

 University of Groningen

10th SC@RUG 2013 proceedings
Smedinga, Rein; Kramer, Femke

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2013

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Smedinga, R., & Kramer, F. (Eds.) (2013). 10th SC@RUG 2013 proceedings: Student Colloquium 2012-
2013. Rijksuniversiteit Groningen. Universiteitsbibliotheek.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 04-06-2022

https://research.rug.nl/en/publications/88ebebe7-94c4-4ebf-8dc3-3e5d47a2d15f

SC@RUG 2013 proceedings

Rein Smedinga
Femke Kramer

editors

2013
Groningen

ISBN: 978-90-367-6316-5
Publisher: Bibliotheek der R.U.

Title: SC@RUG 2013 proceedings
Computing Science, University of Groningen

NUR-code: 980

SC@RUG 2013 proceedings

About SC@RUG 2013

Introduction
SC@RUG (or student colloquium in full) is a course

that master students in computing science follow in the first
year of their master study at the University of Groningen.

In the academic year 2012-2013 SC@RUG was orga-
nized as a conference for the tenth time. Students wrote a
paper, participated in the review process, gave a presenta-
tion and were session chair during the conference.

The organizers Rein Smedinga and Femke Kramer
would like to thank all colleagues who cooperated in this
SC@RUG by collecting sets of papers to be used by the
students and by being an expert reviewer during the review
process. They also would like to thank Janneke Geertsema
for her workshops on presentation techniques and speech
skills.

Organizational matters
SC@RUG 2013 was organized as follows. Students

were expected to work in teams of two. The student teams
could choose between different sets of papers, that were
made available through Nestor, the digital learning envi-
ronment of the university. Each set of papers consisted of
about three papers about the same subject (within Com-
puting Science). Some sets of papers contained conflicting
opinions. Students were instructed to write a survey paper
about this subject including the different approaches in the
given papers. The paper should compare the theory in each
of the papers in the set and include their own conclusions
about the subject. Of course, own research was encouraged.
Three teams proposed their own subject.

After submission of the papers, each student was as-
signed one paper to review using a standard review form.
The staff member who had provided the set of papers was
also asked to fill in such a form. Thus, each paper was re-
viewed three times (twice by peer reviewers and once by
the expert reviewer). Each review form was made available
to the authors of the paper through Nestor.

All papers could be rewritten and resubmitted, inde-
pendent of the conclusions from the review. After resub-
mission each reviewer was asked to re-review the same pa-
per and to conclude whether the paper had improved. Re-
reviewers could accept or reject a paper. All accepted pa-
pers can be found in these proceedings.

Students were asked to give a 2-minute presentation
halfway the period. The aim of this so-called two-minute
madness was to advertise for the full presentation and at the
same time offered the speakers the opportunity to practice
speaking for an audience.

The conference itself was organized by the students

themselves. In fact half of the group was asked to fully
organize this day (i.e., make the time tables, invite people,
look for sponsoring and a keynote speaker, etc.). The other
half acted as a chair and discussion leader during one of the
presentations. We had dual presentations for each paper.
The audience graded both the presentation and the chairing
and leading the discussion.

The gradings of the draft and final paper were weighted
gradings of the review of the corresponding staff member
(50%) and the two students reviews (each 25%).

In her lectures about communication in science, Femke
Kramer explained how conferences work, how researchers
review each other’s papers, and how they communicate
their findings by composing a storyline and cleverly de-
signed images. She also taught workshops on writing a
scientific paper and on reviewing such a paper.

Janneke Geertsema gave workshops on presentation
techniques and speech skills that were very well appreci-
ated by the participants. She used the 2 minute madness
presentation as a starting point for improvements.

Rein Smedinga did the overall coordination, adminis-
tration and served as the main manager of Nestor.

Students were graded on the writing process, the re-
view process and on the presentation. Writing and rewrit-
ing counted for 35% (here we used the grades given by the
reviewers and the re-reviewers), the review process itself
for 15% and the presentation for 50% (including 10% for
the grading of being a chair or discussion leader during the
conference and another 10% for the 2 minute madness pre-
sentation). For the grading of the presentations we used the
assessments from the audience and calculated the average
of these.

In this edition of SC@RUG students were videotaped
during their 2 minute madness presentation using the new
video recording facilities of the University and with thanks
to the CIT crew. The recordings were published on Nestor
for self reflection. Because of a communication mismatch
no video recording was available during the real sympo-
sium.

On 19 April 2013, the actual conference took place.
Each paper was presented by both authors. We had a to-
tal of eight presentations this day.

During the symposium Gert-Jan van Dijk, from Target
Holding, acted as a keynote speaker and that same company
sponsored the symposium as well.

A special catch up meeting was needed (on 22 May) to
have three additional presentations because of absence of
the presenters during the real symposium.

3

About SC@RUG 2013

Hall of Fame
Because we organized SC@RUG for the tenth time we

added a new element: the awards for best presentation, best
paper and best 2 minute madness. Therefore, since this
year’s edition, we will have a Hall of Fame:

• Best 2 minute madness presentation awards:
2013:
Robert Witte and Christiaan Arnoldus:
Heterogeneous CPU-GPU task scheduling

• Best presentation awards:
2013:
Jelle Nauta and Sander Feringa,
Image Inpainting

• Best paper awards:
2013:
Harm de Vries and Herbert Kruitbosch:
Verification of SAX assumption: time series values are
distributed normally

Thanks
We could not have achieved the ambitious goal of this

course without the invaluable help of the following expert
reviewers:

• Faris Nizamic
• Andrea Pagani
• Jos Roerdink
• André Sobieck
• Heerko Groefsema
• Ehsan Warnach
• Vali Codrenanu
• Alex Telea
• Alexander Lazovik
• George Azzopardi
• Tijn van der Zant

and all other staff members who provided sets of papers
but were not needed in the review process.

Also, the organizers would like to thank:

• the Graduate school of Science for making it possible
to publish these proceedings and sponsoring the confer-
ence,

• Target Holding for sponsoring lunch and providing a
keynote speaker and

• Janneke Geertsema for, again, providing excellent
workshops on improving presentation skills.

Rein Smedinga
Femke Kramer

4

Contents

1 Hybrid cloud security issues in private enterprises
Aurelian Buzdugan and Tuan Luu Dinh 6

2 Information Security in Service-oriented Smart Grids
Ruurtjan Pul and Brian Setz 12

3 Qualitative Comparison of 2D Digital Inpainting Techniques
Jelle Nauta and Sander Feringa 18

4 A Study about Middleware for Smart Environment
Fatimah Alsaif 24

5 Opportunities for Heterogeneous CPUGPU Task Scheduling
Christiaan Arnoldus and Robert Witte 30

6 Curve Skeletonization of 3D Shapes
P.M.D. Otterbein and M.C.P.M. Scheepens 36

7 Simplified graph representation by bundling
Jurgen Jans and Ralph Kiers 42

8 Push techniques and alternatives in the mobile phone browser
Erik Bakker and Mark Kloosterhuis 48

9 Verification of SAX assumption: time series values are distributed normally
Harm de Vries, Herbert Kruitbosch 53

Hybrid cloud security issues in private enterprises
Aurelian Buzdugan and Tuan Luu Dinh

Abstract—Hybrid cloud computing is the combination of two or more clouds, usually between a private and a public cloud. This

combination can bring a huge advantage to private enterprises by delivering necessary computing resources instantly, on-

demand and commitment free. Computing services may vary from software such as email handling, office applications to data

management or computing resources. Yet data and services are concentrated in clouds, therefore it is much more sensitive from

the security point of view. In this paper we will assume a hybrid cloud as the combination between a private and public cloud, and

we explain the security risks and benefits associated with cloud implementation. In order to create a full overview of this area,

both public and private cloud security aspects are presented. We conclude with the assessment of existing security solutions

against main key drivers of cloud computing.

Index Terms—Hybrid cloud security, encryption, virtualization, cloud federation.

