7%
university of 5%,
groningen YL

R

University Medical Center Groningen

University of Groningen

6th SC@RUG 2009 proceedings
Smedinga, Rein; Isenberg, Tobias

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2009

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Smedinga, R., & Isenberg, T. (Eds.) (2009). 6th SC@RUG 2009 proceedings: Student Colloquium 2008-
2009. Rijksuniversiteit Groningen. Universiteitsbibliotheek.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 04-06-2022

https://research.rug.nl/en/publications/cba7943e-67e3-42fd-9395-6c06a1ec7f43

SC@RUG 2009 proceedings

Rein Smedinga
Tobias Isenberg
editors

2009
Groningen

ISBN 978-90-367-3867-5

Publisher: Bibliotheek der R.U.

Title: Proceedings 6th Student Colloquium 2008-2009
Computing Science, University of Groningen
NUR-code: 980

N

=

&1

o

&

Contents
1 Comparing tools for static code analysis
Bertjan Broeksema, Frank Hoving

2 Opponent Modelling for Limit Poker
F. L. de Vries, G. Veenstra

3 Challenges of systems biology: Pathways and Visualisation
Eric Begue, Bram Leemburg

4 A discussion of secret information comparison methods
Pieter Noordhuis,Harry de Boer

5 A Comparison of Hatching Techniques
Willem Bouma, Erik de Jong

6 From Software Requirement to Architecture Design: A comparison of the methods
Marcel Koster, Lazaro Adolf Luhusa

7 Interactive displays in our homes, now or in the future
M. Gjalt Bearda, Luc Vlaming

8 Primitives of Lock-Free Algorithms
Nikolaus Manojlovic

9 Lock-Free Hash Table Implementations
Jasper Smit

11

16

22

28

34

39

44

50

&

=
==

Contents

60 SCamBG
(2 9)

SC@RUG 2009 proceedings

About SC@QRUG

Introduction SC@RUG (or student colloquium in full)
is a course that master students in computing science fol-
low in the first year of their master study at the University
of Groningen.

In the academic year 2008-2009 SC@RUG was orga-
nized for the sixth time as a conference. Students wrote a
paper, participated in the review process, gave a presenta-
tion and were session chair during the conference.

The organizers Tobias Isenberg and Rein Smedinga
would like to thank all colleagues, who cooperated in this
SC@RUG by collecting sets of papers to be used by the
students and by being an expert reviewer during the review
process. They also would like to thank Femke Kramer from
the Faculty of Arts for her help in organizing this course
and Janneke Geertsema for her workshops on presentation
techniques and speech therapy.

In these proceedings all accepted papers are published.

Organizational matters SC@RUG 2009 was organized
as follows. Students were expected to work in teams of
two. The student teams could choose between different
sets of papers, that were made available through Nestor,
the digital learning environment of the university. Each set
of papers consisted of about three papers about the same
subject (within Computing Science). Some sets of papers
contained conflicting opinions. Students were instructed to
write a survey paper about this subject including the dif-
ferent approaches in the given papers. The paper should
compare the theory in each of the papers in the set and in-
clude own conclusions about the subject.

Two teams proposed their own subject.

After submission their papers, each student was as-
signed one paper to review using a standard review form.
The staff member who had provided the set of papers was
also asked to fill in such a form. Thus, each paper was re-
viewed three times (twice by peer reviewers and once by
the expert reviewer). Each review form was made available
to the authors of the paper through Nestor.

All papers could be rewritten and resubmitted, inde-
pendent of the conclusions from the review. After resub-
mission each reviewer was asked to re-review the same pa-
per and to conclude whether the paper had improved. Re-
reviewers could accept or reject a paper. All accepted pa-
pers can be found in these proceedings.

All students were asked to present their paper at the
conference and act as a chair and discussion leader during
one of the other presentations. Half of the participants were
asked to organize the of the conference day (i.e., to make
the time tables, invite people etc.) The audience graded
both the presentation and the chairing and leading the dis-

cussion.

Femke Kramer of the Faculty of Arts gave an introduc-
tory lecture about what is a scientific conference, and about
general aspects of presentation techniques to help the stu-
dents with their presentation. She also taught a workshop
on writing a scientific paper, and one on reviewing scien-
tific papers. Janneke Geertsema gave workshops on pre-
sentation techniques and speech therapy that was very well
appreciated by the participants.

Students were graded both on all three aspects: the
writing process, the review process and the presentation.
Writing and rewriting counted for 50% (here we used the
grades given by the reviewers and the re-reviewers), the re-
view process itself for 15% and the presentation for 35%
(including 5% for the grading of being a chair or discus-
sion leader during the conference). For the grading of the
presentations we used the judgements from the audience
and calculated the average of these.

In this edition of SC@RUG students were videotaped
during their presentation. We used a new tool, made
available by the UOCG (Universitair Onderwijscentrum
Groningen) to both record the speakers talks and their Pow-
erpoint.

On January 29th, the actual conference took place.
Each paper was presented by both authors. That day, we
had nine presentations, each consisting of a total of 20 min-
utes for the presentation and 10 minutes for discussion. As
mentioned before, each presenter also had to act as a chair
and discussion leader for another presentation during that
day. The audience was asked to fill in a questionnaire and
grade the presentations, the chairing and leading the dis-
cussion. Participants not selected as chair were asked to
organize the day.

The head of UOCG, Louwarnoud van der Duim was
keynote speaker.

All submitted papers were accepted for this proceed-
ings.

Thanks We could not have achieved the ambitious goal
of this course without the invaluable help of the follow-
ing expert reviewers: Frank Brokken (CIT), Wim Hes-
selink, Tobias Isenberg, Gerl Moritz, Liang Peng, Gerard
Renardel, Jos Roerdink, and Marco Wiering.

Also, the organizers would like to thank the School of
Computing and Cognition for making it possible to publish
these proceedings and the UOCG for sponsoring the con-
ference.

Rein Smedinga
Tobias Isenberg

6 S
it

Comparing tools for static code analysis

Bertjan Broeksema (s1554697), a.h.j.broeksema@student.rug.nl
Frank Hoving (s1651455), f.hoving@student.rug.nl
January 23, 2009

Abstract—Software applications are exposed to growing risks by security flaws. Compiling software with
common compilers does not provide the security some programs need. Static analysis is a step beyond
compiling, it is a technique to discover security flaws without running the program. There are many tools for static
analysis, but what do these tools do and what is their outcome? We give a brief overview of three methods
described in the literature, (SPLint[2], Saturn[4] and Eau Claire[1]). Additionally we evaluate a recent tool for
applying static analysis named Source Code Analyzer from Fortify[6]. The tool is used to analyze three different
software projects. We describe the performance, how issues found are presented to the user and identify some

problems with static analysis.

1 INTRODUCTION

Insecure software is an increasing risk in a society that
heavily depends on large and complex software systems.
Software should be reliable and the number of crashes and
security breaches must therefore be reduced to a bare
minimum. Techniques as cryptography, security protocols and
software testing systems[3] are used to make software more
secure and reliable. Figure 1 gives an overview of the
vulnerabilities in software from 1 January 2001 through 18
September 2001 listed on the Mitre's common vulnerabilities
and exposures list[5].

Dther 16% Buffer overflows 19%

Fnrmalﬂ
Malformed ~ —bugs 6%
input 16%

~—Resource
leaks 6%

Pathnames
10%

Access 16% Symbolic links 11%

Figure 1: Common vulnerabilities and exposures list for
the first nine months of 2001. [2]

In this paper the focus is on static analysis of software.
Static analysis is a technique for discovering errors in source
code without running the program. In the literature there are
several methods [3] for static analysis proposed. Those
methods vary from basic text scanning to full code analysis
and can be applied programming languages like: C, C++ and
JAVA. The simplest methods start with textual scanning of
software to find bugs where '=' is used in stead of '==
However, this simple analysis suffers from many inaccuracies
and only discovers basic flaws in the software. The next level
of methods contain style checking methods that check
variable and function definitions. Even more advanced
methods apply semantic-analysis and use syntax trees to
check the correctness of the code. Deep flow static analysis is
an extension to semantic-analysis and analyzes data-flow and
control flow.

To narrow the scope of this paper we constrain the
methods to those that apply to the programming language C.
This language is still a commonly used language for writing
software. The compared methods diverge from lightweight
analysis to full scanning analysis. The first method is SPLint
[2], which is a variant of Lint and makes use of annotations.
Saturn[4] is a boolean satisfiability framework and Eau
Claire[1] is a method that uses a theorem prover for finding
flaws.

Besides giving an overview of the above mentioned
methods we also do an evaluation of a recent program for
performing analysis. The evaluation will be done with for the
Source Code Analyzer from fortify[6] which is developed by
the same author as Eau Claire.

6" SCeR WG
2 9
(2 o)

SC@RUG 2009 proceedings

The rest of the paper is structured as follows. In section 2
we describe the introduced tools in more detail. Next, in
section 3 we describe the goal and setup of the evaluation.
Section 4 describes the results of the evaluation and in section
5 we discuss the results and give some directions for future
research.

2 LITERATURE REVIEW

In this section we will look into the tools SPLint, Saturn
and Eau Claire with some more detail. For each method we
give a summary of the functionality and the theory behind the
methods.

2.1 SPLint

According to David Evans and David Larochelle [2], security
flaws can be approached in two ways: damage limitation and
flaw elimination. Damage limitation is implemented by
inserting runtime checks and restrictions to environments
where the software runs to limit damage risks. The
elimination can be applied by human code review, by testing
and by static analysis. SPLint is developed during a research
and improves security by extensible lightweight static
analysis. This adds some more security after compiling but is
less effective and reasonable faster than full analysis. The tool
uses annotations in the software associated with function
parameters, return values, global variables and structure
fields. The annotations describe expected behaviour which is
compared to the behaviour of the code itself.

In static analysis there is a trade-off between precision and
scalability. The aim of SPLint lies on fast scanning and
scalability. By implementing fast scanning and scalability the
tool looses precision by skipping security flaws and
generating false security flaw warnings during the analysis.
The code is screened for buffer overflows which occur often
by use of standard string manipulation functions like 'gets' and
'strcpy' which are known to be unsafe.

SPLint provides extensible checking. This is additional
checking for user defined vulnerabilities. This makes the tool
able to check for user specific or application specific
properties. For example, extensible checking can be used by
defining taintedness attributes. This attribute is used in [2] to
define format bug checking and was discovered in June 2000.
Format bugs can be like the construction of the printf function
which can give options of writing arbitrary data to the
memory when the printf is used wrong. The tool can also use
extra annotations assumptions in case library code is
unreachable. For example when software uses standard
compiler libraries which are not available during the static
analysis.

2.2 Saturn

Yichen Xie and Alex Aiken[4] describe another tool for
static analysis, named Saturn. This is a boolean satisfiability
based framework used for static bug detection. The software
is tested on user specified boolean descriptions of functions
provided with the code. The framework tests the user
expected function description to the code. This framework is
constructed from four components. The first component
generates a low-level Intermediate Language which models
program constructs and saves this in an abstract syntax tree.
The second components is a frontend that translates the
source code into a call graph in topological order. This graph
is written in the intermediate language. The third component
transforms expressions and statements into boolean formulas.
A property checker uses these formulas to analyze each
function and stores the results in a summary database. Finally
the discovered violations are compiled into bug reports and
the summary database is exported as document of inferred
behaviour. This behaviour is mentioned per function.

2.3 Eau Claire

Brian V. Chess[1] describes the concepts behind the tool
Eau Claire. This tool uses specifications that describe security
properties and handles many common security flaw sensitive
construction of the C language like pointers, function calls
and arrays. Eau Claire translates the source code into series of
verification conditions and presents the verification conditions
to a theorem prover. The source code is first translated in
Guarded Commands by using the vulnerability specifications.
Gaurded Commands form a programming language to
describe non-trivial algorithms for formal analyzing. These
commands are translated into verification conditions. The
conditions will be processed by an automatic theorem prover
which will give output to the developer about verification of
the functions.

3 EVALUATION SETUP

The aim of this evaluation is to see how a recent application
for perfoming static analysis performs and how it presents the
results to the developer. At the time of writing Eau Clair is no
longer actively maintained or even supported. SPLint is
actively supported but needs annotations in the source files to
check the software. Saturn needs boolean models for the
issues that one is looking for, which are not available at
forehand. Because the amount of effort needed for all three of
these tools to get reasonable results we decided not to
evaluate these tools. Brian Chess provided us with a full
version of the Source Code Analyzer (SCA) from Fortify [6].

Comparing tools for static code analysis — Bertjan Broeksema, Frank Hoving

In this evaluation we use SCA to analyze three software
projects of different sizes. It makes use of the concepts
introduced before for finding security flaws and additional
concepts not presented in this paper. We have looked at
different aspects of the tool. The first aspect is the integration
of the tool with the build process of the software. The second
aspect is the performance in terms of the time it takes to
analyze a project with respect to size of the project. The last
aspect is the presentation of the different kinds of security
issues that are found by the tool.

To compare these aspects three open source software projects
developed in C/C++ of different sizes where chosen.
Sloccount [7] is used to determine the number of lines for
each project. Each project is build using the build system that
comes with the project. After the build the code is analyzed
using SCA. The unix command time [8] is used to measure
the time taken in these two steps to get insight into the
relation between the project size and the time it takes to
analyze the project and into the relation between build time
and analyze time. After the analyze step the results are
manually inspected using the graphical tool auditworkbench
which is also part of SCA. All steps are performed on a
Pentium dual core machine 2.33 GHz with 2 GB of RAM.

Visual Sudia,
Eclipza, IBMRAD

-

Audit
Workbench

ol Fortify Global
iy Buid Toal o
i, : e | . Analysis
I ouchlass Buld |e= Fartfy .
= :
f] Intarme diata cla
PTLSEULL' 0 e Moddl 5l IE(z] .o 2
Cold Commeng | zof B3 |2 z
‘ Lin Interf 2|8 |5 5K L
s na Intarfaga E "‘E E E_"'; :.
68384
F | Forify
Managar
Sacurs Coding Rulas
Fortify Customized

Fules | Rulas

Figure 2: Structure of Fortify SCA

Before presenting the results we first give an overview of
SCA. Figure 2 shows the main components of SCA. The
Build component shown on the left side of the picture is
responsible for making the translation of source code to an
intermediate language which is used for further analysis. The
build tool is able to connect with the make [9] build system
but can also analyze single files. The result of this translation
step, call the 'Intermediate Fortify Model’, is passed to the
"Global Analysis Module'. This module then performs several
kinds of analyses like data flow analysis and semantic
analysis to find security issues. The kind of issues that the tool
can find are described in Secure Coding rules which are also
passed to the ‘Global analysis Module'. By default SCA
comes with a huge set of predefined rules. It is also possible
to add custom rules to find issues which are specific for the
product that is analyzed. The results of these analyses are
stored in a special file which can be opened with the
auditworkbench tool.

4 EVALUATION OF SCA

We evaluated the source code analyzer by integration and
performance which we will discuss to end with the reported
issues during the tests.

4.1 Integration with the build system

In order for static analysis tools to be useful they must
integrate seamless into the development environment.
Preferably the tool integrates with the build system used by
the project. This way the tool can use the build system to
determine which files must be analyzed and where it can find
needed resources (e.g. header files). Some tools, like Splint,
do not integrate with the build system but need the mentioned
settings as parameters to the splint executable. When a C/C++
project uses the make build system, SCA uses that to
determine which files it needs to analyze. This way analyzing
project is a matter of just two steps. The first step builds the
project and the second step performs the analysis and stores
the results in a file:

sourceanalyzer -b buildname make

sourceanalyzer -b buildname -scan -f results.fpr

6

2

&

20

@%{f |

SC@RUG 2009 proceedings

The results of the analysis are stored in results.fpr which
can be opened with the auditworkbench tool. The
auditworkbench shows all the issue found. The issues are
grouped by severity and within each group ordered by the
type of the issue. Issues are linked to the source files where
they are found. Each issue is clearly documented and contains
references to additional information about the specific kind of
issue that was found. Auditworkbench is eclipse based and is
also available as an eclipse plug-in. This makes it easy to
integrate security analysis into the development environment.

4.2 Performance

To integrate static analysis tools into the development process in a
useful manner, it is important that the performance of the tool is
known. The time it takes to generate a vulnerability report
determines how often the tool can be run. This can range from each
build to only before an important release, depending both on the size
of the project and the performance of the tool. Table 1 shows the
results obtained for each project. The number of lines only include
lines of language supported by SCA, which are in C, C++ and java
for these projects.

Project Lines of Compile Analyze
code time time
GCC 2.803.087 30m40.716s N/A
Subversion 605.391 8m1.143s 50m5.363s
XMLRPC-C 45.563 1m12.663s 5m0.691s

Table 1: Results of analysis of several projects.

From the results we can conclude that for small and
medium projects security analysis can be done on a regular
base. It still takes a couple of times the compile time to finish
the analysis but on a modern machine projects like XMLRP-C
take only a couple of minutes to compile. It is possible to run
the analyzer on a single file but in that case the advantage of
the integration with the build system is lost. Currently SCA
seems not to be able to update the results from a previous run
with the modified files.

For GCC we where unable to generate results. After more
than six hours the analyzer reported that it had finished 81%
of the analysis but did not proceed for more then an hour.

4.3 Reported Issues

SCA uses so called rule packs which contains security
rules for supported languages. With the rule packs provided
by default a broad range of security issues can be checked for.
In this section we will describe some of the issues which
where reported on the chosen project.

The most prominent issue reported are buffer overflows. A
buffer overflow occurs when data is put into a buffer which is
too small. In that case the program may crash or if exploited
carefully return addresses might be overwritten which enables
an attacker to execute malicious code.

Another kind of issue that is reported does reflect invalid
assumptions of the developer. For example functions that
operate on char* parameters might require that the character
sequence ends with the "\0' character. Calling these functions
with data that comes from user input or from files that might
be modified by attackers, are therefore unsafe. The
assumption that the developer makes in this case is that the
data passed to the function is valid.

Other typical C/C++ issues reported by SCA are about
memory management. SCA is able to report dereference of
pointer variables that might be null or deleted. It is also able
to report error messages when a pointer is freed more than
once. Furthermore it reports possible sources of memory
leaks.

5 DISCUSSION

In this paper we gave an overview of three methods for
static analysis to enhance the security of software. The first
method introduced was SPLint which uses annotations to
analyse the security of software. We also introduced Saturn, a
method which uses a boolean satisfiability framework to
detect security flaws. The third method introduced was Eau
Clair which uses a theorem prover. We also evaluated the
Source Code Analyser from Fortify. We have looked at the
performance of SCA for three different open source projects
and how the issues which where found are presented to the
user.

Although we think that static analysis is an valuable
addition to the existing quality and security processes in
software development lifecycles, if there are any, we still see
some problems. One of these problems problem we clearly
identified is the performance issue. For projects with less than
100.000 lines of codes it is quite feasible to run the analyzer
for the whole project on a regular base. However when the
projects become larger it takes much longer to perform the
analysis or eventually the analysis does not complete at all.

Comparing tools for static code analysis — Bertjan Broeksema, Frank Hoving

Another problem is the initial setup, as we have
experienced with SPLint and Saturn. Those tools require a
deep understanding of the source code as well as knowledge
from the build system and also knowledge from the security
issues that one is looking for. Although some of these
knowledge may be available this is definitely not always the
case. Software development teams might know the source and
the build system but may lack knowledge of security issues.
On the other hand an external security audit team has deep
understanding of the security risks but lack knowledge about
the build system or source code of a specific project.

The above mentioned problem relates to another problem,
which is the educational effect of the tools used for finding
security flaws. Again, tools like SPLint and Saturn can only
be used when it is known on forehand what kind of issues
needs to be found. So extensive study on these issues, their
impact and how to find them using the above mentioned tools
is needed. We think that this is a high threshold for
introducing static analysis into a development process. SCA
takes a very different approach to solve this problem.

By default it supports a wide range of programming
languages and provides a large set of rules for finding security
issues. Besides this SCA has a comprehensive user interface
for doing security audits. In this interface issues are grouped
by severity for each kind of issue there is extensive
documentation. This greatly reduces the time to get started
with security audits on software projects. It also helps the
auditor to find out which software components should get the
highest priority when fixing security flaws. These findings are
supported by Shilling [3]

Future research should point out if and to what extend
projects are adopting forms of static analysis for finding
security flaws and also if there is a correlation between the
use of static analysis and the number of bugs found during the
lifecycle of a software project.

REFERENCES
[1]

Brian V. Chess. Improving Computer Security using Extended Static
Checking. IEEE Symposium on Security and Privacy Proceedings,
2002: 160 -173

David Evans and David Larochelle. Improving Security Using
Extensible Lightweight Static Analysis. IEEE Software, Jan/Feb 2002:
42-51

Walter W. Schilling and Mansoor Alam. Integrate static analysis into
software development. EE Times-India, Nov 2006

Yichen Xie and Alex Aiken. Saturn: A SAT-based Tool for Bug
Detection. ACM Transaction on Programming Languages and Systems
(TOPLAS),May 2007, Volume 29, Issue 3

Common Vulnerabilities and Exposures.

http://cve.mitre.org (December 2008).

Fortify. "Source Code Analyzer." 2008.
http://www.fortify.com/products/detect/in_development.jsp (December
2008)

(2]

(3]
(4]

[5]
(6]

(7]
(8]

(9]

David A. Wheeler, "SLOCCount."
http://www.dwheeler.com/sloccount/ (12 December 2008)

"TIME(1)." 14-11-2008

http://www kernel.org/doc/man-pages/online/ pages/manl/time.1.html
(December 2008)

"MAKE(1)." 22-08-1989

http://unixhelp.ed.ac.uk/CGl/man-cgi?make (12 December 2008)

6

2

&

20

@%{f |

10

Opponent Modelling for Limit Poker

F. L. de Vries and G. Veenstra

Abstract— Opponent modelling is an interesting challenge in poker. In a poker game opponent modelling can be applied to predict
the hand strength or to the next action of an opponent. These can be used to improve the game of computer programs which try to
play poker. This paper will focus on the finding of an opponent model which can predict the next action of a human poker player. This
is done using a neural network, with the goal of finding a kind of "default” (human) poker player.

Index Terms—Opponent Modelling, Limit Poker, Neural Network.

<+

1 INTRODUCTION

For humans a game is relatively easy to learn. Just by playing a game
several times we can become very good in mastering the game. On the
other hand learning a game is a rather difficult process for a computer.
The computer has to play the game more often than humans and it
needs a lot more time to learn game strategies, using existing machine
learning techniques. For this reason games are very interesting for
(artificial intelligence) research.

When we look at games there are differences in complexity of the
game play. Currently, one of the most complex board games is GO.
Poker is also considered to be very complex. The game of poker re-
quires anticipation of the opponent’s play in order to use a good strat-
egy. Even for most humans this is a difficult task.

Computers can anticipate on an opponent’s play using opponent
modelling (OM). The different techniques used for opponent mod-
elling try to discover the non-observable properties in a poker game.
Furthermore, skills like statistics for hand evaluation and risk manage-
ment also very useful for good poker play. More important, if you
know what your opponent is going to do, you can anticipate and use
this to your advantage.

For our research we studied two different opponent modelling im-
plementations, respectively opponent modelling using hand strength
and hand potential and opponent modelling using an artificial neural
network (NN). Our focus will be on opponent modelling using the
neural network to predict actions of the players.

2 TEXAS HOLD’EM

There are several game varieties in the world of poker. This sec-
tion will explain the popular variety Texas Hold’em which is used for
this research. Texas Hold’em has two different betting styles, Limit
Hold’em and No-Limit Hold’em. We will use Limit Hold’em which
has in contrast to No-Limit restricted bet-sizes.

Each hand is divided in four betting rounds. In the first round also
called "pre-flop’ the player is dealt two hole cards face down. The
second round, called the "flop’, three board cards are dealt face up. In
the third round, the ’turn’, one board card is dealt face up. The final
round is called the ’river’ and again a single board card is dealt face
up. In each round the player is able to fold, check/call or raise their
hand. By folding the hand the player throws away his cards, with a
check/call the player accepts the bet/raise from other players.

The board cards are community cards and players use these cards
in combination with their hole cards to form the best five-card poker
hand, see figure 1 for all poker hand ranks. The player who formed
the best five-card poker hand will win in the showdown. Another way
to win is when there is only one player remaining and all the other
players have folded.

3 REQUIREMENTS FOR A POKERPLAYER

There are several requirements needed to become a world-class poker
player. In order to make a competing pokerbot these key requirements
are used. Billings et al. (1998) have identified most of the key require-
ments and implemented some as software modules in the architecture
of the pokerbot Loki. The following requirements are taken from [6].

Royal Flush
&7 [—
Straight Flush . v .';,% :_"i:,:
TEHYEYEY R

Four of a Kind

LFLELF
MW

Full House

B

Three of a Kind

n__._.
- —o

R

Two Pairs EL@"_‘[: ‘
One Pair %@V ',EE 9%
No Hand ﬂ_:ja,:, E_:‘E? 4
Fig. 1. Poker hand ranks. Taken from

[http://www.poker5land.com/jpg/poker5s.jpg]

Hand strength is to calculate the strength or rank of a hand. Hand
strength calculation is done in many different ways. The most sim-
plest calculator only uses the pre-flop cards as information in order to
calculate the hand strength. More advanced calculators use informa-
tion like the board cards, amount of players and the position of players
at the table. With this kind of information the hand strength is more
accurate, furthermore, the possibility to calculate the hand strength of
the opponent.

Hand potential is an important requirement when the strength of a
hand is very low. Low hand strength pre-flop cards can increase po-
tential on the flop when three board cards are dealt. Especially when a
player is aiming for a straight or possible flush. In a case when a player
is holding two cards of spades and the flop brings two more spades the
hand strength will be very low. In contrast, the hand potential is very
high because with one more spades on the board the player will hit
the flush of spades. On the other hand when a player holds two tens
and thus, a high hand strength, and the same flop comes up, the hand
potential will drop because of a possible flush draw for the opponents.

Development of certain strategies are used to determine whether to

11

6 SCaRBG
(203 o)

Opponent Modelling for Limit Poker — F. L. de Vries, G. Veenstra

fold, call/check, or bet/raise in any given situation. Successful strate-
gies are developed with hand strength, hand potential and especially
opponent modelling.

Bluffing is trying to convince the opponent you have the best hand.
This way you are able to steel” the pot with a low hand strength. Bluff-
ing a low hand strength is considered difficult for human players. Hu-
man players need nerves of steel in order to bluff because when an
opponent catches you bluffing you will probably lose the pot. Bluffing
can be very successful combined with hand strength and hand poten-
tial information.

