only a finite number of nonzero entries, and behave like
QFs and QDFs play a central part in the proofs. We therefdirite matrices. It is easy to see that the rank and the signature

introduce them in some detail, and from a rather abstract poaftthe QF defined byQs with & = &* is equal to that of

of view. A bilinear form (BF)on the real vector spac€¥;, V») the symmetric matrixnat(®) [defined as the rank and the

is a mapping: V; x Vo — R that is linear in both arguments.signature of a truncation ahat(®) that deletes only zeros].

WhenV; = V, = V, we call it a BF onV. Thedual of ¢, Clearlymat(®) can be factored asat(®) = [T, —TZI'_,

£+, is the BF onV, x V; defined by?* (v, va) := £(ve, v1). with I'y and I'_ infinite matrices with a finite nhumber of

The BFZ onV is said to besymmetridf £ = ¢*. The BF£ on rows, such tha{rowdim(I'_), rowdim(I'})) = sign(Qs),

V induces throughy(z) := £(z, z) the quadratic form (QF) equivalently, with the rows ofcol(l'y, ['_) linearly in-

g: V — RonV. Clearly,?, £*, and(1/2)(¢ + ¢*) induce the dependent over R. Define the polynomial matrices

same QF. Theank of a BF equals the number of independent’y, F— € R**"[{] through I'y = mat(F,), ie,

linear functionalg(-, v2) wherev, ranges oveV,, equivalently F.(¢) = I'ycol(ly, Li£, L;E%, .., and'_ = mat(FL_).

the number of independent linear functionéls; , -), wherev;  Then®(¢, 1) = FE(Q)Fy(n) — FL(()F_(n). Hence®((, n)

ranges ovel ;. The rank of a QF equals the rank of the symean be factored in terms of one-variable polynomial matrices as

metric BF that induces it. (¢, n) = FE(QOF(n) — FX(¢)F_(n) with the rows of ' =

C. More on Quadratic Forms
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col(Fy, F_) € R***[{] linearly independent oveR. representation of/. Using the lemma, we conclude thiatad-
Such a factorization ofp is called acanonical factoriza- mits a kernel representation of the foi{d/dt) R(d/dt)v = 0
tion. A canonical factorization yields the signature antbr someF € R***[{]. We now prove that the controller
the rank of Qs by sign(Qe) = (c-(Qs), 04 (Qs)) = F(d/dt)M(d/dt)c = 0 implementsk, in other words,
(rowim(F_), rowdim(F} )), andrank(Qes) = rowdim(F'). that K’, the manifest behavior oR(d/dt)v = M(d/dt)c,
Hencesign(Qs) equals the number of negative and positivé'(d/dt)M (d/dt)c = 0, equalstC.
squares in the factorizatio®g(w) = |Fy(d/dt)w|* — Let +/ € K'. Then+' satisfiesR(d/dt)v’ = M(d/dt)c
|F_(d/dt)w|* as a sum and difference of squares of indder somec such thatF(d/dt)M(d/dt)c = 0. This implies
pendent linear differential operators mappir&°(R, R*) F(d/dt)R(d/dt)v’ = 0, whencers’ € K, andX’ C K. Con-
into €><(R, R), i.e., with the rows ofcol(F,, F_) linearly versely, letv € K. ThenF(d/dt)R(d/dt)v = 0, and there is a
independent oveR. The signature of QDFs play an important: such thatR(d/dt)v = M(d/dt)c. Thisc hence satisfies also
role in the proofs. F(d/dt)M(d/dt)e = 0. Whencev is such thatR(d/dt)v =
A QDF restricted to a behavior can also be viewed as a QHE(d/dt)c for somec that satisfiest'(d/dt)M (d/dt)c = 0.
onB, by the mapw € B — Qs(w)(0). We denote itad)s|s, Consequentlyy € K/, andX C K.

its rank asrank(Qs|w), and its signature asign(Qq|s) = If £ e £, then the controller that implements it can also
(0-(Qalm), o+ (Qalm)). For B € LI ., these can be be taken to be controllable. ForGfimplementsC, then its con-
computed as follows. Letv = M(d/dt)¢ be an observ- trollable part also implements.

able image representation @. Define &’ as ®'(¢{,n) =
M7 (¢)®(¢, n)M(n). Then the rank and signatufg, | equal B- Proof of Theorem 5
those of@Q4 . The signature of)s | has the following signifi- 1) Proof of Theorem 5, “Only If"-Part: The key to the “only
cance. There exist polynomial matrice§ € R7+(@=I2)<"[¢] " if_part is the matching of a system with its orthogonal com-
Fy € Ro-(@l=)x¥[¢] such thatQqe(w) can be factored plement. Assume that € €7, satisfies\V' ¢ K c P,
as Qo(w) = |FF(d/dt)w|? — |Fg (d/dt)w|* for w € B. is L-dissipative orR_, andm(K) = o, (%). SinceK > N,
We call such a factorization ofs | canonical Any other andKX is X-dissipative, so isV. Sincek is X-dissipative 1=
factorization Qo(w) = [F*(d/dt)w]> — |F~(d/dt)w|> is (-X)-dissipative by proposition 12. Furthermovg, ¢ P.
for w € B satisfiesrowdim(F*) > 04(Qa|s) and ThereforeP> ¢ K17, henceP!~ is also(—¥)-dissipative.
rowdim(/'~) > o_(Qa|s). A canonical factorization of SinceK is E-dissipative onR_ andu(K) = o, (%), every
Qs can be obtained from an observable image representatigie of its storage functions is, by proposition 12, of the form
w = M(d/dt)¢ of B. First obtain a canonical factorization| X (d/dt)v|%, v1 € K, with Xx-(d/dt) a minimal state map
of Q¢ on €°(R, R¥), by factoring themat(®’), yielding for K andk = K7 > 0.
Qo (0) = |FF(d/dt)l)? — |Fy (d/dt)e?, and expresd in Let (Xx(d/dt), Zx(d/dt)) be a matched pair of min-
terms ofw, using/ = M*%(d/dtyw, with M* a polynomial imal state maps fork and Kt. Then (Xy(d/dt)v|%,
matrix left inverse ofdf. —|Zx(d/dt)Svs |3, ) is aX-matched pair of storage functions
for K and K+= as, respectivelyy- and (—X)-dissipative
VIl. PROOFS OF THEMAIN RESULTS systems. Consequently
2
< |nlg

