
 

 

 University of Groningen

Synthesis of Dissipative Systems Using Quadratic Differential Forms
Willems, Jan C.; Trentelman, H.L.

Published in:
IEEE Transactions on Automatic Control

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2002

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Willems, J. C., & Trentelman, H. L. (2002). Synthesis of Dissipative Systems Using Quadratic Differential
Forms: Part I. IEEE Transactions on Automatic Control, 47(1), 53-69.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 29-10-2022

https://research.rug.nl/en/publications/3423df43-3a7c-4fb8-a25c-5e7c608079e1


IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 47, NO. 1, JANUARY 2002 53

Synthesis of Dissipative Systems Using Quadratic
Differential Forms: Part I

Jan C. Willems, Fellow, IEEE,and H. L. Trentelman, Senior Member, IEEE

Abstract—The problem discussed is that of designing a con-
troller for a linear system that renders a quadratic functional
nonnegative. Our formulation and solution of this problem is com-
pletely representation-free. The system dynamics are specified by
a differential behavior, and the performance is specified through
a quadratic differential form. We view control as interconnection:
a controller constrains a distinguished set of system variables, the
control variables. The resulting behavior of the to-be-controlled
variables is called the controlled behavior. The constraint that the
controller acts through the control variables only can be succinctly
expressed by requiring that the controlled behavior should be
wedged in between the hidden behavior, obtained by setting the
control variables equal to zero, and the plant behavior, obtained
by leaving the control variables unconstrained. The main result
is a set of necessary and sufficient conditions for the existence of
a controlled behavior that meets the performance specifications.
The essential requirement is a coupling condition, an inequality
that combines the storage functions of the hidden behavior and
the orthogonal complement of the plant behavior.

Index Terms—Behaviors, controller implementability, coupling
condition, dissipative systems, hidden behavior, quadratic differ-
ential forms, storage functions.

I. INTRODUCTION

T HE subject of this paper is shaping the behavior of a linear
system by attaching a controller to it. Conditions are de-

rived that make it possible to render the system dissipative, for
example, contractive, or passive. This problem is basically what
is usually called the -problem. We show that it can be refor-
mulated in an elegant way as that of finding a behavior that is
wedged in between two given behaviors and makes a quadratic
differential form nonnegative. The “upper bound” results from
the fact that the controlled behavior must be physically realiz-
able, and hence included in the (unconstrained) plant behavior.
The “lower bound” expresses in a subtle way the restriction that
the controlled behavior must be implementable by a controller
that acts through the control variables only. The conditions for
solvability use the theory of dissipative systems and their asso-
ciated storage functions. The surprising aspect of the main result
is a coupling condition among certain storage functions, more
than reminiscent of the clever coupling condition between the
solutions of algebraic Riccati equations that first appeared in
the classic paper [2]. Our solvability conditions also require the
dissipativeness of the hidden behavior and of a suitable orthog-
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onal complement of the plant behavior. These conditions feature
prominently also in [4]–[6].

We will cast the development completely in the language
of behaviors and the associated quadratic differential forms.
This not only allows a clean problem statement, but it results
in a formulation that is representation-free and flexible in the
algorithms that can be used for verifying the existence and
the specification of the controller. Other references where the

-problem in a behavioral setting has been discussed before
are [4], [5], [1], [11], and [10].

A frequently asked question is what the arguments are of ap-
proaching problems from a behavioral point of view. The ad-
vantages are many. Undoubtedly the most important one is that
since the concepts and ideas are representation-free, they allow
to treat a wide variety of model classes, more directly ema-
nating from from modeling. In particular, they allow to deal
with state space models and transfer functions as special cases
of a more general model specification. Behaviors are also much
better suited for treating system interconnections. The signal
flow graph philosophy that underlies input–output thinking is
actually inappropriate for many physical interconnections, for
instance for electrical circuits, mechanical systems, fluidic sys-
tems, etc. The present paper uses quadratic differential forms
in performance criteria, thus also showing what is the appro-
priate notion for performance specifications of polynomial ma-
trices for system models. In summary, both as a mathematical
framework, as well as for dealing with physical systems, the
behavioral point of view is simply a richer and more rational
setting. As a consequence of this, behavioral concepts are also
more easily generalized, witness the recent flurry of activity in
this area aimed at PDEs.

A few words about notation. We use the standard notation
n etc. When a dimension is not specified (but, of

course, finite), we write n , etc. We typically use
the superscript (for example in w) when generic elements of
that space are denoted by. The set of real one-variable poly-
nomials in the indeterminate is denoted by and real ra-
tional functions by , with obvious modifications for vec-
tors, matrices, and two-variable polynomials. The set of infin-
itely differentiable maps from to n is denoted by n ,
and its subspace consisting of the compact support elements by

n . The set of square integrable maps fromto n is de-
noted as n , with obvious modifications for other (co-)
domains. Sometimes, when the domain and co-domain are ob-
vious, we simply write . The -norm of a matrix

is defined as .
The operator col stacks vectors or matrices; dim denotes dimen-
sion, and rowdim, coldim denote, respectively, the number of
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Fig. 1. Plant and controller configuration.

rows or columns of a matrix; forms the
block-diagonal matrix with on the diagonal.

The proofs are collected in Sections VII and VIII.

II. L INEAR DIFFERENTIAL SYSTEMS

We have discussed dynamical systems from a behavioral
point of view extensively before [7], [13], [14]. We restrict
our background remarks in the paper in order to introduce the
required concepts and notation and to ensure readability and
continuity of the flow of ideas. Also, we introduce the required
background material only at the point that it is needed to allow
smooth reading.

A subset defines a linear time-invariant dif-
ferential system (briefly, adifferential system, or adifferential
behavior) if there exists a polynomial matrix
such that . By
we denote the set of linear time-invariant differential systems,
and by w those with variables [in other words, with behav-
iors w ]. This class of systems is a very general
one, with nice mathematical structure. It includes finite-dimen-
sional constant linear state systems, systems described by ra-
tional transfer functions, or by linear differential equations with
auxiliary (latent) variables, etc. Important is to note that while
we define as the kernel of a differential operator,
is oftennot specifiedin this way. We speak about akernel rep-
resentationwhen w is represented by ,
with w , the represen-
tation through which we have definedw. Another representa-
tion is alatent variable representation, defined through polyno-
mial matrices and by , with

w such that
. This is the type of model that usually results from

first principles modeling, with the s the vector of variables
that the model aims at, and thes the vector of auxiliary vari-
ables introduced in the modeling process (for example state vari-
ables). The behavior is then called themanifestbehavior, and

w ,
thefull behavior. The fact that w if w l, is a di-
rect consequence of the all-importantelimination theorem. This
states the following. Let w w . Define

w

for some w

Then w. The set w is hence closed under intersec-
tion, addition, and projection. Moreover, for w w ,

w implies w , and w implies
w (this inverse is a set theoretic inverse).