Unpredictability is important for you in order to keep the opponent
guessing what strategy you are playing.

Opponent modelling is essential to achieve high performance in a
poker game. Opponent modelling allows you to predict what action an
opponent will make in any given situation.

4 STATE OF THE ART

The University of Alberta poker research group developed two poker
bots (i.e., Poki [3] and Loki [5]). Both poker bots are implemented
using opponent modelling. The research group is trying to defeat some
of the best human poker players in Las Vegas using these poker bots
[1]. In figure 2 we illustrate the architecture of the Loki pokerbot. The
components and data structures are represented by the rectangles and
rounded rectangles. Ovals correspond to actions and arrows reveal the
dataflow. The Triple Generator is considered the beating heart of this

Oppomnent 10&1

O pponent Modelar |

Model
weight mble
aafrosdo T2 [s 1081
kkfssn]o T3 7 Tublic
Triple Gen eramr Giame
1081 entries State
Hand Evaluator

[Action Selector ||

Y

Fig. 2. Architecture Loki. Taken from [6]

Simulator |

___?__

Bettin g
R ule- biﬁE

architecture. This components gathers information like hand evalua-
tion, game state and opponent modelling from other components in
order to generate probability triples. A probability triple is an ordered
triple of values, PT = [f,c,r], such that f + ¢+ r = 1.0. Each time it
is Loki’s turn to act the distribution gives the probability in order to
select fold, call or raise in any given situation.

5 METHOD

There are two different reasons for using opponent modelling in poker.
The first reason is to predict the hand strength and hand potential of
the opponent [5].

The second reason is to predict what action an opponent will per-
form in any given game state. This form of opponent modelling can
be done using an artificial neural network (with inputs like ’pot odds’
and ’bets to call’). [8]

We develop a computer program with a neural network (NN) using
an implementation idea used in the paper of Davidson (1999). [8]

The neural network will be trained using real data gathered from
human players. We hope to see that after some training this neural
network will be able to predict other human players.

The NN will be trained and optimized using a training dataset and
an experimental dataset will be used to test if the NN is actually able
to predict human actions in a poker game.

An overview of the procedure can be seen in figure 3. Each cycle
we feed the NN the training dataset and after we freeze the NN we
see how good the NN performs by measuring the average error of the
experimental dataset.

Training of the NN

Training
Dataset

Unfreeze NN Cycle Freeze NN

Testing of the NN

Testing
Average Dataset

Error

Fig. 3. Methode overview.

5.1 Opponent Modelling using Hand strength and Hand
potential

This section will describe the first attempt of opponent modelling im-
plemented in the pokerbot Loki. Billings et al. (1998) used enumer-
ation techniques in order to calculate the hand strength and hand po-
tential. Hand strength and hand potential are used to assess the quality
of a hand. The assessment of the hand was in the first place used for
Loki’s own betting strategy and later on used to assess the opponent’s
hand.

Hand strength for Loki’s own betting strategy is calculated as fol-
lows. Suppose the pre-flop cards are an ace of diamonds and a queen
of clubs. Initially this is a good hand strength. But when the flop is
dealt and shows a three of hearts, four of clubs and a jack of hearts
most players would fold. To estimate the hand strength for this exam-
ple Billings et al. (1998) developed an enumeration algorithm which
is shown in figure 4. The algorithm returns the hand strength given
any pre-flop cards and board cards. 47 cards (total of 52 cards - (two
pre-flop cards + three flop cards)) remain unknown. Better hands are
three of a kind, two pair, one pair or when an opponent is holding a
ace and king. That makes a total of 444 possible hands that are better.
Equal hands, which are ace and queens of other suits, are a total of 9
possible hands. A total of 628 possible hands are worse. For this hand
the algorithm will return a 58.5% chance of winning the pot over a
random hand. But this is only with one opponent, with five opponent’s
the algorithm returns 0.585° = 0.069 which is only 6,9% chance of
winning the pot over a random hand.[5].

Han S:rnr‘””-"\-r"ar'_ﬂ,szera ards)

{ he "PT‘_J_!".’j =0

cards, boardcards)

card combinations of b i

/* Consider all
.* the yQ-\"“J_f"lr‘

Lf. rra”<>3:cra
else if (ourrank=
aelge. /¥ X/

Fig. 4. Hand strenght algorithm. Taken from [5]

:

12

SC@RUG 2009 proceedings

Hand potential is enumerated as followed. Again the same flop as
in the example above, but now with a five and a two of hearts as pre-
flop cards. This hand is considered very weak using the hand strength
algorithm. But, the turn and river will bring two more cards on the
board, and any heart, ace or six will give a flush or straight. And thus,
this hand has a great potential to win the hand even though the hand
strength is still low. So, what would be a good betting strategy in this
state? In order to choose the right strategy, Billings et al. (1998) use
a hand potential algorithm which is shown is figure 5. This algorithm,
given any pre-flop and board cards, returns the positive potential (Ppot)
and negative potential (Npot). Ppot is the probability to improve the
best hand while the hand strength is low. Npot is the probability of
falling behind while the hand strength is high. In this situation, all
possible turn and river cards combinations from 45 cards, which make
990 possible combinations to calculate how many times the hand is
ahead, behind or tied. Figure 6 shows the numbers of this calculation
for the pre-flop cards, ace of diamonds and a queen of clubs, and a
dealt flop with three of hearts, four of clubs and a jack of hearts. The
figure shows that there are 91,981 ways to become ahead of the oppo-
nent, 1,036 ways to tie and 346,543 ways to stay behind the opponent.
The algorithm returns for the Ppot a value of 0.208 ~ 21% and for
Npot 0.274 ~ 27%.[5]

ential (ourcards, boardcards)

nd potential array, each index repre-
n tied, and behind.
er array HE[3][3] /* initialize to O
er array HPTotal[3]

; “

/* initialize to O

ourrank Rank{ourcards,boardcards)

/* Consider all two card combinations of e

/* the remaining cards for the opponent. st

for each casze{oppcards)

{ cpprank Rank (oppcards, boardecards)
if {ourrank>opprank) index
else if(ourrank=opprank) index
Slga ¥ oo index
EPTotal [index] += 1

ahead
tied
behind

/* Al inhle board cards
eact se (turn, river)
/* Final 5-card board */
board [boardecards, turn, river]
ourbest Rank{ourcards,board)
Rank (oppcards, board)

to come. 5

if {ourbest>appbest) index] [ahead] +=1
else if (ourbest=cppbest) [index] [tied] +=1
else /* < */ index] [behind]+=1

* Ppot: were behind but moved ahead. *y
Ppot = (HP[behind] [ahead]+HP [behind] [tied]/2
+ tied] [ahead] /2)
/ {HPTotal [behind]+HPTotal[tied])
/* Npo ere ahead but fell behind. 5
Hpot = 1P [ahead] [behind] +EP[tied] [behind] /2
EP[ahead] [tied]/2)
/ PTotal [ahead] +EPTotal [tied])
regturn ot ,Npot)

Fig. 5. Hand potential algorithm. Taken from [5]

5 Cards 7 Cards
Ahead Tied Behind Sum
Ahead 449005 3211] 168504 821720 = BJEx
e—— o = = =
Tied o§ 8370 540 8810 = 9x
Behind Y1981 1036Q 34p543 4395h0 = dddx
Sum 54098612617 516587 1070190 = 1081x

Fig. 6. Hand potential calculations. Taken from [5]

Furthermore, these enumeration techniques, slightly modified, are
able to create a model of the opponent (OM). A separate set of weights

is assigned to each opponent. The initial weights s for every oppo-
nent are an array of weights s indexed with all possible pre-flop cards.
When an opponent raises on the flop his weights s are increased for
all possible strong hands, given the flop. For weak hands the weights
s are decreased. After a few games played, the weights s represent a
relative probability of the opponent’s hand.

5.2 Opponent Modelling using Artificial Neural Networks

In the previous section we explained opponent modelling with hand
strength and hand potential. Davidson (1999) states that the current
(hand strength and hand potential) opponent modelling used in Loki
is very crude. According to Davidson too little information which
is available is used given every played game. Figure 7 shows which
information Davidson used for his input nodes. [§]

description

Real Immediate Pot Odds

Fig. 7. Input nodes with boolean values of 0 or 1 and real values from 0
to 1. Taken from [8]

Before the network is able to predict an opponent’s next action the
network needs training. The training phase is done by feeding the net-
work several log files with observation data. While the observations
are fed to the network, the network is able to learn associations be-
tween the input information and the opponent’s actions.

6

We used the same neural network as Davidson (1999) describes in his
paper about opponent modelling. The neural network is a standard
feed forward network which consists out an input layer with 19 nodes,
hidden layer with 4 nodes and an output layer with 3 nodes. Figure
8 shows a clear view of this neural network implementation. The red
(negative) and black (positive) connections represent the weights s be-
tween the nodes. [8]

IMPLEMENTATION

Fig. 8. Neural Network. Taken from [8]

13

6 SCe@f
(28 q

G
9)

Opponent Modelling for Limit Poker — F. L. de Vries, G. Veenstra

The error for each output node is computed by subtracting the actual
output from the desired output:

Voutput : ej = (d; —Y;) (1)

The average network error can be calculated by taking all the
squared errors of the output layer and dividing them by the number
of output nodes.

2 2 2
Caverage = (efold tean t eraise) * (1/3) (2)

The error in the hidden nodes is computed by the following equa-
tion:

N
Vhidden:ej =Y (wixe;)*(aj—1)*a; G
i=0

where a; is the output of this node, w; is the weights of node i in
the previous (output) layer, e; is the error of node i in the previous
(output) layer and N is the number of nodes in the previous (output)
layer (N=3).

Neuron weights adjustments where made with the following equa-
tion:

Vweightss : wij = W,ij +(LR*ej*X;))

Where w;; is the new adjusted weights , w}] the current weights . e;
is the computed error and X; is the output of the neuron in the previous
layer (node 7). The initial weights s are randomly chosen between -0.5
and 0.5.

The value of the learning rate LR = 0,01. This is the part where we
differ from the implementation of Davidson (1999). Davidson (1999)
used an default learning rate of 0,4, the average error (Equation 2)
was used as learning rate depending which was smaller [8]. As a con-
sequence, the implementation of Davidson (1999) will make bigger
steps in the beginning of the learning phase and as the network con-
verges the learning rate will decrease because of the dropping error.
The reason we used another learning rate as Davidson (1999) is that
we wanted a constant and relatively small learning rate. Despite the
fact that the learning process of the NN is slower, the NN has less
chance of getting stuck in local minimum. Getting stuck in local min-
imum means that the NN is training towards a solution that is not the
global best solution.

LR = (0,01) %)

The precision is calculated as denoted in equation 6. It shows the
percentage of all the correct predicted actions.

precision = (fold prrect + Callcorrect + raisecorrect)

/tUtalactions (6)

7 RESULTS

In the following sections we describe results of our experiment cy-
cles. In the first experiment we used the same neural network (NN)
implementation as Davidson (1999). We conducted another experi-
ment to test the NN with more hidden nodes in order to increase our
performance. At the end of this section we compare our results with
Davidson (1999). The training dataset, used for each experiment ex-
ists of 504 players and 24227 actions. To test the NN a validation
is done with the experiment dataset which exists of 371 players and
21358 actions.

In figure 9 we compare the results of the decreasing average er-
ror from both neural networks. We can conclude that the NN with 8
hidden nodes is performing slightly better than the NN with 4 hidden
nodes. This is probably due to the fact the NN with 8 hidden nodes is
able to learn more features. Because of the better results with 8 hidden
nodes we only discuss this NN.

Furthermore in figure 9, after ten cycles the error is dropped from
0.29 to = 0.20. The error stabilizes after approximately 100 cycles.
The results of the experiment dataset are shown in table 1.

Average Error with LR=0,01
— 8 hidden nodes — 4 hidden nodes|

0,31 1
0,29
0,27
« 025
2 oo
W 0,23 \\
o \Mm
0,19 — T e
1 16 31 46 61 76 91 106 121 136 151 166 181 196 211
Cycles
Fig. 9. Training curve with 4 and 8 hidden nodes
\ F C R \
F | 322 406 58 786
C | 1889 12731 1521 | 16141
R | 101 366 3964 4431
\ 2312 13503 5543 \ 21358

Table 1. Results (8 hidden nodes).

In table 2 we show the confusion matrix of the predictions of an
action and the actual actions performed by a player. The precision
of our NN is 79,68% which means that 79,68% of all prediction
where correct. The confusion matrix also reveals that the NN strug-
gles to predict correct fold actions. Because when we compare the
percentages, 1,51% correct fold predictions of a total of 10,82% ac-
tual folds, the accuracy for the fold (1.51/10.82) ~ 14% seems rather
low compared to the accuracy of the call (59.61/63.22) ~ 94% and
raise (18.56/25.95) ~ 72% actions.

actual action

Raise ‘

prediction Fold Call
F 1,51% 1,90% 0,27% 3,68%
C 8,84% 59,61 % 7,12% | 75,57%
R 0,47% 1,71% 18,56% | 20,75%
| 10,82% 63,22% 25.95% |

Precision: 79,68 %

Table 2. Confusion matrix (8 hidden nodes).

The results of Davidson (1999) are shown table 3. There are a few
differences compared to our results. First of all, Davidson (1999) has a
higher precision, 85,60% compared to 79,68%. Secondly, we noticed
that Davidson (1999) has very good performance on predicting the
fold actions.

14

SC@RUG 2009 proceedings

actual action

prediction Fold Call Raise
F 13,00% 0,03% 0,03% 13,60%
C 0,0% 58,40 % 3,30% | 61,80%
R 0,0% 10,50% 14,10% | 24,70%
| 13,0% 69,30% 17,70% |

Precision: 85,60%

Table 3. Confusion matrix (Davidson (1999), taken from [8]).

8 CONCLUSION

We did find a neural network (NN) that can be used as a starting point
for modelling individual opponents. This concept could be deployed
in an artificial poker player in combination with other poker playing
methods.

Despite the fact that the implementation of Davidson (1999) has
a higher precision, we are satisfied with our results. Due to time
constraints we could not further improve our results. This especially
yields for the prediction of the fold actions.

9 DISCUSSION

There still should be done some research into using the prediction of
the next action of a player. One possible way of using these results is
by generating a clear probability triple for the next possible actions.
Furthermore, when these results are actually used, it could also have a
negative side effect in that other players are able to adjust their strate-
gies.

Divide the NN in three separate neural networks could also improve
the precision. Thus, training one NN for each action separately.

Maybe in combination with an action-frequency predictor some im-
provements could be made. Predictions of the action-frequency pre-
dictor could be used in combination with the predictions of the neural
network. Confusion matrices could reveal the correlations between the
both predictions.

10 FUTURE WORK

Future work could include expanding the default model towards mul-
tiple opponent models based on the strategy used by a player (e.g. an
aggressive/tight strategy). There is also the possibility of competing
neural networks. With the use of genetic algorithms the best neural
network is selected. This could result in the selection of the best pre-
diction model per poker player.

Future work could even focus on more subtle aspects of the poker
play (e.g. time taken before acting).

”There is no shortage of good ideas to investigate; only a shortage
of time and resources.”, Billings et al. [6]

REFERENCES

[1] The University of Alberta computer poker research group. Website:
http://games.cs.ualberta.ca/poker/.

[2] R. Berteig. Basic Concepts for Neural Networks. Website:
http://www.cheshireeng.com/Neuralyst/nnbg.htm, October 2003.

[3] D. Billings, A. Davidson, J. Schaeffer, and D. Szafron. The challenge of
poker. Artificial Intelligence, 134(1-2):201-240, 2002.

[4] D. Billings, D. Papp, J. Schaeffer, and D. Szafron. Poker as a testbed for
ai research. 1997.

[5] D. Billings, D. Papp, J. Schaeffer, and D. Szafron. Opponent modeling in
poker. In Proc. AAAI-98, Madison, WI (1998), pages 493—499, 1998.

[6] D. Billings, L. Pea, J. Schaeffer, and D. Szafron. Learning to play strong
poker. Machines That Learn To Play Games, pages 225-242, 2001.

[7]1 D. Billings, L. Pena, J. Schaeffer, and D. Szafron. Using probabilistic
knowledge and simulation to play poker. In Proc. AAAI-99, Orlando, FL
(1999), pages 697-703, 1999.

[8] A. Davidson. Using artificial neural networks to model
opponents in texas hold ’em. Unpublished manuscript;
http://spaz.calaaron/poker/nnpoker.pdf, November 1999.

15

Lokl

Challenges of systems biology: Pathways and Visualisation

Eric Begue, Bram Leemburg

Abstract— In the field of Bioinformatics, scientists use visualisation techniques to analyse pathways, i.e. representations of
sequences of biological reactions. As these pathways can be complex, efficient visualisation techniques help to understand the
role of substances within the pathways. Graph representations are commonly used in pathways visualization for representing
entities and their relations as nodes and edges. For life scientists graph representations focus much on the relational structure of
entities. The actual biological meaning is lost when the meaning of the entity relations are not visible. To understand the problems
faced by life scientists, the properties of the pathways have to be analysed. In a study on requirements [1] it is shown that life
scientists lack the right tooling to support their research. This paper has the purpose of providing an overview of the state of the
art in the pathway research field. The intention is to provide further research directions to computer scientists contributing to the
field. Temporal information is an important aspect for pathway visualisation systems according to a study [1] based on interviews
of life scientists about their usages and needs of such systems. In our paper we introduce a technique used in the software
development domain: the timeline visualization. That is used in Solid Trend Analyser - a software development tool used to
visualize the evolution of numerous source code files on depositories. As Solid Trend Analyser is highly time visualisation
oriented, we provide rationale and motivation on how this representation can be adapted in pathway visualisation. The expressive
power of this visualization technique is evaluated. For this we compare the Solid Trend Analyser to existing attempts to integrate

temporal data in pathway visualisation tools.

Index Terms—Bioinformatic, Pathway, information visualisation

1 INTRODUCTION

Biological pathways are diagrams that describe interactions
within living system. They model how biological molecules interact
to accomplish a biological function and to respond to environmental
stimuli. Life scientists use pathways as a communication language
that conveys information about biological processes.

Life scientists are the main users of biological pathways. They
use these diagrams in different context of activities: integrating
results from literature, capturing empirical results, sharing current
understanding and even simulating processes. A common goa of
research in the life sciences is to develop an ever-broadening library
of pathway models for biological processes of many different
organisms. In the field, specialized scientists working in small teams
typically conduct research. Although these specialists may know all
the details on a particular pathway, the pathways are not islands.
Participants in one pathway may also affect other pathways, essential
for example to analyse side effects of medication.

Over the last years life scientists have gathered huge quantities of
data about molecular processes within cells and at higher levels.
Most of this data has been revedled by genomic research [8].
Intricate processes of genes affecting one another, regulation
processes and differences in the expression of genes have been
found. Also other research on neurobiology revealed how neurons
use different processes to relay signals within the body.
Understanding these pathways scientists is essential for development
of medication and to increase overall knowledge of al living
creatures. In order to understand the processes, life scientists need to
communicate their knowledge and findings and specify the relations
of the processes.

Pathways are extremely diverse. They can be very specific,
highly abstract, sketchy or rigorous. Figure 1 shows some examples
of different pathway diagrams.

In biochemical research, huge amount of data are produced by
experiments such as micro-arrays or gathered by severa teams in
their collaborative work. Bio informatics provides tools for building,
storing, sharing and analysing biological pathways. An important
technique for analysing biological pathway is visualization.

* Eric Begue is with RuG university, E-Mail: ericbeg@gmail.com.
® Bram Leemburg is with RuG university, E-Mail: ericbeg@gmail.com.

R
e @t

Yﬁ s (Ogle
U)

Glyceraldehyde. 3-phosphate.
Dehydroger y

Glycolysis

1,3 bisphosphoglycerate.

Figure 1 - different illustrations of the same pathway (glycolysis),
note the difference in details and descriptions

For helping life scientists in their research, several visualization
systems exist and offer several features. A results of a study [1],
based on interviews of live scientists about their usage of pathways
visualization systems, provides a list of thirteen reguirements
categorized in three groups: (1) Pathway assembly, concerning the
construction of pathways (2) Information overlay, concerning
information about properties of pathways elements or additional
information such as sources (3) Pathways analysis, concerning the
features for analysing pathways, e.g. Overview, levels of abstraction,
specialized view or focus.

From the analysis of the visualisation tools was concluded that
the problem with existing techniques are focussed on only one
purpose. There is no tool that implements all the requirements that

6

2

&

20

@%{f |

16

SC@RUG 2009 proceedings

the scientists have. Therefore scientists are sceptica about the
systems, because they are forced to learn many different systems to
access the required functionality. An interesting approach is the
attempt to provide an integration framework [3] of the various
techniques. In this paper we give an understanding in the difficult
aspects of visualising pathways and provide a new interesting
research topic that may improve the ability to depict the dynamics of
the processes involved. For this the domain-specific properties have
to be analysed.

1.1 Problem Statement

This paper is written as introduction for computer scientists into
the field of biological pathway visualisation. It provides an analysis
of the challenges in the field, based on literature research. Also it
provides an overview of the tools available and their ability to
support life scientists. We attempt to provide motivation and
research direction to visualisation designers.

2 ExposITION

First we provide the relevant biological information on pathways
and visudization of the pathways. Secondly, we show the
reguirements on visualization tools and provide insight in the state of
the art of visualization tools in the field. Finally research directions
are suggested and the general shortcomings and discussed.

2.1 Biological Pathways

To understand the intricacies of visualization of Biological
Pathways, first a basic understanding of the underlying pathways is
required. A biological pathway describes how an organism performs
a biological function [5]. A biological function is an observable
physical or biochemical property of an organism. The expression of
functionality by an organism is called phenotype. A biological
pathway describes the substances and reactions causing the
expression of the phenotype of an organism. For example, the human
body can break down hydrocarbon molecules food to get energy.
This is an observable property that humans posses. This property is
caused by what is called the metabolic pathway. It consists of many
biochemical entities throughout the body that break down molecules
and carry energy to whereit isrequired.

Pathways are comprised of a sequence of small steps in which
biochemical entities get input substances and have certain outputs.
Describing pathways helps life scientists in many ways. It helps them
to express their understanding of organisms. It provides a common
language to communicate their understanding. Also it provides the
link between functionality and the actual physical entities present
within organisms. This enables is useful to understand and simulate
the effects of chemicas on organisms, fundamental for drug
research, discovery of deficiencies, understanding the functions of
genes and numerous other biochemical applications.

2.1.1 Properties of Pathways

As mentioned before pathways are defined as the sequence of
biochemical reactions causing a certain observable property.
However the biochemical entities are not just responsible for one of
these properties. The entities are therefore often present or related to
multiple pathways, causing the pathways to be related. The pathway
for breaking down sugar; the glycolysis, yields some energy that is
passed along, but also outputs smaller molecules which are fed to the
Krebs-cycle pathway. The Krebs-cycle can aso get input from the
break-down of other substances, such as fats, caused by other
pathways. This process is illustrated in figure 2. Other than these
type of input/output relations and multiple functions of entities, parts
of a pathway may be controlled by other pathways or have some
other type of relation [6].

The average size of pathways that are under research is between

50 to 100 entities. This number rapidly increases when related
pathways have to be taken into account. This is a problem for
scientists, because it makes it hard to understand pathways and
depict them.

RESPIRATION FERMENTATION

Pyruvic acid
NAD* CoA

(NADH \>aco,

AcetylGoA CoA

Oxaloacetic acid Citric acid

@, e

NAD*

ic acid
(oF dorivat)

Malic acid Isocitric acid

NAD*
o Cam

\-Qco,

Krebs Cycle

Fumaric acid a-Ketoglutaric acid

A NAD*
[8‘ C@;@

\s-@co,

LT
FADD e c((o

Q00 QOOP~con
Succinic acid q Succinyl CoA
ATE aDP+ @

Electron
transport
chain and
chemiosmosis

Figure 2 — metabolic pathway interactions from [2]

left: interactions between the glycolycis and other pathways,
right: detailed view of the krebs-cycle

In the literature [3] pathways are divided on different levels.
There are pathways on the genomic, transcriptomic, proteomic and
metabolic levels. The genomic level is about genes and how these
are affected by one another and external entities. The transcriptomic
level is about the creation of proteins from the genetic code. The
proteomic level is about the functioning of proteins. And finally the
metabolic level is about how the processes are provided with energy.
As becomes immediately evident, these levels are intertwined, for
example, at all levels energy is required, for example for duplicating
genetic material. The levels themselves can also be somewhat
hierarchically structured, for example the glycolysis and krebs-cycle
are parts of the metabolic pathway.

For life scientists, another important aspect is where the processes
take place and when. The question of where can be specified as the
type cells or organs, but also to the extent of the location within the
cell. As for the question of when; the order and dependencies
between reactions is particularly important. However, experimental
data, such as data gained from micro arrays is aso inherently time-
dependent. Having insight in these dynamic properties is equally
important to scientists as seeing the static structure of the pathway.

2.1.2 Pathway representations

Describing pathways is not easily accomplished. We have
explained already several properties of the pathways that make this
evident. In bio informatics, pathways are classically represented
using graphs. Simple graphs, however are not able to present al the
information. Newer pathway databases use ontology languages[7] to
describe the pathways. Although this technique is more capable, no
consensus on the vocabulary is established yet. Important to realize
is aso that pathway research can give incomplete, uncertain and
contradicting results. The pathway descriptions have to reflect this so
that life scientists can proceed in their research.

To summarise, we have explained the basic concept of pathways
and shown the traits of pathways that make it hard for scientists to
get an understanding of the processes at the cellular level. These
traits are the relations between pathways, the size of pathways, the

17

B

Challenges of systems biology: Pathways and Visualisation — Eric Begue, Bram Leemburg

Table 1 - High level pathway visualisation requirements

Categories Requirements Tasks
Pathway assembly 1. Construct and Update Collect and link pathways from multiple resources
2. Context Provide information about pathways
3. Uncertainty Maintain alternate hypotheses and information reliability
4. Collaboration Enable group work
Information overlay 5. Node and edge representation Details about network entities and interactions
6. Source Details about source resources
7. Spatial information Physical locations of pathway entities in the cell
8. Temporal information Time-related properties

o

. High-throughput data
10. Overview

11. Inter-connectivity

12. Multi-scale

13. Notebook

Pathway analysis

Expression data from high-throughput experiments
Comprehend large or multiple pathways

Intra- and inter-pathway effects of entities on each other

Relate networks at different levels of abstraction
Track accumulated research information

The requirements are grouped into three main categories: pathway assembly, information overlay, and pathway analysis.

intertwined levels of pathways, and the temporal and spatia
properties. Also the uncertainty of pathway data needs to be
accounted for in some way. Next we will describe the approaches
taken to provide visual aidsto scientistsin the field.