The proofs are organized as follows. The proofs of the d ‘ <d>
1
K

main results are interlaced with propositions and lemmas of at dat
peripheral interest. The proofs of these results are given in

2

Section VI, together with the proofs of the propositions and _4a < d) PN — |l
lemmas in the main text. dt dt K-

d d g d e
A. Proof of Theorem 1 T <XIC <%> vl) <Z;¢ <dt> EvQ) =y 2v2

(Only if): Let Py € £7F¢ be the full behavior of the plant.

J_Z H
Assume thakC € £7 is implemented by € £¢. Then forallv; € K andw, € K== Since” € K ¢ P, whence

PL= ¢ Ki=, these relations also hold fer € N andvs €

P ={ve > R,R")|Ice €(R, R%) PL=. This implies
such tha(v, C) € Pfu]]} d 2 d 2
oo v c\ o, Zic | = 12
K={ve R, R")|3ceCsuchthalv, c) € Pru} ‘ K <dt> L K+ K <dt> 2 -1
— |V — v
Clearly, ' C K C P, as claimed. Klat) M\at) =™
(If): This part uses kernel representations. We need the fol- d d 2
. _ —1
lowing standard result. = ‘XK <@> n+ K2 <%> Y|
Lemma 14:Let B, B’ € £¥, with kernel representations N _ ] K o
L(d/dtyw = 0 andL'(d/dt)w = 0, respectively. ThemB’ c forv, € A and vy € P~=. SinceK is positive definite,
%8 if and only if there existd” € R***[¢] such thatL = FL/.  the above QDF is nonnegative. Now |dent|@\p(\2,(v1) =
Assume thatV' ¢ K C P. Let R(d/dt)v = M(d/dt)cbea | Xx(d/d)uilic, Qu . (v2) = —[Zx(d/dt)Yvsl% ., and
kernel representation Gf,. ThenR(d/dt)yv = 0is akernel Lw .. (01, v2) = (Xxc(d/dtyv )" (Z(d/dt)Swvs) as
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QDF’s and a BDF that satisfy the conditions required bfpr v3 € P N A/1=. The definition ofL\I, yields the
theorem 5. This proves the “only if"-part of Theorem 5. decomposition )
2) Proof of Theorem 5, “If"-Part: We first explain, very in- 2
tuitively and informally, the idea behind the construction of the QA (w1, vo) = |v1 |3 — ‘X/\/ < ) 1
desired behaviok € £7. Consider the QDRv|3 for v € dt Kx
¢>=(R, R"). Somehow, we must decompogé&®(R, R") into d d 2
K+K~+= (in this intuitive explanation, we assume the behaviors +loalf + — dt Zp <dt> Xva|
and theirX-complement are complementary) such thatc Kpts
K c P, K is X-dissipative orR_, andn(K) = o, (K). De- =Qa(vy, 0) +Qa(0, v2) ®)

compose€>=(R, R") asA + P+ + P n N+=. Because of forv; € A" andv, € PL=. Factor the QDR)y|pra-Ls CANON-
the requirements, it is logical to look forka that is the sum of jcally as

N and a sub-behavior @ N A= This behavior has then no 5 5
intersection with?+=, which we have to avoid, since it isZ Qu(v3) = ‘F* < d) vs| — |F~ < d ) U3 (6)
dissipative by assumption. So, we will look for a subspace of dt dt
P N N=+= that isX dissipative. Clearly this yield a behavikir  This yields the following crucial equality:
such thatV ¢ K C P, and that is-dissipative. By exploiting 4 d d
the coupling condition, we deduce that our choice is actuaIIyCE col <X/\/ <§> v, Zp <§> EUQ)
Y-dissipative orR_. The hard part, which requires very deli- 5
cate estimates, will be to prove thak’) = o (K). +Ktcol <ZN <i> Yvs, Xp <i> U3>
Consider the “coupling” QDR (v1) — Qu_, _(v2) + dt dt K
2Ly, iy (01, v2) TOT (v1, v2) €N X P2 Let(Xy, Zy) = [v1 42 +v3[8 — Qalvr, v2) — Qu(vs)
and (Xp, Zp) be Tatched pairsL of minimal state maps for, = |u; 4+ vy + 3% — Qa(vi, 0) — Qa(0, v2) — Qu(v3)
respectively, (N, N-) and (P, P+). By Proposition 10 and _ 2 _
corollary 11 (there e>)<|st mg\trlcdsf/\)/ K% € RV)xaV) = o vz + sl 5 Qalv, 0) QAQ(O’ vz)
Kpiw = K, € ROP>OP), andK y pr) € REODa(P), | < d) vs| + |- <i) vs @
such that dt dt
d 2 for v, € N, ve € P2, andvs € P N A=, Assume also,
Quy(v1) = | Xy <%> vl in order to explain the idea, tha( + P+= + PN NL= =
1‘2'\" €>°(R, R"). Equation (7) then yields a very transparent de-
Quis (v2) = | Zp < d) Sy composition of any € €*(R, R") asv = v + v2 + v3 that
dt Koy nicely puts the sign dfu|% in evidence. It is this decomposition
d 7 that we are after. Examine the signs of terms on the right-hand
Ly, . (v, v2) = <XN <dt> vl> Kn, p1y side of (7). SinceV is -dissipative, with| XN(d/dt)v1|A
o as storage function, ané®P'= is (—X)-dissipative, with
% <Z7> <jt> Ev2> |Z7>(d/dt)Evg|hPLZ as storage functiora (v1, 0) > 0 for