1 INTRODUCTION
Cloud is an elastic execution environment of resources involving
multiple stakeholders and providing metered service at multiple
granularities for a specified level of quality [1]. Clouds can be
employed in different ways such as hybrid, private, public or
community. In this paper, we will mainly focus on hybrid clouds as
the fusion of a public and private cloud that remain as unique
entities, but still bound together. Applying hybrid cloud to an
existing environment raises numerous issues, especially in the
security area.

Hybrid cloud offers two options for organizations to store their
data and services, both in the public and private cloud. Nowadays the
public cloud tends to be used on a temporary basis, until the private
cloud will reach the level of security that will satisfy all requirements
and needs of the organization. Still, public cloud providers have huge
resources dedicated for security, management and infrastructure.
This is the main advantage of the public cloud compared to the
private one, where the resources are limited and are related to
organization’s size. On the other hand, the private cloud can ensure
that custom security requirements are met and that a full control of
data exists.

The concept of cloud computing is linked intimately with those
of IaaS (Infrastructure as a Service); PaaS (Platform as a Service),
SaaS (Software as a Service) and collectively *aaS (Everything as a
Service) all of which imply a service-oriented architecture [1]. These
types of clouds functionality can be provisioned individually or
multiple at the same time.

Infrastructure as a Service (IaaS) refers to offering resources as
services to users, basically virtual hardware on a scalable basis.
These resources cannot be offered on a low-level basis, due to the
fact that make part of the virtualized environment. Platform as a
Service (PaaS), provides a platform on which applications can be
developed and deployed. Software as a Service (SaaS), referred also
as Application Clouds offers implementation of a certain model of
process, coupled with IaaS or PaaS [1].

 In this paper we make an overview of security issues for both the
private and public cloud, in order to show the best security solutions
for hybrid cloud. We begin by describing in section 2 the benefits of
implementation of a hybrid cloud in an organization. Section 3 will
contain the definition of the selected key drivers for assessing the
security solutions. In section 4 we describe the actual security issues
of clouds from legal and technical points of view. From the technical
point of view security can be assessed during the data or service

lifecycle. The existing solutions for overcoming security issues
described will be presented in section 5. An evaluation of these
solutions against defined key drivers is presented in section 7. We
aim to represent notable existing solutions for security problems and
evaluate them against the defined key drivers for hybrid cloud:
security, performance, extensibility and availability. In the next
session we discuss future directions of development towards
overcoming security issues. In the end we conclude with a personal
opinion and make an overview of the entire paper.

2 BENEFITS OF USING HYBRID CLOUD COMPUTING
Hybrid clouds make use of the mix from public and private cloud
infrastructure. Public cloud is used to achieve a maximum cost
reduction through outsourcing whereas the private cloud is used to
keep sensitive data in known premises. Therefore, hybrid clouds
comprise the general benefits of cloud computing such as:

� Data decentralization, which became inexpensive;
� Storage and bandwidth on a pay-as-you-go system;
� No large upfront capital necessary
� Attractive deploying in enterprises or countries with poor

infrastructure.
Cloud computing architecture has highly abstracted resources, is

scalable, flexible and uses shared resources such as hardware,
memory, CPU or time. These aspects indicate a great advantage for
private enterprise, which will be able to save on IT infrastructure
cost while having guaranteed stable IT resources for operation.

The hybrid cloud provides great benefits to enterprises because
of the flexibility. Owning a private cloud for sensitive data, and
making use of a public cloud for archiving is a smart solution for
many enterprises, that still need to reach their technological
development level for their private cloud.

Public clouds make large scale solutions a smart investment and
much more affordable. Data is replicated in many locations, which
increases redundancy and independence from failure. Also, threat
management, timeliness of response in case of an incident and
service reliability are valuable assets which public cloud can offer to
an enterprise. On the other hand, private clouds will allow to keep
very sensitive data in known boundaries, thus having total control
over sensitive information.

3 KEY DRIVERS
The key drivers are accessible attributes that can be used to evaluate
the effectiveness of the existing solutions when evaluating security
issues for the hybrid cloud. The key drivers are chosen based on the
general advantages and disadvantages that hybrid cloud can bring to
its users. Therefore, these key drivers can be used for verifying any

� Aurelian Buzdugan is with University of Groningen
E-Mail: aurelian.buzdugan@yahoo.com.

� Tuan Luu Dinh is with University of Groningen
E-Mail: luutuan@me.com.

6

solution that relates to security problems in hybrid cloud. A listing
and explanation of them is given below:

Security key driver indicates the protection level which the
solution can provide to the private enterprises. This is the main key
driver and must be approached on a high level. If this key driver is
not able to achieved, the solution would beat its purpose and render
itself useless.

Performance is the second key driver, and denotes the agility of
the hybrid cloud when applying the proposed solutions for security
problem. This key driver can affect directly the success or failure of
the proposed solutions. The main argument is that private enterprise
users would be willing to consider a cloud approach only if it meets
their evolving performance requirements.

Extensibility is used to measure how easy the hybrid cloud
model can be able to scale up and scale down in term of processing
speed and available storage, when proposed solutions are applied to
the hybrid cloud system. For enterprises that have a stable operation,
in short term this may not be a problem. Yet for long term support,
extensibility may become an obstacle if the enterprises want to
extend their operations.

Availability key driver indicates the availability of data and
services under protecting mechanism from the proposed solutions.
The private enterprises often look into this key driver because their
operations heavily depend on the availability of data and services.

The proposed solutions for addressing security when adapting
hybrid cloud model will be evaluated against above key drivers. The
purpose of this evaluation is to validate the effectiveness of the
solutions in order to identify which solution can be the promising
approach for private enterprises that aim to adapt hybrid cloud model
to their IT infrastructure.

4 SECURITY RISKS
In this section we present security issues from technological and
legal viewpoints and we explain briefly their impact and affected
assets of the organization. The first viewpoint describes risks based
on the data and service lifecycle focusing on the technology and
functionalities used, whereas the second viewpoint describes security
issues in the cloud from legal perspective.

4.1 Data lifecycle
When adapting the hybrid cloud model, private enterprises will move
a part of their data and services to the infrastructure of the cloud
provider. This can be considered as the root cause of all security
problems. The data lifecycle and services in the hybrid cloud model
will be represented and they are used to identify the possible security
issues from each phrase.

When adapting the hybrid cloud model, private enterprises will
move a part of their data and services to the infrastructure of the
cloud provider. This can be considered as the root cause of all
security problems. The data and services lifecycle in the hybrid cloud
model is represented below (shown in Fig. 1), and is used to identify
the possible security issues from each phase.

Firstly, the possible security problems that may happen to data
will be identified by using provided data lifecycle.

In the data generation phase, the security problem about data
ownership is raised. In traditional IT environment related to the
private cloud, users or organizations own and manage the data. Yet
when data is migrated into the cloud, ownership management gets
more complicated. Administrators and auditors can become
malicious insiders by misusing their privileges to access confidential
data. Even if an attempt to avoid this can be made through a Service
Level Agreement (SLA), the organization cannot verify if the SLA
terms were fully respected. Other vulnerabilities that are related to
this risk include poor patch management, the impossibility to process
data in an encrypted form or to manage security policies. This risk is
directly associated to keeping private data in a public cloud, but can

also be related to the users with high-privileges that administer the
private cloud if specialized log tools are not applied.

Fig.1 Data lifecycle in a hybrid cloud model

The second phase is data transfer. Within the enterprise

boundaries data transmissions do not usually require encryption.
Sometimes, a simple data encryption may be used in order to secure
data flows within the companies’ intranet, which has a certain
security level. Yet for data transmission across enterprise boundaries,
both data confidentiality and integrity should be ensured in order to
prevent data from being tampered and tapped with by unauthorized
users. In other words, only data encryption will not be enough. The
integrity of data must also be taken into account. Therefore, the
transport protocols must be able to provide both confidentiality and
integrity. There is a problem with the transport protocols. For
transmissions between private enterprise and cloud providers,
transport protocols can be controlled by the private enterprise. Yet if
cloud providers belong to the cloud federation, which allows all joint
cloud providers to share resource with each other, the private
enterprise will not be able to control transfer protocols among them
which may lead to data leak.