2.2 Biological Pathway Visualisation

In the biological research domain, Information Visualization
technology enable scientists to use pathway as a focal point to
integrate diverse related information, such as literature citations,
research notes, and experimental data.

In the recent years, large amount of experimenta data are
generated from high-throughput capture technology. Theses
experiments provide data about thousand entities. In the context of
pathway diagrams, all this data must to be analysed to enable
biologists to derive new knowledge about the underlying biological
processes and to improve the current pathway models. The
combination of numerous entities and large amount of related
information increase the complexity of pathway diagrams. Some
visualisation tools ,presented in the next section, provide features
that can abstract that complexity.

In biologica research, the increasing importance exploratory
pathway analysis corresponds to a maor shift beyond the
reductionist scientific process, which rigorously examines each
interactions of biological molecules, towards system-level science,
which explore entire systems of many biological molecules. System-
level science highlight that the whole is greater than the sum of the
parts. A challenging goal for pathways is to try to convey complex
global functionality, interconnections with other pathways, and their
dynamic behavior. [1]

Visual representations are necessary to facilitate exploratory
analysis of complex pathways. Pathways are typically represented as
network diagrams. Some pathway diagrams are very pictorial such as
found in the literature, e.g. Biocarta, while others are very basic,
made of black line and simple circle, see figure 1. Visualisation
systems interactively generate pathways diagrams in respect of the
user interest. The fish-eye zoom feature of GScope, for example,
gives the possibility to the user give more importance to some part of
the pathway by displaying entities in the centre of the screen bigger
than those that are on the border.

2.3 Overview of Visualisation tools

To give an overview of thetools that exist in the field it would be
impossible to list al features of al the available tools. Instead we
highlight some of the approaches provided by tools to accommodate
the requirements from [1]. Here the focus is on the visualisation
itself, not so much on the pathway assembly. As can be seenin Table

2, the features of the existing tools are spread scarcely.

2.3.1 Relating pathways

To provide overview and interconnectivity of pathways, some
approaches can be found in existing tools. These approaches are
related to the Pathway analysis requirements described earlier.

Lrter Doueeol] patheray

ansrobe ghcetra
Emitrion Mayorhofl et sy
" bew 1 300

Figure 3 - GenMapp, pathways are linked through a hierarchy

In GenMapp, as depicted in figure 3, the pathways are related
using a tree structure. Users can browse the tree to get related
pathways. This functionality is not as powerful as being able to
depict al related pathways and showing the type of relation. As
stated in the introduction, relations between pathways cannot be
mapped onto a strict hierarchy.

2.3.2 Semantic zooming

Related to the features for navigating pathways is the semantic
zooming. This feature is aso found in dynamic road map
applications. It is the ability of the tool to hide details as the scale
increases. This could aso create overviews of inter-pathway
relationships. In figure 4 the approach was implemented to size-up a
portion of the diagram to reveal more details.

2

<;

. @%{f)

18

SC@RUG 2009 proceedings

alglsl

Figure 4 - GScope, a tool with a fish-eye zoom feature

In figure 5 an experimental approach is shown that allows
multiple detail levels to be mapped on each other, using meta-graph
representations [4]. This technique allows users to zoom in on sub-
graphs of their interest. In the article on meta-graphs [4] this is
formulated as “ The popular website Google Maps, for example,
implements a familiar form of semantic magnification in which
geographic lables ranging from street names to political boundaries
are automatically set to adjust for changes in zoom level. Semantic
zooming makes use of the viewing context to decide, in real time,
what kind of information to include.” This is a more powerful
feature than the fisheye, because it alows more different levels of
detail. It should be noted that the detail levels are not the same as the
hierarchy of pathways described earlier. As can be seen in figure 5,
all levels are metabolic and show the same type of interactions, only
the level of detail differs, as can be selected by the user. All variants
of a protein complex can be depicted as one node or multiple as
demanded.

Level 4

Level 3
=

Tycan biosynthesis
¥ Glycan biasynthesis
Lipid biosynthesis.
Nucleotide biosynthesis Lipid biosynthesis
Nucleotide biosynthesi
Protein biosynthesis
Nucleic acid biosynthesis gjogynthesis of other molecules G NEEE G
Nucleic acid biosynthesis Biosynthesis of other molecules

9
29
=

2?

(Central metabolism Central Amino acid bi

Amino acid bi

Metabolism Metabolism

Level 2 Clycan(hesls
Muclean@ymhzsls
@ic acid
nthesis Lipid biosyfthesis
Prate\nlhesls s

Level 1: 1 module

Level 2: 8 modules

Level 3: 161 modules

Level 4: 810 proteins. Only part of proteins are shown
in the figure due to space limit.

Level 1

Metabolism

Amina acid 5'5‘5 of
folecules

biogynthesis Ot

Central metabolism

Metabolism

This technique could also be a powerful way of linking pathways
Figure 5 - Multiple levels of detail

and creating pathway overviews, this technique is not fully
implemented in existing tools. Managing the lay-out of these
overviews and allowing user interactivity are features that remain a
challenge.

2.3.3 Spatial properties

A problem with the automated pathway visualisation tools is that
spatial properties of the pathway are not depicted well. Text book
type of pictures often show drawings of the involvement of
organelles and cell membranes. An attempt to visualise the location
of steps of the pathway is shown in figure 6. Different areas are

separated into different windows. This approach is not as visual as
the textbook pictures but functional distinctions can be made.

AE0)

1 Ak Untitie)

Fie EdR_View Query Submission Lavout Tools Hein

Figure 6 - Patika's approach to separating locations

2.3.4 Timelines

Perhaps least addressed by current tools is visualisation of the
temporal dependencies and related data (such as expression values).
In Figure 7 this is attempted by integrating function views into the
tool. This approach is limited in the sense that the user must make
the link with the static structure of the pathway and the visualisation
cannot express thisitself.

2.4 Research suggestions

Having given an overview of the features offered by current
tools, we now try to give some directions for conceptual visualisation
techniques that may yield improvements. The implementation and
verification of the applicability of these techniques falls outside the
scope of this paper.

2.4.1 Timeline based visualisation

In the field of visualisation of software, an interesting tool is
developed by Solid Source; the Solid Trend Analyser. This tool is
used to analyse huge repositories of source code. The problems faced
in the software engineering are similar in nature to the biological
pathway visualisation, the data also has complex relations, is time-
dependent and is to large to effectively analyse using conventional
graph layouts. In fact in the literature [1], system biology is
compared with computer scientists attempting to reverse engineer a
complex system. The solution developed here is to display the
entities as timelines and apply color overlays to indicate metrics,
such as the size of the entity, and relations, such as the participating
author. Our concept isto reuse this technique and apply it to pathway
visualisation.

The Solid Trend Analyser's main view is the entity lifeline as
shown in figure 8. The program can apply color schemes to the

Figure 7 - CytoScape, multiple views allow micro-array data to
be shown over time

19

61 SCARWG

(2U3E89)

Challenges of systems biology: Pathways and Visualisation — Eric Begue, Bram Leemburg

entities, based on metrics or relations. The entities can be grouped
and filtered based on these color distinctions. The timeline
visualization can provide good insight for data analysis, not just
capable of representing the relations, but also displaying quantitative
metrics, such as the size of the entity or the amount of involved
reactions in the same way.

The method is based primarily on the time dependent aspect of
the data, not properly addressed by graphs. For this reason it can
serve as a data driven analysis tool, in other words be used to
visualise experiment output.

Another strength of this technique is the ability to represent
extremely large amounts of entities; the technique has very good
scaling capabilities. Unlike with a graph, no connections between the
entities are indicated; instead the relational property is indicated with
acolor.

w0 nE
ot Fesniiz o B GGORE GO

Figure 8 - the Solid Trend Analyser's timeline
visualisation

3 Discussion

Within the SolidTA tool multiple levels are hard to separate.
Strict hierarchies can be visualised, originally performed for showing
filename hierarchies in the software repositories. The tool does have
the ability to use multiple color overlays and filters, which may
satisfy this requirement.

The most difficult aspect is to depict the input and output
behaviour of pathway entities. The dependencies have to be clear
while the involved entities are positioned on different lines. Dynamic
grouping of the entities based on their dependencies is required, but
will be difficult to do in a clear way. Using color markers, transition
lines and some shearing of the timeline will have to be researched to
satisfy this.

A problem that remains is that the color schemes used mainly in
SolidTA do not scale so well. The eye can only distinguish a limited
amount of different colors. This makes it hard to visualize al
involvements in some relations.

Even when the afore mentioned challenges are overcome, this
technique still will not solve the main problem, integration of the
reguirements into a single framework [3]. It may however bring a
better tool for visualising the dynamics of pathways.

4 CoNCLUSION

We have tried to give an overview of biologica pathway
visualisation to fellow computer scientists to give insight in the state
of the at and to andyse the problems faced in the field.
Understanding the properties of pathways is crucial to redise the
demands on pathway visualisations. Pathways consist of large
amounts of biochemical reactions having complex interactions.
Biological background information such as the type of interaction,
the location and the timing aspects are important for researchers in
the field. Pathway visualisations need to show the overview to alow
system-level studies, because “The whole is greater than the sum of
the parts’ [1]. Scientists are interested in discovering the processes
behind the physiological effect.

Existing visualisation tools are as numerous as they are limited.
To perform all the functionality that a life scientist needs, as shown
in table 1 a large number of tools is required. The system that exist
offer useful features for helping life scientists in their activities. But,
according to [1] life scientists skeptical about the biological value of
current pathway visualisations. The reluctance of using the currents
pathway visualisation systems remains in two intrinsically related
points. Firstly, the features needed by life scientists are scattered into
several systems, table 2 highlights this point. Secondly, the time
required to learn several systems is too important compared to the
benefits gained by mastering theses systems. Integrating the different
tools and representations will be highly beneficia to the user
community [3].

Existing tools are mainly focused on visualising the pathway as a
graph, leaving out important biological details. To support the
visualisation of temporal details more research is required on similar
tools used in software system anaysis. A promising tool for
visualising software changes over time could be adopted to visualise
the temporal aspect of pathways.

REFERENCES

[1] Purvi Saraiya, Chris Northl, Karen Duca. Visudizing biological
pathways. requirements anaysis, systems evaluation and research agenda
Information Visualization (2005), 1-15. 2005 Palgrave Macmillan Ltd

[2] Pearson web courses on metabolism,
http://classes.midlandstech.edu/carterp/Courses/bio225/chap05/
[3] Jos B. T. M. Roerdink et al, MOVE: A Multi-level Ontology-

based Visualization and Exploration framework for genomic networks
(2006), in Silico Biology 7, 0004

[4] Zhenjun Hu et al, Towards zoomable multidimensional maps of
the cell (2007), Nature Biotechnology vol 25, 5

[5] Dee Unglaub Silverthorn, Human Physiology, Pearson 2007
fourth edition, pages 1-10, chapter 1 Introduction to physiology

[6] Dee Unglaub Silverthorn, Human Physiology, Pearson 2007
fourth edition, pages 101-108, chapter 4 Energy and Cellular Metabolism

[7] Demir, E. et a. An ontology for collaborative construction and
analysis of cellular pathways. Bioinformatics 20, 349-356 (2004)

[8] Bruce Alberts et a, Molecular Biology of the Cell, Garland

Science 2002, fourth edition, pages 25-26

6" 65l O
(2033 o)

20

SC@RUG 2009 proceedings

APPENDIX

Table 2 — Requirements mapped onto the existing tool

Eemquirements Approaches STSTEME

Biclogical Story Editor
Cytoscape

Encwledge Editor
Wector PathBlazer

Maphan

OmniViz
Pathway Editor

Pathway fssist
PathwayFinder

Patika

Genelath
Genelpring
Genelys
GENEW
GENIES
GenhAPP
G3cope
PubGene
Thipath

w |BIND
w |BioCarta
w |Ecolyc

w |[EEGG

w |STEE

Reference
Pathway editor tools
Construct pathways using MLP algorithms x x

4]
]

4]
L]
]

R1 from literature databases
Construct pathways frotn micrcarray data x X X
MNLT agonthims to update loca database x
update databasze manualy x

T date pathway manually x x

EZ2 Attach notes x x x

E3 Manipulate node and edges properties X X
E4 Facilitate sharing across group metnbers x x

BS Mlanipulate node and edges wisual properties x X x
Presrides shape for different types of nodes X x x

E& Attach source mformation on nodes and edges x x x

Provides different shapes to show
cifferent cellular location

E7 Mlanipulate node properties x x X X
and uzed fized layout

Dhwide wisuahzation in different areas x

Wanipulate edges length, or layout X X X
E&2 pathway elements in the order they react
Animations x

Crrerlay data on node (using color), x x x
otie condition at a time
Embedded wiews, for multiple conditions X
RO Tultiple linked wews, for multiple conditions x
WVisualizations for a functional group x
Autematically infer relationships x
between entities from data

Overlaying replicates X

Functional groups x x
E10 Zootming x

Fish-eye vews

T -down cascades x

Query pathways X X

Ell

E1z Chromesome location + pathways X

Attach notes to node and edges x x

R1z

Build stories about pathway elements x

21 e |

A discussion of secret information comparison methods

Pieter Noordhuis

Harry de Boer

Abstract—This paper presents an overview of some classical secret information comparison methods present in literature. While a
good overview is presented by Fagin, Noar and Winkler, they do not give a theoretical background. We provide an overview that does
not only present the methods but also provides some theoretical background. Also a more recent method by Teepe is discussed.

1 INTRODUCTION

Some secrets are best kept to yourself. However, knowing that some-
one knows the same secret as you can be important. Suppose two
persons claim to know a password to a secret society, but both do not
know whether the other is indeed a member. They want to be sure
each knows the password before discussing their secret activities. The
problem is determining that both secrets are indeed the same with-
out compromising them when they are not. A number of methods to
compare secrets without giving them away on a mismatch are given in
Fagin [2].

Several of these methods are fairly simple and can be executed eas-
ily, while others are too complex for the average user. Execution of
a method to be used by two people without any computational device
available should be very simple. This characteristic is less of an is-
sue when computational power is available. However, they all rely
on two parties knowing which secret they talk about (with reference).
Teepe [5] proposes methods for comparing information out of a set of
secrets so it is not known in advance for which secret possession is go-
ing to be proved (without reference). The latter methods rely on using
padded one-way collision-free hash functions. Methods for proving
possession of a secret from one party to another is not considered in
this paper as we concentrate on mutually proving possession of secrets
(i.e. comparison of secrets).

The key characteristic for these methods is that they do not reveal
any information other than whether there is a match. Protocols used
in these methods are therefore called zero knowledge protocols. These
were first described in Goldwasser, Micali and Rackoff [4]. Charac-
teristics such as security, simplicity and remoteness apply to all secret
comparison methods. The importance of every characteristic depends
on how the method is used. In example: remoteness is important when
one party resides in Australia and the other in Europe, but is not an is-
sue when they are in the same room.

In this paper we give a basic overview of the theoretical background
used in secret information comparison methods. We give an overview
of available methods, categorized in simple, third party and crypto-
graphic methods. We discuss characteristics and flaws for the crypto-
graphic methods as these are most interesting for computer science.

2 THEORETICAL BACKGROUND
This section provides preliminary knowledge for using and developing
secret information comparison methods.

2.1

Not all methods are suitable for all applications. Therefore we list a
set of characteristics that can help in selecting the right method that
suits the requirements of the application.

General characteristics

e Resolution The goal of information comparison methods is to
find out whether two parties have the same secret. This is what
resolution embodies. Both party A and party B should find out if
their secrets are the same. One might think that this characteristic

o Pieter Noordhuis, E-mail: pcnoordhuis @ gmail.com.
e Harry de Boer, E-mail: h.de.boer.15@student.rug.nl.

will always be met. However, resolution is not always equally
important when other characteristics are violated (privacy might
be more important than resolution).

e Leakage When both parties followed the method of their choice
faithfully, they should not get any knowledge other than whether
their secrets are equal.

e Security In addition to leakage, security means that if one of the
parties is trying to cheat, no knowledge is gained about the secret
of the other party.

e Privacy Apart from the parties that want to know whether they
have the same secrets, no one else should gain any knowledge of
the secret. This includes any third party that might be used in the
method.

e Simplicity This characteristic describes how easy a method can
be used. Complex methods are unlikely to be used by parties that
do not understand them, because one might not be confident that
it can be used safely.

e Remoteness Some methods require that all parties are present at
the same location while others do not. This principle is expressed
by remoteness.

2.2 Contract signing protocols

When two parties that want to compare a secret or the result of a com-
parison method are at the same location it is possible to show this to
each other more or less simultaneously. If the two parties are not at the
same location and communicate remotely trough, say, a computer net-
work, this is more difficult. This is because when at the same location
you can see the actions of the other party and immediately respond
to that. Also you are still in control of you results, you can quickly
retreat your result if the other party is not cooperating. However when
a message is sent remotely you lose control of it the moment you sent
it. As a result, the security characteristic is more vulnerable. In gen-
eral in the last stage of executing a method both parties have some that
they need to compare. If party A sends this value to party B, the latter
will know the result, but party A will not know the result until party B
also sends a message. The problem is that it is impossible to guarantee
that both parties will indeed send the message they promised to send.
This may result in one party knowing the result leaving the other in the
dark.

A way to reduce this risk is to release the result gradually, say bit by
bit where party A and party B take turns. Such an approach is used in
contract signing protocols [1] and can be applied to secret comparison
methods as well. The key idea is that for both parties it should be
equally hard to compute the result using the bits they have already
have received. In this case a party can only be one bit ahead of the
other so the advantage is small if a large enough number of bits is
used.

2.3 Comparing information with and without reference

To distinguish two fundamentally different preconditions in compar-
ing information, Teepe states his definition of “comparing information
without leaking it”! as:

115 called ‘comparing’ in further references.

22

SC@RUG 2009 proceedings

Two players want to test whether their respective secrets are the same, but
they do not want the other player to learn the secret in case the secrets do
not match.

This definition does not state which secret is to be compared and
how this is decided. It could be that the parties want to compare
whether they paid the same amount of money for their new car. This
would require both players to first agree on what they want to compare
(the amount of money paid for the car), before comparing the value of
this secret property. This is called comparing “with reference”.

The other possibility is that one party takes a secret (for example:
“Alice married Bob™) and the other party checks whether he? also
knows this specific secret. In this case, the parties do not need to agree
on the subject of comparison. Both parties posses a set of secrets from
which they can choose secrets to compare with other parties. This is
called comparing “without reference”.

2.4 One-way collision-free hash function

Some methods that are discussed in this paper, rely on one-way
collision-free hash functions. Such a function will be denoted as H(-),
where multiple arguments represent a concatenation of the arguments.
We assume that the following properties hold for this function (the first
property satisfies the requirement of being collision-free):

e Itis hard to compute two inputs X,Y,X # Y where H(X) =H(Y)

e For inputs X,Y,X # Y, it is hard to compute H(Y) if H(X) and
the difference between X and Y are given

The first property says that if some third party would intercept the
hash computed by this function, it is near to impossible to come up
with an input X’ that fulfills H(X) = H(X").

The second property says that with a non-empty difference between
X and Y, a full recomputation is needed to compute H(Y) if H(X) is
given.

2.5 Interactive proofs

Proving the correctness of information comparison methods is sim-
plified by modeling them as a proof system. An NP3 proof system
can be seen as two deterministic machines where one machine acts as
the prover and one as the verifier. Formally, the prover is an expo-
nential time Turing machine and the verifier a polynomial time Turing
machine. Both read a common input tape and communicate one-way
from prover to checker through another tape. The general idea is that
it is hard to find an answer but easy to verify the correctness.

Interactive proof systems [4] are a generalization of NP proof sys-
tems. The idea of interactive proofs comes from the suggestion that a
proof can be more effectively verified if the prover and verifier com-
municate. For example students probably understand a proof faster
when a teacher explains it in front of a classroom where they can ask
questions instead of reading the proof in a book. Formally it consists
of two Interactive Turing Machines (ITM). Each ITM has a work tape,
a tape from which random number can be read, a read-only communi-
cation tape, a write-only communication tape and an input tape. A pair
of these ITM’s share the input tape and the write-only communication
tape is the read-only communication tape for the other.

The interactive proof system (IPS) has a pair of ITM’s as described
above where the prover has infinite power, the verifier is polynomial
time and they satisfy the following properties:

e Completeness: for an input in the language of the IPS the ver-
ifier will accept the proof of he prover with a probability of at
least 1 — ,le for each k and a large enough number of turns 7.

e Soundness: if the input is not in the language is the IPS the
prover cannot, even if it does not follow the protocol, let the
verifier accept the input except with probability ,,Lk for each k
and large enough n.

2For every following “he”, “him” or “his”, read “he/she”, “him/her”,
“his/her”.
3Non-deterministic polynomial

If a proof system exists for a previously mentioned secret compar-
ison method, the resolution characteristic is implied by the complete-
ness property. The security characteristic is implied by the soundness
property.

2.6 Zero knowledge proofs

In 1985, Goldwasser, Micali and Rackoff [4] introduced zero knowl-
edge proof systems. These are interactive proof systems with an extra
condition in addition to the ones mentioned in the previous section,
being:

o Zero-knowledge: the verifier does not get any additional
knowledge from the prover than whether the input is true, even
if the verifier cheats.

This means for example: if the prover can convince the verifier that
a graph has a cycle in it, he can do so without showing this cycle. The
verifier only gets to know there is one, not where it is or how it is
computed. The zero knowledge property corresponds to the leakage
characteristic in secret comparison methods. A good overview of zero
knowledge is presented in Goldreich [3].

X is true!
X » . .

Fig. 1. Zero knowledge, taken from Goldreich [3]

While zero knowledge is an important property of proof systems,
we do not give proofs that the methods given in this paper posses this

property.

2.7 Correctness logics for comparison methods

In this section we will shortly mention logics that can be used to ana-
lyze proof systems. These logics can be of great use to analyze com-
parison methods for basic flaws.

Firstly there is BAN logic (named after its inventors Burrows,
Abadi and Needham) is a logic meant for analyzing authentication
methods. It is used to identify whether a method indeed does what it
should and on which assumptions the method relies.

GNY logic (named after Gong, Needham and Yahalom) builds upon
BAN logic and can handle a greater variety of protocols. An useful
feature of GNY for secret comparison methods is that one can define
knowledge preconditions. This is important because these should not
have been changed after execution of the protocol except for partici-
pants knowing if they have the same secrets.

3 OVERVIEW OF METHODS

In this section we present current solutions to the problem of secret
information sharing. We categorize the methods into categories that
indicate their complexity. All methods are taken from [2] unless stated
otherwise.

Some of the methods mentioned above use a labeling for candi-
dates. Another way to create labels for candidates is to use a hash
function H (). This is convenient when there is a set with a large num-
ber or unknown amount of candidates.

23

A discussion of secret information comparison methods — Pieter Noordhuis,Harry de Boer

3.1 Simple methods

What we call “simple methods” are methods that can be performed us-
ing objects that can be found in common households. That is, they can
be used without the use of some technical device or complex math-
ematics. In a sense these methods could be performed on a deserted
island. These may not have real value in computer science but are
instructional to get the general feeling for the problem at hand.

o Trusted party: Say there is a person both parties are willing to
trust. This can be the case when the trustee had no interest in the
secrets, then both can tell their secret to the trusted person who
can next announce whether the secrets are the same.

e Cups: This method assumes there is a pool of candidates for the
secret. For each candidate a label is created which is attached to
a container (i.e. a cup). Each party now puts a note in each con-
tainer without the other party seeing what is on the note. The
note says “yes” if this candidate is their secret and “no” if it is
not. The labels are now removed and the containers are shuffled.
If shuffling is done properly the parties do not know which con-
tainer belonged to which label. Now the containers are opened
and if one container contains two notes saying “yes” the secrets
are the same.

e Deck of cards: Assuming an alphabet of n elements, secrets
can be compared using 2n cards, n red and n black. Only the
color of the cards matter. The cards are put face-down on a table
in two stacks, one with the red cards and one with the black. For
each letter x; in the alphabet a pair of red-black cards is drawn.
One of the parties picks a red and a black card and puts them
face to face horizontally with the black card on top. He takes
the cards behind his back so the other party can not see them
and flips them if x; is in his secret. The other party takes the
cards and flips them behind his back if x; is in his secret. The
cards are now put on a result stack. When all cards are drawn
the result stack is shuffled in such a way that the colors do not
show (i.e. using riffle-shuffling). Red cards facing upwards in
the result stack indicate that the secrets are not the same since
that pair was not flipped by both parties.

e Envelopes: Suppose two secrets x and y are represented by
a binary number of n bits. Let k be a positive integer, which
should be chosen large enough since it defines the probability of
false positives 2%, which should be small. Both parties select 2n
random numbers between 0 and 2€ — 1. Each number is put in
identical envelopes and each party puts the envelopes in two rows
of n envelopes. Both parties now compute a sum mod 2 using
their secret and their envelopes. From each column i the top one
is added to the sum if x; = 0 (or y; = 0) and the bottom one if that
position in their secret is one. The resulting sum for the example
in Table 1 is Sy, = (61 +ext+egteq+eq +€12) mod k

Table 1. Selection of envelopes, boldface indicates selection.

secret 0 0 1 0 1 1
row 1 €1 €2 e3 [} es [
Tow2 e; e3 € e e €12

Party A now leaves while the other selects the envelopes from
party A corresponding to his own secret and puts the other en-
velopes on a pile. Party A returns and verifies that indeed half
of the envelopes are chosen. The pile is now burned and party B
calculates the sum as above and adds it to his own sum. Roles are
now reversed. When both are finished they write their resulting
sum on a piece or paper and lay them side by side. If the results
are the same they have the same secret.

3.2 Trusted-party replacements

When mentioning the trusted party above we implicitly meant this
party to be human. There are ways to replace this human with some
other entity as shown below. A possible secret in some method is re-
ferred to as a candidate.

e Computer program: The trusted party as previously discussed
can be replaced by a computer program. This procedure works
as follows:

— Party A enters his secret while party B is not looking.

— The program clears the screen (even when the secret is dis-
played with dots or stars, the other party could infer some-
thing from the length of the input of the other party) and
party B enters his secret while party A is not looking.

— The screen is again cleared and the program displays
whether there was a match or not.