vy € N, andQa(0, vo) < 0 for v, € PL=. The idea behind
for (vi, v2) € N x P1=. Since X, and Zp are minimal, the construction of the controlled behavibris to cancel the
hence trim, state maps for respectiveély and P+, the maps two nonnegative terms-Qa (0, v2) + |F~(d/dt)vs|* on the
vi € N — Xp(d/dt)v (0) € R*N) andw, € PL= — right hand side of (7), by taking fof

Zp(d/dt)¥v(0) € R*P) are surjective. The coupling condi- .
tion (1) therefore implies that K=N+F (8)

K- KT — Ky Ko, ps) with F— the controllable part of the behaviofvs €
K, pry —Kpis P NNL=|F~(d/dt)vs = 0}. Equation (7) then yields
n(A)+n(P)) X (@A) +n(P))
R 3) di col <XN <di> V1, 0)
is a nonnegative definite matrix. Assume, in order to explain the t t )
intuitive idea, that it is actually positive—definit&s = K7 > 0. _1 d d
Consider the QDFs ol { 2w dt 2vs, Xp dt K
_ 2 2
Qa(vy, v2) = v +v2]5 , :|vl+vg|22—QA(vl,O)— ‘F"' <5>U3
S Y o AN !
p |\ \ae ) P\ ) )| < for +usf3. Q)
for (v1, v2) € N x P+, and This shows thak” defined by (8) is indeebl-dissipative oriR_.
) The difficult part is to show thai(X) = o4 (Z). For this to
Qu(vs) = [vs]5 be the casen(F~) should not be too low, in other words, the

2 @) row dimension oft"~ should not be too high. Obtaining a sharp
dt estimate of this row dimension requires a sharp estimate of the

d d d
o (2 () 5o () )

K-1
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signature ofQ¢|prarLx - This forms thepiéce de résistancef
the proof.

Our strategy for the formal proof is as follows. First, we give
the proof under certain regularity assumptions and subsequently
we consider the general case.

3) The Regular Casein theregular casewve assume thati)  2)

K = K* > 0 (as in the above explanation of the construc-
tion of K) and i) V' + N> = €><(R, R") (equivalently, by
proposition 9, i) m(A N AL=) = 0). The origin of the second
condition may be understood as follows. Whiris >-dissipa-
tive, then||v||% > 0 for all v € A" N D(R, R"). The stronger
condition |[v]|3 > 0 forall 0 # v € N N D(R, R) im-
plies N + NL= = €>(R, R"). For otherwise, there exists
0 # v € NnNANLt=n DR, R) yielding |[v]|Z = 0. The
second regularity condition may thus be viewed as a form of
strict 2-dissipativity of .

We now derive the following relation between the signatures
and ranks of the QDF’s defined above:

o (Qulpan+s) Srank(Qalaxo)

+0-(2) —n(NV) - p(P)
04 (Qulpyss) STank(Qaloxpis)
+04(X) —mN) —p(P).  (10)

The proof of these relations involves five steps.

1) Consider the following subspacds, and Ly of
RY+2@MN)+n(P))-

Note that, since&: and K are invertible, so i€). Since
Ly C L, we obtain

o (@7 ) <o (Qliaray+) s
o4 (Q7Le) Lot (Qligray+) - (11)
Note thatsign(@)) = sign(X) + (rank(K), rank(K)),

andrank(K)) = n(N)+n(P). Lemma 13 antter(Q) =
0 imply
- (Q|(QILA)J-) =04 (QLn) + 0 (X) +n(WNV)
+n(P) —dim(L A)
oy (QligLayr) =0- (QlLn) +04(2)
+n(N) +n(P) —dim(Lnr). (12)

3) Next, calculatelim(L A ), using the lemma below. To see

that the dimension count in the lemma is reasonable, let
B e L£*. With X(d/dt) a minimal state map fof5,
definely = {a € R"®B)1H2B) |3y ¢ B such that

a = (w, X(d/dt)w, (d/dt) X (d/dt)w)(0)}. It is easy

to see thadim(L ) = m(B) + n(*B). This suggests
dim(La) = nN) + p(P) + n(N) + n(P), but this
count is too rough, since the combinatiorwgfe A and

vo € P into v1 + vo in the definition oflLx may ab-
sorb degrees of freedom. For the exact count, we need
the memoryless part of a behavior, introduced in Sec-
tion VI-A.

Lemma 15: The dimension of_A is given by

dim(La) = m(N) +p(P) +n(N) +n(P)

La = {a|§| vi € N andw, € P+ such that

1
_m(Mnemoryless N (P =

) memoryless ) .