III. CONTROLLER IMPLEMENTABILITY

Consider the linear time-invariant differential plant shown
in Fig. 1. It has two types of terminals: terminals carrying
to-be-controlled variables and terminals carryingcontrol
variables . Assume that there areto-be-controlled variables
and control variables. In the classical controller configura-
tion, the to-be-controlled variables combine the exogenous
disturbance inputs and the to-be-controlled outputs, while the
control variables combine the sensor outputs and the actuator
inputs. A feedback controllermay be viewed as a signal
processor that processes the sensor outputs and returns the
actuator inputs. It is the synthesis of such feedback processors
that is traditionally viewed as control design. However, we
will look at control from a somewhat broader perspective, and
we consider any law that restricts the behavior of the control
variables as a controller. The motivation of this alternative
formulation of control is two-fold. The main motivation is a
practical one: many controllers, for example, physical devices
as dampers, heat insulators, matched impedances, etc., simply
do not act as signal processors. For a more elaborate discussion
of this point of view, we refer to [14]. The second motivation
is of a theoretical nature. We will see in Theorem 1 that our
formulation allows to view control as the design of a behavior
that is wedged in between two given behaviors. This is a
strikingly simple and appealing formulation indeed.

We now turn to the question what controlled behaviors can be
achieved. We refer to this problem ascontroller implementation.
The problem may actually be considered as a basic question in
engineering design: a behavior is prescribed, and the question is
whether this behavior can be achieved by inserting a suitably de-
signed subsystem into the overall system. Before the controller
acts, there are two behaviors of the plant that are relevant: the be-
havior v c (called thefull plant behavior) of the vari-
ables and combined, and the behavior (called theplant
behavior) of the to-be-controlled variables(with the control
variables eliminated). Hence

v c

satisfies the plant equations
v c

such that

By the elimination theorem, v. The controller restricts the
control variables and (assuming that it is a linear time-invariant
differential system) is described by acontroller behavior
c. Hence

c satisfies the controller equations
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After the controller is attached, we obtain thecontrolled be-
havior defined by

v such that

Note that, again by the elimination theorem, v. We say
that implements if the above relation holds between
and .

We now discuss the following question:

For what v does there exists a
c that implements

This question has a very simple and elegant answer: it depends
only on the manifest plant behaviorand on the behavior con-
sisting of the plant trajectories with the control variables put
equal to zero. This behavior is denoted by, and is called the
hidden behavior. It is defined as

Let v c be the full plant

behavior, v the manifest plant behavior,

and v the hidden behavior. Then v is

implementable by a controller c acting

on the control variables if and only if

Theorem 1 shows that can beanybehavior that is wedged
in between the given behaviors and . The necessity of this
condition is quite intuitive: states that the controlled be-
havior must be part of the plant behavior. Logical, since the con-
troller merely restricts what can happen. The condition
states that the behavior must remain possible, whatever be
the controller. This is quite intuitive also, since the subbehavior
of the plant behavior that is compatible with , hence when
the controller receives no information on what is happening in
the plant, must remain possible in the controlled behavior, what-
ever controller is chosen. This observation has important conse-
quences in control: in order for there to exist a controller that
achieves acceptable performance, the hidden behavior must al-
ready meet the specifications, sincethere is simply no way to
eliminate it by means of control. The fact that the hidden be-
havior must meet the control specifications has been observed
before in a context for example in [3], [4], and [6]. A note-
worthy special case is . This means that the to-be-con-
trolled variables are observable (in the precise way this term is
used in the behavioral context) from the control variables. We
refer to this condition asfull information control. In this case,
any sub-behavior v of is implementable.

Theorem 1 reduces control problems to finding the controlled
behavior directly. Of course, the problem of how to actually
implement needs to be addressed at some point. In particular,
the question when a particular controlled behavior can be imple-
mented by a feedback processor remains a very important one,
and will be discussed in Part II.

IV. M AIN PROBLEM FORMULATION

In this section, we state in a self-contained form, the problem
treated in this paper and the main result. The control specifi-
cation is expressed by a quadratic functional in the to-be-con-
trolled variables whose integral needs to be nonnegative, ex-
pressing, for instance, disturbance attenuation and stability of
the controlled system.

A. Preamble

In order to formulate this problem mathematically, we need
a few more preliminaries about differential systems, quadratic
differential forms, and dissipative systems. We have taken a few
shortcuts with regard to the definition of behaviors, dissipativity,
storage functions, etc. In particular, the solutions of the differen-
tial equations under consideration are assumed to be infinitely
differentiable. We also assume that the systems that we deal with
(the plant, the controlled behavior, the hidden behavior, etc.) are
controllable. Next, when dealing with infinite integrals, we often
assume, to avoid convergence issues, that the trajectories have
compact support. For this reason, it is convenient to introduce
the notation . These assumptions
are made partly for convenience of exposition. We will briefly
mention later how our results should be adapted when we con-
sider solutions in , when the controllability conditions are
not met, and when we include trajectories inin the definition
of a dissipative system.

We call controllable if for all , there
exists a and a such that for

and for . Denote the controllable
elements of w by w . For controllable systems
(only), specifies uniquely: is the -closure
of if and only if is controllable.

Behaviors are described by a differential equa-
tion of the form , typically with

. Mathematically, is then called an
under-determinedsystem of equations. This results in the fact
that some of the components of w are un-
constrained. The number of unconstrained components, an in-
teger “invariant” associated with , is called theinput cardi-
nality. It is defined by the map that associates with

, , its number of free, “input,” variables (“input”
can be interpreted intuitively in the usual sense see [7] and Sec-
tion VI-A). It is easily proven that the system w described
by has input cardinality .

We use the abbreviations BF for “bilinear form,” QF for
“quadratic form,” BDF for “bilinear differential form,” and QDF
for “quadratic differential form.” QFs play an important role
in linear system theory: as performance criteria, as Lyapunov
functions, etc. In the context of behavioral differential systems,
quadratic functionals are most naturally formulated as BDFs
and QDFs. These notions are key elements in the behavioral
approach to control. They are now briefly introduced (more
details can be found in Section VI-C and in [15]). In the present
section, we only consider the elements that are needed in the
formulation of the main problem that we discuss in this paper.

The QF on induced by the matrix
is denoted by . When , the
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subscript in is usually deleted. Denote the signature of
by , with and

the number of negative and positive eigenvalues ofrespec-
tively. Of course, (see Section VI-C
for the notion of the signature of a QF). The -norm of

, , is denoted by .
Note that single bars refer to norms on Euclidean spaces,
while double bars refer to norms on . BF’s and QF’s in the
setting of differential systems are parametrized very effectively
by two-variable polynomial matrices. Let w w ,
written out in terms of its coefficient matrices as the (fi-
nite) sum . It induces the map

w w , defined by

This map is called thebilinear differential form (BDF)
induced by . When , induces
the map w , defined by

, i.e.,

This map is called thequadratic differential form (QDF)in-
duced by . Denote as . Note that when con-
sidering QDFs, we may as well assume thatdefining is
symmetric, that is , i.e., for all .
Indeed, entails symmetry without
loss of generality.