The third phase relates to the actual process of data use. It is not
feasible and user friendly if data stored in the cloud or the local
environment is encrypted, due to later indexing or query problems.
By focusing on usability, there is a loss from the security point of
view due to the fact that unencrypted data is highly vulnerable. Thus
unencrypted data in the process is a moderate threat to data security.
Furthermore, the problem of isolation failure arises. Isolation failure
occurs in systems where there are multiple users and shared resource
such as network, computing resources of memory. Even if the user
does not have access to others’ data, the consequences of an SQL
injection attack would include data to be exposed to third parties.
The chances of this scenario to happen are low in a private cloud and
higher in the public one. Taking into account that an organization
that uses a hybrid cloud has less human and financial resources
dedicated to security of the private cloud, as opposed to the public
cloud provider, we want to raise the impact level to high for the
private cloud. The assets that can be affected are similar to the loss
of governance risk, and include the company’s reputation and trust,
personal or sensitive data and service delivery.

Data sharing phase expands the use range of data, which renders
data permission more complex. The data owners can authorize the
access to one party, who may further share data with other parties
without the consent of the data owners. Therefore, during data
sharing, data owners need to consider whether the third party
continues to maintain the original protection measures and usage
restriction. This also implies checking sharing granularity and data
transformation. The sharing granularity depends on the sharing
policy and the granularity of content. The data transformation refers

SC@RUG 2013 proceedings

7

to isolating sensitive information from the original data. These
operations make the data not relevant with the data owners.

The data storing phase contains three information security
aspects to be considered: confidentiality, integrity and availability.
These can be directly linked with loss of governance and compliance
checking, because of the direct impact. Loss of governance affects
organizational assets such as company reputation, customer trust,
personal sensitive or critical data (according to European Data
Protection Directive 95/46/EC), and service delivery. Therefore the
organization may not be able to have the capacity to reach its goals,
and even impossibility to comply with the needed security
requirements. When using cloud infrastructures, the client gives
permission to the provider to manage a number of issues that affect
privacy and security. Moreover, client’s techniques of securing data
may not be compatible with the provided cloud service, even if
stating this aspect in the SLA. This creates a big gap in the security,
and can also lead to compliance challenges. Compliance checking
affects the most important asset that makes the cloud environment
secure - certification. Many organizations strive to be certified in
information security in order to gain customer trust. But this might
be lost when migrating data to the cloud. Fortunately, by applying a
hybrid cloud the above mentioned risks can be minimized. By
keeping all important data in the private cloud, as well as services
that must be available close to 100% of time, the organization can
assure that will not lose acquired certification so far, and that will
have a strong image and trust on the market. Another problem which
may affect data is that cloud providers may transfer data to data
centers which locate in another country. This means data is not kept
within national boundary [2] anymore and there is a probability that
the data may be used illegal by the government of the country where
data centers are located in [3]. For example, to implement a model of
public cloud in E-government would be doubtful, due to legislative
constraint that data will not stay inside countries boundaries.
Therefore, private cloud is desirable when dealing with personal
data.

The last phase of data in its lifecycle is data destruction. In
traditional IT environment, when data is no longer required, the
organizations can securely delete it by using various kinds of secure
mechanisms in order to completely destroy it from the storage
medium. Deleting sensitive data from a private cloud is easier, as the
organization can decide if the disk has to be destroyed in order to
permanently delete data, or by using special algorithms. But for
public cloud providers it is not cost effective at all, as an ineffective
deletion of data could lead to data disclosure, and therefore not
comply with sensitive data sanitization. Also, each time there would
be resources reallocated, the cloud provider has to make sure that no
data can be available beyond the specified lifetime.

4.2 Service lifecycle
Possible security problems that may affect services will be identified
by using the service life cycle representation provided below (shown
in Fig. 2). Security policies for the cloud include data deletion
procedures. Unlike the data lifecycle, the service one has less
security issues. There are only three notable problems that relate to
cloud services: leaking of business logic, unauthorized access to the
services and data leak when accessing cloud services.

The first problem is business logic leaking. This is only applied
to the services that are specifically developed for the organization,
and usually these services are web applications. There are two
possible scenarios that lead to business logic leaking. The first one is
that cloud provider receives access to the deployed services of
customers and could steal important components which can be
decoded by e.g. reverse engineering. The main reason would be
information theft, meant for third parties such as competitors or
organizations that use same services from the cloud provider. The

second scenario is that the cloud provider’s protection mechanisms
are not good enough and hackers can get access to their systems.

The second problem is that cloud services could be accessed by
unauthorized users. As hybrid cloud extends the IT perimeter outside
the organizational boundaries, the surface for possible attacks
becomes larger and a section of the hybrid cloud infrastructure could
be already under the control of the service provider. One possible
scenario is that the protection mechanisms are not strong enough,
thus unauthorized users can bypass them and be able to gain accesses
to the affected services.

The last problem is data leak when accessing cloud services. This
scenario happens when data and services are hosted by different
cloud providers, and services need to access certain data from
outside the cloud’s perimeter. By providing those services the ability
to access data from other cloud providers means giving indirect data
access to other cloud providers. The data leak problem also can
happen when data is transferred between cloud providers who host
data and cloud providers who host services. Private enterprises as
customers have no or limited rights in order to manage the transfer
protocols between them.

Fig.2 Service lifecycle in a hybrid cloud model

4.3 Legal security issues
Legal security issues are actual in the European Union as the
legislation is restrictive and outdated. At present, the legal acts are
being reviewed in order to comply with the economic development
goals related to cloud computing. It is not clear yet which law is
applicable, who is the controller and processor and if data will be
stored among cloud providers outside EU. When using hybrid or
public cloud in Europe, data protection, licensing or change of
jurisdiction risks can appear. It is not possible for the client, which is
the controller, to check if its data is stored as agreed, and it is not
being changed under different jurisdiction. This is creating a lot of
uncertainties in federated clouds, where data can be divided and
replicated on multiple clouds from different countries. In the case of
a security breach, it is not sure if the client will be notified of the
possible risks its data has been exposed to. A jungle of standards [5]
is another issue that creates uncertainty in using cloud in Europe. It is
unclear which standard is better, and if it allows interoperability and
the fulfilling of contract clauses defined by the client. This needs to
be changed, as 44% from private sector respondents, stated that data
security remains the biggest concern, but certification would help,
according to a study done in 2012 by KPMG International [6].

Hybrid cloud security issues in private enterprises – Aurelian Buzdugan and Tuan Luu Dinh

8

5 PRESENT EXISTING SOLUTIONS
In this section we present existing solutions for protecting data

and services that are currently used by private enterprises that
already migrated to hybrid cloud model. We mainly focus on the
security mechanisms that are public which private enterprises can
apply by themselves. The security mechanisms of cloud providers
are out of our research scope dues to the limited of detail information
about security mechanisms that are used due to confidentiality
reasons. The security solutions that are used to protect cloud
deployed data and services will be presented from the technical point
of view. Solutions focusing on data lifecycle will be named DSol,
whereas solutions for the service lifecycle will be named SSol.

Firstly, a list of available solutions for protecting deployed data
is presented. The proposed solutions mainly focus on protecting the
integrity and the security of data while availability of data is put at
lower priority.

DSol 1: The first solution is to encrypt the data before
transferring it to the cloud providers’ infrastructures. By using
encryption methods, organizations can put their data on the cloud
providers’ infrastructures without worrying about unauthorized
accesses to their data. Furthermore, encrypting data before placing it
in a cloud may be even more secure than unencrypted data in a local
data center. This approach was successfully applied by TC3, a
healthcare company with access to sensitive patient records and
health care claims, when moving their HIPAA compliant application
to AWS [7].