Hence, in the regular casim(L o) = m(N) +p(P)+n(N )+

a= <C01<Ul +v2,AN<d)v1,Zp<d>Ev2, n(P).
g g ddt g dt Using this lemma in (12), combined with (11), yields
@ <dt> UL 37 <dt) 2)) <0>} - (Q7MLy) S04 (Qls) +o-(2) —m(N) — p(P)
o+ (Q7Ly) o (QlLa) + 04 (%) = n(N) — p(P)- (13)

Ly = {b|3 vs € PN N> such that

d d
b= <C01 <Ev3, e Zin <dt> s,
d d d
Tt Xp <£) v, —ZN <dt> Yus
d

Observe the following orthogonality relations:

4) The next step consists of observing the equalities

sign (QAL/\/XPJ_Z ) =sign(Q|iL,)

sign (Qulprnes ) =sign (Q74 L, ) -
These follow immediately from the definitions of the var-
ious QFs.

5) The final step involves the analysis of the QDF

Qalnwpi= - Equation (5) yields

d (. [d r d .
i (o () ) (o () ms) =0
d d ¥ d .
%<X <dt> 3) <Z7’ <dt> E““’) =R

forv, € N, v € P C N2, andus € PN AL,
henceXv, € N. These identities imply thdty C Il_j
Consider also the QF di' +2\V)+2(P)) induced by

¥ 0 0
Q=10 0 -K
0 -K 0

sign (QAL/\/XPJ_E) = (rank (QA|0><7DL2) , rank (QA|N><O)) .
Now substitute these results into (13). This yields the re-
lations (10).

The next part of the proof requires obtaining a sharp esti-
mate ofrank(Qa | x0). This, however, requires that the storage
functionQy ,, that appears in (1) is an extreme storage function.
The following proposition, closely related to Proposition 6, es-
timatesrank(Qa | xo0) exactly for extreme storage functions.

Proposition 16: Let B € £7 . and® = &7 ¢ R"*¥ pe
nonsingular. The ranks of the QDFR®|2 — (d/dt)Q ginc (w)
and |w|% — (d/dt)Qusw (w) on B are both equal ta(B) —
n(B N BLe). In particular, if B + BLe = €°(R, R*), then
these ranks are equal g8 ).
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This proposition has the following consequence. By 4) The Singular CaseThe main difficulty in the singular
substituting Qg ,, by Q\I, », the QDF in the statement of case stems from the possible nonsingularity of the méafroke-

theorem 5 yleld&ank(QM/\/xo) = n(N) — n(N N NL=).
Note that the K-matrix, K., induced byQI,sup(vl) +
Qv iz (ve) + L\p (vl,vg) and the Kmatrlx
Koldy mduced by the 0r|g|naIQ\p\ (v1) + Qu ol (ve) +
L\p(ﬁ LE)(vl, va) satisfy Kpew > Ko, smceQ\psup (v1) +
Qu ., (v2)+Ly v PJ_2>(U17 v2) 2 Quy (v1)+Quw_, (v2)+

v v42>(vl’ vo) forvy € N, vy € PL=. Hence,K ey, IS
also positive definite. Regularity implieg A" N A'L=) = 0.
Inequality (10) then yields

o (Qulprntz) S 0-(%) —=p(P) =n(P) — o4 (%) (14)

Qu(vz) ==

fined by (3). This implies, in particular, that the QI given

by (4) is not defined. In order to cope with this, we replace the in-
verseK —! by a symmetric generalized inverkg’, i.e., K# =
(fH )T
andK# = K#* KK+, and use the following generalization of
the QDFQy

€ ReEM+(PNx@W)+n(P)) gatisfiesk = KK#K

2
|U3|E at

d d d
col <Z/\/ <dt> Evg,Xp <dt> 3)

K#

Obviously, if K is nonsingular this reduces to the @, . De-

fine

for vs € PN N2, with rowdim(F~) = 0_(Qu | prprLs )-
We prove that” € £7_ . as defined by (8) has the following

properties, which qualify it as a controlled behavior as required

by Theorem 5: i)W € K C P, i) K is X-dissipative orR_,
and i) m(K) = o4 (%).

Property i) is obvious. From (9) andl > 0, it follows that
for everyv; € A andwvs € F~ of compact support there holds
fo |v1 +wvs|4 dt > 0. Itis easy to see that amye N +F~ of
compact support may be decomposedas Vs, with v; € A/
andvs € F— of compact support. Thereforjz |v|% dt > 0
forall v € X ND. This yields ii).

We now show iii). Since\V + Nt= NP = P, N + F~
consists of the signals i® that satisfyv; € A+ NP and
F~(d/dt)vs = 0. Thisimposep(P) +o_(Qw|pra~= ) €QUA-
tions. Using (14) indicates that this leaves at leag{>) free

»-t 0 0
Q=] 0 0 -—K#
0 -—-K# 0

We now estimate_ (Q[(qr .+ )- Lemma 13 implies

—(QligLayr) =0+ (Qlis) +0-(Q)

—dim(l. o) + dim(l o Nker(@)). (15)

Now compute one by one the terms on the right-hand side of
this relation.

1) Sincec+(Q|L.) = 04+(QalnxpLs ), We obtain, using
proposition 16, (Q ) = n(N) — n(N N N17).
2) Obviously,o_(Q) = 0_(Z) 4 rank(XK).

components. We now prove this rigorously. We need the fol- 3) Inorder to compute the last two terms, we use convenient

lowing lemma.

Lemma 17:Let B € £" andF € R***[£]. Then the sub-
behavior’3’ C B defined by®B’ = {w € B|F(d/dt)w = 0}
satisfiesn(8’) > m(*B) — rowdim(F).