Let w w and w . The system is
said to bedissipative with respect to , (briefly, -dissipative)
if for all . It is said to be
dissipative on with respect to , (briefly, -dissipative on

) if for all . Dissipativity
on is analogously defined. Obviously, dissipativity on
or implies dissipativity. As we shall see in Section IV-C,
dissipativity on combines dissipativity on the whole of
with stability.

For an intuitive interpretation, identify with the
power, the rate of energy, delivered to the system at time, and

with the total net energy delivered to the system
by taking it through the history . Dissipativity states that the
system absorbs energy during any history inthat starts and
ends with the system at rest. Dissipativity on states thatat
any timethe net flow of energyup to that timehas beeninto the
system.

Note that the definition of dissipativeness makes perfect sense
for QDFs that involve derivatives in the variables. However, in
this paper we only consider dissipative systems with respect to

with constant w w. Note that in this case
. We have limited our definition of dissipative-

ness to controllable systems. Obtaining a satisfactory general-
ization of this notion to noncontrollable systems (yielding for
example a nice synthesis for passive electrical circuits) is still a
matter of ongoing research.

B. Problem Formulation

Equipped with the notions of the behavior of a differential
system, of the input cardinality, of the signature of a symmetric
matrix, and of a dissipative system, we are able to formulate the
mathematical problem that we will solve in this paper.

The QDF with v v defines theweighting
functional that enters in the control performance. Denote by

its signature. The problem that we
solve in this paper may succinctly be formulated as follows:

Let v , and v v nonsingular;

is called theplant behavior thehidden behavior

and theweighting functional The problem is to

find v (called the ) such

that:

implementability

is -dissipative on dissipativity

liveness

We now explain informally the interpretation of these condi-
tions. The first condition has been explained in Theorem 1. The
inclusion signifies that the controlled behavior is physi-
cally possible: the controller merely restricts the plant behavior.
We view this asrealizability. The inclusion is more
subtle. It means that the controlled behavior is implementable
by a controller that acts through the control variables only.

That the controlled behavior must be -dissipative is the
basic control design specification. As is well-known, by suit-
ably choosing , it implies disturbance attenuation, or passiva-
tion. The fact that -dissipativity is required to hold on , and
not just on , implies stability of the controlled behavior (see
Section IV-C).

The liveness requirement states that components of
must remain free in the controlled behavior. It expresses that

the controlled system must still be able to accept free exogenous
inputs: the controlled behavior is not allowed to restrict the ex-
ogenous inputs directly, it only serves to shape the influence of
the exogenous inputs on the endogenous outputs. The following
proposition shows that the liveness condition is equivalent to the
requirement that in the controlled behavior there are as many
free variables as possible.

Proposition 2: Let w and w w be
nonsingular. Assume that is -dissipative. Then

.
The problem statement can thus be rephrased as

When does there exist there a controlled behavior

that is -dissipative on and of maximal input

cardinality?
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C. Examples

We now illustrate the problem formulation by means of im-
portant examples.

1) Disturbance attenuation. In the important case of
-disturbance attenuation we have

with exogenous disturbance inputs, endogenous
to-be-controlled outputs, and ,
whence d f . In this case v is

-dissipative on and if and
only if in , is input, is output and the -norm of
the transfer function from to in , , satisfies

(see Section VI-A for a definition of
the notion of transfer function in a behavioral setting,
and Part II for a proof of these claims).

2) Passivation.A similar story holds, with disturbance at-
tenuation replaced by passivity, when ( for
“effort,” for “flow”) and , with
the “power” flowing into the plant through theth ex-
ogenous port or terminal, whence

e

e . In
this case v is -dissipative on , and

if and only if there is a component-wise
input–output partition of such that for
all , either , or , is input, and the other is
output, and the transfer function fromto in , ,
is positive real, i.e., for all

, with (see Part II for a proof of these
claims).

Of course, in these examples, dissipativity onleads
to stability robustness for terminations along the-ter-
minals that satisfy the small gain or the passive operator
conditions. These well-known implications to stability ro-
bustness of controlled systems is one of the main motiva-
tions of the problem discussed in this paper.

3) Frequency weighting. Another performance spec-
ification that fits in our problem formulation is to
consider , with and related to the “phys-
ical” exogenous input disturbance and endogenous
to-be-controlled output by ,

, with and square,
nonsingular, and Hurwitz. The dynamical relations
between and , and between and allow frequency
weighting, while the Hurwitz assumptions allow to
conclude from the stability (that
will result from dissipativity on ), the desired sta-
bility of the controlled system.
In passivation, such QDF’s with derivatives allow to
consider expressions for the power as . These
occur in mechanical systems, with the force, and
the position, and the to-be-controlled variables.
In the present paper, we have limited our attention to
QDF’s in the performance of the controlled system of
the form with a constant matrix. Of course, it is of
interest to be able to treat performances of the form
with v v directly, without rewriting
this QDF in terms of a constant matrix (which is always
possible, see Section VI-C). We will deal with this in a
sequel paper.

V. MAIN RESULTS

In order to state the solution to the problem formulated above,
we need a couple of more preliminaries: the notion of a storage
function, and orthogonality of behaviors.

A. StorageFunctions

Let w, w w , and
w w . Then is said to be astoragefunction for

with respect to the supply rate if the dissipation inequality
holds for all . For ,

means . There is an immediate relation
between dissipativity and the existence of a storage function,
with its sign related to half-line dissipativity.

Proposition 3: Let w and w w .
Then is -dissipative if and only if there exists
w w such that is a storage function for with respect

to the supply rate . Furthermore, is -dissipative on
if and only if can be taken to be nonnegative on, i.e.,

for all , and -dissipative on if and only
if can be taken to be nonpositive on.

The theme of the above proposition is a recurrent one: it iden-
tifies a “global” statement (dissipativity: an inequality involving
an integral over ) with a “local” statement (the dissipation in-
equality: an inequality that ispoint-wiseon ). Intuitively, the
proposition states that a system globally dissipates supply along
any trajectory on the whole of if and only if this dissipation
can be brought into evidence through a storage function whose
rate of increase does not exceed, point-wise in time, the rate
of supply delivered to the system. The storage function is far
from unique, but much is known about the set of possible storage
functions. We will return to this in Section V-D.

B. Orthogonal Behaviors

We also need the orthogonal complement of a controllable
behavior, with orthogonality viewed with respect to a BDF in-
duced by a constant matrix. Let w w, and
w and are said to beorthogonal with respect to

(briefly, -orthogonal) if for all
and . We denote this as .

Let w , and define the -orthogonal complement
of as

w

for all

It is easy to see that w . When w, we denote
simply as . Note that ( 1

denotes the set-theoretic inverse), and, ifis nonsingular, then
.

In order to state our main result, we need the following propo-
sition.

Proposition 4: Let w w, and w . Then
there exists a w w such that

for all and , if and only if
. Moreover, is essentially unique, in the sense
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that if w w both satisfy this equality, then
for all and .

The idea of the above proposition is again the equivalence
of a “local” and a “global” property, this time for orthogo-
nality. We call the BDF (or simply ) of this proposition,

-adapted.