This method requires both parties to trust the computer program-
mer that made this program. The program could be made such
that it stores all input or returns invalid response.

e Special purpose device Another possibility is replacing the hu-
man trusted party by a device. One of the properties of such
a device could be that it is incapable of storing input. Another
property could be that when input is stored in memory and some-
one tampers with the device, it clears its memory. When using
such a device, the manufacturer is the one to be trusted. A special
purpose device that - in contrary to a computer program - simply
cannot store input, may be easier to trust.

e Password It is imaginable that one has a computer at hand but
does not want to do new programming or wants to rely on third
party tools to match a secret. If so, he can use the tools at hand in
almost every operating system. The protocol for matching works
as follows (on UNIX, similarly on any other operating system):

— Party A issues the passwd command.
— Party A is asked for his current password and enters it.
— Party A is asked for his new password and enters his secret.

— The program asks for a password confirmation and party B
enters his secret. Depending on the output of the program,
party B knows whether there was a match or not.

— If there was a match, the password of party A has changed.
The password remains the same otherwise. Party A can
also check if there was a match by simply checking if his
password was changed.

o Telephone message When the secret to compare is part of a lim-
ited set of candidates, the parties can agree on assigning a tele-
phone number to each candidate. Party A dials the number corre-
sponding to his candidate and leaves a message for party B. Party
B then dials the number corresponding to his candidate and asks
whether someone left him a message. When so, he knows that
there is a match. To know for sure that party B told the truth
when he said there was a match, party A can dial his number
again and ask whether party B called to collect the message.

e Airline reservation This is a variation of the previous method
and it assumes the secret is the name of a natural person. Party A
calls to make a reservation for certain flight, that is known to both
parties, under the name of his candidate. Next person B calls and
tries to cancel the reservation for the name of his candidate. If
this succeeds both secrets are the same.

2

&

4. 24

SC@RUG 2009 proceedings

3.3 Cryptographic methods

The methods presented below require some form of calculation. In
principle the calculations can be performed by hand so no computer
or calculator should be required, but in practice some are only feasible
when using a computer. The advantage of executing these methods
using a computer is that they easily can be applied between remote
locations.

¢ Digital envelopes This is a digital version of the envelopes
method stated earlier. Party A sends two envelopes to party B
who can choose to receive only the first or the second. This is
achieved by using one-out-of-two oblivious transfer [1], which is
a method to let the receiving party choose one of two messages
but not both. Another property of this transfer method is that the
sender (party A) does not get to know which message was cho-
sen to be received. This is equivalent to choosing and destroying
the envelopes in the method using physical enveloped described
above. In the end both parties are able to compute the sums in
the same way as the non-digital method.

Random permutation: This method assumes there is a finite
set of candidates. Also there is need for a third party but this
person does not get to know the secret. The following steps are
taken to execute this method. Each candidate in the set is as-
signed a unique number. Party A and B agree on a prime number
p larger than the highest numbered candidate. They also agree on
two random numbers a and b smaller than p. These numbers are
not known to the third party. They now calculate (ax+ b) mod p
or (ay+b) mod p where x and y are the numbers for the first and
the second party respectively. The numbers are given to the third
party who announces whether the results are the same. If they are
the same, the secrets are also the same. Whether the numbers are
the same or not, the third party does not know which candidates
are talked about since a and b are unknown.

Random rotation: Suppose there is a set of twenty candi-
dates numbered O to 19. A third party picks a number k be-
tween 0 and 19 and gives this number to party A. Party A calcu-
lates @ = (x+ k) mod 20 where x is the number of the candidate
for A. Party A forwards this number to party B who calculates
b= (a—y) mod 20 where Y in the candidate for B. Party B gives
this number back to the third party who announces whether this
number is the same as k, which the third party initially chose. Of
course this method works for any finite set of candidates.

Hash functions: Hash functions can be used when two parties
want to compare their secrets. Both apply the same hash function
to their secret and they compare the result. When the hashes are
equal, the secrets are the same. When they are not equal, the
parties only saw the hash of each others secret, which is hard to
reverse.

Padded hash functions (without reference): Teepe [5] pro-
poses a method which uses padded one-way collision-free hash
functions to let one party prove possession of a secret to another
party. The hash function Teepe uses satisfies the properties stated
in 2.4.

This method provides a way to prove possession of multiple se-
crets in one go but we restrict the example below to proving pos-
session of one secret.

We denote the set of secrets party A owns as KB, (or the knowl-
edge base of party A). Any secret in KB, is denoted as I, (or
information block of party A).

In the scope of comparison without reference, one must acknowl-
edge that there is a finite set of secrets each party owns. The sets
of participating parties do not need to be the same in size, nor
in content. This means when party A sends the hash of I, to
party B, the latter needs to compare this hash to the hash of ev-
ery secret in KBy,. If a match cannot be found, the protocol can

be aborted with both parties knowing that they do not share that
specific secret.

If a third party C would happen to see the hash that party A sends
to party B and also happens to own the secret that party A wants
to prove to party B, he can conclude by a lookup among his own
secrets that party A knows the same secret he knows. Clearly,
this is undesirable because party A intended to only prove his
possession to party B. To prevent party C from inferring any in-
formation from the message passing between party A and B, a
nonce N that only party A and party B know can be given as an
extra argument of the hash function. By the described properties
of one-way collision-free hash functions, we know that party C
cannot infer anything from H(I,,N) if he has some I. = I, and
does not know N.

Another way of preventing other parties to eavesdrop on the mes-
sages sent between party A and B is by means of a secure com-
munications channel. This could for example be realized by us-
ing public/private key-authentication. This would render using a
nonce word redundant.

The key part in this method is that the hashes have to be recom-
puted each time a message is sent. This prevents a party from
pretending he knows the secret, because the original secret is re-
quired to compile the hashes.

The variables A and B denote the unique identity of parties A and
B respectively. These public identities are known before execu-
tion of the method. If party A wants to prove possession of a
secret to party B, and wants to test the knowledge of party B of
this secret, the method is executed as follows:

1. Party A chooses a secret I, for which he wants to prove his
possession

2. Party A generates a random challenge C,

3. Party A sends hy = H(I,,N) and the challenge C, to party
B

4. Party B finds every I, € KB, for which H(I,,N) = hy

5. Party B sends halt of he has nothing to prove/verify or a
random challenge Cj, if he has.

6. Party A sends the message hy, = H(I;,N,A,Cp)

7. Party B verifies whether hy, (the received message) is the
same as H(I,,N,A,Cp). If it is, party B can conclude the
secrets are the same. Then, he sends hy, = H(I,,N,B,C,).

8. Party A can now verify that hy, is the same as
H(I,,N,B,C,) to conclude that the secrets are the same
and the method is terminated

4 DISCUSSION

For every method to work in practice, participants to the comparison
process should agree on how to represent the secret. It is imaginable
that parties use different spelling or synonyms to depict the same se-
cret. For a human trusted party, it would be clear that both parties mean
the same. Any non-human trusted party will see different entries as a
mismatch. Therefore, both parties should agree on a way to unambigu-
ously describe their secret, so a mismatch really is a mismatch. This is
no issue when there is a candidate set of secrets involved, where each
candidate can be given a unique number.

Some methods do allow a slight margin of error. That is, even while
the secrets are not the same, the result of the method can be positive
with a very small probability. For example, the use of a deck of cards
allows different entries to come out as a match when the different se-
crets are anagrams. Numerical incidence (5 + 3 equals 4 +4) can also
lead to false positives. This is possible with the (digital) envelopes
method.

In this section we first discuss general methods of cheating followed
by a discussion of each method from the cryptographic section.

25

N

A discussion of secret information comparison methods — Pieter Noordhuis,Harry de Boer

Table 2. Evaluation of methods using their characteristics.

method resolution leakage security privacy simplicity
Digital envelopes + ++ - + ++
Random permutation ++ ++ ++ - +
Random rotation ++ ++ + - ++
Hash functions ++ - -- - -
Padded hash functions ++ - s _

4.1 Cheating

When a protocol is followed faithfully both parties should find out the
result. However, if one party tries to cheat the results can be different.
Cheating can take several forms.

1. One of the parties does not have the secret and tries to find out
what the secret of the other party is.

2. One party may want to find out whether they have the same se-
cret, but does not want the other party to find out. This can be
achieved when a party aborts the method before completing it,
but after acquiring the result he was looking for.

3. Aninvolved third party may not be as reliable as the participating
parties might think. The third party might decide to sell the re-
sults he received to the highest bidder and return the participating
parties false result.

4. When a method is executed it might be that a message is inter-
cepted by an external party and used to steal the secret or con-
vince some party that the external party has the secret while this
is not the case. This is especially a danger when the method is
applied remotely.

There is another possibility where one party may be falsely con-
vinced that the secrets are not the same. In this case both parties do
have the secret, but one party does not want the other party to find
out whether they both have the secret but pretends he does. It is hard
to prevent this scenario since one cannot make a distinction between
whether one party just does not have the secret or is not willing to
share. However in most cases it is not very harmful as the cheating
party does not find out any information at all (considered the method
does not leak information).

The advantage for a cheater trying to use the second form can be
reduced using contract signing protocols as discussed earlier. In a sim-
ilar way eavesdropping by an external party can be prevented by using
public key encryption.

4.2 Discussion of individual methods

As characteristics may vary when executing a method remotely instead
of locally, we chose to evaluate each method as if it were performed
by two computers on a network. Some characteristics can be improved
when incorporating public key encryption or a contract signing proto-
col. Below we will not take these extra additions in account and use
the “vanilla” version of a method.

e Digital envelopes: When followed faithfully, this method will
indeed result in both parties knowing the result. However, this
method does not guarantee a valid result will be obtained. When
the random numbers are badly chosen (by coincidence), a false
positive is generated if different numbers sum up to the same
value. The chance of this happening will be small if the num-
bers are chosen randomly from a domain that is large enough.
Another difficulty that is present in many methods is that both
parties should get to know the result simultaneously. This prob-
lem results in the second cheating method mentioned above be-
ing possible. On the positive side, when executing this protocol
there is no additional information is gained (leakage) because

when the secret is not known, all that can be observed is a compo-
sition of some random integers. This also has advantages for the
privacy property since the secret itself is never compromised. On
the other hand, an external eavesdropper might find out that both
parties have the same secret if these numbers are intercepted.
This method is relatively easy to understand for a computing sci-
ence student (simplicity), or even a person not from computing
science since it has a real world analogy (real envelopes).

Random permutation: This method uses a third party which
means that it this method is suspect to cheating by a third party as
described above. Using a third party has the advantage that both
parties do not need to tell each other their results simultaneously
as these are send by the third party. The disadvantage of course is
that the third party finds out whether both parties have the same
secret, but the secret itself remains safe. The method is not too
hard to understand but it requires some mathematical knowledge
to understand why this way of modifying the numbers works to
secure the secret from the third party.

Random rotation: When all parties act faithfully this method
will result in resolution. The parties that want to compare do not
get any information on their respective secrets other than that the
secret is in the set of candidates. Only the third party can get
to know the difference between the numbers assigned to the two
secrets. An advantage is that this method is easy to understand.

Hash function: Using the hash function method the problem
is again that both sides need to send each other their hashes si-
multaneously or one party might cheat. Also there is information
leaked since the hash of the secret can be used to convince some-
one you have the secret when in fact you only have the hash of
a secret. If party A starts sending party B can just start return
the same hash to convince party A it has the same hash so this
method is far from secure. To make things worse this can also be
done by an eavesdropper. This method is quite easy to explain
but it makes use of hash functions which makes t more compli-
cated.

Padded hash functions: This version improves some of the
flaws in the plain hash function method. The leakage problem
is solved by padding the input with a challenge. There even is a
proof in GNY logic that shows the method will indeed not leak
information. This makes it impossible to return the same hash as
was received, which enhances the security property. The security
problem is not completely solved however. It is still possible for
one party to stop communicating after that party found out the
result leaving the other in the dark. Because hashes are recalcu-
lated each time the method is run a third party cannot gain any
information about the data being sent or use data from a previ-
ous session to fake knowledge of some secret. The complexity
if this method is quite great since to be able to fully understand
it in addition to knowledge of hash functions it also requires that
variables used for padding are understood. Another advantage of
this method is that it is designed to be run remotely. It even has
it’s own measures to prevent eavesdropping by using a nonce. It
is therefor useful even without an encrypted connection.

2

<;

g 26

SC@RUG 2009 proceedings

Table 3. Evaluation of methods using their characteristics with addition of public key encryption and a contract signing protocol.

method resolution leakage security privacy simplicity
Digital envelopes + ++ ++ ++ -
Random permutation ++ ++ + - --
Random rotation ++ ++ + + - -
Hash functions ++ - + - -
Padded hash functions ++ ++ ++ ++ --

5 CONCLUSION

This paper presents a theoretically backed way for comparing differ-
ent methods for comparing information without leaking it. When in
the situation where such a method can be helpful when choosing a
particular method.

Table 2 gives a high level overview of how each method scored in
our discussion. If both parties are willing we suggest to use the padded
hash functions method proposed by Teepe. As this method requires
both parties to be willing to faithfully participate, this poses a point
of security. If some party A receives a hash that tells him the party
B proved his possession of a specific secret, he can halt the protocol
at that point. This results in party B not knowing whether party A
also has this piece of secret information, as he did not complete the
challenge.

Therefore, we think it would be of great value if a variant of this
method that gradually releases information would be developed. This
would let both parties be gradually more convinced of the other know-
ing that specific secret. It would reduce the impact of problem stated
above. If willingness might be an issue and there is a trusted third party
available the random permutation method might be a good alternative.

Table 3 shows a level overview of what is to be expected when
public key encryption and contract signing protocols are incorporated.
In this overview most methods perform better and the padded hash
functions method scores are almost perfect. Of course using these
additions have impact on the simplicity but we believe it is still feasible
to use them.

ACKNOWLEDGEMENTS

The authors wish to thank Gerard Renardel, Luc Vlaming and Feitze
de Vries for reviewing this paper.

REFERENCES

[1] S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing
contracts. Communications of the ACM, 28(6):637-647, 1985.

[2] R.Fagin, M. Naor, and P. Winkler. Comparing information without leaking
it. Commun. ACM, 39(5):77-85, 1996.

[3] O. Goldreich. Zero-knowledge twenty years after its invention. In Elec-
tronic Colloquium on Computational Complexity (http://www.eccc.uni-
trier.de/eccc/), Report, volume 63, 2002.

[4] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of
interactive proof-systems. In STOC ’85: Proceedings of the seventeenth
annual ACM symposium on Theory of computing, pages 291-304, New
York, NY, USA, 1985. ACM.

[5] W. Teepe. Proving Possession of Arbitrary Secrets While not Giving them
Away: New Protocols and a Proof in GNY Logic. Synthese, 149(2):409—
443, 2006.

27 Lokl

A Comparison of Hatching Techniques

Willem Bouma, Erik de Jong

Abstract— The generations of images with the appearance of hatching drawings is a classic field of research in non-photorealistic
rendering (NPR). Hatching is an artistic technique used to convey the shape of an object through shading effects created with closely
spaced parallel lines. In this work, we draw a component between the different approaches to the computer generation of such
imagery. We point out their key features and discuss their advantages and disadvantages. We give an overview of how the different
methods work. We then compare particular criteria such as rendering performance, interaction possibilities and aesthetic properties

of the result images.

Index Terms— Non-photorealistic rendering, Hatching, Line rendering, Line shading.

1 INTRODUCTION

Increasingly more research is being done in the field of non-
photorealistic rendering (NPR). NPR is about trying to render an im-
age or object using artistic styles such as painting, drawing, technical
illustrations and animated cartoons. Each of these styles has its own
particular way of obtaining a desired effects.

One of these is hatching. Hatching is a artistic style that uses par-
allel lines to create tonal or shading effects. These effects can be used
to convey properties of an object such as material or shape.

A lot of research has already been done on the subject of generating
hatching images using computers. With every work having different
goals. Some opt for real-time rendering performance, others want to
be able to tweak as many options as possible. Every one of these
efforts comes with different results which are interesting to compare.

In this paper we are going to compare three of these suggested
methods. We will compare them based on certain criteria. Since each
work opted for different solutions we compare the results to see how
these solutions compare to each other on the different aspects of their
algorithms.

We will first summarize the different methods described in the pa-
pers. We give a small summary about how the algorithms work. Also
pointing out the key features that are brought up in the respective pa-
per. Because we are going to use those advantages in our comparison.

Having discussed the different methods, we define the criteria that
we are going to compare. We also discuss the different goals proposed
by the researchers of the described methods, these might differ from
the actual features.

Having defined the comparison criteria, we compare the different
methods with each other.

After the results we will conclude which of the methods works best
in certain situations.

2 HATCHING TECHNIQUES

There are three different algorithms that we will be comparing. In this
section, we take a look at how the different algorithms work. We also
note what, according to the respective paper, should be the key fea-
tures of the algorithm. These can be features like real-time rendering
capabilities or a very high amount of user interaction possibilities.

2.1

Our first algorithm is the one that is described in [4]. It takes triangular
meshes as input. The process of turning the input into a line art image
is split up in two steps.

The first step is to preprocess the input and compute 3D lines. The
second step is the rendering phase where the 3D lines are visualized.

High Quality Hatching

o Willem Bouma is a CS student at the Rijkuniversiteit Groningen.
o Erik de Jong is a CS student at the Rijkuniversiteit Groningen.

In the preprocessing phase, the 3D lines are computed. Therefore
the direction of the lines is established first. A direction field, based
on the curvature of the surface is then computed.

To avoid unwanted artifacts caused by high levels of detail, a simpli-
fication algorithm is applied to the input mesh. Simply put, the mesh
gets smoothed before the curvature is computed.

After the preprocessing stage comes the rendering phase. One of
the goals the researchers set for themselves, to render the output in
high quality images. To get the desired result they set several smaller
goals.

The first goal is to have a fast and effective line processing, includ-
ing hidden line removal (HLR). The second one is to have a smooth
transition between different tones. The last goal is to output vector-
oriented data. This last goal comes in handy when you would want to
change certain aspects later on, zooming in and out for example.

The first step is to remove the lines that should not be shown in the
output, this is obtained by performing HLR. The HLR described in [4]
uses a z-buffer based method. This does result in some imprecisions,
but these can easily be solved by removing all the strokes on back
facing triangles. This way it allows for interactive frame rates.

The shading of the lines is done using a rich NPR centric shading
model. This provides a lot of options for the user to tweak. It allows
for easy adjusting stroke width, and stroke density.

In addition to creating single hatched images, it is also possible to
create multipass images by combining several rendering passes. For
example, you could generate cross-hatching by rotating the direction
field.

An example of what the output could look like is shown in Figure
1. Figure 1(a) shows the result after just one pass. While Figure 1(b)
shows the result after three passes, every pass having a rotated direc-
tion field.

2.2 Real-Time Hatching

This section covers the algorithm that is describes in [2]. This method
is designed to achieve high frame rates and allows for real-time render-
ing. This is achieved by using textures. This is a common technique to
render complex details. These textures contain prerendered hatching
strokes. The surface is then rendered by appropriately blending the
textures.

Because textures are normally not used to convey shading of an ob-
ject there are extra steps taken to show the tones of an object, without
lighting. So the range of tone values and computes the right tone value
using lighting computations. The object is then rendered without light
and with the toned textures.

Since the strokes on a texture work only on one level of detail there
exists a problem. When the rendered object is scaled, there is the
problem that the gaps between strokes become too big, while strokes
should be appearing to fill these gaps. For this, a technique similar to
the one described in [1] called mip-maps. These mip-maps contain the
textures for several levels of detail. When zooming in on a rendered
object, extra strokes appear to fill the gaps between the other strokes.

6

2

&

20

@%{f |

28

SC@RUG 2009 proceedings

(a) Single hatching,

(b) Triple hatching.

Fig. 1. Example of single pass hatching (left) and three pass hatching (right)
using the algorithm from [4]. Image taken from [4].

This set of textures is called a Tonal Art Map (TAM). An example
of a TAM can be seen in Figure 2.

]
& =

Fig. 2. Example of a Tonal Art Map, the left most strokes appear in all the other
textures. Image taken from [2].

TAMs can hold any type of stroke, such as pencil or crayon strokes.
The strokes on the textures can be drawn by hand, or generated auto-
matically which is discussed in [2].

For the rendering of the actual output, there is some extra work
that needs to be done. The tone of a mesh will not have a smooth
transition. To get this, the algorithm blends between two consecutive
tone images at each vertex of the mesh. For each gathered vertex the
blended textures are combined over the entire face of the mesh.

This already gives a good result for most cases. But it is still pos-
sible to get some grey toned strokes. These strokes are unwanted for
pen-and-ink strokes. Thresholding removes these unwanted strokes,
the algorithm uses a transfer function which gets the wanted result. Al-
though this also has a disadvantage, carefully anti aliased edges might
look jaggy.

Examples of some results can be seen in Figure 3.

2.3 Line-Art Rendering of 3D-Models

The method described in [3] is a method that relies on the user for
input. The user can set a number of reference strokes for the algorithm
to work with. These strokes are used for the curvature and shading of
the object.

The algorithm consists of three separate phases.

During the first phase of the algorithm the mesh data is prepro-
cessed. The mesh data has to be mostly manifold, but small non-
manifold artifacts can be handled.

For all vertices in the mesh, the principle curvature directions are
computed. The stroke lines of the line art rendering will follow these
curvature directions. During this phase, the user will interactively con-
trol this geometric detail looking at the mesh for curvature analysis.

These geometric attributes are set for the vertices, so that interpo-
lated versions of these values can be used on the triangles. The mesh
is then rendered to an enhanced frame buffer where different kinds of
pixel values are stored, such as local shading (used later to determine
the stroke density), normal data (used for contour extraction) and the
projected curvature values.

In the second phase, the image stored in the buffer will be seg-
mented, once again aided by the user. The information in the frame
buffer will provide some basic information about the contours, but the
segmentation is mainly considered to be an artistic process. for each
segment, a fishbone structure is generated that contains all the neces-
sary information for the actual stroke generation. Different kinds of
image processing filters are used to remove turbulences in the direc-
tion field.

In the third phase the actual tone mapping is performed. The di-
rectional and shading information are translated into the appropriate
stroke width, the strokes are spread as uniformly as possible on the
surface.

An example of the output is shown in Figure 4.

AATVELERINANTSY

Fig. 4. Example output generated by the method described in [3]. Showing the
uniformly spread strokes. Image taken from [3].

3 COMPARISON CRITERIA

Since we are going to compare the different algorithms we should de-
fine which criteria we are going to compare. Each algorithm has its
benefits and drawbacks, these are normally pointed out in the respec-
tive papers. The goals that the researchers set themselves at the be-
ginning of their research also influence these strong- and weak points.
For example, a very fast algorithm might not allow a lot of user adjust-
ments.

We compare several of the different aspects of the algorithms. But
we will first line out the different goals of the algorithms. This will
be used in the conclusion to see whether the goals have been met or
whether they have been surpassed by an algorithm that did not even
intend to excel in it.

The goal described in [4] is to generate a method that produces
high-quality renditions. Although these renditions take more process-
ing power to be rendered. The method also allows for a high level of
user interactivity. This includes modifying viewing, lighting, model
transformation parameters and adjusting different rendering parame-
ters.

Our second method is the one described in [2]. This method clearly
focuses on speed. The goal of the algorithm is to deliver real-time

29

g

)

A Comparison of Hatching Techniques — Willem Bouma, Erik de Jong

Fig. 3. Six models rendered with different Tonal Art Maps, the inset shows the textures patches. Image taken from [2].

results that can be used in different environments such as games or
interactive technical illustrations. Because of this requirement user
interactions, such as zooming, rotating, of both the light sources and
model, and using different TAMs are also very fast.

The algorithm described in [3] sits a bit in the middle of the other
two methods. The user does not get a lot of ways to adjust parameters
after the process. However, the method does allow a lot of interaction
possibilities in the process. It is possible to set some reference strokes,
which will be used by the algorithm. Speed is not a real issue for the
researchers. This is the only method that produces images in image
space, rather than leaving the input in object space. These images are
meant to be used as technical drawings.

As can be seen above, each of the methods has its own particular
goal. Some of these overlap, while others do not. Besides these goals,
we also compare applicability, usability and the aesthetic properties of
the results. Applicability compares how the different algorithms can
be used for different tasks. Some of these tasks are mentioned in the
respective paper.

Usability is about the ease with which a user can achieve a desired
goal. Aesthetic properties can be summed up as saying how nice some-
thing looks. This is a very subjective aspect of hatching images. Since
not everybody has the same opinion about certain styles.

4 COMPARISON

We have defined the criteria for the comparison. In the following, we
draw a comparison of the different methods according to the defined
criteria.

4.1 Rendering Performance

The comparison of rendering performance has one remark. The al-
gorithm in [3] creates strokes in image space, for a fixed perspective
projection, while the other two methods allow for interactively altering
the view, lighting and object transformations. The method described
in [3] is fairly fast otherwise. It uses hardware acceleration for the pre-
processing steps. So the resulting image is rendered in a short time.

But it is not really a fair comparison, so we will focus more on com-
paring the other two methods. Since the more interesting part about the
speed aspect is being able to interactively alter the view, lighting and
object parameters, for these it is required to redraw the image on the
screen over and over.

The algorithm in [4] is slower due to more costly operations like
curvature estimation, optimization and generation of strokes in object
space. However, it does not make explicit use of available hardware
resources. Some optimizations are done during the processing of the
data, such as hidden line removal, but these do not have a major impact
on the performance of the method.

Our last method, [2], on the other hand makes full use of avail-
able hardware. Since this method uses textures it covers larger objects
much faster than algorithms that draw their own lines. This is due to
the algorithm only needing to fill triangles in the right direction, rather
than having to compute curvature estimation, optimization and gener-
ating the strokes in object space like the algorithm in [4] needs to.

Results of the method show that interactive frame rates are already
achieved with a GeForce 2, with frame rates averaging 28 frames per
second. Considering the capabilities of nowadays graphics hardware,
one can expect instantaneous renderings from this method.

4.2 User Interaction

The amount of user interaction one would need depends greatly on the
task a user would want to fulfill. If all a user would want is an basic
image generated out of 3D input there is not a lot interaction needed.
Just like that, someone would want more control over the looks which
can be obtained by using different methods.

The goal for the algorithm in [4] was to make a program takes gives
a lot of freedom to the user on how to adjust parameters of the ren-
dering. Settings such as usage of cross hatching, crossing only once
or several times are to the users disposal. An example of this can be
seen in Figure 1. The strokes the algorithm generates are obtained
from a formula that defines the stroke style. This formula can be ad-
justed interactively. But whether you want this is another question,

6" SCeR WG
2 9
(2 o)

30

SC@RUG 2009 proceedings

since putting in a formula is not very intuitive. Regardless, the other
algorithm do not have this kind of interaction. There is also the ability
to adjust stroke density and width. However, it is not possible to how
the strokes are rendered other then moving the light source.