DSol 2: The second solution is to apply user authentication and
authorization methods. Authentication is used in order to identify
whether the current users have the rights to access to the system or
not. Authorization is used to check the current users’ permission
when they access certain data. By applying these mechanisms, the
data’s owners can control and limit the accesses to their data. There
are five authentication methodologies that are widely used in the
reality. These are hybrid solution [8], elliptic curves cryptography
[9], public key cryptography with matrices [10], fully
homomorphism encryption [11] and attribute based cryptography
[12]. The hybrid solution methodology is highly recommended
because of its safeness. For authorization, it depends on the
architecture of storage system. There are two main types of
architecture for authorization. The first one is Access Control List. It
supports decentralized access control management by allowing a list
of access permissions attached directly to an object). The other one is
Access Control Matrix which supports centralized access control
management. All objects’ names are listed in a table along with their
access permissions.

DSol 3: The third solution is by using hash function [13] to
protect stored data in the cloud [14]. This solution mostly focuses on
data integrity in the cloud by keeping a short hash of uploaded data
in the local storage. Whenever the data is used, the hash function will
re-calculate the hash string of that data. If new hash string matches
the one which stored in the local storage, the integrity of data is
guaranteed. In the case of large amounts of data hash tree is the
solution [15]. Moreover, numerous storage system prototypes have
implemented hash tree functions, such as SiRiUS [16] and TDB [17].
Mykletun et al. [18] and Papamanthou et al. [19] claim that this is an
active area in research on cryptographic methods for ensuring the
stored data integrity.

DSol 4: The fourth solution is to use the Depsky system [20]. In
the DepSky system data is replicated in more than one commercial
storage clouds such as Amazon S3, Windows Azure, Nirvanix and
Rackspace, and is not relied on a single cloud. This helps to avoid
the problem of the dominant cloud which causes the vendor lock-in
issue [21]. From the security perspective, spreading data among
different cloud providers decreases the chance that data is leaked out.
This also helps to prevent data from unauthorized access by the
cloud provider and to avoid data to be stolen by hackers when the

single security system of the cloud provider is compromised. In
addition, storing a fraction of data in each cloud in the DepSky
system is achieved by the use of erasure codes because it can ensure
that fractions can be combined with error free later. Consequently,
exchanging data between one provider to another will result in a
smaller cost.

DSol 5: The final solution is to encrypt the exchanged data
among organization-cloud providers-end users [22]. This solution
requires the involvement of the cloud providers, who already support
the mechanisms for a secure data exchange. Options that support
these solutions are the usage of cryptographic algorithms or
functions such as RSA, AES and SHA. Applying them or not is now
the decision of the organizations.

Next, the security solutions for protecting deployed services on
cloud are presented. Unlike data, there is less security issues for on
cloud services.

SSol 1: The first solution is a type of virtual machine level
security which focuses on protecting the business logic of the
applications/services, and securing the memory that is used by the
applications/services. By applying this solution, the organizations
will require to have their private virtual machine cloud instead of
directly deploying applications/services to the public cloud. Cloud
service provider, e.g. Amazon VPC, will virtualize the cloud in an
isolated section of their infrastructure. The notable benefit from this
solution is the improvement in security key driver due to data
isolation, and performance because it does not share data bus and
processor time with other customers.

SSol 2: The second solution aims to protect the exchanged data
among the organization, the cloud providers who host the
applications/services, and the cloud providers who host data. The
main point of this solution is to build applications/services that are
deployed in the cloud in a way that they can process the encrypted
data as inputs. This solution ensures that the data which is transferred
to cloud services will not be leaked out during the transmission and
the cloud providers who host those applications and services cannot
access the received data.

6 EVALUATION
In this section, the proposed solutions from above section will be
evaluated against the defined key drivers in the third section. This
aims to give an overview about the effectiveness of the existing
solutions and how important key drivers are trade off if the
organizations decide to use them. The mark will be given from -2 to
+2 as illustrated in the below table (Table 1). The mark is given by
basing on the observation of the authors on the solutions. For more
objective results, benchmarking tools are required.

Table 1. Range of marks and their description

Value Definition
-2
-1
0

+1
+2

Severe negative impact
Small negative impact
Non-affected or neutral
Small positive impact
High positive impact

Firstly, the security solutions for protecting data will be

evaluated against key drivers. Table 2 contains details in form of
marks to each key driver based on the data security solution.

SC@RUG 2013 proceedings

9

Table 2. Evaluation of data security solutions

Solution Performance Security Extensibility Availability
DSol1 -1 +2 0 0
DSol2 0 +1 0 0
DSol3 -1 +1 0 0
DSol4 +1 +2 +1 -1

 DSol5 -1 +1 0 0

For the DSol 1, the performance key driver is slightly affected

because each time data is used, it needs to be decrypted. For large
size data, decryption will be a time consuming task. On the other
hand, the security key driver is enhanced significantly because the
data is protected from transmission phase to storage phase. Data can
be leaked in these two phases, and encryption will cause difficulties
in accessing the content by unauthorized users. Extensibility and
availability stay neutral because encrypting and decrypting processes
are executed locally within the organizations and do not depend on
the cloud providers’ system, thus extensibility and availability key
drivers are unaffected.

For the DSol 2, the security key driver is slightly enhanced
because it only provides a solution to manage and control the data
access. The data itself is not protected. The performance,
extensibility and availability stay at neutral. There was no overhead
on data processing and transferring between the cloud’s providers
and the organization, thus performance remains unaffected. Also,
there are no extra constraints on data storing therefore extensibility
and availability key drivers stay the same.

For the DSol 3, the performance key driver is slightly decreased
because each time data is used, it will have to go through the hash
function in order to compare with the hash string stored locally. The
security is slightly enhanced because it helps to guarantee the
integrity of data by taking advantage of hash function. This solution
adds overhead to the data receiving process within the organization
and does not affect data which is stored in the public cloud, thus the
extensibility and the availability stay as unaffected.

For the DSol 4, the performance key driver is slightly increased
because data is split into smaller parts and stored in different clouds,
thus the speed when retrieving data is fast. The security key driver is
greatly enhanced because each cloud provider stores only a part of
the data, which reduces the risks of theft. This data accessing
constraint also applies to hackers. If hackers want to steal data, they
need to know which cloud providers holds different parts of the data
and attack all of them in order to get the full data which is almost
impossible. The extensibility is slightly increased because there will
be no limit to the storage space for the organization. This is like
storing data in a big cloud federation. The only key driver that has a
slightly negative impact is the availability. This solution implies that
all cloud providers’ systems are up and running whenever the data is
needed. When one cloud provider has a problem which leads to
downtime, the data will become unavailable during that downtime.

In DSol 5 the security is increased due to securing data
transmission phase. This solution does not aim to protect data while
is stored in the cloud providers’ storage. The performance key driver
is decreased because each time the data is transmitted, it will have to
be processed by both senders (encrypting phase) and receivers
(decrypting phase). This solution adds overhead to the data
transmitting process between the cloud providers and the
organization. It does not affect the data storing process thus the
extensibility and the availability stay as neutral.

Secondly, the security solutions for protecting services will be
evaluated against key drivers. The table below contains assigned
marks to each key driver based on the solutions for services security
(Table 3).

Table 3. Evaluation of services security

solution

Solution Performance Security Extensibility Availability
SSol1 +1 +2 -1 0
SSol2 -1 +1 0 0

For the SSol 1, the performance is increased because

organizations do not have to share the cloud provider's infrastructure
with other customers. The security key driver is increased
significantly because the applications/services are now protected by
the virtual machine layers. Therefore, other applications/services
from other users do not interfere between each other, because these
are deployed separately on the virtual machine layer. The
extensibility is decreased because the organizations will have to
deploy their services/applications on cloud providers which support
virtualization. The availability remains neutral because this solution
does not impact the deployed services in cloud. The availability of
deployed services is affected directly by the downtime from the
cloud providers.

For SSol 2, the performance key driver is slightly decreased
because the applications/services will have to decrypt the data before
working. On the other hand, due to encryption during transmission
phase the security key driver is slightly enhanced. This solution does
not add any extra overhead to the extensibility and the availability of
the deployed services because it only works with the data that is used
to feed the services, not the services themselves.