C. Main Result

Equipped with these additional preliminaries, the notion of a
storage function and existence of an adapted BDF, we are able
to state the solution of the problem formulated in Section IV-B.
This problem allows an explicit and representation-free solu-
tion, involving the storage functions associated with dissipative
systems in a subtle way.

The controlled behavior
v described in the problem formulation exists

if and only if the following conditions are satisfied:

is -dissipative,

is -dissipative,

there exist v v

defining

a storage function for as a

-dissipative system, i.e.,

for

a storage function for

as a -dissipative system, i.e.,

for

and the -adapted BDF

, i.e.,

, for

such that that the QDF

(1)

is nonnegative for all and

Note that the storage functions in (1) are well-defined by the
assumed dissipativeness ofand , and that is
well-defined by Proposition 4, since .

The surprising condition in the above result is the required
nonnegativity of (1). We refer to this condition as thecou-
pling condition. It implies in particular that is nonnega-
tive on , which shows that is -dissipative on , clearly
(since ) a necessary condition for the existence of.
It also implies that is nonpositive on , which in
turn shows that is -dissipative on . It is not dif-
ficult to see that this is also a necessary condition for the ex-
istence of . In fact, it can be shown (see Proposition 12) that

-dissipativity of on combined with , im-
plies that is -dissipative on . In addition,
implies . Therefore -dissipativity of
on is also a necessary condition for the existence of.
As already mentioned, both these elements of the solution are
present in [4] and [5]. What makes (1) a surprising result is
the coupling of and through , thus
strengthening the required nonnegativity of the storage func-
tions and , and coupling the dissipativeness of

and . This condition is analogous to (but a representa-
tion-free generalization of) the remarkable condition coupling
solutions of algebraic Riccati equations that first appeared in
the instant-classic paper [2].

Our main result, Theorem 5, is stated merely as an exis-
tence result. Since storage functions are in an essential way
nonunique, the theorem leaves unanswered which storage
functions yield likely candidates for satisfaction of the coupling
condition (1). Next, we state a result that avoids this drawback,
but, in order to do so, we need some details on the set of storage
functions.

D. The Available Storage and theRequired Supply

As stated in Proposition 3, w is -dissipative if
and only if there exists a storage function . There are many
storage functions. For example, if and both induce
storage functions, then so does their convex combination

for . Important for our aims,
however, is the existence ofextremestorage functions, as stated
in the following proposition.

Proposition 6: Let w and w w ,
and assume that is -dissipative. Then there exist storage
functions and induced by
w w , such that for any other storage function , there

holds for all .
These extreme storage functions are respectively called the

available storage and therequired supply . This
nomenclature stems from the following variational interpreta-
tion as storage functions generated by trajectories that maximize
the supply extracted from, respectively, minimize the supply de-
livered to, a system

where the supremum is taken over all such that
( denotesconcatenation: is defined by

for , and for
), and

where the infimum is taken over all such that .
The supremum and infimum in these expressions should be un-
derstood as follows. We are considering a particular and
would like to find out what and are. Obvi-
ously, using shift-invariance, it suffices to specify
and . These formulas show how to interpret
and : fix the past (or future) of a trajectory to being that of

, concatenate with the future (or past) of any other trajectory
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, and take the supremum (or infimum) over allsuch
that (or ) also belongs to .

E. An Alternative Formulation of the Main Result

We now reformulate Theorem 5 using extreme storage func-
tions

The controlled behavior v described

in the problem formulation exists if and only if the

following conditions are satisfied:

is -dissipative,

is -dissipative,

the QDF

(2)

is nonnegative for all and

where
v v induces the required

supply for as a -dissipative

system,
v v induces the available

storage for as a

-dissipative system,
v v induces the

-adapted BDF

The QDF (2) is uniquely defined on

The main result in its above form is a fully explicit condition
for the existence of the desired controlled behavior, since

, , and can readily be computed from
representations of and . This will be illustrated for the
case that is given in state-space representation in Part II.
Additional computational aspects will be discussed elsewhere,
and are based on LMIs, AREs, and spectral factorization,
and their generalization to behavioral representations and
QDFs. The algorithms form an interplay between one- and two
variable polynomial matrices. Because of length limitations,
we are unable to deal with algorithms here. They will be the
subject of a follow-up paper.

We end this section with a result about the dynamic order of
the controlled behavior. We denote by the dimension of
the minimal state representation of (see Section VI-A).

Theorem 8: Let v , and let v v

be nonsingular. If there exists a controlled behavior v

such that , is -dissipative on , and
, then there exists such awith .

It is easy to prove that . The bound
given above therefore yields, in particular, .
In the full information casediscussed in Part II, we obtain, in
fact, .

VI. BACKGROUND MATERIAL

In this section, we collect the additional background material
that is used in the proofs.

A. More on Differential Systems

We have already discussed kernel and latent variable repre-
sentations. In the proofs we also use image and state represen-
tations. These are now introduced, but first we review the notion
of observability. Assume that the signal space is a product space,
with the first component observedvariables, and the second
component, to-be-deducedvariables. Then is said to be
observable from in w w if

implies . Observability is equivalent to the ex-
istence of w w such that implies

. We call a latent variable system
observableif the latent variables are observable

from the manifest variables in the full behavior . This
is the case if and only if there exists a w such
that implies . Equivalently,
if and only if has a polynomial left inverse, , hence

, in which case
recovers from .

A very useful characterization of controllable systems is that
they are precisely the systems that admit animage representa-
tion, a latent variable representation of the form ,
with manifest behavior . It can be shown
that if and only if it admits an image representa-
tion, in fact, if and only if it admits an observable image rep-
resentation. Thecontrollable partof a behavior is defined as
follows. Let w. There exists w , such
that w , implies , i.e, is the
largest controllable sub-behavior contained in. Denote this
system as . It can be shown that is the closure in
the -topology of .

Let w. Then there exists a permutation of the com-
ponents of the vector

w
of system

variables, such that it can be divided into the two sub-vectors
, with free, and bound. This means that for

any , there exists a finite-dimensional
affine subspace of , such that .
Equivalently, and for

then specify the such that
uniquely. Moreover, , but the

input–output partition itself is not unique. A kernel representa-
tion is aninput–output representation ,

if is square and . We refer to the
matrix of rational functions as the transfer function
from to , and denote it as .

The notion of state occurs naturally in the context of behav-
ioral systems, and has been extensively discussed in [8] and
[12]. Even though it did not enter the problem formulation nor
its solution, it is used forcefully in the proofs. A state system
is a latent variable system, in which the latent variable has the
property of state, i.e., if are such
that , then , the concatena-
tion of and at , belongs to the closure
(in the topology of ) of . A state system is said to be
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(state)trim if for all , there exists
such that . It is said to beminimal if the state has
minimal dimension among all state representations that have the
same manifest behavior. It can be shown that a state system is
minimal if and only if it is trim and observable. In particular,
there then exists w such that
for and such that for all , there
exists such that . The polynomial
matrix w is said to induce astate mapfor w

if is a state for , meaning that the full behavior
has the state property. A state map

is minimal if and only if it induces a trim state representation.
A latent variable system has the state property if and only if

its full behavior can be represented by a differential equation
that is zeroth order in and first order in , i.e., by

, with constant matrices. There
are many, more structured, state representations as, for instance,
a driving variable representation ,

, with an, obviously free, additional latent variable;
an output nulling representation ,

; or aninput-state-output representations
, , , the most popular of them

all. Every system admits such a representation after
a suitable permutation of the components ofand a suitable
choice of the state.