We are ready to deliver theoup de graceBy the reg-
ularity assumptionm(A" N A+=) = 0, and hence, since
F~ C N*=, n(N nF-) = 0. Hence, by Proposition 9,
n(K) = m(N + F~) = m(N) + n(F~). The above lemma
impliesm(F~) > n(P N NL=) — rowdim, (7). This yields
n(K) > m(N) + n(P N AN1L2) — rowdim(F~). Combined
with (14) androwdim(F'~) = o_(QulpanLs), We arrive
atm(K) > n(N) +n(P NNL=) — o () + p(P). Further,
N+ (PN = (PNN)+ (PNNL). SinceN C P
and using regularity, this equalsn (AN + A1=) = P. Hence
by proposition 9m(A) + m(P N AL=) = m(P). This yields
n(K) > n(P) — o_(X) + p(P). Sincen(P) + p(P) = v and
04(X) = v—0_(2), we finally obtaimm(X) > o, (X). Hence,
by Proposition 2n(K) = o+ (3).

This completes the proof of the “if"-part of theorem 5 in the

regular case. Note that the only point in the proof that the as-

sumptionX > 0, as opposed to jugt’ nonsingular, is used, is
in order to obtain dissipativity oR_, instead of just offR.

There is an alternative way of defining regularity, namely, by

assumingittomeal = K7 > 0andP+P> = €=(R, R"),
i.e., strict (- X)-dissipativity of P> . This leads to a “dual” way

of constructing a controlled behavior, by making in the above

proof the substitutionsV” « P+, P « N2 ¥ « -3,
R_ < Ry, andX « KL=,

representations of” andP. It turns out that it is easiest
to work with a driving variable representation . &f and
an output nulling representation #¥. Let, therefore

d
—xn = Anazy + Bady, v = Cnxzn + Dady (16)

dt
be a minimal driving variable representation/sf with
zn = Xpn(d/dt)v, v e N, anddim(dy) = m(N), and
d
%xp = Apxp + BpXv, 0=Cpxp+DpXv (17)

be a minimal output nulling representation Bf with

xp = Xp(d/dt)v, v € P, androwdim([Cpr DpX]) =
p(P). Using the relations between driving variable and
output nulling representations of a system and its orthog-
onal complement mentioned in Section VI-A, it follows
that:

d

% v = B;Z;Zp — ngp

zp = —A;Z;Zp + C;Z;dp,

with zp = Zp(d/dt)Xv, is a driving variable represen-
tation of P1=. Define

| Anx 0 | By 0
R
H=[Cy BL] J=[Dy -D%]
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andz = (xzn, #p), d = (dn, dp). Then(d/dt)x = Inorder to circumvent this difficulty, we will restrict the domain
Fx+Gd,v = Hx + Jdis a driving variable representa-of the QDFQy to the following sub-behavior gP N A=
tion of A" + PL=_ This representation allows us to com-

d d
putedim, (L o) anddim(L o N ker(Q)). Note that M= {vg € PNN+7|col <ZN<%)21/3, Xp <£)U?’> (t)
H J .
La=|1 o ElIn(K)VtEH}.
G Now define, in analogy with g

and hencelim(L o) = n(NV) + n(P) + m(N) + p(P) — L ::{b Jus € M such that

dim(ker( [é] .
4) Next, we computéim(lL A Nker(@)). There holds d d d d
( 2 ( )) b= <C01<EU3, _%ZN<%>EU3’ —% Xp<%>1}3,
La Nker(@) 4 J
_ {(% x, 37) c Rv-l—?(n(./\/)-l-n(P)) S = O7 Kr= O7 —Z/\/ <%> Evg, —Xp <%> Ug)) (0)} .
s ; m(N)+p (P . .
Ki = 0 and there existg € R*V)+2(") Obviously,o(Qy| ) = o(Q#[1,) andLy C Ly N im(Q).
suchthaty = Hx + Jd, 2 = Fx + Gd|} . The following lemma shows that (20) indeed holds wiith
replaced byl [, becausé |, C im(Q).
Hence Lemma 18:Let Q = QT € R**" and let£ be a linear sub-
r space oR”. Assume thaf)* is a symmetric generalized inverse
HJ i # T O # # #
Lanke(Q)= | I 0 |kex(R) of Q,i.e., Q7 =(Q7)", QTRQ” = Q7,andQQTQ = Q.
F Q Then£ C im(Q) implies thatsign(Q#|g) = sign(Q|g-1¢).
i B This yieldso_(Qula) = o_(Q#|L,) = o_(Qlg-1,) <
with v Ly/ =,
‘SH NJ o_(Q!QflLX) = 0_(Q|(qgL4)+), and hence we obtain the in-
R=| K 0 (18) equality
_KF K@ U—(Q‘P|M) SO'_ (Q|(QLA)J‘) (21)

From the general formuldim(M £) = dim(£) — dim(£ N NOJ‘:V decomgose, as_in (6), th2e QDBy|r as Q\D(_U:%) =

ker(M)), with M a linear map and: a linear subspace of its [ (4/dt)vs|” — |F=(d/dt)us|* with rowdim(F™) =

domain, we, therefore, obtain o_(Qw| ). Define, in analogy with (8), the controlled be-
havior in the singular case to B¢ = N + F—, with 7~ the

. ) . ) . Nags controllable part of the behaviduws € M|F~(d/dt)vs = 0}.
dim(La N ker(Q)) = dim(ker(R)) = dim <kel (M )) " We now prove thak e S‘gomiatisfies |i)/\/ (C/IC )c P, ii)}IC
is X-dissipative oR_, and iii)m(K) = o (X). The proofs of i)
Mhd i) are completely analogous to the regular case. The proof
of iii) is more difficult. Indeed, the fact thaM is in general
: ) _ a strict subset o N A= makes it more unlikely thai(X
dim(La N ker(@)) = a(N) +a(P) + () +p(P) J has a sufficiently high input cardinality, and a delicate e(:st?mate
—rank(R) — dim <ker <[ D) is required to establish this. Lemma 17 yield$C) > m(N +
G M) — o_(Qw|rm). The last term has already been bounded in
Substituting the results of these calculations in (15) yields ~ (21) byo_(Q[(qr)+), Which, inturn, was bounded in (19). We
now obtain a suitable bound fafA + M) by obtaining a lower
o (QligLay~) =nN) —mN NN+=) bound form(M). We do this by invoking the driving variable
+o_(X) + rank(K) — rank(R). (19) (16) and output nulling representation (17) st and P. By
using the relation between driving variable representations and