7 DISCUSSIONS
Proposed security solutions have both strengths and weaknesses.

They may fit well with some organizations but not for all of them.
The usability of the provided solutions mainly depends on the
security requirements of each organization. Naturally, organizations
will have different security concerns because of their different needs
when they implement the hybrid cloud, thus looking for a provided
solution that perfectly matches all the concerns is not an easy task.
There are two possible ways for organizations to achieve their
desired level of security. The first way is to independently build own
solutions that can match the security requirements. The second
option is to combine existing solutions in order to match their needs.
In term of time and cost efficiency, the latter solution is better than
the first one.

Many aspects of cloud computing are still in experimental stage,
where it is not known the effect of usage or provisioning. Many of
the challenges appear when using all cloud capabilities due to the
large options of scalability of main resources. We can therefore
discuss over technological and legal issues in terms of cloud security.
Therefore, research in the technical area is one solution towards
reaching the desired level of privacy and security. EU’s research
estimation to reach desired level of cloud computing use by 2020
shows that 5 to 7 years are needed in order to overcome technical
issues, such as data handling, programming models or system and to
reach the required level of maturity and progress [1]. On the other
hand, legalistic issues need a continuous development and update, in
order to make the clouds compliant with the constant changing
legislation from EU countries. This is the solution to make clouds
secure from the legal point of view, as many of the risks described in
section 4 are related to the lack of a clear model in the legislation
regarding jurisdiction over cloud data and distribution in other
countries. There is a built-in tension between legal and technical
availability data placement concerns. [4].

Another way to reach to the point when the clouds will have the
desired level of privacy and security is through research. It is known
that the European clouds are lagging behind from the American
clouds, in terms of development and use. EU’s research estimation to

Hybrid cloud security issues in private enterprises – Aurelian Buzdugan and Tuan Luu Dinh

10

develop cloud computing use by 2020, and we can notice that
solutions related to technical issues, such as data handling,
programming models or system management need 5 to 7 years to
reach the required level of maturity and progress [4]. Therefore, we
agree to the solution proposed by the EU, and we believe that by
improving the research and education area in this field, cloud
computing will become a realistic model to be used by any entity.

Finally, the economic impact can be minimized by engaging both
public authorities and small-medium enterprises in adopting cloud
computing. This would lead legislation update in order to comply
and meet requirements for all entities. Nethertheless, it is good to
hear the three-cloud specific actions stated by the European
Commission: cutting through the jungle of standards, fair contract
terms and conditions, and establishing a European Cloud Partnership
to drive innovation and growth from the public sector [4]. The last
action is a challenge for the economy, as countries will invest a lot of
resources in developing a secure cloud environment from the
technical point of view in order to reach the proposed economic
model, fact which would have a positive effect on the cloud use and
security level.

8 CONCLUSION
Information security is mandatory in order to make use of all the
features and resources cloud computing can offer. We looked at the
structure of the hybrid cloud, and analyzed its constituents - the
public and private cloud. From the security point of view,
organizations that use the hybrid cloud can compensate the security
gaps from the public cloud by using its private cloud for sensitive
data. We explained the legal, technical and policy risks, and we
conclude that all these risks are interconnected and need to the
approached together.

The possible security risks in the cloud are defined and
presented, based on data and services lifecycle in the cloud. Overall,
the most important security concern is unauthorized access to
deployed data and services in the cloud. Along with that, existing
security solutions are introduced and verified for their strengths and
weaknesses against important key drivers of hybrid cloud. In the
discussion section, some future directions for hybrid cloud security
are suggested, based on actual gaps in this area. The reason is that
each organization has different requirements regarding security, thus
one solution may not be able to fit their needs well.

In the end, public cloud computing can offer robust security
solutions due to its size and resources owned by the providers, which
can be later applied the organization to the private cloud, therefore
switching to a well-known and independently managed private cloud
. However, from legal and development aspects, research is the
engine towards reaching the desired cloud computing usage. Trust,
security and privacy are actual research fields, due to the attackers’
interest in concentrated data in the cloud. These are mandatory
prerequisites in this industry, in order to make the public cloud as
secure as the private one.

REFERENCES
[1] Lutz, S. “The future of cloud computing”, Expert group report, 2010,

viewed 15 March 2013, < cordis.europa.eu >.
[2] Armbrust, Fox et.al. “Above the cloud, A Berkeley view of cloud

computing”, UC Berkeley Reliable Adaptive Distributed Systems
Laboratory, 2010, pp. 15.

[3] Satveer, Amanpreet, “The concept of cloud computing and issues
regarding its security and privacy”, International journal of engineering
and research technology, 2012, vol 1, no 3, pp. 5

[4] ENISA, Cloud Computing Security Risk Assessment 2009
www.enisa.europa.eu/, viewed 15 March 2013

[5] European Commission, “Communication from the commission to the
European Parliament, the council, the European economic, and social

committee and the committee of the regions”, Unleashing the Potential
of Cloud Computing in Europe, 2012.

[6] John H, Ken C, “Exploring the cloud”, A global study of Government
adoption of cloud, 2012, viewed 10 March 2013,
<http://www.kpmg.com/AU/en/IssuesAndInsights/ArticlesPublications/
cloud-computing/ >

[7] Fadadu C, Shrikanth V, Trivedi H, “Cloud security using authentication
and file base encryption”, International journal of engineering and
research technology, 2012, ISSN: 2278-0181,vol 1, no 10, pp. 3.

[8] Sunita R, Ambrish G, “Cloud security with encryption using hybrid
algorithm and secured endpoints”, International journal of computer
science and information technologies, 2012, ISSN: 0975-9646, vol 3, no
3, pp. 4302.

[9] Veerraju G, Srilakshmi I, Satish M, “Data Security in Cloud Computing
with Elliptic Curve Cryptography” International Journal of Soft
Computing and Engineering, 2012, ISSN: 2231-2307, vol 2, no 3.

[10] Birendra G, Dr.S.N.Singh “Enhancing Security in Cloud computing
using Public Key Cryptography with Matrices”, International Journal of
Engineering Research and Applications, 2012, ISSN: 2248-962, vol 2,
no 4, pp.339-344.

[11] Maha T, Saïd E, Abdellatif E, “Homomorphic Encryption Applied to
the Cloud Computing Security”, Proceedings of the World Congress on
Engineering, 2012, ISBN: 978-988-19251-3-8 ISSN: 2078-0958
(Print); ISSN: 2078-0966 (Online), vol 1.

[12] Shucheng Y, “Data Sharing on Untrusted Storage with Attribute-Based
Encryption”, Worcester Polytechnic Institute, 2010.

[13] R.C. Merkle, "Protocols for public key cryptosystems", IEEE
Symposium on Security and Privacy, 1980, pp. 122-134.

[14] C. Cachin, I. Keidar and A. Shraer, "Trusting the cloud", ACM
SIGACT News, 40, 2009, pp. 81-86.

[15] R.C. Merkle, "Protocols for public key cryptosystems", IEEE
Symposium on Security and Privacy, 1980, pp. 122-134.

[16] E. . Goh, H. Shacham, N. Modadugu and D.Boneh, "SiRiUS: Securing
remote untrusted storage",NDSS: Proc. Network and Distributed
System Security Symposium, 2003, pp. 131–145.

[17] U. Maheshwari, R. Vingralek and W. Shapiro, "How to build a trusted
database system on untrusted storage", Proc. 4th Conf. on Symposium
on Operating System Design & Implementation, 2000, p. 10.

[18] E. Mykletun, M. Narasimha and G. Tsudik, "Authentication and
integrity in outsourced databases", ACM Transactions on Storage
(TOS), 2,2006, pp. 107-138.

[19] C. Papamanthou, R. Tamassia and N.Triandopoulos, "Authenticated
hash tables", CCS'08: Proc. 15th ACM Conf. on Computer and
communications security, 2008, pp. 437-448.

[20] Allyson B, Miguel C, Bruno Q, Fernando A, Paulo S, “Depsky:
Dependable and secure storage in cloud of clouds”, University of
Lisbon, 2011.

[21] H. Abu-Libdeh, L. Princehouse and H.Weatherspoon, "RACS: a case
for cloud storage diversity", SoCC'10:Proc. 1st ACM symposium on
Cloud computing, 2010, pp. 229-240.