There are a number of importantinteger “ invariants” asso-
ciated with behaviors. In Section II, we already discussed the
input cardinality , i.e., the number of input components, or
free variables. Other integer invariants are the number of mani-
fest variables itself, the number of output components, and the
number of state variables. These are formally given by the maps

defined by

if w

the number of free (input) variables in

the number of bound (output)

variables in

the minimal number of state variables

(theMcMillan degree) of

A state map is thus minimal if and only if
. The input cardinality equals

the number of inputs in every input–output, input/state/output,
or driving variable representation with a minimal number of
driving variables. For , it also equals the number of
latent variables in any observable image representation of.
The output cardinality equals of any kernel represen-
tation of , and the number of outputs in every input–output or
input/state/output representation. Let be the controllable
part of . Then , with

if and only if is controllable. Also,
w , and imply .

The following result is used in the proofs.
Proposition 9: For w,

.
These representations and integer invariants of a behavior

and of its orthogonal complement are closely related. In partic-
ular, is a kernel representation of

if and only if is an image representation
of . Also, is a full row rank kernel repre-
sentation of if and only if is
an observable image representation of . Their driving vari-
able and output nulling representations are related as follows:

, is a driving variable
representation of if and only if ,

is an output nulling representation of .
Their input/state/output representations are related as follows:

, , is an
input/state/output representation ofif and only if

, ,
is an input/state/output representation of . It follows that

, , and . It also
shows that for any n w that induces a minimal state
map for , there exists n w that induces a minimal
state map for , such that

for all and . This yields in particular Propo-
sition 4. We call a pair of polynomial matrices that
induce minimal state maps for and satisfy the above
equality, amatched pairof minimal state maps for .
Hence, if is a matched pair of minimal state maps
for and a constant square matrix, then with

yields a -adapted
BDF.

A system is said to bememorylessif
implies that the concatenation belongs to the -clo-
sure of . Obviously is memoryless if and only if it admits
a kernel representation with . Let
and assume that induces a minimal state map for it.
Thememoryless partof w, denoted , is de-
fined as . It is easy to
see that w and that it is memoryless. In terms
of an output nulling representation of, it is described by

. This is a kernel representation of
and shows that .

B. More on Dissipative Systems

The notion of state discussed in Section VI-A can be inter-
preted intuitively asinformation state. It formalizes the memory
of a system. For dissipative systems, we have met another no-
tion that is intuitively also related to the memory: the storage
function. These two concepts, state and storage, are intimately
connected, as explained in the following proposition.

Proposition 10: Let w and let q induce
a state map for . Assume that is -dissipative with

w w. Let w w induce a storage function
for as a -dissipative system. Then is a memoryless

function of the state, i.e., there exists a matrix
such that for

. In particular, is -dissipative on if and only
if there exists n n , , such that

is a storage function.
The following corollary is an immediate consequence of this

proposition.



WILLEMS AND TRENTELMAN: SYNTHESIS OF DISSIPATIVE SYSTEMS USING QUADRATIC DIFFERENTIAL FORMS: PART I 61

Corollary 11: Let w and w w,
and assume that . Assume that w w is
such that the BDF induces a -adapted BDF,
i.e., for and

(by proposition 4 such a exists). Assume that
w induce state maps for and , respectively. Then

there exists a matrix such that

for and .
In general, there is no immediate relation between dissipa-

tivity of and , unless . The following
proposition deals with this very relevant special case.

Proposition 12: Let w and w w be
nonsingular. Assume that . Then

1) is -dissipative if and only if is -dissipa-
tive.

2) is -dissipative on if and only if is -dis-
sipative on .

3) If is -dissipative on , then every storage function
for as a -dissipative system satisfies

for , and every storage function for
as a -dissipative system satisfies for

.
4) Let be a matched pair of minimal state maps for

. If is a storage function for
as a -dissipative system, with n n

nonsingular, then is a storage func-
tion for as a -dissipative system.

5) Moreover, if is -dissipative on , then every
n n such that is a storage

function satisfies .

We call the pair of storage functions , for respec-
tively and , with ,

, a matched pair of minimal state maps
for , and with , a -matched pair of
storagefunctions. This matching of storage functions is guar-
anteed when and is nonsingular, the latter
certainly being the case if is -dissipative on .

C. More on Quadratic Forms

QFs and QDFs play a central part in the proofs. We therefore
introduce them in some detail, and from a rather abstract point
of view. A bilinear form (BF)on the real vector spaces
is a mapping that is linear in both arguments.
When , we call it a BF on . The dual of ,

, is the BF on defined by .
The BF on is said to besymmetricif . The BF on

induces through the quadratic form (QF)
on . Clearly, , and induce the

same QF. Therank of a BF equals the number of independent
linear functionals where ranges over , equivalently
the number of independent linear functionals , where
ranges over . The rank of a QF equals the rank of the sym-
metric BF that induces it.

The expression , with
the s and s linear functionals on defines a QF on

. In fact, a QF can be expressed in this way if and only if
its rank is finite. If , are
independent (in which case both and are individually
minimal over all such decompositions of as a sum and
difference of squares), then the pair of nonnegative integers

is called the signature of , and denoted as
. The rank of equals

. A QF on n is always of the form
for some n n. We call this the QF

induced by . The rank and the signature of this QF are equal
to that of , defined as the pair consisting
of the number of negative and positive eigenvalues of. If

n n and is a linear subspace ofn, then
denotes the QF on defined by . If is a

matrix such that , then sign sign .
The following matrix lemma relates the signatures of the
QFs induced by a matrix on the linear subspaces and

n . These relations play an
important role in the proof of the main theorem.

Lemma 13: Let n be a linear subspace and
n n. There holds

We now discuss BFs and QFs in the context of differential
behaviors. There is a one-to-one relation between the BDF

and the BF on w w defined by
, and between the QDF and

the QF on w , defined by . The ranks
and signatures of a BDF or QDF are defined by this correspon-
dence. Both and are of finite rank, although they act
on infinite-dimensional spaces. This can be seen as follows.
Associate with w w ,
the matrix , defined as the infinite block-matrix whose

th block equals , and with the one-variable
polynomial matrix , the block-column
matrix , defined as the infinite block matrix whose

th block equals . These matrices, while infinite,
have only a finite number of nonzero entries, and behave like
finite matrices. It is easy to see that the rank and the signature
of the QF defined by with is equal to that of
the symmetric matrix [defined as the rank and the
signature of a truncation of that deletes only zeros].
Clearly can be factored as ,
with and infinite matrices with a finite number of
rows, such that ,
equivalently, with the rows of linearly in-
dependent over . Define the polynomial matrices

w through , i.e.,
w w w , and .