The method described in [2] allows the user to easily modify the
camera position, light source positions and model transformations.
However it is not possible to change parameters such as stroke den-
sity and stroke width, other than changing the TAM for the rendering.
This is a very inflexible way of working, as it does not allow to quickly
adjust the stroke appearance.

Having discussed the other two algorithms we are left with one al-
gorithm. The algorithm in [3] is the only algorithm that has mandatory
interaction of the user. This is not a bad thing, but it is also not a very
beneficial feature. The user must first set a number of reference strokes
for the algorithm. These strokes are used as reference for the interpo-
lation of the hatching strokes done by the algorithm.

As can be seen above, there are many different parameters that can
be adjusted, whether this is before, during or after the rendering. Some
algorithms have more options than others. Some parameters are not as
easy to adjust as others, such as creating your own TAMs or coming
up with you own formula for the algorithm from [4].

4.3 Applicability

In this section we will compare the usability of the different methods.
Since one method is not likely to be the best in every possible situation
we take a look at the types of images that the methods are best used
for.

The algorithm described in [3] already describes a useful purpose
for the method, technical drawings. The images that are generated
with this method are very clear without any areas with a real high
density of strokes. Since the user must first set a number of reference
strokes, the curvature of the result is always clear. Images generated
like this can be used in books and manuals. An example of this can be
seen in Figure 5.

Fig. 5. Technical line render of an engine part. Created using the method de-
scribed in [3]. Image taken from [3].

The method from [4] also seems to be good for generating images
that can be used in books and manuals. However, the user should
probably adjust some settings to get a more clear and cleaner image
like with [3]. But with the amount of possible user interaction this
should not be a problem. This method also has some extra features that
can be used to generating images that can be used for printing. One
of these is a stroke density correction factor which is demonstrated in
Figure 6.

(a) Without a correction factor.

(b) With the correction factor.

Fig. 6. (a) shows a sphere drawn with hatching strokes without use of the correc-
tion factor. (b) shows the same sphere making use of the correction factor. Image
taken from [4].

Unlike the other two algorithms, the algorithm from [2] does not
seem to be very effective when it comes to making images that can
be used in books, as the resulting images have too much of an artistic
look. Therefore they are not very good to convey curvature as clear as
the other algorithms are. Because of the high speed of the algorithm
it would be much better for it to be used for tasks that require such
speed, games for example. But since the images look pretty artistic
there are other possible applications for this method, such as rendering
images that look like sketches. Although it is not limited to that, since
the TAMs could simulate numerous different artistic media, such as
pencil, ink or crayon, it can also simulate different artistic styles such
as stippling.

4.4 Usability

To compare the usability of the images that are generated by the dif-
ferent methods we want to use a hand drawn as comparison. Figure 7
shows a hand drawn image which makes use of hatching strokes. Be-
cause it is hand drawn, the creator had full control over the lighting,
shades and curvature of the strokes. Our methods do not have that pos-
sibility because they are limited to what the results of the algorithms.

The benefit of using TAMs in [2] is also its drawback in this case.
For one, the TAM can not be changed from region to region. It is
also not possible to create long strokes, as the length of the stroke is
limited by the size of the TAM. Meaning that the entire image would
use the same textures. Figure 7 clearly has regions where there are
only horizontal strokes, or only vertical strokes. This algorithm would
only be able to distinct them based on the light, but this would still not
result in our reference image.

The method used in [3] tends to create much cleaner images than
Figure 7. This would result in less strokes in certain areas, while some
other areas would probably get strokes while there should be none.
This could have been avoided if the algorithm let the user set the stroke
density and width.

Our last algorithm is the one from [4]. The high level of possible
user interaction can be a great help, but this algorithm does not give us
the possibility to decide where strokes should appear. Being able to set
the stroke style with a formula could work out pretty well. The hand
drawn image uses the same sort of strokes throughout the image, but it
is still questionable whether the algorithm would pick up the different
vertical and horizontal lines.

None of the algorithms can get a result that looks similar to Fig-
ure 7. There might be other examples where the algorithms perform
better, but this would be different for each algorithm. Therefore these
algorithms should not be used to replicate another image.

4.5 Aesthetic Properties

This property is not really comparable. Aesthetic properties are very
subjective, it really depends on what someone his or her preference

31

6 SCaRBG
(203 o)

A Comparison of Hatching Techniques — Willem Bouma, Erik de Jong

Fig. 7. A hand drawn image that is used for comparison of the aesthetic proper-
ties of the different methods. Image taken from [3].

is for certain styles. However, we can discuss some aspects that are
specific or common for the resulting rendering of the algorithms.

The algorithm from [4], has a very precise, clear and even look.
This is emphasized by the use of evenly spaced and regular strokes.
It can create very long strokes as can be seen in Figure 1. Singu-
lar strokes are clearly visible and easily distinguishable. The im-
ages resemble pen-and-ink illustrations found in medical and botan-
ical works. However, the images may appear unnatural or synthetic.
Because of this the images are easily distinguishable from hand drawn
illustrations. The renderings convey the curvature of the surface very
precise, this is why the images are suitable for the earlier mentioned
medical and botanical works.

Similar to this is the algorithm from [3]. This algorithm also cre-
ates images that have a very precise and clean look. It also uses very
evenly spaced and long strokes, that are very regularily spread over the
surface. There are some notable differences, however. This algorithm
uses low contrast strokes, this on top of using very slim strokes results
in a very regular tone over the entire image. As this results in very light
images, without any dark regions, the image has a very flat feel. The
reference strokes the user sets, to segment the image, are visible in the
resulting rendering. The images generated by this algorithm resemble
illustrations you would see in technical works.

Completely different from the previous two algorithms is the one
described in [2]. This algorithm uses very short strokes, and depend-
ing on the TAM also very dense strokes. Singular strokes are less vis-
ible, but they are also less important for this algorithm. It uses a much
higher contrast than the other two algorithms, this makes the shading
much more expressive, as can be seen in Figure 3. It also has a more
hand drawn appearance than the other algorithms, which have a more
synthetic appearance. It is also the only algorithm that does not solely
use black strokes, but can use any shade between white and black, ac-
tually, it could use any color you could put in the TAM. The TAMs also
allow for simulating different artistic media, while the other methods
can only do hatching. This makes the algorithm suitable for different
tasks.

Looking at the results we can see that the algorithms described
in [3] and [4] are fairly similar, while the method from [2] gives com-
pletely different results. Because this section is about aesthetic prop-

erties it is up to oneself to decide what looks nicer.

5 CONCLUSION

In this work we have compared three different hatching algorithms
on a number of criteria. Each of the algorithms has its own criteria
where it performs well, or in completely different ways than the other
algorithms. The results of these comparisons are interesting, as the
results are not as obvious as it sometimes looks.

We listed the different goals the researchers of the other works. We
will discuss whether these goals have been met or not. Therefore we
will go over the different criteria that have been compared.

The oldest method we compared is the one in [3]. The initial goal
of the method was to be able to create images from a 3D-model, which
would then be used as technical drawings. The method is not very fast
in rendering one image, although it does make some use of available
hardware. This is not a problem since the user will most likely spend
more time on settings the right reference strokes. What we did see is
that the result images are good, as can be concluded from the compar-
ison of applicability. The usability tends to suffer from the mandatory
reference strokes. Because the result images are clean and precise the
images convey the information they should to be used as technical
drawings. However, this method does not allow for transformations of
the object, camera or light sources which makes it less usable.

A much newer method that has similar aesthetic properties is the
method described in [4]. Rather than focusing on one type of output
image, this method was meant to give the user a lot of parameters
to adjust. In our comparison we concluded that this method can be
used for medical and botanical illustrations, as this method gives very
clean and precise results. The user can adjust a lot parameters with
this method, but some are not as intuitive as others. Adjusting camera
angle, and light sources is easy, but if you want to change the stroke
style you need to fill in a formula, which is not very intuitive. Since the
method generates images with long and broad strokes, which convey
the shape of the object very good, we concluded that the method is
suited for generating medical and botanical illustrations. The reason
for this is that in these fields it is very important to have a precise
description and illustrations of objects. Although some of the features
are not as intuitive, the algorithm can be used easily to create high
quality images, just as the researchers wanted, which was the other
goal for the research.

The third method is the one described in [2]. It was stated clearly
that they researchers wanted a method to generate hatching images
at interactive frame rates. From our comparison, we can conclude that
this is the case. Due to the TAMs used in the algorithm it can make full
use of available hardware and render images really fast. The TAMs
leave the user free to choose from different artistic styles, although
creating a new TAM is not a trivial matter. The result images are very
expressive, but are limited to very short strokes. The method allows
for easy adjustment of parameters such as camera angle, light source or
object transformations. Since the algorithm is very fast it can be used
in fields that require fast data representation, such as games. Although,
thanks to the TAMs, it can also be used to simulate artistic media like
pencil or crayon.

From our comparisons we can conclude that the different goals set
by the researchers for their work have been met. Some of the methods
have obtained some extra features, that were first not planned. This,
of course, is not a bad thing. For all the methods, the user gets enough
parameters to adjust to their liking. The rendering performance of the
different methods is also very good. Although two of the three meth-
ods did not focus on achieving this kind of performance, still ended up
with a fast algorithm that would easily achieve interactive frame rates
given nowadays technology.

It shows that there are many aspects to the research in the field of
hatching. Each of the methods has its own field of specific illustrations
and artistic styles. The methods might not be as intuitive for certain
aspects, like creating your own TAMs or formulating a new formula,
but these methods make up for that with the other parameters that can
be adjusted.

32

SC@RUG 2009 proceedings

In the end there is no universal method that can be used in any
situation. To generate an image, that has certain properties requires
some research. It is also likely that not all the desired properties can
be fulfilled, also because there is still a lot of research being done in the
field of NPR. It is possible to point out a preferred method in certain
situations, but that does not necessarily has to be one of the methods
described in this paper, and a lot of comparing and research has to be
done to actually find such a method.

6 FUTURE WORK

It would be interesting to do a much broader comparison. Comparing
more algorithms would result in some very interesting results regard-
ing the different comparison criteria.

It would also be interesting to see how methods with the same de-
sign goals in mind work out when compared to each other. For exam-
ple, compare other real-time algorithm with the method in [2].

It would be interesting to obtain the implementations of the different
algorithms. Having them could really show the differences between
the methods. At this point we were only able to compare them using
the informations that was provided to us in the papers.

REFERENCES

[1] A. Klein, W. Li, M. Kazhdan, W. Correa, A. Finkelstein, and
T. Funkhouser. Non-photorealistic virtual environments. In SIGGRAPH,
pages 527-534, 2000.

[2] Emil Praun, Hugues Hoppe, Matthew Webb, and Adam Finkelstein. Real-
time hatching. In ACM SIGGRAPH, pages 581-586, 2001.

[3] Christian Rossl and Leif Kobbelt. Line art rendering of 3d-models. In
Pacific Graphics, pages 87-96, 2000. 10.1109/PCCGA.2000.883890.

[4] Johannes Zander, Tobias Isenberg, Stefan Schlechtweg, and Thomas
Strothotte. High quality hatching. In Computer Graphics Forum, vol-
ume 24, pages 421-430, 2004. 10.1111/§.1467-8659.2004.00773.x.

33

From Software Requirement to Architecture Design: A

comparison of the methods

Marcel Koster, Lazaro Adolf

Abstract—In the Software Engineering field there are several m

Luhusa, Student, RuG

ethods to build an architecture from a set of requirements.

Companies often do not know what method is the best method for their needs. This paper will examine three of these methods
and compare them according to an example and according to the expertise needed for applying each method. The outcome will

provide a basis on which companies can select the method which s

Index Terms—Software Requirements, Architecture, Design, Patte

uits the company and their needs.

rns, Twin Peaks.

+
1

In the field of Software Engineering there are maftwgtacles and
difficulties when building an architecture. Onetloé most important
and often failing requirements is making sure tifa¢ actual
delivered system satisfies the stakeholders coacéfrihis fails, a
lot of time and money can be wasted. To ensurettiistdoes not
happen, various methods can be used to match¢héemture to the
requirements. The problem is that most companiesadase any of
these methods and the ones that do, often usersggwmethod. It is
important to use a method that fits best to theegtoat hand,
because wrong methods can cost more time and ntbaeyusing a
suitable method.

Today the widely used methods for building an decture are
the waterfall model [5] and Pattern-Driven partiiiog [3]. The
waterfall model is an old and no longer satisfiaivlethod. It has
some major problems, such as being unable to adaphanging
requirements or stakeholder concerns. Pattern-Dpegtitioning on
the other hand is better suited to make this match.

There are various methods to compose an archieefiom a set
of requirements. We will discuss three of thesehoas$. The first
method is an adaptation of the Twin Peaks modelTt§ second is
Pattern-Driven partitioning. The last is called GGaiented design,
which is using a repository of Reusable Generic hitectural
Drivers (RGAD) [4]. We will describe these methadshapter 2.

We intend to compare the proposed methods in thags, which
is described in chapter 4. First we compare theocording to the
amount of Requirements Knowledge and ExperienceE(Ri€eded,
which is explained in [2], to assess the expentiseded for each
method. The second comparison will show their sintiks,
differences, advantages and disadvantages. Thivdlgompare the
methods by applying them to an example of systeguirements,
from which we make an architecture. This examplexglained in
chapter 3. Finally we come up with recommendationschoosing
the best suitable method in chapter 5.

We expect that the best suitable method for oumgia will be
Pattern-Driven partitioning, because it providesomplete analysis
from requirements to architecture. We also expéett tPattern-
Driven partitioning is the method, which needs kbast amount of
RKE, because it provides clear-cut patterns readyge.

INTRODUCTION

2

We will first discuss the methods themselves toegw clear
overview of how they work.

ARCHITECTURAL DESIGN METHODS

2.1 Twin Peaks Model

Requirements and architectures are the core canteptrrive at the
concrete software systems that satisfy stakeholderserns. The
twin peaks model addresses requirements spedaificatind
architecture specification concurrently and indefgsly. The
requirements and architecture go from the levepeferal to the

level of detailed and both are not prioritised.sTéan be seen in Fig.
1. The method is purely iterative and starts whée first
requirements are provided. There are no clear stepdved in this
process. The process is further explained in [1].

General
Soecification

Level

of
Detail

v Requirements Architecture
Detailed
Independent Implementation Depenﬂent
Dependence =

Fig. 1. Twin Peaks model [1].

2.2 Pattern driven architecture partitioning

Pattern driven architectural design is about applyipatterns
according to certain key drivers derived from tequirements. The
architecture takes shape as the patterns are cedliinform the
system. The pattern driven method is composed efféllowing
steps:
1) Identify the most prominent architecturalvers of the
system.
2) Select candidate architecture patterns thétesss the needs
of the architectural drivers.
3) Partition the system by applying a combinatid the
candidate patterns.
4) Evaluate whether the partitioning satisftes architectural
drivers. This step may include the following adies:

a) Examine the forces of the pattern to ustdad any
challenges posed by the solution, and determing¢hghe
they apply to the current system.

b) Examine the consequences of the patterdstermine
whether the architectural drivers are satisfied.

¢) Examine the consequences of the patterdetermine
whether they impose constraints on the systenmtlast
require additional patterns, or may render anyepast
impractical for this system.

d) Examine the interaction among the pastegiected to see
whether the impact on the quality attributes are
compatible.

5) Perform trade-off with respect to the differarchitectural
drivers.

34

SC@RUG 2009 proceedings

This process can be repeated as additional artingdarivers
are identified, or if fundamental attributes of thestem change. In
subsequent iterations, it is normal to consideritigact of existing
patterns on the newly identified drivers beforeiagchew patterns;
i.e., begin with step 2.

The results of this approach form a starting pdmt the
architectural design. The next steps vary in diffierarchitecting
methods, but they usually involve further decomposj
documentation of other views, and eventually aedhitral
evaluation and evolution studies. Fig. 2 showsatesliagram of the
process, which is clearly explained in [3].

Stakeholders eancerns | _

Arehitectural gignificant requinments

7 idenily pmmem\

Armleclmalamers) = Prominent drivers

(Eelean e
{_paltarns per srer/

Candidata.
7| Architesturs Pallems

\ -
/ - -

P
.—:\Apply patiems lo parition system/l -
System Pariifoning | i
N L
- ~
3 Assess impact an drivers |

— ={ Impact on divers

< Mo patierns
™ needed? -

Architectural documentatien [~ — __
{from anchiteziure deslgn methody | ~

Archileclure evaluation

{om architzcie evaluation methed) | - — Allernative ar

additional
palterns.
needed?

no
i

()
Fig. 2. Pattern driven architecture partitioning [3].
23

Goal oriented requirements engineering and
compositional architecture development

Goal oriented requirements engineering is all alsmlécting goals
for the system and choosing reusable componentss#tiafy these
goals. First, a goal model is made, which is a rhaded to identify
the mission of the system to be built. These gimstify what the
system should do. The main modelling elementsarafound in the
goal model are goals, soft-goals, tasks and ttetioekhip between
them. Goals are the functional requirements offstem. Soft goals
are the non-functional requirement of the systeask$ are used to
model the goals. From these goal models the acothit drivers are
selected, which will be mapped to generic architedtdrivers in a
repository. The reusable components will then blected. This
method is composed of the following steps:

» Identify high level set of requirements from whitte

system has to be built.
* Identify concrete architectural drivers.
* Map the concrete architectural drivers with theggen
architectural drivers in the repository.

» Select reusable architectural components.
The steps are clearly visible in Fig. 3. The pradeself is explained
in [4].

Analysis of effects-on
goal mode! ariginating

=, Project-specific
G
f Goal Model Cﬂj\ from combinations
i

" Reusable
[Componems

=y
@ﬁ

/}
|
|

Combination of those
——— s components realizing
- eneric
\‘ architectural drivers

Identification of goals that 1. Architectural Drvers /)
are instances of es—
generic architectural drivers

-\,—]
Fig. 3. Goal oriented model [4].

3

To compare these methods we will use an examplewilVéollow
the steps provided in each method and create ahitexture
according to a set of given requirements. We withpare the results
later on. In our example we will create an Ebaytesys which has
the following requirements:

* Online auctions:

o There are several possible scenarios ofdwmtions are
run, to have flexibility in setting up and runniagctions.

* Searching:

0 The system will be able to search active @ast auctions.
0 There will be several possible search mosiesh as search
by general category of merchandise, keyword in iti€en
by seller, by location of item (e.g., search onlgt&ons in
a particular country.)
It is expected that this database will gtange over time,
and as you can imagine, it is very dynamic. Auctiare
starting and finishing all the time.
* User accounts:

o0 They allow users to set preferences.

0 They allow buyers to see which auctiony #re involved
in.
They allow sellers to see their active imunst
They allow people to rank satisfaction vagilers and
buyers.

0 A person may be both a buyer and a seller.

» Payment:

0 The system handles payment by handingémsaction off
to a third-party payment system.

* Security: The system has strong security needs.

o Personal information must remain safe,anttions must
not be compromised.

0 Transactions (e.g., bids) must be secure.

 Uptime:
0 The system must be up 99.99% of the time.
* Transactions:

0 The system must handle transactions tgli&or example,
since networked communication is vulnerable to
disruption, partial transactions must be handled or
prevented.

 Performance: Performance must be consistentatticplar, an
auction must end exactly when it says it will, doidis must be
handled promptly and consistently

* Notification System:

o Seller is notified about each bid on hestins

0 A buyer is notified if her bid is surpadse

0 A buyer is notified if she has won an &t

APPLICATION EXAMPLE

(0]
(0]

35

N

From Software Requirement to Architecture Design — Marcel Koster, Lazaro Adolf Luhusa

3.1 Twin Peaks Model

The first method to be tested is the Twin Peaksehdthere are no
clear steps involved in this method. We should §iistt with a set of
general requirements and create a basic archieefurthat. In the
next iteration we will go into more detail. We firsonsider the
following general requirements for the E-bay syste@®nline
auctions, Searching, User accounts, Payment, $gcWptime,
Transactions, Performance and Notification System.

According to these general requirements, we fioste up with a
basic client-server architecture with multiple otie to allow Online
actions. We then add a User database and an Audtitabase, to
support User accounts, Online auctions and SeayciNext is a
Payment system for Payment and Transactions. Tke it a
Notification system. Security, Uptime and Perforemis difficult to

3.2 Pattern driven partitioning

The second method to be tested is Pattern drivehitecture
partitioning. We will follow the steps provided this method. We
will first identify the most prominent architectlrdrivers of the
system. According to the requirements we have camevith the
following key drivers: Security, Availability (depds on Reliability
and Scalability), Usability and Reliability (comai Fault tolerance).
Security because of the security demands on thieray#wvailability
because of the uptime, Usability because of the aseounts and
Reliability because of reliable transaction hangllin

The next step is to select the candidate pattéraisaddress the
needs of the architectural drivers. The followingtterns are
selected: Broker (Good for: Security; Neutral féault tolerance),
MVC (Good for: Usability), Microkernel (Good for: dfability),

put in a system and are too general to give amgschs to where they Layer (Good for: Security) and Shared Repositorgd&for: Fault

are needed. The composed system is shown beloig.id.F

User database

Client

Server Auction database

pad

Payment system

Client

L
Motification system

=Server/Client

Fig. 4. Initial architecture.

The next step in the Twin Peaks method is going inbre detail.

We will now consider the whole set of requiremeagsstated earlier

as well as fictional feedback from the users of¢pstem. According
to our fictional users the system is not fast emoudpen multiple
users are accessing the server. When considegngtible set of the

requirements, some changes have been made to fkiel in

architecture. The Databases have been replaced eppsRories,
which contain multiple databases. This is to ensthat the
Databases can be dynamic and that their growthippsted. The
Auction Repository has been split up into Past iunctnd Active
Auction Repositories. This is done to ensure that $ystem can
search past and active auctions without losing tooich
Performance. A 3rd party now provides the Paymegsitesn. There
can now be multiple Servers, to ensure Performamzk Uptime.

Security is not met in this diagram, as it is gtlb unclear as to how

this should be added to the system. The elabosyt&em is shown
below in Fig. 5.

Notification server User Repository

Client Active Auction Repository

tolerance, Scalability; Neutral for: Security). Bleepatterns combine
to the following system, shown in Fig. 6:
A— —
=)

A
User Repository |

Auction Repository U

Microkemel

EZ

Mode| I_. >|I Broker

@=Serven‘€lient

D:Component

Fig. 6. Architecture with patterns.

In this system there are multiple Clients connectio multiple
Brokers. These Brokers connect to the Microkernel @specially to
the View layer. The Controller layer handles cottives to the
Payment system and to the Model. The Model conntxtthe
backend Broker, which can access the User and édwgtepository.

3.3 Goal oriented

The third method to test is Goal oriented desigre Will again
follow the steps provided in this method. We wiilsf identify a high
level set of requirements for which we will agaiseuthe next list:
Online auctions, Searching, User accounts, Paym8sturity,
Uptime, Transactions, Performance and Notificaigstem.

We will now identify the concrete architecturalvaris. We have
come up with the following drivers, which of course the same as
in the Pattern Driven method: Security, Availapilitysability and
Reliability.

From this we have made the following Goal modebvahin Fig.
7. In this model we have left out the Tasks, whichuld only clutter
up the diagram and don’'t add any meaning in oumgi@ The
rounded squares are the Goals and the ovals agoftgpals.

Notification system

The system must be
up 99,99% of the time

Usability

3rd Party Payment system

Availability

Personal information must remain safe,
and auctions must not be compromised

[D =Goal
() =Softgoal

Reliabllity

Transactions must The system must handle
be secure transactions reliably

Security

Server *
Client

@=ServerﬁCIient

Fig. 5. Elaborated architecture.

Past Auction Repository

3rd Party Payment

Fig. 7. Goal model.

The next step is to map the concrete architectirnadrs with the
generic architectural drivers in the repository. @firse we do not
have a repository with generic architectural dsyeo we decided to
use documented patterns as our repository, wheehisted with their
architectural drivers in the POSA book [7]. If weeh select the
reusable architectural components, we come up With same

oy 36

SC@RUG 2009 proceedings

system as the Pattern Driven method. This will kglaned in the non-functional consequences of an architecturatagmh together.

comparison. The solutions have been verified through extensxperience,
which leads to understanding of their impact on -horctional
4 METHOD COMPARISON aspects of systems. An architect can use the imfitom found in

architecture patterns to help make decisions abowtto design the
system. Architecture patterns can also help arctsitelentify when
an architectural approach might introduce confiigtapproaches to
different quality attributes. This additional infoation may cause
the architect to carefully consider the usage of flattern before it
. . becomes too late. Patterns have rich relationshipsng them.
41 ?g%%';?{gg:t Knowledge and Experience(RKE) These relationships may include the following: 'At_tpm may
) i) . influence the use of other patterns, a pattern spegialize the use
Requirement engineering (RE) and software architec{SA) are of another, two or more patterns may be alternatiee. This helps
the most important parts for the delivery of sofevasystems. when an architect is trying to reason about theseqnences of a
Software architects with requirement knowledge amgperience combination of patterns upon the quality attributesiso helps the
(RKE) will perform better than those without RKE.[2 _ architect to find alternative patterns as solutitmghe same problem.

We have observed that there is a gap between ezo@int and patterns can be used as part of the natural flowardfitectural
architecture in the Twin Peak Model, as specifiefil] and there is design. Patterns tend to emerge naturally durirgy ¢hurse of
no systematic approach to choose patterns in tiiehand in this architecture, and their use can be easily docurdemtithout
case we can say that the Twin Peak Model can bevethwith disrupting the architectural design process. Attt can use them
software architects with RKE and will bring diffities to Non-RKE aimost naturally within the context of almost angchitecture
architects. process they use.

We have also observed that the pattern driven taathire has a One of the disadvantages of the Pattern driven odeth that
systematic approach of choosing the patterns bamedthe Architecture patterns may increase or decreaserblerstandability
architectural drivers. This method favours both RI€E and Non- of a design or imp|ementati0n. They can decreas@mtﬁndabi”ty
RKE software architects although the RKE will alwagerform py adding indirection or increasing the amount ofle Another
better.)) point is that Architecture patterns do not leaddieect code reuse.