[22] Sudha M, Monica M, “Enhanced security framework to ensure data
security in cloud computing using cryptography”, Advances in
computer science and its application, 2012, vol 1, no 1, pp. 34-35.

SC@RUG 2013 proceedings

11

Information Security in Service-oriented Smart Grids

Ruurtjan Pul and Brian Setz

Abstract—Smart grids are the electrical grid of the future. They use information and communications technology in order to improve
the efficiency, reliability, economics, and sustainability of the production, distribution and consumption of electricity. Smart grids allows
a bidirectional flow of energy, this means customers can not only consume energy but also produce energy, for example by use of
renewable energy sources such as solar panels or small wind turbines.
In this paper, two smart grid architectures are analyzed and compared in order to uncover differences and similarities between them.
The two architectures that are analyzed are the Integration and Energy Management system supported by the NOBEL project and
the smart grid architecture supported by the SmartE project.
Recent research indicates that one of the challenges of the smart grid is to secure privacy sensitive data. The research that has
been done in this paper identifies privacy sensitive data and investigates strategies and techniques which can be used to increase
the information security of this data. These strategies and techniques are evaluated based on their usefulness and applicability in
service-oriented smart grid architectures.

Index Terms—Smart grid, service-oriented, architecture, information security, privacy.

1 INTRODUCTION

The current electrical grid is a centralized system in which electricity is
distributed from a central place. Energy supply companies distribute
the energy to their customers using their local distribution network.
Transmission grids are used to transport electricity to this local distri-
bution network. They are needed, because vast distances have to be
covered in order to reach the customer. An overview of the current
electrical grid can be seen in figure 1.

Fig. 1: Current electrical grid

However, this system is changing rapidly due to the fact that the
number of distributed renewable energy generators (e.g. solar panels,
wind turbines) is increasing, which results in a bidirectional flow of
electricity. The current electrical grid does not support these bidirec-
tional flows at the customers end, therefore it has to undergo changes.
Furthermore, smart grids are more efficient, for example when dealing
with peak loads and distributing the energy accordingly. There is a Eu-
ropean policy [5] in place which promotes these changes. It aims for
the modernization of the current electrical grid. The future electrical
grid is heading towards a decentralized and dynamic architecture, also
known as a smart grid.

The smart grid will enable its customers to not only consume en-
ergy, but also produce energy. This produced energy can be supplied
to the smart grid. For example; when customers produce more energy
than they consume, they can supply this excess energy to the grid. In
order to fulfill their energy needs in the smart grid, customers shall
interact with other customers, as well as the energy supply company.
This situation is depicted in figure 2.

In order to support a smart grid environment, an Information and
Communications Technology (ICT) architecture has to be in place to

• Ruurtjan Pul is a MSc. Computing Science student at the University of
Groningen, E-mail: r.pul@st.rug.nl.

• Brian Setz is a MSc. Computing Science student at the University of
Groningen, E-mail: b.setz@st.rug.nl.

control and interact with this future electrical grid. This ICT architec-
ture will have to deal with issues that are part of smart grids. These
issues include voltage and frequency changes due to electricity being
generated locally and energy security issues because of the bidirec-
tional flow of energy. It also includes increasingly difficult supply &
demand prediction, since the production of energy by renewable en-
ergy sources is inherently unstable.

Fig. 2: Smart electrical grid

A smart grid also solves issues that play a role in the current elec-
tricity grid. The smart grid shall be able to deal with peak loads more
effectively, due to its decentralized nature. It is able to distribute the
energy more efficiently across the electricity grid, since it is more
aware of the situation on the local power grid due to its monitoring
capabilities. Furthermore, it prevents overloading of the grid by means
of efficient distribution and decentralization.

The ICT architecture also has to enable customers to interact with
the smart grid and its related entities. Energy has to be bought and
sold, demands have to be predicted, energy loads have to be balanced,
and the smart grid has to be monitored. At the same time customers
also want insight in their electricity usage and production. This means
services will have to be in place to allow these interactions. A com-
monly proposed approach is to develop a service-oriented architecture
to deal with these issues.

In this paper, we will compare two existing service-oriented smart
grid architectures in order to answer the question: what are the differ-
ences and similarities between the two existing service-oriented smart
grid architectures? Furthermore, the paper covers the topic of infor-
mation security in smart grids. By looking at the state of information
security in smart grids we try to answer the question: what data in
smart grids is privacy sensitive and how can this data be protected in
order to maintain the privacy?

This paper is organized as follows: in section 2 service-oriented
smart grid architectures are explained, followed by a comparison of
two existing architectures in section 3. Section 4 will discuss secu-
rity and privacy issues with regards to smart grids and techniques to
counter these issues. The conclusion of the paper can be found in sec-

12

tion 5. The final section, section 6, covers further work that could be
done in the future with regards to this field of research.

2 SERVICE-ORIENTED SMART GRID ARCHITECTURES

A service-oriented architecture is a type of software architecture
that focuses on developing inter-operable services that can be reused
throughout the software. This results in loosely coupled services, usu-
ally made accessible over a network to allow other parties to interact
with the services and build their own applications around them. Ap-
plications reusing and combining existing services are also known as
mash-up applications.

Web services are a popular choice for networked services. Figure
3 displays the architecture which is often implemented by web ser-
vices. Service providers register themselves with the service broker.
The service consumer can search for services using the service broker.
Once the service has been found the consumer can invoke the service
directly.

Fig. 3: Service-oriented Architecture

The service-oriented architecture approach seems like a promising
architecture to be used in combination with the smart grid. The hard-
ware in the smart grid can be abstracted by a generic interface, which
can be published to the outside world by using services. This results in
an information-driven system, in which information is exchanged be-
tween services and their consumers. Examples of services are billing
services, market services which allow the buying and selling of energy,
and monitoring services which monitor the energy consumption.

Smart grids are dynamic environments, therefore the system needs
to be able to adapt. Using a service-oriented architecture will allow for
a pluggable system where services can register and unregisters them-
selves at any time. This makes it easy to add and remove functionality
to and from the service.

A possible scenario is that end-users connect their smart devices
to the system, turning their smart devices into services which can be
interacted with. These services are volatile; an end-user can connect
and disconnect these devices at any moment in time. The service-
oriented smart grid makes this possible by providing a pluggable and
dynamic environment.

The entities in the system make use of the smart grid services. To-
gether these services form the middle-ware of the system. All smart
grid information is accessed via the middleware. Different entities
make use of different services. Entities that are part of the smart grid
are displayed in figure 4.

Fig. 4: Entities in the smart grid

The energy supplier can use services such as billing services to bill
its customers. The operator of the network can monitor the network
usage and, for example, decide to increase the capacity of the network
based on data provided by services. Smart devices such as smart me-
ters can communicate with services to optimize energy consumption
profiles and reduce costs for the end user. The energy producer and

energy consumers can use the services to broker energy, purchasing
additional energy or selling excess energy.

3 COMPARISON OF EXISTING ARCHITECTURES

Research has already been done to verify the viability of this service-
oriented architecture; the rest of this section will discuss recent re-
search as well as their findings. In particular, the Integration and En-
ergy Management system supported by the NOBEL project and the
smart grid architecture supported by the SmartE project will be dis-
cussed.

These two smart grid projects were chosen because both architec-
tures are based upon the service-oriented approach, yet vary in their
implementation details as we will see in the rest of this section. Also,
both projects have been implemented and tested in a real environment,
it is interesting to look at the the results of these projects and com-
pare the outcome in order to see how one project may benefit from the
other.

3.1 SmartE
The first project we will discuss is the SmartE project. This project
was started on april 1st 2010 and ended on march 31st 2012 [6] and
was supported by the Flemish Government [11, 12]. The main aim of
this project was to design a service-oriented architecture and imple-
ment a proof-of-concept of it. This was done to evaluate the two main
research questions of the SmartE project:

• How much will the peak load reduce by performing load shift-
ing?

• Will end users change their energy consumption patterns based
on the information provided by the new system?