Then . Hence
can be factored in terms of one-variable polynomial matrices as

with the rows of
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linearly independent over .
Such a factorization of is called a canonical factoriza-
tion. A canonical factorization yields the signature and
the rank of by

, and .
Hence equals the number of negative and positive
squares in the factorization

as a sum and difference of squares of inde-
pendent linear differential operators mapping w

into , i.e., with the rows of linearly
independent over . The signature of QDFs play an important
role in the proofs.

A QDF restricted to a behavior can also be viewed as a QF
on , by the map . We denote it as ,
its rank as , and its signature as

. For w , these can be
computed as follows. Let be an observ-
able image representation of . Define as

. Then the rank and signature equal
those of . The signature of has the following signifi-
cance. There exist polynomial matrices w ,

w such that can be factored
as for .
We call such a factorization of canonical. Any other
factorization
for satisfies and

. A canonical factorization of
can be obtained from an observable image representation

of . First obtain a canonical factorization
of on w , by factoring the , yielding

, and express in
terms of , using , with a polynomial
matrix left inverse of .

VII. PROOFS OF THEMAIN RESULTS

The proofs are organized as follows. The proofs of the
main results are interlaced with propositions and lemmas of
peripheral interest. The proofs of these results are given in
Section VIII, together with the proofs of the propositions and
lemmas in the main text.

A. Proof of Theorem 1

(Only if): Let v c be the full behavior of the plant.
Assume that v is implemented by c. Then

v c

such that
v such that
v

Clearly, , as claimed.
(If): This part uses kernel representations. We need the fol-

lowing standard result.
Lemma 14: Let w, with kernel representations

and , respectively. Then
if and only if there exists such that .
Assume that . Let be a

kernel representation of . Then is a kernel

representation of . Using the lemma, we conclude thatad-
mits a kernel representation of the form
for some . We now prove that the controller

implements , in other words,
that , the manifest behavior of ,

, equals .
Let . Then satisfies

for some such that . This implies
, whence , and . Con-

versely, let . Then , and there is a
such that . This hence satisfies also

. Whence is such that
for some that satisfies .

Consequently, , and .
If v , then the controller that implements it can also

be taken to be controllable. For ifimplements , then its con-
trollable part also implements.

B. Proof of Theorem 5

1) Proof of Theorem 5, “Only If”-Part: The key to the “only
if”-part is the matching of a system with its orthogonal com-
plement. Assume that v satisfies ,
is -dissipative on , and . Since ,
and is -dissipative, so is . Since is -dissipative,
is -dissipative by proposition 12. Furthermore, .
Therefore , hence is also -dissipative.
Since is -dissipative on and , every
one of its storage functions is, by proposition 12, of the form

, with a minimal state map
for and .

Let be a matched pair of min-
imal state maps for and . Then ( ,

) is a -matched pair of storage functions
for and as, respectively, - and -dissipative
systems. Consequently

for all and . Since , whence
, these relations also hold for and

. This implies

for and . Since is positive definite,
the above QDF is nonnegative. Now identify

, , and
as
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QDF’s and a BDF that satisfy the conditions required by
theorem 5. This proves the “only if”-part of Theorem 5.

2) Proof of Theorem 5, “If”-Part: We first explain, very in-
tuitively and informally, the idea behind the construction of the
desired behavior v. Consider the QDF for

v . Somehow, we must decompose v into
(in this intuitive explanation, we assume the behaviors

and their -complement are complementary) such that
, is -dissipative on , and . De-

compose v as . Because of
the requirements, it is logical to look for a that is the sum of

and a sub-behavior of . This behavior has then no
intersection with , which we have to avoid, since it is
dissipative by assumption. So, we will look for a subspace of

that is dissipative. Clearly this yield a behavior
such that , and that is -dissipative. By exploiting
the coupling condition, we deduce that our choice is actually

-dissipative on . The hard part, which requires very deli-
cate estimates, will be to prove that .

Consider the “coupling” QDF
for . Let

and be matched pairs of minimal state maps for,
respectively, and . By Proposition 10 and
corollary 11, there exist matrices n n ,

n n , and n n ,
such that

for . Since and are minimal,
hence trim, state maps for respectively and , the maps

n and
n are surjective. The coupling condi-

tion (1) therefore implies that

n n n n (3)

is a nonnegative definite matrix. Assume, in order to explain the
intuitive idea, that it is actually positive–definite: .
Consider the QDFs

for , and

(4)

for . The definition of yields the
decomposition

(5)

for and . Factor the QDF canon-
ically as

(6)

This yields the following crucial equality:

(7)

for , and . Assume also,
in order to explain the idea, that

v . Equation (7) then yields a very transparent de-
composition of any v as that
nicely puts the sign of in evidence. It is this decomposition
that we are after. Examine the signs of terms on the right-hand
side of (7). Since is -dissipative, with
as storage function, and is -dissipative, with

as storage function, for

, and for . The idea behind
the construction of the controlled behavioris to cancel the
two nonnegative terms on the
right hand side of (7), by taking for

(8)

with the controllable part of the behavior
. Equation (7) then yields

(9)

This shows that defined by (8) is indeed -dissipative on .
The difficult part is to show that . For this to

be the case, should not be too low, in other words, the
row dimension of should not be too high. Obtaining a sharp
estimate of this row dimension requires a sharp estimate of the
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signature of . This forms thepièce de résistanceof
the proof.

Our strategy for the formal proof is as follows. First, we give
the proof under certain regularity assumptions and subsequently
we consider the general case.

3) The Regular Case:In theregular casewe assume that i)
(as in the above explanation of the construc-

tion of ) and ii) v (equivalently, by
proposition 9, ii)′ . The origin of the second
condition may be understood as follows. Whenis -dissipa-
tive, then for all v . The stronger
condition for all v im-
plies v . For otherwise, there exists

v yielding . The
second regularity condition may thus be viewed as a form of
strict -dissipativity of .

We now derive the following relation between the signatures
and ranks of the QDF’s defined above:

(10)

The proof of these relations involves five steps.

1) Consider the following subspaces and of
v n n :

and such that

such that

Observe the following orthogonality relations:

for , , and ,
hence . These identities imply that .
Consider also the QF onv n n induced by

Note that, since and are invertible, so is . Since
, we obtain

(11)

2) Note that ,
and . Lemma 13 and

imply

(12)

3) Next, calculate , using the lemma below. To see
that the dimension count in the lemma is reasonable, let

. With a minimal state map for ,
define m n such that

. It is easy
to see that . This suggests

, but this
count is too rough, since the combination of and

into in the definition of may ab-
sorb degrees of freedom. For the exact count, we need
the memoryless part of a behavior, introduced in Sec-
tion VI-A.

Lemma 15: The dimension of is given by

Hence, in the regular case,
.

Using this lemma in (12), combined with (11), yields

(13)

4) The next step consists of observing the equalities

These follow immediately from the definitions of the var-
ious QFs.