The Goal oriented architecture favours the RKE vearft One of the most prominent disadvantages is thathifecture
architects when the software organization buildsrtfirst software. patterns are complex in nature, but look deceptiginple. The
There will be no known architectural drivers to qare at this step advantage that Architecture patterns are validajedxperience and
and even no software components to reuse. But wien discussion is a disadvantage as well, because lheg not been
organization is an experienced organization anddoasmented the validated in any other way.
architectural drivers (Generic architectural drjeand components,
then both the Non-RKE and RKE software architeetsgom better. 4.2.3 Goal oriented

The Goal oriented method supports reuse of the itacthral

We will compare the methods with three differenp@aches: by
looking at their advantages and disadvantages, dmyparing the
amount of requirement knowledge and experience eteéat each
method and by looking at the findings of our owareple.

4.2 Advantages and disadvantages comparison knowledge and hence the method helps novice acthite arrive at
Each of the methods has it's own advantages arathisitages, an architectural design. The method also providepad way to
which we will compare here. build the system that satisfies the stakeholders@ms, because of
) its way to take the feedback from the architectdesign back to the

4.2.1 Twin peaks model requirements engineering. Furthermore, it's a syatie approach
The Twin Peaks model addresses the three manageomwrgrns as that allows traceability and reduces the cost fevelopment by

identified by [6]: reusing components.

e IKIWISI (| will know it when | see it). The desigand Apart from these advantages, there are some distahes as
implementation starts earlier than usual and eitiyliallows well. First the method may cause delay to the &chiral design

the user to provide feedback (Prototyping) when generic architectural drivers do not matchthwite reusable

e COTS (Commercial off the shelf) software. Reuse dafomponents. Limitation to the reusable archite¢tw@mponents
components at an earlier stage of requirementsfigagion may cause the system not to be built, especialligafarchitect is a
+ Rapid Change, adapting to rapid changes which altuick novice in architecting. The method cannot be agptie the first
development and competitive marketing. software project of the company since generic &chiral drivers
The Twin Peaks model has some advantages. The neadisl to must derived from previous IT projects within tfzere organization.
software that is adaptable, because of intertwirthegrequirements
and the architecture. The model evaluates charminjgct risks and 4.3 ~ Comparison according to example
funding, because it is very flexible. There is aey delivery of the \we have observed that all three methods have egeirts as inputs
product to the market and the feedbacks are camside the further and architecture as outputs. We have seen thatitti@tecture
development. The model supports reuse of existioware obtained by the Twin Peak Model will not satisfye thjuality
components and reduces the costs of developmegitdwying reuse attributes of the system since changes will be émginted without
of components early.])) caring about the drivers. The architecture, whiehhave made, does
The model has some disadvantages as well. Firall tiiere is a not pay attention to Security and Reliability. Téyestem will work,
gap between requirements and architecture, whicbviges byt it will not satisfy all the requirements. Abotrt, it was difficult
difficulties when trying to make them fully cohete(working to come up with an architecture because there wasasy way of
together) during early stages of development. Thibecause the finding a suitable documented architecture type.
level of detail for requirements is so general. Thedel does not The Pattern driven architecture does satisfy thaityuattributes
satisfy specific quality attributes, as they are mentified. The of the system and each time the architectureriatitd, the candidate
model produces an unstable architecture due togesain the architectural drivers are taken in consideratioowiver it may be
requirements, which were not prioritised. difficult to provide an early prototype for thisstgm in order to
. receive feedback from the stakeholders, which ishmeasier with
42.2 Pattern driven the Twin Peaks model. It was not very difficultdome up with an

The Pattern driven design has some major advant&ges of all architecture with this method, because of the dentet patterns.
Architecture patterns show singular power in lirkilnnctional and

37 I

From Software Requirement to Architecture Design — Marcel Koster, Lazaro Adolf Luhusa

Similarly the Goal oriented architecture satisfig® quality
attributes of the system (or key drivers), becausgees not differ a
lot from the Pattern driven method. The only probleiith Goal
oriented design was that we did not have a databétbegeneric
drivers. The advantage is that you already havectimeponents and
do not need a lot of implementation.

5 CONCLUSION AND FUTURE WORK

Systems are built to satisfy software requiremantsits implication
is to satisfy the stakeholders’ missions and goa&lsSoftware
architecture is derived to present the views incwlihe software will
be built.

We have chosen three methods for deriving the reménts to
architecture. We firstly mentioned the methods, Mieak model,
Pattern driven design and Goal oriented design.eWf#ained the
steps provided to go from requirements to architectwith each
method. We found it necessary to understand theethnethods,
before we created an example. We then appliediadetmethods to
the example and observed how each method affeched t
requirements and architecture.

We have compared the methods based on specifiablesi
which were RKE, observations, advantages and disddges. We
found that Pattern driven partitioning was the bmesthod of the
three since it performs better than the other nihdlot only did
the method favour both experienced software arctsitand non-
experienced software architects, it is also a \gogd method for
software organizations because of the amount ofumdeated
patterns. The Twin Peaks model can be a good méthfmilow, but
you will need experienced software architects tsuem that the
architecture is correct and can be implementednie.t The Goal
oriented method can also work very well, but offilthere is a rich
database of documented components ready for reuse.

Our study is a base for a decision making prodess;hoosing
the best suitable method one can use, to get froftware
requirements to a matching architecture. We proposee research
to be done on these three methods and other mettmdss to
strengthen our study. We have done theoreticaaresefrom which
we have made our conclusions, but we recommend siridu
practice in the three methods, in the same softvmogect, for
further research. We propose more research andulation to
ensure correct and widely spread usage of softdeseggn methods
by companies.

* Marcel Koster iswith RuG E-Mail: M.Koster.5@student.rug.nl.
¢ Lazaro Adolf Luhusa iswith RuG E-Mail: L.A.Luhusa@student.rug.nl.

REFERENCES

[1] Bashar Nuseibeh. Weaving Together Requiremants Architectures.
2001.

[2] Remo Ferrari and Nazim H. Madhavji. The Impa€tRequirements
Knowledge and Experience on Software ArchitectiAg: Empirical
Study. 2007.

[3] Neil Harrison and Paris Avgeriou. Pattern-DriveArchitectural
Partitioning: Balancing Functional and Non-funcébrRequirements.
2007.

[4] Sebastian Herold, Andreas Metzger, Andreas sBau and Heiko
Stallbaum. Towards Bridging the Gap between Go#itded
Requirements Engineering and Compositional Archirec
Development. 2007.

[5] Dr. Winston W. Royce. Managing the Developmehtarge Software
Systems. 1970.

[6] Barry Boehm (“Requirements that Handle IKIWISIOTS, and Rapid
Change,” Computer, July 2000, pp. 99-102)

[71 F. Buschmann, R. Meunier, H. Rohnert, P.SomatkriM. Stal
John Wiley and Sons Ltd, Chichester. Pattern-OeignSoftware
Architecture: A System of Patterns , UK 1996BN 0-471-95869-7

el 38

Interactive displays in our homes, now or in the future

M. Gjalt Bearda, Luc Vlaming

Abstract—Nowadays there are quite some devices with touch displays. We looked at how multitouch displays can be used at home.
We compared the most common and readily available techniques available today in how they could be used at home. We looked
at various properties of these touch displays, namely orientation, text input, borders and objects, games, and long term usage. We
looked at various use cases, comparing the properties important for that use case. The use cases considered are playing games,
a work table, designing/drawing, and a digital cookbook. We conclude that the Cintiq scores best overall. For the games use case
however, the DiamondTouch is preferred. With the digital cookbook the DVIT layer and the Cintig have equal preference.

+

1 INTRODUCTION

Nowadays there are small devices which can be controlled via touch
input; popular examples are mobile phones like the iPhone (Apple),
the iPod Touch (Apple), the Touch HD (HTC), G1 (HTC) and the
Blackberry Storm (RIM). Also systems like ATMs with touch displays
are being deployed. These displays are larger, but mainly used by
companies.

Touch displays can provide input in substantial different ways than
the traditional mouse and keyboard setup. In a household, these de-
vices could be used for example for playing advanced board games
on a table with several people or in the kitchen providing cookbook
recipes. Other things that could be done with large touch displays at
home, are watching interactive tv, drawing, things like ordering photos
or commenting papers.

Because touch displays already appear in handhelds and laptops,
it could be argued that, in some time, these devices could appear in
household devices too. There are a lot of places where a touch dis-
play could appear in a household situation. For this reason we did
a comparison between several commercially available touch display
products on their usability in a household setting.

In this paper we look at how multitouch displays can be used at
home. We compare the most common and commercially available
techniques available today. The products compared in this paper are
the DiamondTouch (MERL) [DLO1], DViT [Tec03], FTIR [HanO5]
and Cintiq (Wacom) [Wac07]. We chose these devices because there
are easy to buy, and in this way could be placed in homes right now.
Also to our knowledge these devices had the most extensive research.

We look at various properties of touch displays, comparing prop-
erties important for household use of touch displays. The specific
properties we research are tilting/placement, text input, borders and
objects, games, and long term usage. We chose this properties, since
they are reported most in our references as problems with tabletops in
the settings the research took place in. Also, some of these proper-
ties (tilting, borders and objects, games, and long term usage) could
prevent touch displays from being used at households.

In the related work we specify the devices. Then we specifiy for
each property what research has been done and what the results are. In
the discussion we look into each property for all devices and specify
the problems and positive sides of it. After the discussion, we specify
the results for a few use cases which seem relevant in household usage.

2 RELATED WORK

There is some related work in this area, it is noteworthy that there has
not been a lot of research into long term usage of tabletops except for
one case study. This, however, is quite understandable since the field
is quite new.

o M. Gjalt Bearda is with Rijksuniversiteit Groningen, E-mail:
mgbearda@gmail.com.

e Luc Viaming is with Rijksuniversiteit Groningen, Email:
asperientje @ gmail.com.

2.1 The devices

For each device we look at a few points which influence our compari-
son:

e How is touch registered

e How is the screen displayed

e Can pressure be sensed

e Can users be uniquely identified

e Can objects be placed on the screen

We look at these properties of the devices so we can refer to them
later on. Because we do not have the resources to test the devices we
want to compare, we use the specifications provided by the manufac-
turers.

211

The DiamondTouch is a capacitive system, which allows the unique
identification of users using the tabletop. This is achieved by sending
a small current via the user to create a loop with the table when the
user touches the table. Because the current flowing through each user
uses a different wavelength, each user can be uniquely identified. This,
however, creates the necessity that the users need to be connected to
the tabletop in order for touches to be registered (they need to sit on a
special fitted chair, or need to keep a cable in their hand).

DiamondTouch

Figure 1: The antennas used in a DiamondTouch. From [DLO1]

Touch is registered when a user touches the table, in this way cre-
ating a loop. The table works with antennas arranged in rows and
columns. In Figure 1 the column arranged antennas are shown. When
a user touches the surface, it connects several row and column anten-
nas together. In this way the position of the user can be estimated.

Pressure can be sensed in the way that the harder the user presses,
the bigger the contact area is, thus touching several antennas and reg-
istering a bigger touch surface.

This technique does not include a display in the tabletop, so the
display needs to be projected on the tabletop. This also means that,

39

6 SCARBG
(28 9)

Interactive displays in our homes, now or in the future — M. Gjalt Bearda, Luc Vlaming

when a user has their hand above the table, a “shadow” is dropped,
and below the hand no screen is visible. However, in [RME™06] their
observation is that this is rarely a problem. They even state people do
not even notice a projector is used. Others even take advantage of the
top projection, since the content is still visible for example on their
hand.

The DiamondTouch allows arbitrarily objects to be placed on the
tabletop, since these devices do not create a loop, and are not registered
as touches. Since there is also a protective layer over the antennas
spilling coffee, for example, is not a problem.

2.1.2 DVIT

DVIT stands for “Digital Vision Touch”. The system uses four cameras
placed in the corners of a screen. DVIiT layers can be used to make an
ordinarily screen multitouch. Unfortunately the maximum number of
concurrent touches on the screen is not specified in the white paper,
but we estimate that around two users should be able to work together
on one screen at most.

Touch is registered by the cameras, which see the fingers in their
view. Because the cameras are calibrated, only two cameras are
needed for each finger to be triangulated.

Because every normal screen can be fitted with a DVIT layer, a
normal screen provides the display. This way the display does not
require any projection hardware, and has no requirements for space to
the display.

This device does not allow arbitrarily objects to be placed on the
screen, since these will possibly obstruct the view of the cameras, and
also be registered as touches.

2.1.3 FTIR

Total Internal
Reflection

Acrylic Pane

]
—

/ / Scattered Light
Baffle Diffuser
I%' Projector

Video Camera

Figure 2: The FTIR technique. From [Han05]

FTIR stands for “Frustrated Total Internal Reflection”. For this
technique a thick sheet of acrylic is used, wherein infrared light is
sent. Because of total internal reflection, the light stays in the sheet.
When a user touches the sheet, this effect does not happen anymore at
the position where the user touches the sheet. This results in infrared
light being sent out of the sheet on the place of the finger, which is reg-
istered by a camera. This results in blobs in the camera-image, which
can then be interpreted as touches. Also pressure can be sensed, since
if a user presses harder, more light will be sent out and therefore the
blobs will grow.

In order to get a display on the acrylic layer, the acrylic needs to
be fitted with projection paper, on which a projector can project its
display. Since this technology allows the display to be projected from
the rear as well from the front, most FTIR displays are rear projected,
since this prevents occlusion problems. This results in either a deep
display or a separate display and projector and also limits the place-
ment of the displays.

Placement of objects results in touches, since placing an object on
the screen results in light being sent out to the camera, resulting in
touch detection by the display. However, when using a history image

of the view (generating a “scenery” image) these kind of objects can
be filtered out by software.

2.1.4 Cintiq

The Cintiq is a stylus based touch technology. It uses a pen to sense
where the display is touched (unfortunately how this is not published
in the white paper), and sends the touch position together with pres-
sure information and the pen identification number to the computer.
This results in a multitouch display, where multitouch is created by
the styluses. This way the number of concurrent touches is limited
by the number of styluses. The sensor board is fitted together with a
normal display, so no projection is needed.

Because a stylus is used and the pen identification number of the
pen is sensed, it can be sensed which pen touches the surface.

Placing objects on the surface should not create a problem.

2.2 Tilting/placement

|

(a) Slightly tilted. From
[WPR"07]

(b) As a coffee table. From [RMET06]

Figure 3: Tilting and placement of a DiamondTouch.

Tilting is a quite important subject, since researchers found that
people like to tilt their workspace. For example in [WPR07], there
was reported that AB (the study participant) liked to tilt the workspace
as much as possible. The orientation used is shown in Figure 3 (a). In
[MBMO8], also the study participants wanted to tilt their workspaces
in an arbitrarily angle. The tilting of the workspace happened when a
single user uses the tabletop as their workspace.

When collaboration occurs between multiple people using one
tabletop, the preferences for orientation and tilting of that table change
[RMET06]. When collaborating using one large tabletop, people like
to have their own personal space in order to still feel comfortable
working with each other. When people know each other, this con-
straint is less pressing, but in various cultures this issue can be bigger
[MHM*08].

Orientation is important in a home usage setting since multiple peo-
ple will be using a tabletop when it would be placed for example on
the table in the living room. There has been done some research in this
field by [RME™06], showing that problems could arise when someone
is using the tabletop and someone else wants to start using the device
too, and “steals”” someone else’s objects. Their research shows this can
be fixed by using a bigger table. They observed 80cm diagonal is too
small, their minimum observed size was 107cm diagonal.

Also, the placement of a tabletop is important since not all tabletops
have integrated displays. For these products, this creates the problem
of placement of the projector, since there should be enough distance
between the projector and the tabletop to create a large enough pro-
jected display.

2.3 Text input

Batch text input on tabletops is a problem, since there is no regu-
lar keyboard, with it tactile feedback. There are no complete solu-
tions available yet to input the same amount of text with equal com-
fort as with a keyboard. There are several partial solutions for this;

6" SCeR WG
2 9
(2 o)

40

SC@RUG 2009 proceedings

however, most of them do not approach the performance or accu-
racy achieved with a normal keyboard. A solution available, used in
[RME*06, WPRT07], is using an on-screen keyboard (like the win-
dows on-screen keyboard). Another solution is using a stylus and write
on the screen, together with handwriting recognition software. The
last solution is to use speech recognition, but only for a subset of com-
mands, as used in [TGSF06].

Some people however seem to be able to adapt to using an on-screen
keyboard on a touch tabletop. This is shown in [WPRT07], where the
study participant AB writes even longer emails with his tabletop on-
screen keyboard than with a normal keyboard.

People also like handwriting recognition together with a stylus
[MBMO8] to compose word-processor documents. The study partic-
ipant in [RME™06] felt the process of hand-writing a document al-
lowed her to reflect on it carefully, while the automatic conversion of
the ink to text then created a product the study participant could share
with others.

Text input can be important in a home usage setting, when desktops
computers are replaced completely in the home. However, as shown
in [WPR107], this is not necessarily a problem. It should be noted
though, that AB (their study participant), said himself people would
be crazy when using an on-screen keyboard for everyday use.

2.4 Borders and objects

Figure 4: A DiamondTouch with a large border. From [RME™06].

Quite a lot of researchers found out that people have problems with
accidently touching the table. For example, people place their elbows
on the table (see Figure 4), providing ambiguous touches on the table-
top [RMET06]. In order to minimize these accidental touches, the
tabletop can be fitted with an insensible border.

Also ambiguous touches can be created due to the fact that people
accidently touch the interface without the intention to create interac-
tion on the table, for example, when someone is pointing something
out to someone else. As far as we know, people have not yet found a
good solution for this.

Other problems that arise are due to the fact that people want to use
the tabletop (when used as an addition/replacement of the workspace)
as a table instead of a “fragile” screen [WPRT07, MBMOS]. For ex-
ample, in [MBMO8] is observed people feel not like placing objects on
the screen. People have problems with this, and say they want to put
the tabletop aside, so is does not interrupt their normal workflow.

Borders on a tabletop and the ability to place objects on a tabletop
without touches being registered are important aspects on the usage of
a tabletop in regular, everyday use of a tabletop.

2.5 Games

At home people like to play games, whether they are collaborative
games or not. Tables are used for playing board games, however, do-

ing games with a table as interaction board is not yet common. In
[TGSFO6] it is observed that people who are playing a board game
still are engaged and still play a role even though the game itself is
turn based. It is also observed that using a tabletop adds a new dimen-
sions. For example, when speech recognition together with multitouch
is used in strategy games. This adds to the experience of the user.

This means that tabletops, when placed on a table in, for example,
the living room, can be used to play these kind of games.

The aspect of games should be looked at in our research too, since
this can be a big aspect in the acceptance level of a tabletop in a house-
hold.

2.6 Long term usage

To our knowledge, only one long term usage field study has been con-
ducted to date. This research [WPRT07] was done at MERL, and was
a field study of one person using a DiamondTouch [DLO1] for an ex-
tended period of 13 months for everyday work, as a replacement of
his normal desktop. There most intriguing results were that the study
participant did not have problems with arm fatigue, which to the re-
searchers knowledge is because the field of view / fatigue trade-off is
heavily skewed towards the field of view.

Another surprising fact is that, after extended usage, the study par-
ticipant did no longer need specific gestures in order to select small UI
components.

Because we want to incorporate tabletops into people their homes,
looking at longterm usage for devices is relevant. Since we only know
about one longterm study participant, the comparisons here may be
skewed towards that study participant unfortunately.

3 DiscussioN

We have done a comparison between the products for each property
important for household usage.

3.1 Orientation

For comparing the different tabletops with respect to the orientation
there are a few differences due to how the display is created (with a
projector or not). If one would want to wall-mount these devices, the
Cintiq and DViT have no problem with this. However, the Diamond-
Touch will need a projector projecting the display on it, possibly with
an angle to avoid to much occlusion. The FTIR based technique has
some more problems, since generally these devices are rear-projected.
This generates quite a thick device to be mounted on a wall, requiring
a thick wall.

With respect to tilting the devices (when used as a workspace),
again the projector-based devices have some problems, since either
the projectors need to tilt too, or they need to support tilted projec-
tion surfaces. Most projectors nowadays support projecting on tilted
surfaces, so this will not be a big problem most times.

When used by more than one user, the interface will be oriented
most times either completely horizontally or completely vertically.

When used horizontally, this results in a scenario with a table inter-
face. For usage as a table interface, the DiamondTouch, and Cintiq dis-
plays do not have big disadvantages (the DiamondTouch is designed
to be used as a table). However, the DVIiT layered interface will have
problems when more than two persons interact with the device, be-
cause the triangulation of the fingers gets problems with more than 2
concurrent touches. This can be solved by taking turns. The FTIR
based display however requires a camera beneath the display, so the
table starts to be more thick, which could be a problem. Another prob-
lem both the FTIR and DViT based displays have, is that they can not
uniquely identify which user is touching. This can be a problem when
users are for example playing board games.

When used vertically, this results in a wall mounted interface. In
this usage scenario, all the considerations with the horizontal display
apply, with a few additional remarks. The DiamondTouch needs the
users to hold something, or to stand on a sheet in order to create the
electrical circuit to identify users. Also it needs the projector to project
on the screen without the users occluding it too much, possibly by

41

6" SCe@IG
(28 9)

Interactive displays in our homes, now or in the future — M. Gjalt Bearda, Luc Vlaming

projecting from the top with an angle. The FTIR and DViT and Cintiq
based techniques work do not have any new problems here.

3.2 Text input

Text input could be important, but only if we would remove the normal
ways of entering text into word-processors. This point should only be
taken into consideration if the other standard ways of word-processing
would be removed from the households. For word processing there
are several global possibilities: an on-screen keyboard, using a stylus
or using a wireless keyboard.

Using an on-screen keyboard is not recommended by most re-
searchers. The study participant in the long-term usage even says that
no reasonable person would use an on-screen keyboard [WPRT07] (he
considers himself then to be a non-reasonable user).

Since the main way of writing before digital word processing ap-
peared has been with a pencil, using handwriting recognition with a
stylus can be handy. Research reveals [RME™"06] that study partici-
pants even like the stylus, because they feel that the process of hand-
writing a document allows them to be able to reflect on it carefully,
while the automatic conversion of the ink to text then created a product
the study participant could share with others. However, handwriting
recognition software have not yet developed enough to recognize peo-
ple’s handwriting without adaptation. Therefore, people need to adapt
their handwriting. Since quite some people already use handwriting
recognition on PDAs nowadays (which also needs adaptation of their
handwriting), this does not seem to be a huge problem. Handwrit-
ing with styluses could be used on all the devices, so there is no real
preference for any of the devices here.

The third option, to use a wireless keyboard, does not add to the
comparison of the devices, but is a good way to input loads of text.

3.3 Borders and objects

Placing objects on the tabletops is an important issue, since study par-
ticipants report on the tabletop as being in the way of their normal
workflow if they can not put objects on the tabletop. In this perspec-
tive, especially the DiamondTouch is a good candidate to use, since
this product allows arbitrarily objects to be placed on the tabletop with-
out ever interfering with the interface. However, also FTIR could be
well adapted to this usage scenario. The DViT is not really resistant
to placing objects on its screen, since it uses cameras in the corners of
the display to recognize touches. When a big object is placed, apart
from it being registered as a touch, it could occlude quite some part
of the display. The Cintiq will not have big problem when objects are
placed on it, since only the styluses are recognized providing input to
the Cintiq.

3.4 Games

Figure 5: Taken from

[TGSFO06]

Example gesture used to select a region.

When tabletops are used with games, people tend to be more vary-
ing in the gestures used. The support for rich gestures (for example
selecting a region with the sides of your hands; see Figure 5), can be
important when playing games, because the more intuitive the gestures
can be, the easier the adoption of the tabletop will be, and the more fre-
quently people will use it. The Cintiq and DViT based devices do not
allow for this kind of gestures. To play games which allow a rich set
of gestures, this can be a problem.

When playing a multiplayer game, several aspects play a role.
Uniquely identifying the user is important, because in this way only
the user itself can play when the user has the turn (when playing a turn
based board game). Here, the DiamondTouch and Cintiq are preferred.
However it is not specified how much styluses the Cintiq can support,
so we are not sure about this.

Another aspect is the number of concurrent touches an interface
supports. Here, the DiamondTouch, Cintiq and FTIR based techniques
are preferred, because they support more concurrent users.

3.5 Long term usage

Since only one paper has been published about long term usage of
any tabletop yet, we can only say something about long term usage
with respect to this device. The things we can say in respect to this
research, is that people like to tilt their tables as much as possible
[WPRT07, MBMOS] until things started to slide across the surface.
This is possible with all the techniques researched, so this is not a
problem.

4 RESULTS
For tabletops, there are a few cases in which a tabletop could be used
in household usage, weighted by the criteria given in the discussion:

e (Board) games

o Work table

e Design/drawing table

e Digital cookbook in the kitchen

For each of these cases we give a suggestion on which product
would be the best, together with the measures used to come up with
this suggestion. For long term usage, we can unfortunately for none of
the cases really give any preferences for any of the products since we
could only report on one study participant, so this property will be left
out in the comparisons.

4.1 Board games

With traditional board games, and most games played by more than
2 players, the display is preferably used in a horizontal setting. Text
input is almost never the case in games, so this is ignored. The orien-
tation, borders and games properties will be considered in this case.

Properties Borders and objects | Orientation | Games
DiamondTouch | + + +
DVIT layer - - -
FTIR technique | +- +- +-
Cintiq + + +-

For the borders and placing objects on the displays, the Diamond-
Touch and Cintiq win, since they allow to place objects on the screen
without any problems. The FTIR technique can do this, but with ad-
justments, and the DVIT layer can not handle these kind of things very
well. However it should be noted that these are all minor differences,
and do not play a big role for the comparison.

For the orientation, again the DViT layer and FTIR technique have
problems with objects on the table. Also the DViT layer has problems
with more than 2 touches.

The DiamondTouch and Cintiq allow to uniquely identify the users.
The DiamondTouch and FTIR technique allow for two-hand selection-
like gestures (explained earlier). So in overall, for the game property,
the DiamondTouch wins.

6 SC@
f 9)

42

SC@RUG 2009 proceedings

We conclude that overall the DiamondTouch is the preferred prod-
uct in this case.

4.2 Work table

With a work table, the display could be oriented in all kinds of sit-
uations. Text input should be possible. The games property is not
important, since the display will not be used as a game.

Properties Orientation | Borders and objects | Text input
DiamondTouch | - + +-
DVIT layer + - +-
FTIR technique | +- +- +-
Cintiq + + +

For the orientation, the DiamondTouch and FTIR technique have
a problem, since possibly they would need to project the display at
an angle (when top-projection is used). When rear projection is used,
FTIR has a smaller problem, but still tilting could be a problem. Mul-
tiple touches are no problem here, since most times only one person
would be interacting with the touch display.

When working, it is handy to put stuff on the table. The only device
which would have a real problem with this if the DViT layer. The FTIR
technique could have problems with this, but they should be minor.