Before these questions can be answered however, an architecture
needs to be designed. As noted before, this architecture that was de-
signed by the researchers of the SmartE project is a service-oriented
architecture.

Fig. 5: Information- and energy flow within the SmartE architecture
[11]

Figure 5 shows a detailed overview of the information- and energy
flow within an example configuration of the SmartE architecture. The
Home Energy Controller (HEC) is at the heart of the system. User
interfaces connect to it in order to gather current information about
energy consumption. The HEC communicate directly with all the ap-
pliances to gather information about energy consumption. It is also
able to interact with devices that externally publish an interface. For
example, some devices are directly controllable by the HEC, allowing
it to switch them on and off at any time. This is required for auto-
matic load shifting. Appliances include, but are not limited to: FDG

SC@RUG 2013 proceedings

13

(fridge), FRZ (freezer), WM (washing machine), PHEV (plug-in hy-
brid electric vehicle). Each of them consumes energy and provides
information about it to the HEC. The home meter is also connected
for overall energy usage information.

The architecture allows for external services, some are technical
services that are required for the stability and security of the grid, oth-
ers are commercial services that offer additional functionality to end
users. These services communicate with the HEC and are depicted on
the left hand side of the figure.

To evaluate the effectiveness of this architecture in different scenar-
ios, the researchers designed a simulation. This simulation can also
be used to evaluate how the architecture will react with regards to var-
ious smart grid control algorithms, failures and scalability. The sim-
ulation implemented by the researchers used OMNeT++ [3], an open
extensible, modular, component-based C++ simulation framework and
library. This gave the researchers the flexibility to interchange com-
ponents and algorithms in order to find an optimal configuration. The
built-in scripting language enabled the simple simulation of multiple
scenarios. The configuration of the simulation, like the smart grid,
consisted of two main components: the power grid and the ICT grid.
The first transporting energy; the latter information. This way various
fault scenarios, like incorrect energy consumption measurements, can
be simulated.

(a) Peak load with no intelligent coordinator

(b) Peak load with an intelligent coordinator

Fig. 6: Comparison of peak loads [12] (SmartE)

Figure 6 shows the results of this simulation as published by Tom
Verschueren et al. [12] It shows that automatic scheduling of the wash-

ing machine (WM), dryer (DR) and dishwasher (DW) can reduce peak
load of a single household by 22%. An intelligent coordinator sched-
uled the devices in such a manner that the most energy consuming
devices would be active when the baseload is the lowest. Combin-
ing areas or neighbourhoods could increase this reduction for an even
lower peak load. We can conclude that the research question “how
much will the peak load reduce by performing load shifting?” can be
answered with “at least 22%”.

In order to answer the second research question, a field test was
required. A field test with 21 participants was run for about 5 months.
The field test included a proof-of-concept of the architecture with an
Android application for end users which featured historical data about
energy usage per logical group (e.g. “living room”) or device. It also
showed an overview of the overall consumption as well as the price of
energy at every point in time.

Questionnaires and reviews were taken in order to measure the im-
pact the system had on the participants. Participants indicated that
they were influenced by the information provided to them by the ap-
plication. Most participants indicated that they compared their usage
to previous days. Some were considering replacing appliances that
consume a lot of energy or taking tariff information into account and
waiting with turning on the dishwasher and washing machine in order
to save money. This clearly shows that the second research question
“Will end users change their energy consumption patterns based on
the information provided by the new system?” can be answered with
“yes”.

(a) Current best-case scenario

(b) NOBEL scenario

Fig. 7: Energy used and energy spent [2] (NOBEL)

3.2 NOBEL
The second project that we will discuss is the Integration and Energy
Management (IEM) system [8, 9] as supported by the NOBEL interest
group which is co-funded by the European Commission. The project
was started in 2010. Its mission is to develop, integrate and validate
ICT enabling a reduction of the currently spent energy, by providing a

Information Security in Service-oriented Smart Grids – Ruurtjan Pul and Brian Setz

14

more efficient distributed monitoring and control system for distribu-
tion system operators (DSOs) and prosumers [2].

NOBEL focuses on designing a new Neighbourhood Oriented En-
ergy Monitoring and Control System which allows operators to im-
prove the distribution energy by allowing bi-directional information
and energy flows by turning customers into sources of both energy and
information. This will allow for monitoring and control processes that
were previously not possible because detailed customers behaviour
was not available.

The efficiency improvement that NOBEL wants to achieve is shown
in figure 7. Figure 7a shows the present day scenario. Not all energy
that is available on the network is used; this results in waste (red area
in the graphs). Figure 7b shows the scenario that NOBEL wants to
achieve; less energy waste by means of more efficient distribution and
monitoring, as well as allowing customers to produce energy and de-
liver this energy to the network.

To achieve its mission, the NOBEL project developed and designed
the IEM. The IEM system provides the service-oriented smart grid ar-
chitecture for the NOBEL project. This system is depicted in figure
8. There are multiple layers visible in the architecture of the system.
First, there is the device layer which consists of the smart devices. The
public services layer contains the public services that can be used by
smart devices and applications. There is also an enterprise layer, con-
taining services for the enterprise users such as energy supply com-
panies. The applications are present in the application layer. They
communicate with the public services.

There are two commonly used methods of communicating between
components: Representational State Transfer (REST) and Simple Ob-
ject Access Protocol (SOAP). The NOBEL project uses REST to com-
municate between services, devices and applications. REST is more
lightweight and allows for rapid application integration, more flexibil-
ity and provides a higher performance.

When it comes to the implementation details, the NOBEL project
uses Java REST services which use mySQL for data storage purposes,
deployed on a Glassfish Application Server. Communication with the
IEM is done via encrypted channels using HTTPS in combination with
a security framework based on Apache Shiro.

Currently, all IEM services as seen in figure 8 have been designed
and implemented. The system has been demonstrated and shows po-
tential, enabling developers to build applications on an abstract level
by use of these services.

The NOBEL project recognizes that security, trust and privacy are
important issues in smart grids. Yet they did not focus on the security
aspect of their system, further research is needed with regards to this
subject.

3.3 Differences and similarities
When we compare the two projects described in section 3.1 and 3.2, it
is clear that the aim of both projects is the same: reducing global en-
ergy production and supporting small scale renewable energy sources.
In order to do so, a new information infrastructure was added in ad-
dition to the existing energy grid, creating a smart grid. Both projects
designed this infrastructure in a service-oriented manner that required
energy consumption information to minimize energy production. In
both cases, this information was gathered from smart devices. Ser-
vices and applications were designed in order to achieve the aim of
both projects. Some inform end users about their energy usage, while
others lower peak loads by automatically turning appliances on and off
based on energy consumption information.

Despite all these similarities, the two projects differentiate in their
focuses. The SmartE project is focused around the HEC, located in
every house. It functions as a gatekeeper, gathering information from
smart devices and using external services. The smart grids intelligence
lies not primarily in the services, but in the HEC. It informs users
about their energy consumption patterns and intelligently switches de-
vices on and off. The NOBEL project however, does not focus on the
Information Concentrator, which is the equivalent of SmartEs HEC.
Instead, NOBEL focuses on services aimed to optimize neighbour-
hoods. It uses neighbourhood wide services that are able to coordinate

energy consumption patterns. For example, charging the PHEVs of a
neighbourhood in a controlled manner will decrease the peak load of
this neighbourhood.

Though there are fundamental differences in the focuses of the two
projects, the core ideas are combinable. It is possible to take the HEC
as the basis of the architecture and publish a public service that bal-
ances energy consumption, which rewards users that participate in it.

4 PRIVACY IN SMART GRIDS

Research done for the NOBEL project indicates that: “security, trust
and privacy are challenging issues, especially associated with the
emerging smart grid capabilities”. The SmartE project also recognizes
this issue: “energy measurements are very sensitive information. They
reveal a lot of the behavior of the inhabitants and could violate their
privacy if this data would become publicly available”. When we look
at the security techniques used in the existing service-oriented smart
grid architectures it becomes clear that security has not received much
attention during the design phase of the architecture.