5) The final step involves the analysis of the QDF
. Equation (5) yields

Now substitute these results into (13). This yields the re-
lations (10).

The next part of the proof requires obtaining a sharp esti-
mate of . This, however, requires that the storage
function that appears in (1) is an extreme storage function.
The following proposition, closely related to Proposition 6, es-
timates exactly for extreme storage functions.

Proposition 16: Let w and w w be
nonsingular. The ranks of the QDF’s
and on are both equal to

. In particular, if w , then
these ranks are equal to .
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This proposition has the following consequence. By
substituting by , the QDF in the statement of
theorem 5 yields .
Note that the -matrix, , induced by

and the -matrix,
, induced by the original

satisfy , since

for . Hence, is

also positive definite. Regularity implies .
Inequality (10) then yields

(14)

for , with .
We prove that v as defined by (8) has the following

properties, which qualify it as a controlled behavior as required
by Theorem 5: i) , ii) is -dissipative on ,
and iii) .

Property i) is obvious. From (9) and , it follows that
for every and of compact support there holds

. It is easy to see that any of
compact support may be decomposed as , with
and of compact support. Therefore,
for all . This yields ii).

We now show iii). Since
consists of the signals in that satisfy and

. This imposes equa-
tions. Using (14) indicates that this leaves at least free
components. We now prove this rigorously. We need the fol-
lowing lemma.

Lemma 17: Let w and . Then the sub-
behavior defined by
satisfies .

We are ready to deliver thecoup de grâce. By the reg-
ularity assumption, , and hence, since

, . Hence, by Proposition 9,
. The above lemma

implies . This yields
. Combined

with (14) and , we arrive
at . Further,

. Since
and using regularity, this equals . Hence
by proposition 9, . This yields

. Since and
, we finally obtain . Hence,

by Proposition 2, .
This completes the proof of the “if”-part of theorem 5 in the

regular case. Note that the only point in the proof that the as-
sumption , as opposed to just nonsingular, is used, is
in order to obtain dissipativity on , instead of just on .

There is an alternative way of defining regularity, namely, by
assuming it to mean and v ,
i.e., strict ( )-dissipativity of . This leads to a “dual” way
of constructing a controlled behavior, by making in the above
proof the substitutions , , ,

, and .

4) The Singular Case:The main difficulty in the singular
case stems from the possible nonsingularity of the matrixde-
fined by (3). This implies, in particular, that the QDF given
by (4) is not defined. In order to cope with this, we replace the in-
verse by a symmetric generalized inverse , i.e.,

n n n n satisfies
and , and use the following generalization of
the QDF

Obviously, if is nonsingular this reduces to the old . De-
fine

We now estimate . Lemma 13 implies

(15)

Now compute one by one the terms on the right-hand side of
this relation.

1) Since , we obtain, using
proposition 16, .

2) Obviously, .
3) In order to compute the last two terms, we use convenient

representations of and . It turns out that it is easiest
to work with a driving variable representation of and
an output nulling representation of. Let, therefore

(16)

be a minimal driving variable representation of, with
, and , and

(17)

be a minimal output nulling representation of, with
, , and

. Using the relations between driving variable and
output nulling representations of a system and its orthog-
onal complement mentioned in Section VI-A, it follows
that:

with , is a driving variable represen-
tation of . Define
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and , . Then
, is a driving variable representa-

tion of . This representation allows us to com-
pute and . Note that

and hence
.

4) Next, we compute . There holds

v n n

and there exists m p

such that

Hence

with

(18)

From the general formula
, with a linear map and a linear subspace of its

domain, we, therefore, obtain

Since the dimension of the kernel of a matrix equals its column
dimension minus its rank, this yields

Substituting the results of these calculations in (15) yields

(19)

With the definition of we still have, using

where denotes the set-theoretic inverse. Of course, we also
still have

The difficulty is that in the singular case, we may however not
have

(20)

In order to circumvent this difficulty, we will restrict the domain
of the QDF to the following sub-behavior of :

Now define, in analogy with

such that

Obviously, and .
The following lemma shows that (20) indeed holds with
replaced by , because .

Lemma 18: Let and let be a linear sub-
space of . Assume that is a symmetric generalized inverse
of , i.e., , and .
Then implies that .

This yields
, and hence we obtain the in-

equality

(21)

Now decompose, as in (6), the QDF as
with

. Define, in analogy with (8), the controlled be-
havior in the singular case to be , with the
controllable part of the behavior .

We now prove that v satisfies i) , ii)
is -dissipative on , and iii) . The proofs of i)
and ii) are completely analogous to the regular case. The proof
of iii) is more difficult. Indeed, the fact that is in general
a strict subset of makes it more unlikely that
has a sufficiently high input cardinality, and a delicate estimate
is required to establish this. Lemma 17 yields

. The last term has already been bounded in
(21) by , which, in turn, was bounded in (19). We
now obtain a suitable bound for by obtaining a lower
bound for . We do this by invoking the driving variable
(16) and output nulling representation (17) of and . By
using the relation between driving variable representations and
output nulling representations of a behavior and its orthogonal
complement, we obtain

as a driving variable representation of . With defined
by , this yields the output nulling representation

, of .
Note that consists exactly of those that yield

for all . This yields the following
output nulling representation of :

(22)
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This representation allows to estimate using the fol-
lowing proposition.

Proposition 19: Let ,
be an output nulling representation of w. Then

.
The estimate of this lemma applied to (22) immediately yields

since the second term on the right-hand side equals the number
of static relations in (22): the total number of relations involving

minus those that contain . In terms
of the matrix introduced in (18) this yields

. Combining this with the identity
, we obtain

where we used that , since
. Thus, we get . Combining this

with Proposition 2 we obtain
This completes the proof of Theorem 5 in the singular case.

C. Proof of Theorem 7

This theorem is an immediate consequence of the main result,
and the inequalities for all , and

, for all .

D. Proof of Theorem 8

Let n v induce a minimal state map for
. It can be shown that since

, for
, there exists a matrix n n

such that for ,

This implies for all ,
so is a storage function for . Using -dis-
sipativity of on , , and proposition
12, yields . It follows that .
But is less than or equal to the rank of the
QDF ,

for , . This rank is bounded
by , the dimension of . This yields the bound
on .

VIII. PROOFS OFAUXILIARY RESULTS

In the interest of brevity, we often limit ourselves to giving
the outline of the proofs.

Proof of Proposition 2: Factor ,
with . Then

. Consider
. By lemma 17, . If , there

exists . For this , we also have .
Since is nonsingular, this yields . Hence

. This contradiction establishes the
proposition.

Proof of Proposition 3: See [15, Prop. 5.4 and Th. 6.3].
Proof of Proposition 4: The (if) and (only if) part

follow by considering the BDF as a QDF on
, and applying [15, Th. 3.1]. Finally, assume that

for all
and . Since and are controllable, they
can be represented using observable image representations,
i.e., there exists left-invertible w such that

and . So,
.

Therefore, ,
which proves “essential” uniqueness.