For text input, the only real winner is the Cintiq, since this device
uses a stylus. All the other devices should be able to work more or less
with styluses too, but there are not designed for this purpose.

We conclude that overall the Cintiq is the preferred products in this
case.

4.3 Design/drawing table

With a design or drawing table, the display could be oriented in all
kinds of situations. Text input could be necessary, for example when
making notes on a design. The games property is not important, since
the display will not be used as a game.

Properties Orientation | Borders and objects | Text input
DiamondTouch | - + +-
DViT layer + - +-
FTIR technique | +- +- +-
Cintiq + + +

For the orientation, the DiamondTouch and FTIR technique have
a problem, since possibly they would need to project the display at
an angle (when top-projection is used). When rear projection is used,
FTIR has a smaller problem, but still tilting could be a problem. Mul-
tiple touches are no problem here, since most times only one person
would be drawing. If more people would be drawing at a time, it could
be we would want to uniquely identify the users, but this would rarely
happen, so this is not be a big issue.

When drawing or doing design, it is handy to put stuff on the table.
However it is not necessary, and could be avoided. The only device
which would have a real problem with this if the DViT layer. The
FTIR technique could have problems with this, but they should be
minor. Since placing objects on the tabletop can be avoided, we do not
see this as a major problem.

For text input, the only real winner is the Cintiqg, since this device
uses a stylus. All the other devices should be able to work more or less
with styluses too, but there are not designed for this purpose.

We conclude that overall the Cintiq is the preferred products in this
case.

4.4 Digital cookbook

With a digital cookbook, the display will probably oriented vertically.
Text input should not be necessary in the kitchen (use as a cookbook),
so this is ignored. The borders and games are not important, since it
is not a game, and since we do not lean on the display, borders are
neither a problem.

Properties Orientation
DiamondTouch | -

DVIT layer +

FTIR technique | +-

Cintiq +

For the orientation, the DiamondTouch has a problem, since the
projector would need to project at an angle. Since in most kitchens
there is not a lot of space above the cupboards where we could for
example hang our projector, this gives problems. For the FTIR tech-
nique, there are some problems too, since the camera needs to be be-
hind the display. For this, the display gets quite thick, probably even
too thick to fit in the cupboard (if we would for example put the pro-
jector there t0o).

We conclude that overall the Cintiq or DViT layer are the preferred
products in this case.

5 CONCLUSION

‘We have made an comparison between several devices, the Cintiq, the
DiamondTouch, FTIR based techniques, and DViT layered displays.
The Cintiq is the winner in most of the use cases, except for the games
case. When playing games the DiamondTouch wins. Also for the
cookbook use case, the DVIT layer is a winner.

REFERENCES

[DLO1] Paul Dietz and Darren Leigh, Diamondtouch: a multi-user touch
technology, UIST *01: Proceedings of the 14th annual ACM sym-
posium on User interface software and technology (New York,
NY, USA), ACM, 2001, pp. 219-226.

Jefferson Y. Han, Low-cost multi-touch sensing through frus-
trated total internal reflection, UIST *05: Proceedings of the 18th
annual ACM symposium on User interface software and technol-
ogy (New York, NY, USA), ACM, 2005, pp. 115-118.

Meredith Ringel Morris, A.J. Bernheim Brush, and Brian R. Mey-
ers, A field study of knowledge workers use of interactive horizon-
tal displays, IEEE International Workshop on Horizontal Interac-
tive Human-Computer Systems (September 2008).

Paul Marshall, Eva Hornecker, Richard Morris, Nick Sheep Dal-
ton, and Yvonne Rogers, When the fingers do the talking: A study
of group participation with varying constraints to a tabletop in-
terface, IEEE International Workshop on Horizontal Interactive
Human-Computer Systems (September 2008).

Kathy Ryall, Meredith Ringel Morris, Katherine Everitt, Clifton
Forlines, and Chia Shen, Experiences with and observations of
direct-touch tabletops, IEEE International Workshop on Horizon-
tal Interactive Human-Computer Systems (January 2006).

Smart Technologies, Digital vision touch technology, Tech. re-
port, Smart Technologies, 2003.

Edward Tse, Saul Greenberg, Chia Shen, and Clifton Forlines,
Multimodal multiplayer tabletop gaming, International Workshop
on Pervasive Gaming Applications (PerGames) (May 2006).
Wacom, Tech paper - interactive pen display, Tech. report, Wa-
com, 2007.

Daniel Wigdor, Gerald Penn, Kathy Ryall, Alan Esenther, and
Chia Shen, Living with a tabletop: Analysis and observations of
long term office use of a multi-touch table, IEEE International
Workshop on Horizontal Interactive Human-computer Systems
(December 2007).

[HanO5]

[MBMO8]

[MHM™*08]

[RME*06]

[Tec03]

[TGSF06]

[Wac07]

[WPR'07]

43

6™ S WG
(28 9)

Primitives of
Lock-Free Algorithms

Nikolaus Manojlovic

Abstract— In computer science, non blocking synchronization ensures that threads competing for a shared resource do not have
their execution indefinitely postponed by mutual exclusion. A non-blocking algorithm is lock-free if there is guaranteed system-
wide progress. The traditional approach to multi-threaded programming is to use locks to synchronize access to shared
ressources. With a few exceptions, non blocking algorithms use atomic read-modify-write primitives that the hardware must
provide. In our paper we want to examine and explain the most significant hardware primitives. Furthermore we want to illustrate
usage of these by applying the primitives to a basic stack-algorithm to point out one of the most well known problems in this area
- the ABA problem - which affects this kind of primitives. Finally we want to give an overview about traditional solutions and
discuss them.

+

1 INTRODUCTION

Lock-free algorithms for more complex data structures such
First of all we want to give an overview and explanatioms priority queues, hash tables, sets, and red-black dree
about different properties in the area of lock-free itigmns. already known. So what are the most common benefits of
Over the past two decades the research community kak-free synchronisation ?
developed a body of knowledge concerning "Lock-Free" akitst of all there are efficiency benefits comparedadok-
"Wait-Free" algorithms and data structures. These techmigbased algorithms for some workloads, including potential
allow concurrent update of shared data structures withagtlability benefits on multiprocessor machines.
resorting to critical sections protected by operatingesys Further there exists support for concurrent update to ghare
managed locks. Meanwhile there were many of differenit wailata structures even when locks aren't available (B.g.
free and lock free algorithms published, for simple dataterrupt handlers etc.) and another advantage is the

structures such as LIFO stacks and FIFO queues. possibility to avoid priority inversion in real-timessgms.
|—| D . . D |—| Before we are going to continue we want to explain the
| phrases Wait-freedom, Lock-freedom and Obstruction
freedom. Wait-freedom is the strongest non-blocking
E— LIFO guarantee of progress, combining guaranteed system-wide

throughput with starvation-freedom.

An algorithm is wait-free if every operation has a tebum
the number of steps it will take before completing.

It was shown in the 80s that all algorithms can be
L implemented wait-free, and many transformations frenak
D code, called universal instructions, have been demziadt

]

On the other side there is the phrase Lock-freedoalloivs
individual threads to starve but guarantees system-wide
L | FIFO throughput. An algorithm is lock-free if every step taken

achieves global progress (for some sensible definition of

progress). All wait-free algorithms are lock-free.

In general, a lock-free algorithm can run in four phases:
_ _ completing one's own operation, assisting an obstructing
Fig. 1. lllustration of FIFO and LIFO stack/queue operatlion, aborting an obstructing operatior|1, an(cjj vt\)/aitir;]g.

s . Completing one's own operation is complicate y the

FIFO and LIFO are acronyms for “First In, First Outyoggipility of concurrent assistance and abortion, but is
respectively “Last In, First Out”. They are used in efiént invariably the fastest path to completion.
areas. For example the FIFO acronym is well knowh tThe decision about when to assist, abort or wait wéwen
usage of storage of food, where products are arranged inogBiruction is met is the responsibility of a contentio
order accordingly to their expire date. In computer SCieNgRanager. This may be very simple (assist higher pyiorit
this terms refer to the way data stored in a queut®psed. gperations, abort lower priority ones), or may be enor
The first item (data) which gets added to the queue @ithe qimized to achieve better throughput, or lower the tten
first item to be removed. We can associate the @mym, f prioritized operations. Correct concurrent assistaisce
the LIFO structure, with the well known term of @, tynically the most complex part of a lock-free algorithmgl a
where the topmost item, which is added last, is takefirstit e very costly to execute
The Figure above illustrates the two different structuvbere '

elements which get stored are taken out accordingiy@o fat |ast we want to explain the termin Obstruction-free.
FIFO and LIFO semantics. This is possibly the weakest natural non-blocking pEsgr

) 44

SC@RUG 2009 proceedings

guarantee. An algorithm is obstruction-free if at any pan

single thread executed in isolation (i.e. with all obstngct

threads suspended) for a bounded number of steps - . Compared Exchanged
complete its operation. All lock-free algrithms ar¢ / desinaton value value
obstruction-free. |

Obstruction-freedom demands only that any partiall
completed operation can be aborted and the changes n
rolled back. Dropping concurrent assistance can often iiasul
much simpler algorithms that are easier to validat
Preventing the system from continually live-locking e t

task of a contention manager. Obstruction-freedom

sometimes also called optimistic concurrency control.

Althoug Lock-freedom is not the strongest property andsgiv
less guarantees than Wait-freedom, yet we are morestedre
in Lock-freedom. For several reasons Lock-freedomsbate Destination =
advantages in practice since it is not as costlynfément as | Exchangad value
Wait-freedom and its properties are sufficient to aahie Destination is
special qualities for the functionality of distributed altfons unchanged
and shared data acess.

Significant benefits of Lock-free synchronizatiore ahat it
avoids many serious problems caused by locks. These are
things like considerable overhead, concurrency bottlexnecFig. 2. lllustration of a CAS instruction

deadlocks and priority inversion in real-time systems. _ o) o

Solutions for avoiding” priority inversion usually invelv Here, described in Figure 3, want to give a descriptorthfe
special real-time process schedulers. On platformgevhae pseudocode of the CAS instruction. CAS compares here the
real-time scheduler is not present, lock-free datacstres content of the memory address with the expected vditiee |
provide an opportunity to sidestep the hazards of interigckicomparison suceeds it replaces the content with the new
with the scheduler. value. The entire code of this procedure here is executed
Almost all the lock-free algorithms require the usespécial atomically.

atomic processor instructions such as CAS (compare and

swap) or LL/SC (load linked/store conditional). In oup@a

we want to examine and compare these two constructiobemplate <class T>

Furthermore we want to give a overview about the difiegen bool CAS(T* addr, T exp, T val) {

between primitives for lockbased and lock-free algorithms if (*addr == exp) {
Subsequently we want to explain shortly the main pringiple *addr = val:
of this primitives. .
Finally we want to denote the ABA-problem and its iefat return true;
to the CAS (compare and swap) — instruction and hoanit ¢ }

be avoided by using LL/SC and its strong semantics. return false;

Further we want to analyse the whole problem, pointtfoeit }
different solutions in a detailed way and discuss and atelu

them.
Fig. 3. Pseudocode of a CAS instruction

CAS is used to implement synchronization primitives like
semaphores and mutexes, as well as more sophisticated |
free and wait-free algorithms. Herlihy[5] proved that Cze®
implement more of these algorithms than atomic readewri
21 Compare and Swap (CAS) and fetch-and-add. He stated if a fairly large amount of
. . . . memory is used, CAS can implement all of them.
The compare-and-swap CPU instruction (CAS") (or the ajgorithms built around CAS typically read some key
Compare & Exchange - CMPXCHG instruction in the x8femory location and remember the old value. Based dn tha
and Itanium architectures) is a special instruction thgjy value, they compute some new value. Then they try to
atomically compares the contents of a memory looatiioa gywap in the new value using CAS, where the comparison
given value and, if they are the same, modifies theeod®0f checks for the location still being equal to the old valée

that memory location to a given new value. The resfulhe cag indicates that the attempt has failed, it has tepeated
operation must indicate whether it performed the Sulbitit, from the beginning: the location is re-read, a neleds

this can be done either with a simple boolean resp(ihise is tri i
variant is often called compare-and-set), or by returitireg computed and the CAS is tried again.
value read from the memory location. However the MaSias and other atomic instructions, are sometime thiotay
common way is to return true or false. Figure 2 shales pe ynnecessary in uniprocessor systems, because the
state diagram of the CAS. atomicity of any ‘sequence of instructions can be actibye
disabling interrupts while executing it. However, disabling
interrupts has numerous downsides. For example, code that is
allowed to do so must be trusted not to be malicious and
monopolize the CPU, as well as to be correct and not
accidentally hang the machine in an infinite loop. Femth

2 ATOMIC PROCESSOR INSTRUCTIONS

45 el

Primitives of Lock-Free Algorithms — Nikolaus Manojlovic

disabling interrupts is often deemed too expensive to

practical. Standard blocking Non-blocking
In multiprocessor systems, it is usually impossiblelisable — algorithm algorithm
interrupts on all processors at the same time. Hvierwere : :
possible, two or more processors could be attempting | pProc inc(A) proc inc(A)
access the same semaphore's memory at the sameatithe | |ock do
thus atomicity would not be achieved. The compare-ang-swv tmp = A - A
instruction allows any processor to atomically test avodify mp = tmp =
a memory location, preventing such multiple-process | tmp = tmp+1 until CAS(A, tmp, tmp+1)
collisions. A=tmp end
unlock
2.1.1 CAS for nonblocking incrementation / end

Semaphores with blocking locks

Figure 5, which is an adaption of a figure given in [6Fig. 5. iiiustration of blocking and nonblocking algorithm
illustrates a comparison between a standard blocking

algorithm and a non-blocking algorithm based on the use of a

CAS instruction. The second variant of the algorithnvioles

a correct lock free code segment where different threads))))
processors just can try to increment the value of A. 2.1.2 CAS for nonblocking mechanism — Linked List
The while-loop is running until the CAS instruction sudse
We recall that the CAS instruction is an atomic openat
Accordingly to the code, if several processors trpéoform
the INC function at the same time, there is always

Another example for using the CAS instruction can be the
llowing approach inspected in Overview of lock-free

: : ncurrency[3]. The CAS could be used to implement an
\F/)vrlgicc:ﬁsgfrgv\gshIf(i:rhstpar\?(t:r?g%A%eggeﬁg Jh?h%tg%%ﬁgfgﬁgﬁ algorithm for inserting elements into a shared linkst For

! we want to illustrate this just by showing a pictanel
applies a change to the shared memory adress A and bec ﬁ% f .y
of this the CAS operation of all other processors fail until 6 g a description of the activities.

; : : sider several processes, like illustrated in Figuneh@re
they pass the loop again. This gets repeated until ev o : ;
processor performed its CAS operation successful whi (r:h of them wants to insert an element info lketnlist.

: ; thermore we assume an already existing structurewth t
leads to the abortion of the while-loop. ; : ; .
The first variant in Figure 5 (bloclging algorithm) can bglements which are contained in the list.
achieved by using a semaphore which is a protected larieh
which constitutes the classic method for restrictiegess to
shared resources (shared memory). Semaphores can
accessed using the following operations, shown in t
following figure (Figure 4). A —> C

Lock: Linked List: A,C [\
P(Semaphore s) //atomic

< await until s > 0, then s :=s-1 > B1 process X: A-B1-C

}

\j
V(Semaphore s) //atomic E B2 process Y: A-B2-C

= f
= s+
}< s:=s+1 > F process Z: A-Ba-C
!

Init(Semaphore s, Integer v) - !

S =V,
}

Fig. 4. Classical basic concept for semaphores

Fig. 6. lllustration of a linked list for concurrent access

The incrementation of the variable s must not beriapéed The current state of the list holds two elements amdbea
and the P operation must not be interrupted after s islfaun written in the form A-> C. Now consider the following
be greater than 0. This can be achieved by using instractiestions for the processes. The first step for agamidets say
like test-and-set which must be supported by the instructioprocess X, is to set B2 C. This step is still independent
set of the given architecture. since the shared data structure (linked list) does nbt ge
It is quit obvious that this approach works fine but iactice changed.)
semaphores are used in huge and complex code-structuredNgnéssume that another process, process Y, wantseo i
do not protect the programmer from producing faulty coddso an element, lets call it B2. We further assumiesthzeral
which may cause the well known problem of a deadlogirocessors want to insert their element concurrenttywe
just consider this now in detail for process X and Y daif t

e 46

SC@RUG 2009 proceedings

element B1 respectively B2. The CAS instruction is vmsed has not changed even though the other thread did already
to change the stored information that element A poimts perform some operation on it, which violates the aggiom
element C. of the original thead. So the ABA problem occurs when
By using CAS the linking A> C should be replaced by somenultiple threads (or processes) accessing shared memory
new reference like A B1, A-> B2 or A-> B3 etc. Since interleave. Below we illustrate a sequence of eventsvitiiat
all processes want to insert their element conntlgreone of result in the ABA problem:
them must be first. This depends on the fact whichgsser
performs the CAS operation first. Finally we assume that
process X will go first whereby the CAS of process YIwi 7. Process P, reads value A from shared memory,
recognize that something has changed since the change s p, s preempted, allowing process P,
happened atomically and for this reason Y can not proteed i 3 P difies the shared e A t y
CAS operation. Instead of that it will fail and tgain in the - Iz modliies the shared memory vaiué A 1o vaiue
next round. The same holds for all other possibly existing B and back to A before preemption,
processes. 4. P, begins execution again, sees that the shared
Even though the concept of just inserting elementsariist memory value has not changed and proceeds.
does not provide enough to be applicable it practice oivsh
the principle of using CAS and finally we can conclude that i
is possible to insert into a linked list concurrentithvino Although P, can continue executing, it is possible that the
locks. behavior will not be correct due to the "hidden" modifimat
in shared memory.
i . This problem is relatively strong related with thenpare and
2.2 Load-Link/Store Conditional swap (CAS) instruction mentioned before and the explamati
for this is the following. It is possible that betwethe time
The instructions load-link (LL, also known as "load-lidker where an old value is read and the time CAS is attempted,
"load and reserve") and store-conditional (SC) togeth®wme other processors or threads change the mematipihoca
implement a lock-free atomic read-modify-write operation two or more times such that it acquires a bit patterictwh
Load-link returns the current value of a memory locatidn. matches the old value. The problem arises if this baw
subsequent store-conditional to the same memory locatmattern, which looks exactly like the old value, has a mdiffe
will store a new value only if no updates have occuroatiat meaning: for instance, it could be a recycled address.
location since the load-link. If any updates have oetiyrthe If we go back now to our LL/SC (Load-Linked, Store-
store-conditional is guaranteed to fail, even if théug read Conditional) instruction described in the section befave
by the load-link has since been restored. can recall the ideal semantics of the atomic primstive/SC.
As such, an LL/SC pair is stronger than a read followed byrhey are inherently immune to the ABA problem. However
compare-and-swap (CAS), which will not detect updatesfdr practical architectural reasons, no processohitacture
the old value has been restored. This is an importapeply supports the ideal semantics of LL/SC. Current mainstrea
and we will discuss it in relation with the ABA problemthe architectures support either CAS (Compare-and-Swap) or
next section again. LL/SC with restricted semantics, which are not susikpto
the ABA problem but bring other problems. Furthermore,
In the tight interpretation of LL/SC the instruction pfils if most current mainstream 64-bit architectures do not support
the referenced memory adress does not get accessed betagenic instructions on more than 64-bit memory blocks, thus
the LL and SC command. But in quit a lot architectwls® making LL/SC implementations that require support for the
other events cause the LL/SC operation to fail ardomic manipulation of wider memory blocks impractical.
implementations of LL/SC do not always succeed if tlaese
just no concurrent updates to the memory location istopre
Exceptional events between the two operations, likengegb 3.1 ABA Problem illustrated by a stack algorithm
switch, an interrupt or another load-link, or evam (many
platforms) another load or store operation, will cause trigure 7 shows a variant of the IBM lock-free LIFO list
store-conditional to spuriously fail.. . (stack) algorithm [1] based on CAS which does not includes
This is often calledveak LL/SC by researchers, as it breaksny mechanisms for preventing the ABA problem.
many theoretical LL/SC algorithms but weakness is imelat So let us consider a list which contains three néde® and
and some weak implementations can be used for someNow assume that a threadr¥ads the valué from the
algorithms. shared variabl&op in line 4 and then proceeds to line 6 and
reads the valuB from A.Next.
After this it gets delayed. Then, another thread Y pops the
3 THEABA PROBLEM nodeA from the list, then pops the noBe and finally pushes
A again. Thus, leaving the variablep with the valueA and
I’iIS'eh”St containing two nodee(\:I and (|I.|When X é:onr;[inues
o : ;) g : ith its execution it proceeds until line 7 and the CAS
applications using CAS in lock-free and wait-free algomhmﬁstruction succeeds. The consequences of this CAS

which are affected by this well known problem. ot i 0 B Finally this lead
multithreaded computing, the ABA problem occurs durin@os ruction are now settingop to B. Finally this leads

synchronization, when a location is read twice andthas consequently to a corrupting list since B is actuaypart
same value for both reads, where the identical value;&sthe list anymore and possibly this could also effetber
&

The ABA problem is a fundamental problem related

misleadingly used to indicate that nothing has chang&uctures, that may contain B, in a corrupt way. ifikention

However, there is another thread which may execute betw&2 the algorithm designer is for X's CAS in line 7 tol fa

: h a case.
the two reads and change the value several times, -
something and then change the value back to the origifid} C@n be guaranteed that the CAS in line 7 cannatesd

value. Later the original thread checks the value a he value of Top has changed since the current thread’s
erroneously proceeds under the asumption that the location

¢
=

47 (e

Primitives of Lock-Free Algorithms — Nikolaus Manojlovic

execution of line 4, then the ABA problem would becom#/e consider again a list which contains three néddés and

impossible. C and we assume again that a threagads the valua from

Besides there is to say that if memory does not getdenrsif the shared variabl€op in line 4 and then proceeds to line 6

there exists a reliable garbage collection, the probdeuld and reads the valug from A.Next. Then X gets delayed and

not occur but since both properties are not alwaysfigat in another thread Y pops the noflethen pops the nod#, and

lots of programming languages it remains a famous problenfinally pushesA again. Thus, leaving the variabl®@p with
the valueA and the list containing two nodésand C.

. In this special case the value ¢&g of Top has changed to
// S‘:lared van‘ables e tag + 2 because of the two pop operations. Finally X
Top:*NodeType; // Initially: null continues with its execution and proceeds until line 7, but
Push(node:*NodeType) { then the CAS instruction will be already able to idfgrthat
do { the counter associated with the poinfeop has beend
1: t € Top; modified. Accordingly to the algorithm in line 7 this mea
9. node.Next € t: that the value ofag in <ttag> does not match the integer
3. } until CAS(&Top.t.node): value contained in the pointéop anymore, since there have
: p.t. ’ been several pop operations performed. In contrast to the

} previous algorithm, here the CAS instruction will fail.

The ABA problem can not occur and the list remainsrerro
Pop() : *NodeType { free. To be theoretical complete we assume that we ha

do { infinite integers for avoiding a wraparound of the tag.

4: t ¢ Top;
5: If t=null retu@ null; Top: *(NodeType,integer); // Initially: null, O
6: next < t.Next; Pop() : *NodeType |
7: } until CAS(&Top,t,next); do {
8: return t; 4: <t,tag> € Top;
} 5: if t=null return null;
Fig. 7. ABA problem affected lock free LIFO list algorithm 6: next € t.Next;

7: } until CASdbl(&Top, <t,tag>,<next,tag+1>);

8: return t;

4 SOLUTION FOR THE ABA PROBLEM }

Fig. 8. LIFO stack algorithm using ABA-prevention tag
The earliest and simplest solution to this problerthés|BM
tag methodology [1] shown in Figure 8. They use a tag
(update counter) which is associated with the poifigp))))
(i.e.,the target of the CAS in line 7), such that wilea 4.1 Solution with LL/SC based algorithm to avoid ABA
pointerTop is changed the tag is also incremented atomically. problem
By using double-width CAS, the pointer and the tag can be
checked and updated simultaneously in one atomic step. Here we want to present the solution based on LL/S@dLo
Especially we want to point out the change of datatypelwhiLinked, Store-Conditional) which bypass the ABA problém.
is indeed necessary to implement this solution. Sineeatg we recall our definition of LL/SC we have to consitleat the
using here double-with CAS, we need to redefine the tgfrong semantics of the LL/SC instruction are used for
definition for the pointefrop which is shown by the first line. implementing the following algorithm which is given by
Thus the following extension by an integer gets applied: Figure 9.
In the algorithm LL takes one argument which is the eskir
Top: *(NodeType,integer); of a memory location and returns its contents. The SC
instruction takes two arguments. The first one is tidress
In terms of the semantics of the language C this woulcdhmesf a memory location and the second one is the néweva
something like the following: Only if no other thread has written the memory locasimte
the current thread last read it using LL, the new value is
written to the memory location atomically. A boolegturn
struct TOP { value indicates whether the write occurred or not. Tadeev
*NodeType node; returns false if any other thread has written the memory
integer value; location since the current thread lastread itusing L
’ It is obvious and easy to recognize that if the bagite
operation and the CAS instruction of the CAS based
algorithm (Figure 6, line 4 and line 7) get replaced by the L
i _ i and SC instructions, the ABA problem can not occur
Treiber [2] pointed out that the change of the variabtebthe anymore.
CAS instruction need only be applied to the Pop routioe. Frhus the SC instruction in line 7 must failTibp has been

this reason Figure 8 just shows the modified pop routigydified by some other thread since the current thread
which contains the IBM ABA-prevention tag mechanism. executed line 4.

Now we want to apply to the modified algorithm the same
scenario, like the one in section 3.1 introduced befohéghw
was applied to the CAS-based algorithm in Figure 8.

=0
B

48

SC@RUG 2009 proceedings

// Shared variables
Top:*NodeType; // Initially: null
Push(node:*NodeType) {
do {
1: t € LL(&Top);
2: node.Next < t;
3: } until SC(&Top,node);
}

Pop() : *NodeType {
do {
t € LL(&Top);
If t=null return null;
next < t.Next;
} until SC(&Top,next);
return t;

TNk

Fig. 9. Lock free algorithm using LL/SC

lock-free processor instructions. Moreover we introdubésl t
kind of instructions, which are the CAS and LL/SC
instructions and gave a detailed explanation about their
functionality and pointed out their differences. Mainly we
focused on CAS, where we provided two different
illustrations, using the CAS instruction for accessingea
resources in a lock-free way.