Since the dimension of the kernel of a matrix equals its colu
dimension minus its rank, this yields

With the definition ofl_g we still have, usind_¢ C u_i output nulling representations of a behavior and its orthogonal
complement, we obtain
7 (Qlo1y) <o (Qlo-us ) = (Qliar o)+ a
(Qle-Ly) Q7'Lx (Qlorar+) %ZN:_A/TW,NJFCJTVEU’ 0= Bizn — DiSv
where@ ! denotes the set-theoretic inverse. Of course, we also

as a driving variable representation &f+>. With » defined
by z = (zxr, zp), this yields the output nulling representation
. L) = # ) (d/dt)z = —FT2 + H'S0,0 = GT2 — JTSv of PN N L=,
7 (@ulpanss) = (Q7ILs) Note thatM consists exactly of thosee P N AL= that yield
The difficulty is that in the singular case, we may however nétt) = (zx, zp)(t) € Kforallt € R. Thisyields the following

still have

have output nulling representation @#1:
d
o(Q*|Ly) = o(QQ~'Ly). 200 Ky = -F'KY 4+ HSw, 0=GTKY —J"Sv. (22)
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This representation allows to estimaiéA) using the fol- VIIl. PROOFS OFAUKXILIARY RESULTS
lowing proposition.

Proposition 19: Let (d/dt)r = Az + Bw, 0 = Cx + Dw
be an output nulling representation®f € £°. Thenm(B) >
w—rank([C DJ]).

The estimate of this lemma applied to (22) immediately yiel%

In the interest of brevity, we often limit ourselves to giving
the outline of the proofs.

Proof of Proposition 2:Factor® = FIFy — FTF_,
ith (rowdim(F_), rowdim(F)) = (¢_(®), o (®)). Then
a(w) = |Frw|* — |F_w|?. ConsiderB’ = {w € B|F,w =

K —-FTxg HTY 0}.Bylemma17m(B’) > n(B) — o (). If n(B’) > 0, there
m(M) > g - <rank<[o GTK _,]TED - rank(K)) exists0 # w € B’ ND. For thisw, we also have’,w = 0.
Sincecol(F_, F ) is nonsingular, this yields_w # 0. Hence

since the second term on the right-hand side equals the numgg%r(w) = —|F_w|? < 0. This contradiction establishes the
of static relations in (22): the total number of relations iWOlVi”Sroposition.
(v, 2/, (d/dt)2") minus those that contaifd/dt)z". In terms Proof of Proposition 3: See [15, Prop. 5.4 and Th. 6.3].

of the matrix R introduced in (18) this yielda(M) > ¢ —

(rank(R)—rank(K)).Combining this with the |dent|m(/\/+ follow by Considering the BDFL@(wl, w2) as a QDF on

M) = n(N) +n(M) — n(A"N M), we obtain B, x By, and applying [15, Th. 3.1]. Finally, assume that
m(/C) Zm(N+M) _ 0—(Q\P|M) (d/dt)L\pl (wl, wg) = (d/dt)L\pz (wl, wg) for all w1 € %1

and wo, € ‘B,. Since‘B; and ®B, are controllable, they
Zn(N) + ¢ — (rank(R) — rank(K)) —mN OM) o e represented using observable image representations,

Proof of Proposition 4:The (f) and Enly if) part

—n(N) + N NN) - o_(E) i.e., there exists left-invertibl@/;, M, € R***[¢] such that
+ (rank(R) — rank(K)) B = im(M;(d/dt)) and B, = im(My(d/dt)). So, ( +
>q— o_(3) +mN NNL=) — (A N M) MM (QOW1(C, mMa(n) = (¢ + m)M{ (Q)W2(C, n)Ma(n).

Therefore, M (()W¥1(¢, n)Ma(n) = M ({)W(¢, n)Ma(n),

>qg—o_(X)= b)) . ; ;
Zq-0-(¥) = o (¥) which proves “essential” uniqueness.

where we used that(A' N A=) > m(A N M), since Proof of Proposition 6: For the cas& = €>°(R, R"), see
M C N+=. Thus, we gein(K) > o, (). Combining this [15, Th. 5.7]. The general case can be reduced to this one by an
with Proposition 2 we obtain(K) = o4 (%) observable image representationf®f

This completes the proof of Theorem 5 in the singular case.  Proof of Proposition 9: We leave the proof of this intuitive
result to the reader.

C. Proof of Theorem 7 Proof of Proposition 10: This result is proven in [9, Th.
This theorem is an immediate consequence of the main resﬁllz, I

and the inequalitie®q, (v1) < Qgewr (vy) forallv, € A, and _Proof of Cor<_)llar_y 1_1: The corollary stgtes that the be-
_ PN havior B; x B, is dissipative (lossless) with respect to the

Q(I)lnf (UQ) < Q@ B (112), for all vo € P+. -
Pt F supply ratew! ®w,. Now apply Proposition 10.