Proof of Proposition 6: For the case w , see
[15, Th. 5.7]. The general case can be reduced to this one by an
observable image representation of.

Proof of Proposition 9: We leave the proof of this intuitive
result to the reader.

Proof of Proposition 10:This result is proven in [9, Th.
6.2 ].

Proof of Corollary 11: The corollary states that the be-
havior is dissipative (lossless) with respect to the
supply rate . Now apply Proposition 10.

Proof of Proposition 12: w admits a full
row rank kernel representation and an ob-
servable image representation . It follows
that is an observable image rep-
resentation of . Let and

. Reference [15, Th. 10.2]
yields for all m . Equiv-

alently, for all m .
Consequently, is -dissipative if and only if is
( )-dissipative. Part 1 follows.

By [15, Th. 6.4], is -dissipative on if and only if there
exists such that is a storage func-
tion. By proposition 12, is then a nonposi-
tive storage function for as a ( )-dissipative system. By
proposition 3, this implies that is ( )-dissipative on .
This yields part 2.

Part 3 in the constant case immediately follows from Propo-
sition 12. Parts 4 and 5 follow from [15, Th. 6.4 and 10.2 iv].

Proof of Lemma 13:Let be a matrix of full column rank
such that . Taking a suitable basis of , we may
assume that
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with nonsingular. Let be a matrix such that
and . Then it is

easily verified that

According to [10, lemma 12.2],

Using the fact that the rank of a symmetric matrix equals the
sum of its negative and its positive eigenvalues, we obtain

.
In this equality we obviously have ,

,
, and finally

This proves the first part of the lemma. The second part is proven
in a similar way.

Proof of Lemma 14:See, for instance, [7, section 3.6].
Proof of Lemma 15:We omit the straightforward proof.
Proof of Proposition 16:Let be an ob-

servable image representation of, and consider
. Note that . Denote

. Clearly, ,
is a representation of . Hence,

. By -dissipativity
of we have for all , hence there
exists m m such that .
Let be any unimodular matrix such that

, with full column rank, say . Note that
, so . We then have

By [15, remark 5.13], can be computed as follows. Factor
, with m m almost

Hurwitz [i.e., nonsingular and with all the roots of in
the closed left half of the complex plane]. Next, define

Then . Define
. Let be a left-inverse

of . Then induces the
smallest storage function for as an -dissipative system.
This implies that for all we have

where is the polynomial matrix consisting of the first rows
of . Thus, the rank of this QDF on is equal to the rank
of the polynomial matrix . Since has full

row rank, this rank is equal to
. A similar argument applies to the largest

storage function .
Finally, by Proposition 9, w is equiv-

alent to .
Proof of Lemma 17:Let be a kernel

representation of . Then a kernel representation of
is given by . This implies

. Therefore
.

Proof of Lemma 18:First note that, in general, if
and if is a linear subspace,

then , the number of negative
eigenvalues of . Also note that the assumption

implies that . Let
be any matrix such that . Then we get

. In the same way, we obtain
.

Proof of Proposition 19:Assume without loss of gener-
ality that is of full-row rank. Denote this rank by.
Consider the input-state-output system ,

. Elimination of yields ,
with square and , and p w . Then
has kernel representation , whence

.

IX. REMARKS

In this section, we deal with some of the assumptions that
have been made on the plant, the controlled behaviors, the con-
trollers, and the signal spaces.

1) Controllability: Throughout we assumed, where conve-
nient, that the systems are controllable. The main reason for this
is that—at this point—we have no satisfactory definition of dis-
sipativeness for uncontrollable systems. However, for the syn-
thesis problem, there aread hocways of dealing with lack of con-
trollability. We explain this in the case that .

Assume v, , given. Consider finding a
v such that: i) ; ii) ; iii)

the controllable part of is -dissipative on , and iv) is
stabilizable (meaning that for all there exists with

for , such that ). These conditions
are equivalent to i)′ implementability of (no controllability
assumptions are made in theorem 1), ii)′ in , is input,
is output, and the transfer function fromto in , ,
satisfies , and iii)′ , and
implies for . In other words, the controlled
system is (externally) stable.

The above problem is solvable if and only if i) the conditions
of theorem 5 hold with and replaced by their controllable
part, and ii) and implies for

. can then be obtained by first constructing abased
on the controllable parts of , and taking . Note
that a stability condition on enters, but stabilizability of
does not. However, when considering implementability by reg-
ular or feedback (see [14]) controllers, a more careful choice of
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the autonomous part of needs to be made, and stabilizability
of does enter.

2) Smoothness:Throughout, we assume that the system tra-
jectories are in , even, when dealing with dissipativeness, in

. Assuming solutions of the differential equations,
instead of, say, solutions, avoids mathematical technical-
ities, as dealing with distributions (also in the QDF′), that are
not germane to our purposes. Requiring in the definition of dis-
sipativeness for , instead of
a broader class of solutions [with properly interpreted]
means that systems are—but only in principle—more likely dis-
sipative. Hence the conditions of theorem 5 are more likely sat-
isfied. As explained in the context of disturbance attenuation, we
nevertheless obtain that the transfer function inhas -norm

. As is well-known, this frequency domain implies contrac-
tiveness of for , for periodic , etc.

3) Algorithms: The results of this paper open up many al-
gorithmic questions: how to verify dissipativeness, how to con-
struct storage functions, how to obtain a convenient representa-
tion of or starting from a (for example, general latent vari-
able) representation of ). In an earlier draft, algorithms were
discussed, but they have been deleted because of length limita-
tions. We will deal with algorithms in a sequel paper.

4) Nonlinear Systems:Generalizing the results on imple-
mentability, and on the synthesis of dissipative systems to non-
linear systems appears to be a grand challenge, but beyond the
scope of the present paper. The question whether there exists a

v that solves our synthesis problem (with v)
whenever there exists any (nonlinear, time-varying, etc.) such

, appears more accessible. It is easy to see thatmust still
be dissipative, but how to conclude conditions on from

, is more elusive.

X. CONCLUSION

We have presented a complete solution, in the context of con-
trollable linear differential systems of making a plant dissipa-
tive by attaching a controller to it. In our approach, the plant is
specified in a representation-free manner by its behavior. The
existence of a controller that meets the specifications depends
on dissipativity properties of the hidden behavior and of the un-
controlled plant behavior, combined with a subtle coupling con-
dition involving storage functions.

We viewed control as interconnection. This formulation
broadens the scope of control theory from a practical point of
view. In this setting, control becomes the design of subsystems,
aimed at enhancing the performance of the over-all system.
Feedback emerges as a special case, and, we hasten to empha-
size, a very important one.

We have discussed implementation of a controlled behavior
by a controller that acts on the control variables only. We have
shown that a behavior is implementable if and only if it is con-
tained in the plant behavior and contains the hidden behavior.
The plant behavior consists of the trajectories of the to-be-con-
trolled variables that are possible before control is applied. The
hidden behavior consists of the trajectories of the to-be-con-
trolled variables that remain possible when the control variable
are equal to zero, i.e., those trajectories compatible with van-
ishing control variables.
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