Furthermore we introduced the ABA problem and how it is
related to the CAS instruction. Therefore we showedbtsic
stack algorithm[1l] and explained its susceptibility for the
ABA problem. Subsequently we pointed out two well known
solutions illustrated by one modifed and another new
algorithm[1]. On the basis of that we showed that it is
possible to avoid the ABA problem either with using
DOUBLE-CAS or LL/SC.

Finally we can conclude that both solutions suffer from
different problems. The minor problem of the CAS based
solution is related to the fact of unbounded interger vadnds

as far as we can think, it remains a theoreticallprnob

But in general both solutions are affected by the fact of
insufficient support of processor architectures, stheddeal
semantics of LL/SC and the DOUBLE-CAS are not very
common. Thus, for broader applying of lock-free algorithms
in general, it may help to develop more of these specific

needs, when building new processor architectures.

We want to recall our statement that in most of the

4.2 Discussion of given solutions applications the Lock-freedom property, which is weakant

)))) Wait-freedom, is sufficient for establishing accurateeas to
Concerning the first solution, using a tag (update counteéRared resources. Besides we want to mention that £D4S
associated to the pointdiop, the tag is assumed to have | /SC cannot provide starvation-free implementatiasfs

enough bits to make full wraparound practically impossiblaany common data structures without memory costs growing

between a thread’s execution of lines 4 and 7. So it depefilgarly in the number of threads. Wait-free algorithars
on the number of bits which certainly can not bénite. therefore rare, both in research and in practice.

Although it is assumed for the moment that this issue doe

bother anyone, anyway it will remain a theoreticaibem

which may cause a clash some day.

Another problem concerning this solution is that forkma

this work lock-free a DOUBLE-CAS (DCAS) operation is5 FERENCES

needed. This operation is currently only supported on x 5

architectures by Intel and AMD CPUs for 32-bit mode but nBf IBM. IBM System/370 Extended Architecture, Principles of
supported in general which makes ist impossible to use it Operation,1983. Publication No. SA22-7085.

broadly. [4] [2] R. K. Treiber. Systems programming: Coping with parallelism.
The second solution, using LL/SC, suffers from a general Technical Report RJ 5118,IBM Almaden Research Center, Apr.
problem. As we mentioned before, this solution is iastl to 1986.

the strong semantics of the LL/SC but in many archites [3] Overview of lock-free concurrency, http://burtleburtle.net
also other events cause the LL/SC operation to For. /bob/hash/lockfree.html

example interrupts or another load or store operatidh w#l Jean Gressman, The ABA Problem explained, http://fara.cs.uni-
cause the store-conditional to fail. potsdam.de/~jsg/nucleus3.23/ index.php?itemid=6
There are certain algorithms which can come along thith [5] M. P. Herlihy. A methodology for implementing highly concurrent

restrictions but in general it remains as a basiclpnolsince objects. ACM Transactions on Programming Languages and
the idea introduced in section 3.3 is in practice not appdicab Systems, 15(5):745-770, Nov.1993.
on many p|atform5_ [6] Introduction to non blocking algorithms, Alexandre David,

www.cs.aau.dk/~adavid/teaching/MVP-08/06-Non-blocking%
20algorithms.pdf

5 CONCLUSION

In practice both, lock-free and lockbased algorithmspuaesl

for solving different problems for accessing shaesburces.

At first we pointed out the different approaches for
implemeting lock-free and lockbased algorithms and we also
illustrated their primitives. We gave an explanationusing
these primitives and pointed out the main difference testwe
them and further the drawbacks of primitives for loclohs
algorithms.

The well known problem of a deadlock is one of the major
disadvantages in the field of lockbased mechanisms and it
was shown easily, how this problem can be avoided byusin

B

49

Lock-Free Hash Table Implementations

Jasper Smit

Abstract —

We compare two algorithms which implement a lock-free hash table to be used for concurrent systems. Shalev and Shavit[8] intro-
duced a method based on direct chaining. Gao e.a.[3] also proposed an implementation for lock-free hash tables. His approach is
based on open addressing. We compare both methods and briefly explain the algorithms.

For the comparison we look at implementation details and to the complexity properties of the algorithm.

It turns out that the algorithm of Shalel and Shavit is prefered for it's better elegance, simplicity and better worse-case performance.

Index Terms —Hash tables, Distributed algorithms, Lock-free

<+

1 INTRODUCTION

A hash table is a data structure which is used to store items whigperations. The find operation of an open addressing hash table doe:s
are identified by an unigue key very efficiently. Traditional hash ta linear search in the hash table, starting at the bucket where the found
ble implementations can usually not be used by multiple threads. Tkey was mapped to. It continues looking until a free bucket is reached.
thread safe variants of hash tables are typically realized by mutual ex\When deleting an item, a bucket cannot simply be emptied. This
clusion. In this paper we compare two different techniques to impléee bucket can prevent the find operation to find an item. The find
ment a lock-free hash table. The first techique is described by Shatgeration keeps searching until it encounters a free bucket. A solution
and Shavit [8]. A totally different approach is taken by Gao e.a.[3{luring deletion is to move all the items with the same hash, comming
In this paper we discuss both techniques and compare the algorithmext to the deleted item one bucket down. Then it fills the empty spot
We look at the differences in the two algorithms and look at complewf the deleted item and all items which share the same hash are adja-
ity and other details. cent and can still be found. It is also possible to mark the bucket as
In the first part we will explain traditional hash tables. Next thédeleted'. This ensures that the find operation does not stops it linear
hardware primitives for concurrency are explained. Then we will disearch at that point. However a long sequence of insertion and deletion
cuss both approaches. In the final part of the paper the two apm®achperation will bring the hash table to a state where all of the buckets

are compared with each other. are marked as deleted. Find and insert operations will thanQake
It is therefore necessary tehashthe table from time to time. When
2 HASH TABLES the number of marked buckets gets too high all stored items will be

moved to another hash table and the old one is abandoned. The market
ckets are not moved.
hash table with open addressing is illustrated in Figure 1.

A hash table consists of a large array[2]. The elements of this arr;
are called buckets. Depending on the implemenation one or more da
items can be stored in a single bucket. Usually many of the buckets
are empty. The proportion of the hash table which is filled with items

is called theLoad factor A hash functions maps the keys of items to 0 | IltemA(hasho)
be stored to one of the buckets. Evaluation of this function takés 1
time. Thanks to this the bucket where an item belongs can be found in 2 | itemB{hash2)
constant time and therefore finding and inserting can be implemented 3 | temc{hash2)
very efficient. These operations only take constant time. 4

In most situations it is not possible due memory limitations to use 5
the same number of buckets as there are possible keys. Therefore a 6 | itemD(hashs)
hash function has to be chosen which maps multiple different keys to 7 | Marked deleted
the same bucket. This can leaccwlisionswhen more than two items 8 | itemF(hashe6)
with different keys map to the same bucket. Differentimplementations 9

use other ways to deal with collisions. The two most popular collision

resolve technigues aopen adressingnddirect chaining These tech-

niques add extra overhead to the hash table operations, but whengf§e; A hash table with open addressing. When collisions occur, items
number of collisions are limited they can still be performed in constagiy the same hash get stored in adjacent bucket. In this figure item E
time. has been deleted. Bucket 7 cannot be emptied, because in that case

) item F with hash 6 cannot be found anymore.
2.1 Open addressing

When inserting a new item causes a collision in an open addressin) .
hash table another free bucket, is selected for that item. One wayztg Direct chaining
select a new candidate bucketlisear probing At linear probing The direct chaining approach (see Figure 2) allows more items to be
the algorithm keeps visiting adjacent buckets until a free bucket is egtored in the same bucket. This can be implemented by realizing each
countered. If buckeitis occupied, it tries the next bucket or if the lasthucket with a secondary data structure like a linked list.
bucket is occupied it tries the first. The item will be stored in the first Direct chaining hash tables have as advantage that the operations,
free bucket. especially the delete operation are simpler and there is no need to re-
Since items can possibly be stored at different buckets than the haglsh the table, because it does not get poluted due to many deletions
function maps it to, it also requires a changes in the find and deléilee in open addressing. Also the performance degrades more smooth-
ful when the load factor gets higher.
As a downside the direct chaining approach suffers from bad cache
performances, due to bad locality of reference of the linked lists at
each bucket.

50

SC@RUG 2009 proceedings

0 2.6.1 Fetch-and-add

1 The fetch-and-add operation increases the value of a specified jmemor
— location by one and then it returns the increased value. Like the fetch-
and-add there is also a fetch-and-decrease.
3 (tem |-afitem |-sfitem
I femfremsften) 2.6.2 Compare-and-swap
| Compare-and-swap or Compare & Exchange is an operation which
writes to a specific memory location only if this address contains a
specified value. The check wether the memory location contains the
value is done atomically. It is guaranteed that no other processes mod-
ify the location between check and the write. The operations returns
Fig. 2. A hash table which uses direct chaining. Items with the same wether a write has taken place or that the value contained on the mem-
hash are stored in the same bucket. ory location was different than expected.

The compare and swap can be summarized by the following code
executed atomically:

2.3 Resizing

A hash table has a fixed number of buckets. When the number itegisol conpar e- and- swap(*addr ess,

contained in the hash table gets too high its performance will degrade. expect ed_val ue,

In open adressing hash tables there is a hard limit, since the number of npew val ue) {

items cannot exceed the number of buckets. success = raddress == expected_val ue;

For these reasons the hash table has to be resized when the loadf (success) *address = new val ue;
factor gets too high. The resize operation is done when an insert causeget urn success;
the load factor get above a certain threshold. This threshold is usuglly
set around 70 or 80%.

When the hash table has to resize, a new hash table is allocated,
new hash function is chosen and all items currently contained in t
old hash table are moved to the new hash table.

Resizing a hash table is a very expensive operations. It @kes

®he compare-and-swap is implemented in most modern architec-
es. It is supported by the x86 processor since the 486. Most im-
plementations of the compare-and-swap work on word-sized locations
only, so bigger sized memory locations cannot be replaced atomically.

; . = h . X is implemented on modern x86 architectures. Another extension is
is done in an efficient way. This constant amortized time complexs

are based on the double-compare-and-swap operation. At the homen
there are only a few CPUs that implement this operation.
Maurice Herlihy[5] proved in 1991 that using compare-and-swap

Without extra care most datastructures cannot be used by multiple ps@zrations more concurrent algortihms can be implemented than ordi-
cesses concurrently. If more processes mutate the datastructige, iy atomic read/writes and fetch-and-add.

conditions can occur. Due to race conditions it could happen that op-

erations performed by one process are discarded by the interésséncy g 3 | pad-Link/Store-conditional

another. It is even possible that the data structure gets corrupted when o .)

two processes modify the hash table at the same time. Consider for e¥2d-Link and Store-Conditional are two operations which are used
ample two concurrent insert operations in a hash table. Both inserf@gether. These are even stronger than a compare-and-swap opera
items happen to be in the same bucket. The two processes obserf93: A load-link operation loads a value from memory. After this
the same time that the bucket is free, then they both insert their itenatue is loaded and some operations are done with it the store condi-
the same place, leading to the situation that one of the inserted iteli?§@l is used to store a changed value at the same location. The store

2.4 Lock-free datastructures

is overwritten and thus lost. conditional fails if from the time that the value was read with load-link
has changed, even if it has changed first and then original read value
2.5 Existing lock-free datastructures was restored. Without changing the writing process this behaviour is

Special concurrent implementation of datastructures like the hash het realizable by only using compare-and-swap.

ble are available. They are usually implemented by realizing mutual ,

exclusion. If only one process can access a the datastructures atthe! HE ALGORITHM OF SHALEV AND SHAVIT'S

time there is no way race conditions can occur. To realize the mutual their article ‘Split-Ordered Lists: Lock-Free Extensible Hash

exclusion some critical section have to be locked. Tables’[8], Ori Shalev and Nir Shavit propose a lock-free hash table
The use of locks however causes several problems. The lock isased on direct chaining. The hash table supports resizing when the

performance bottleneck. When one process is accessing the hash timtégnal load factor gets too high. The resize operation is done without

all others are forced to wait, making the system not truely concurraming locks on the table or on individual buckets.

anymore. Furthermore, a failure of a proces that has locked the haslThe hash table consists of a single linked list, as illustrated in Figure

table makes the complete system reach deadlock. 3. Each bucket of the hash table is a part of the linked list. The buckets
For this reason concurrent algorithms which do not use locks dfgk to a node of the linked list. These nodes are called dummy nodes,

investigated. Several lock-free algorithms have been proposed[1b8cause they do not store actually data items. Between the dummy

10]. nodes are data nodes which do have an item attached to them. There
o can be more than one item stored between two dummy nodes, realizing
2.6 Concurrent primitives the direct chaining of the hash table.

Almost all of the lock-free algorithms depend on hardware support fo Items inside the list should be ordered by their keys. This makes
certain atomic operations. The most used atomic hardware operatigrnsossible to later add more dummy nodes in between two existing
are discussed in this section. dummy nodes.

51 I

Lock-Free Hash Table Implementations — Jasper Smit

Insertion and deletion are implemented with corresponding linkdtas doubled, the hash function (hash = key % size) distributes the items
listimplementations of insert and delete. Shalev and Shavit use a looker twice as many buckets. The first time a bucket is refered to it will
free linked list implementation from the work of Michael [7]. This im-get initialized and inserted in the linked list at the right location.
plementation uses compare-and-swap primitives. The delete and insert
operations first revert the key before delegating the task to the linkddt Deletion

list operations. The hash function used for this implementation ige gelete operation finds the correct bucket and from this point it

hash = key % si ze. Thisis necassary for the resize operation tQ|is the delete operation of the linked list. After the item is deleted
work, the details are explained in the next section. the item counter is decremented atomically.

3.1 Resizing

When the number of items inside the hash table gets higher than
maximum load factor the number of buckets in the hash table will

doubled. In traditional hash table implementations all items will b
redistibruted among the buckets.

4 THE ALGORITHM OF GAO E.A.

go, Groote and Hesselink proposed in their article ‘Lock-free Dy-
amic Hash Tables with Open Addressing’ [3] another method for
ock-free hash tables. Their approach differs from Shalev andi®&hav
Shalev and Shavit do this the other way around, the buckets get 3@Proach by using open addressing instead of direct chaining. When
distributed among the items. After each existing dummy node a nd&sizing the table all processes currently accessing the table helps mi-
dummy node is inserted. In the array the new buckets are just insergigting items from the Olq table to the new one. The new ‘?b'e does not
>l‘ﬁgcassarly have to be bigger than the existing table. This depends on

after the existing buckets. The hash function outputs an aditional s ber of it ked as the deleted if th t tabl tai
nificant bit. This extra bit is the most significant bit of the array index; € number of itfems markeg as the geletea, it tne current table contains
any of these items, the table actually becomes smaller.

The index of the linked list is the same key, but then reversed binaFQ
This way an extra least significant bit is added to the linked list key,

effectively splitting each segment in half. The new dummy nodes C%{ﬁl Data Structure _)
then be inserted in the existing list without having to rearrange all tiiiecause each process can decide to allocate a new hash table for mi

items. gration, multiple hash tables can exist at the same time. A shared array
The situation after resizing is illustrated in Figure 4. His used to store all hash tables. A shared variablel nd indicates
which hash table is the active one.
— 200 (610} f1o0) fi10) An arraynext is used during migration. IF[i] is a hash table
001 ﬁ which is currently migrating to a new hash table, then the new hash
010 table is indicated by next [i]] . Another array calledbusy[i]
011 is a counter of how many processes are accessing hashHable

busy is not part of the hash table, but stored in a separate array.
Because whebusy[i] is zero it could happen that the hash table
Fig. 3. A hash table with 4 buckets, only displaying dummy nodes. Note IS @bout to be thrown away. When at that moment a process incre-
that the key of an item is reversed in the list index, explaining the cross- ~Ments théousy variable it will write on deallocated memory. Another
over in nodes 01 and 10. arrayprot[i] is used to protect the reuse of the variabt§s] ,
busy[i],next[i] foranew hash table when other processes still
use these values.

5 |00} 01 |+fo10}»o11 |-»fio0}sfion efiio}+fiin

o 4.2 Migration process

a0 An insertion can initiate a migration when the insertion causes the
— number of buckets too get higher than a certain threshold, called the
101 boundary. The process then allocates a new hash table. The size of the
ﬁf new hash table is determined by the current boundary and the num-

ber of items marked for deletion. This latter number decreases the
) — size of the created hash table, allowing it to shrink when many items
Fig. 4. The same hash table as in Figure 3, but grown to 8 buckets. In are deleted. The new size has to be at least largeriband + 2
the bucket list a higher order bit is added to the key, while in the linked P, with P being the number of processes. This is necessary, because
list the reverse key is used adding a bit to the right, creating the effect of V\;hen resizing there can still B - 1 pending insertions from ’other
new buckets getting in between the old ones. processes.
. . . After the process has allocated for the original hash table] a

Unfortunatly there is no way for the hash table to shrink agaipa, resized hash tabld j | , it assigns using a compare and swap
When the hash table has reached some worse case capacity, fromdagt [i] =j. If next[i] was already assigned a value, the
moment it will always be at that size. compare-and-swap fails. The procces can then deallocate the hast
3.2 Finding items table for another process was first in creating the new hash table.

o o)) When the new hash table has been prepared, items can be migrate
The find operation first calculates the hash. This hash is the buck&m the old hash table. The process allocating the new hash table be-
which points to a dummy node in the linked list. It then traverses thfins with this job. A single item to be migrated is first marked as old,
linked list beginning at that dummy node. Because the linked list & that other processes in the migration process do not start copying
ordered on key it can keep on searching until a node is encountetré same item. Old items can still be found by concurrent find oper-

which has a higher key. ations. Next the item is inserted in the new hash table and finally the
. item in the old one is deleted, by replacing it with a sped@he item.
3.3 Insertion If concurrent delete or insert operations detect these old or done ele-

The insert operation does an insert in the linked list. If the item was nmients, the process knows the current hash table is being abondend. |
yet contained in the hash table, the insertion is considered succedfuén joins the migration process, starting moving elements to the new
In that case the number of items counter is incremented, using fettlash table. Find operations can still use the values marked with old,
and-add. With this counter the load factor can be calculated. Whbat if they are replaced withone they also start joining the migration

the load factor gets too high, the hash table grows by doubling theocess. After all items are migrated, all buckets in the old hash table
size of the bucket array. This can simply be done by doubling the sizave been replaced wittone and it is therefore guaranteed that they
variable, because the buckets are initialized lazy. After this variabhll not be used by other processes anymore.

h“AL‘\\/"‘VH““j 52

SC@RUG 2009 proceedings

4.3 Hash table reference Algorithm: Shalev & Shavit Gaoe.a.
Before a process can perform any operation on the hash table it fjr {?r?sgrttslrgec;ri;rng Gro\\issc‘)nly Grow {I;l\lnc:j shrink
has to get a reference to the hash table, by cafliegRef er ence. Resize time complexit o(1) O(n), worst-cas®©(n?)
This function copies the shared varialdar | nd to a private vari- Memory com Iexri)t Y o(m) O(m)’worst-cas@(Pm)
able i ndex. It also increasepr ot and the reference counter P y plexity v ’ No

busy. It can then do one or more operations on the hash table unérocesses(;:an]0|r:j Yes N

tilit callsr el easeAccess, which decreases the reference counters. asy to understan es °

rel easeAccess is also responsible for releasing the memory of
abandoned hash tables. Whieasy has dropped till zero, the last
process releases the memory of the hash table.

Althoughget Ref er ence sets thé ndex for the current process, . . .
this value can change during the execution of operations on the hiaple is allocated and all items in the old hash table has to be moved

Table 1. Comparison of both algorithms

table. This happens when a migration has started. to the new hash table. In worst case scenario it can everQaiKs,
this happens when all participating processes pick the same hash table
5 COMPARISON elements to migrate.

We have discussed two methods to implement a lock-free hash tableC0ncurrent operations during a resize have to join the migration

Although they both do the same thing, the implementations are quRE°C€SS and have to complete this before their oper_ation can be com-
different. In this section the methods of Shalev and Shavit are co%ﬁed' I all processes run at the same speed there is no advantage fo

pared with the algorithm of Gao e.a.. We will look into the difference® Process to join in and help over blocking and letting one process
and similarities in implementation and the up and down sides of tQQ &l the work. Due to the memory bottleneck all processes have to
discussed algorithms. take turn to write to the memory anyway.

The algorithm of Shalev and Shavit is much simpler and elega{%t4 Efficiency
than the other. The algorithm of Gao e.a. is a very complicated al-
gorithm which is hard to follow. This makes implementation difficult’raditional hash table implement all operation, like find, insert and
and error prone. The algorithms for the operations are much long@glete inO(1). Resizing a hash table takes ab@in). Despite that
For each access to the hash table an indirection step is necessatfi@@mortized time complexity is stil(1) for each operation, because
pick the correct hash table from an array. aresize is only necassary in rare ocassions. . o
Both Gao e.a. and Shalev and Shavit provide a proof for the cor-For the lock-free variants of the hash table this complexity still
rectness of their algorithm. For Shalev and Shavit it is intuitive to sé®!ds. The time complexity of resizing is already discussed in the
that the algorithm is correct. In his paper he provides only a skeletBf£VIOUS section.)
proof. For the algorithm of Gao e.a. it is not directly clear why the The memory complexity of both hash tables are under normal con-
algorith is correct. Gao e.a. have proved their algorithm completefitionsO(m), mbeing the number of buckets in the hash table. How-
using mechanical proof verification. The proof is very long, it consisver the algorithm of Gao e.a. can be under worst case conditions be
of about 200 invariants. It took them about two men year to complefPm), with P being the number of processes. This happens when all
the prove. In the original paper the safety and progress proofs &@cesses decide to allocate a new hash table at the same time.

explained. Looking at the time and space complexity of boths algorithms, the
hash table implementation of Shalev and Shavit performs better under
5.1 Simalarities worst case conditions.

Both algorithms rely on the implementation of atomic operations i .

hardware. These operations are absolutly necessary, without th 'sE’e Joining processes

primitives it would be impossible to implement the algortihms, aghe matter of joining or leaving processes is not mentoined in either

shown by Herlihy [5]. The most used atomic operation by the algo@f the two papers. For Shalev and Shavit's implementation it is no

tihms discussed is compare-and-swap. Fetch-and-increase amd fe@ggoblem that other processes join or leave, nowhere in the algorithm a

and-decrease are also both used by the algorithms to implement cdifiistant number of processes is assumed.

ters, like the number of items contained or the number of deleted itemsIn the implementation of Gao e.a. the number of processes is fixed.
Another simalarity is that both algorithms support upsizing the hadiis limitation is due to the design of the data structures. These con-

table when necessary. Algorithms for non resizing lock-free hash fin arrays of which the length is dependent on the number of pro-

bles were already described earlier like [7, 4]. cesses. If another process joins, more positions should be made avail-
o able in the array. Also at resizing the hash table the new size of the
5.2 Shrinking hash table is based on the number of processes. This problem however

The method of Shalev and Shavit does not support shrinking, weerdgeasily fixed, by taking initially a larger array than the number of pro-

the other method described by Gao e.a. can shrink when many ité¢§ses. Now the number of processes can grow during the executing

are deleted. This means for Shalev and Shavit's method that when #hél a certain maximum. Leaving processes is not a problem in either

hash table has grown huge because of some peak of elements t@fdae algorithms

inserted, it will never shrink to normal proportion even if the numbe

of items is marganalized. The hash table of Gao e.a. better adjustSto CONCLUSION

its current memory needs. This might not be a big matter, because itrisTable 1 the comparison is summarized. The algorithm based of

shown that in practice hash tables only need to increase in size [6].Shalev and Shavit should be prefered. This the simplest and most el-
. egant of the two algorithms. Both the implementations support grow-

5.3 Resizing ing, but only Gao e.a.’s hash table can shrink. Under normal conslition

Although hash tables of both types can grow, they both grow in difhe algorithms have the same time and memory complexity as a tradi-

ferent fashions. For Shalev and Shavit growing just means incgeastional hash table implementation. Shalev and Shavit support joining

a variable. This does not take considerable amount of time. Becapsecesses later in the execution of the algorithm. The algorithm of

the new buckets are kept unitialized until they are refered, the resi@@o e.a. has a worsed case complexity which is not as good as Shalev

operations overall can be done very efficien€ifL). Other processes and Shavit's.

do not have to wait before resize operations is completed, they can still

use the old buckets. REFERENCES

The resize operations of Gao e.a. takés) which is significantly [1] G. Barnes. A method for implementing lock-free shared-datactures.
slower than the other approach. During a resize a complete new hash In SPAA '93: Proceedings of the fifth annual ACM symposium oalPar

53 e

Lock-Free Hash Table Implementations — Jasper Smit

lel algorithms and architecturepages 261-270, New York, NY, USA,
1993. ACM.

[2] J. Erickson. Lecture about hashtables.
http://compgeom.cs.uiuc.edu/ jeffe/teaching/373/n6&sashing.pdf.

[3] H. Gao, J. F. Groote, and W. H. Hesselink. Efficient almositvree
parallel accessible dynamic hashtablésRR c¢s.DC/0303011, 2003.

[4] M. Greenwald. Non-blocking synchronization and systéasign, 1999.

[5] M. Herlihy. Wait-free synchronization.ACM Trans. Program. Lang.
Syst, 13(1):124-149, 1991.

[6] M. Hsu and W. Yang. Concurrent operations in extendibdeHing.

In W. W. Chu, G. Gardarin, S. Ohsuga, and Y. Kambayashi, egitor
VLDB'86 Twelfth International Conference on Very Large ®&ases,
August 25-28, 1986, Kyoto, Japan, Proceedjm@gies 241-247. Morgan
Kaufmann, 1986.

[7] M. M. Michael. High performance dynamic lock-free hashlésband
list-based sets. I8PAA '02: Proceedings of the fourteenth annual ACM
symposium on Parallel algorithms and architectyrpages 73-82, New
York, NY, USA, 2002. ACM.

[8] O. Shalev and N. Shavit. Split-ordered lists: lock-feegensible hash ta-
bles. INPODC '03: Proceedings of the twenty-second annual symposiu
on Principles of distributed computingages 102-111, New York, NY,
USA, 2003. ACM.

[9] J. D. Valois. Implementing lock-free queues. ImProceedings of the
Seventh International Conference on Parallel and Disti#slComputing
Systems, Las Vegas, \dages 64—69, 1994.

[10] J. D. Valois. Lock-free linked lists using compare-awap. Inin Pro-

ceedings of the Fourteenth Annual ACM Symposium on Preig Dis-
tributed Computingpages 214-222, 1995.

54