D. Proof of Theorem 8 Proof of Proposition 12:% e £ . admits a full

n(KK)Xv[e] i - row rank kernel representatioR(d/dt)w = 0 and an ob-

Let X € R [€] induce a minimal state map forgenaple image representation = M(d/dt)e. It follows

K. It can be shown that sincgcol(Xu(d/dt)vi,0) + inap,./ — 'R (—d/dt)¢ is an observable image rep-

K#col(Zy(d/dt)Svs, Xp(d/dt)vs)|% < |vi + vs]d for
vy € N, vg € F~, there exists a matrik = LT e Rr(K)xn()
such that forv; € N, v € F~

resentation ofBle. Let (¢, n) = MT(Q)®M(n) and
®"(¢,n) = —R(—=¢)®~TRT(—n). Reference [15, Th. 10.2]
yields [T Qq/(¢)dt > 0forall £ € D(R, R®)). Equiv-

col <X/\/ < % ) o, 0) alently, [ Qqr(¢)dt > 0 for all £/ € D(R, R,

Consequently,8 is &-dissipative if and only if8B1¢ is
d d 2 (—@)-dissipative. Part 1 follows.
+K#col <ZN <%) Yz, Xp <%) U3) ’ By [15, Th. 6.4],B is ®-dissipative oRR_ if and only if there
2 K existsK = K > 0 such tha{X (d/dt)w|3, is a storage func-
- ‘X <i> (v1 + v3) tion. By proposition 12;-|Z(d/dt)®w’|3, _, is then a nonposi-
dt L tive storage function fof3®+ as a (- ®)-dissipative system. By
This implies (d/dt)| X (d/dt)o]2 < [v]3 for all v € K, prqpogition 3, this implies thaB = is (—®)-dissipative orR . .
so | X (d/dt)v|% is a storage function fokC. Using ¥-dis- This Y'e"?'s part 2. . )
sipativity of £ on R_, m(K) = o.,(Z), and proposition __Part3 in the constant case immediately follows from P_ropo-
12, yields L > 0. It follows that n(K) = rank(L). sition 12. Parts 4 and 5 follow from [15,.Th. 6.4 and 10.2 iv].
But rank(L) is less than or equal to the rank of the Proof of Lemma 13:L¢tL beqmatnx offull column rank
QDF  |col(Xar(d/dt)v1, 0) + K~tcol(Z(d/dt)Sus, such thatim(L) = L. Taking a suitable basis &", we may

Xp(d/dt)us)|% for v, € N, vs € F—. This rank is bounded assume that
by n(NV) + n(P), the dimension of{. This yields the bound

onn(K). @= [%1 8} ’ L= []](ﬂ
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with Q; = QY nonsingular. LetL, be a matrix such that row rank, this rank is equal teowdim(H,;U/; M%) = m; =
L¥L, = 0 andrank(L,) + rank(L,) = rank(Q). Then itis m(B)—m(B N BLe). Asimilar argument applies to the largest
easily verified that storage functionsvr,
_ 0L, 0 Finally, by Proposition 9% + B1+ = €>°(R, R") is equiv-
(QL)* = im <[ "0 ? ID : alent tom(8 N B+¢) = 0.

Proof of Lemma 17:Let R(d/dt)w = 0 be a kernel
According to [10, lemma 12.2], o4 (LTQ1L1) + representation of3. Then a kernel representation @’
o (L¥QT Ly) = 04(Q1) — (vank(L;) — rank(L¥Q1L1)) is given by R(d/dt)w = 0, F(d/dtyw = 0. This implies

Using the fact that the rank of a symmetric matrix equals th€%’) = rank(col(R, F)) < rank(R) + rank(F) <
sum of its negative and its positive eigenvalues, we obtai®) + rowdim(F'). Thereforem(8’) = w — p(B’) >
o (LEQT Ly) = o_(LTQ.L1) 4+ 04(Q1) — rank(L;). w— p(B) — rowdim(F) = m(*B) — rowdim(F).
In this equality we obviously haver, (Q1) = o4(Q), Proof of Lemma 18:First note that, in general, ) =
o (L¥Q:L)) = o_(QL), rank(L;) = dim(L) — Q¥ € R and if V C R" is a linear subspace,
dim(ker(@) NL), and finally then o_(Qly) = o_(VTQV), the number of negative
T o1 eigenvalues of VI'QV. Also note that the assumption
o+(L2 Q1" L2) £ C im(Q) implies thatQ—1¢ = Q*£ + ker(Q). Let
B [Qlng O}T {Ql 0} [Qlng 0} L be any matrix such thatm(L) = £. Then we get
-7 0 I 0 0 0 I 0-(Qlg1z) = 0-(Qloretra@) = 9-(Qlors) =
— O’+(Q|(Q|]_)J') O——((C%#L)TQ(Q#L)) = U—(LTQ#QQ#L) = .
o_(LTQ¥L) = o_(Q%|s). In the same way, we obtain
This proves the first part of the lemma. The second partis proven(Q|g-12) = o (Q%|2).
in a similar way. Proof of Proposition 19: Assume without loss of gener-

Proof of Lemma 14:See, for instance, [7, section 3.6]. ality that[C' D] is of full-row rank. Denote this rank by.
Proof of Lemma 15:We omit the straightforward proof. Consider the input-state-output systédidt)z = Az + Bw,
Proof of Proposition 16:Let w = M(d/dt)¢ be an ob- y = Cz+Dw. Elimination ofz yields P(d/dt)y = Q(d/dt)w,
servable image representation®f and conside®’(¢, ) = With P square andlet(P) # 0, and@ € R**"[{]. ThenB

MT(¢)®M(n). Note thatm(B) = rowdim(®'). Denote has kernel representatigp(d/dt)w = 0, whencedim(B) >

o' (£) = (¢, €). Clearly, 99/ (d/dt)f = 0, w = coldim(Q) —rowdim(Q) =w —p = w — rank([C D]).

M(d/dt)¢ is a representation of3 N BLe. Hence,

n(B N BLte*) = n(B) — rank(9d’). By &-dissipativity IX. REMARKS

of B we havedd’(iw) > 0 for all w € R, hence there ) . ) )

existsF' € RM®B>a(B)[¢] such thawd! (&) = FT(—¢)F(¢). In this section, we deal with some of the assumptions that
Let U(¢) be any unimodular matrix such thaf(¢) = have been made on the plant, the controlled behaviors, the con-

[F1(&) 0]U(&), with F; full column rank, saym;. Note that trollers, and the signal spaces.
m; = rank(9®), som; = n(B) — m(B N B-Le). We then have 1) Controllability: Throughout we assumed, where conve-
T nient, that the systems are controllable. The main reason for this
ad(e) = UT(—¢) {Fl (=&F (&) 0} Ue). is that—at this point—we have no satisfactory definition of dis-
0 0 sipativeness for uncontrollable systems. However, for the syn-
; hesis problem, there aael hooways of dealing with lack of con-
By [15, remark 5.13]¥** can be computed as follows. FactoF b o
F?E—S)Fl(é’) _ HlT](—S)Hl(S) with JFL)I € Rrxm1[¢] almost trollability. We explain this in the case th@ts(v) = |d|? - |f|2.
Hurwitz [i.e., nonsingular and with all the roots dét(H) in AssumeN, P € £°, N C P, given. Consider finding a

: K € £7 such that: i)V ¢ K C P;ii) m(K) = dim(d); iii)
the closed left half of the complex plane]. Next, define the controllable part of is X-dissipative orR_, and iv) K is

H(E) = Hi(¢) 0 0(e) stabilizable (meaning that for alle K there exists’ € K with
0 0 ' v'(t) — 0fort — oo, such that A v/ € K). These conditions
Then 9¢/(¢) = HT(—€)H(¢). Define Wi(C, ) = are equivalent to f)implementability ofC (no controllability

, S I ¥ assumptions are made in theorem 1Y, im) X, d is input, f
gfb J(é’ @henffym(f)f(ﬁ)f ((g);f \Pzr)lf (Igezj)\;\[/[ Ltzz)air:fitéz\ée{r?g is output, and the transfer function froéto f in K, Gg. ¢,

smallest storage function fdB as an®-dissipative system. satisfies)| Gy s|ln.. <1, andiily (d, f) € K, anddlg, =0

2

This implies that for ally € B we have implies f(t) — 0 for¢t — oo. In other words, the controlled
system is (externally) stable.
5  d d L fd The above problem is solvable if and only if i) the conditions
wls = 7 Quine (w) = ‘H <@> M <@> w of theorem 5 hold withV" andP replaced by their controllable

d d d 2 part, and ii)(d, f) € N andd|g, = 0implies f(t) — 0 for

= ‘Hl <—> U, <—> ME <—> w t — oo. K can then be obtained by first constructingg@based

dt dt dt on the controllable parts &f, P, and takingC = o+A'. Note
wherel/; is the polynomial matrix consisting of the fitst rows that a stability condition ooV enters, but stabilizability of
of U. Thus, the rank of this QDF of8 is equal to the rank does not. However, when considering implementability by reg-
of the polynomial matrixH, Uy M. SinceH,U; M has full ular or feedback (see [14]) controllers, a more careful choice of
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the autonomous part &f needs to be made, and stabilizability
of P does enter.

2) SmoothnessThroughout, we assume that the system tra-
jectories are ir€>°, even, when dealing with dissipativeness, in
B N D. Assuming€> solutions of the differential equations,
instead of, say£¥° solutions, avoids mathematical technical- [3]
ities, as dealing with distributions (also in the QRRhat are
not germane to our purposes. Requiring in the definition of dis- 4]
sipativenesgfooo Qo(w)dt > 0forw € B N D, instead of
a broader class of solutions [withs (w) properly interpreted] [5]
means that systems are—but only in principle—more likely dis- [g]
sipative. Hence the conditions of theorem 5 are more likely sat-
isfied. As explained in the context of disturbance attenuation, We,
nevertheless obtain that the transfer functio inasH..-norm
< 1. As is well-known, this frequency domain implies contrac-
tiveness ofC for d € Lo, for periodicd, etc. [

3) Algorithms: The results of this paper open up many al- [g]
gorithmic questions: how to verify dissipativeness, how to con-
struct storage functions, how to obtain a convenient represent&-
tion of K or C starting from a (for example, general latent vari-
able) representation &%,;;). In an earlier draft, algorithms were [11]
discussed, but they have been deleted because of length limita-
tions. We will deal with algorithms in a sequel paper. [12]

4) Nonlinear SystemsGeneralizing the results on imple-
mentability, and on the synthesis of dissipative systems to nor’!
linear systems appears to be a grand challenge, but beyond the]
scope of the present paper. The question whether there exists a
K € £7 that solves our synthesis problem (with, P € £7) [15]
whenever there exists any (nonlinear, time-varying, etc.) such
K, appears more accessible. It is easy to seeAthatust still
be dissipative, but how to conclude conditions B#= from
K C P, is more elusive.

(1]

X. CONCLUSION

We have presented a complete solution, in the context of ¢
trollable linear differential systems of making a plant dissipé
tive by attaching a controller to it. In our approach, the plant
specified in a representation-free manner by its behavior. T

dition involving storage functions.
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