Work done by A. Bekbatyrova and S. B. Signorjnsdttir, “Cyber Se-
curity in the Smart Grid” [7], shows possible solutions to enhance se-
curity in smart grids. However, the focus of their research lies on cyber
security and not specifically on securing privacy issues that service-
oriented smart grid architectures introduce.

The use of services implies that there is data being transferred to
and from services. This data transferring can be either on a local area
network, or over the Internet if the services are hosted in the cloud. In
the case of service-oriented smart grid architectures, this data can be
privacy sensitive data.

Smart devices will make use of the services provided by service-
oriented smart grid architectures. This means smart devices will trans-
mit data to these services in order to make use of them. The privacy
sensitive data that is being transmitted is data that belongs to the owner
of the device and should not be accessible by everyone.

If the data generated by smart devices is unprotected then the pri-
vacy of the user is compromised, because the user’s data will be ac-
cessible by anyone. This means anyone would be able to, for example,
view the user’s power consumption, types of smart devices used in the
user’s home and any other type of information that the smart devices
may send to the smart grid services. Furthermore, with some analysis,
attackers could potentially know if someone is at home, allowing them
to physically break into a house at a time no one is home.

The data also reveals every activity that requires electricity, since
electrical consumption is tracked. In short, attackers could know when
and how much television is watched, how many times clothes are
washed and at what time the inhabitants go to bed. This goes to show
that smart grid data is highly privacy sensitive data.

In order the secure this privacy sensitive data we have researched
four different security techniques: security frameworks, public-key
infrastructures, whitelisting and anonymization. By looking at these
techniques and how they can be applied within smart grid architec-
tures, we try to answer the question of how privacy sensitive data can
be protected in service-oriented smart grid architectures.

4.1 Security frameworks

Security framework is a general term for frameworks which provide
authentication, authorization, cryptography, and session management.
These frameworks are often used for their authentication and autho-
rization functionalities to make sure that the entity requesting or send-
ing data has the right to do so and is in fact authenticated. An exam-
ple of a security framework is Apache Shiro [1], used by the NOBEL
project.

The security framework acts as a middleware between the service
interface which is exposed and the actual implementation of the ser-
vice, also known as the service provider. This is shown in figure 9.
When a service is called, the request will have to pass through the
middleware, the security framework in this case, before it is delivered
to the service provider. The security framework decides whether or not
the request is valid. For example, it can check if the entity that sent the

SC@RUG 2013 proceedings

15

Fig. 8: The IEM system and architecture [9]

request if authenticated with the server and authorized to perform this
request on the service provider.

Fig. 9: Security framework as middleware in service-oriented archi-
tectures

An example scenario would be a customer requesting his billing in-
formation from the energy provider by contacting the billing service
interface. The customer would first have to supply valid credentials
before he is authenticated. If the credentials are indeed valid, a session
will be created for this customer, giving him access to certain services.
The customer has to be authorized to use certain services. If the cus-
tomer is both authenticated and authorized, then the request will be
passed to the service provider, in this case the billing service provider.

Security frameworks increase the information security of service-
oriented smart grids, by making sure that an entity requesting infor-
mation from a certain service is indeed allowed to access this data by
enforcing authentication.

4.2 Public-key infrastructure
Public-key infrastructure (PKI) is an infrastructure used for creating,
managing, distributing, using, storing, and revoking digital certifi-
cates [4]. PKI is often incorporated in smart grid architectures in the

form of protocols: Transport Layer Security or its predecessor, Se-
cured Socket Layers. Both protocols are used to provide secure com-
munication over the Internet by means of encryption. A. Metke et.
al. [10] have proposed the following additions on the PKI specific to
smart grids:

• Smart Grid PKI standards

• automated trust anchor security

• certificate attributes

• Smart Grid PKI tools

An in-depth explanation of each of these additions can be read in ”Se-
curity technology for smart grid networks” [10].

With a PKI, it is possible to encrypt all messages between services
as well as verifying the source of the messages. This way, authenticity
and integrity are guaranteed. However, this solves only part of the pri-
vacy problem: messages can no longer be intercepted, but malicious
services can still receive privacy sensitive information. Other mea-
sures are required to be implemented to prevent this from happening.

An example of PKI in action is the following: when an end user
requests a bill from a billing service, it is important that the end user
can be certain of the authenticity of the message. After the end users
application and the service have finished the handshake, the end user
knows for sure that the message comes from the billing service and
that it has not been tempered with.

4.3 Whitelisting
Privacy is subjective; what some consider privacy invading, others
might not. In order to address this, the end user should have control
over their own data. One of the methods to ensure this is whitelist-
ing. Before a service or application can access any data, the end user

Information Security in Service-oriented Smart Grids – Ruurtjan Pul and Brian Setz

16

first needs to approve this. The access control can be coarse grained,
for example by giving an application access to data from all available
smart devices. But it can also be fine grained, this would give an ap-
plication access to data from a specific smart device or even a limited
subset of this data depending on the configuration.

In addition, this method ensures that the end user decides what ap-
plication developer he or she trusts. This greatly decreases the po-
tential exploitation done by malicious applications. This trust based
approach is already implemented by two large platforms: Android and
Facebook. User acceptance of this approach is therefore likely to be
high, since users are already familiar with the concept.

An example clarifies the concept: suppose an end user wants to use
a new service for comparing his energy usage to the average. Upon
installing the application, it will ask for permission for usage data from
smart devices. If the user does not trus the application, the installation
can be stopped before any data was accessed.

4.4 Anonymization
Anonymization can be used in order to increase the end users privacy
by anonymising the data before sending it over the internet. To achieve
this, any data that could possibly identify the user has to be removed
before being transmitted over the Internet. If this sensitive data cannot
be removed in any way, it should be encrypted before transmission.
These actions will preserve the anonymity of the user to which this
data belongs, even if the data is intercepted during transmission to or
from a service.

For example, when collecting the neighbourhood statistics, data is
retrieved from all the users in the neighbourhood. If this data would
be sent unprocessed, it will include information that compromises the
users privacy, such as information that could identify the smart devices
used at the users home. Therefore, this information has to be removed
before being collected or restructured in such a way that it can not be
linked to a user, in order to preserve the privacy of the user.

5 CONCLUSION

In this paper, we have analyzed and compared two service-oriented
smart grid projects; SmartE and NOBEL. One of the two research
questions posed in the beginning of this paper is: what are the dif-
ferences and similarities between the two existing service-oriented
smart grid architectures? This question can now be answered: al-
though SmartE and NOBEL are very similar architecturally, they differ
in their focus. SmartE focuses on in-house solutions, while NOBEL
focuses on neighbourhood centered services. By combining the core
concepts of the two projects, the advantages of both projects can be
utilized.

Looking back at service-oriented smart grid architectures, we think
that they offer significant advantages over non service-oriented smart
grid architectures due to the use of services which can be accessed by
different entities. Due to the open nature of services we expect that
application developers are going to take advantage of this, they may
find interesting ways to process, combine and present data accessible
via the smart grid services. However, in our opinion this openness and
ease of access to services poses an important security issue.

The second research question stated in the beginning of the paper
is: what data in smart grids is privacy sensitive and how can this data
be protected in order to maintain the privacy? Our research shows
that when left unchecked, the privacy of the user is easily violated by
means of intercepting messages or by malicious applications which
collect data. This data includes data generated by smart devices, as
well as data with regards to energy consumption and production. This
data can be protected by using the security techniques proposed in
this paper: the anonymization of transmitted data and applying white-
listing to applications before granting them access to sensitive data.

By applying the techniques proposed by us, anonymization and
whitelisting, in combination with the techniques that are already be-
ing used in smart grids, the privacy of the smart grid user should be at
an acceptable level. In our opinion, the disadvantages that come with
service-oriented smart grids do not compare to the large amount of
opportunities that they offer. Therefore, we think the service-oriented

approach is indeed the correct way for smart grids architectures to be
designed.

6 FUTURE WORKS

The performed research suggests a number of valuable follow-up ef-
forts.

Though we are confident that we have identified the vulnerabilities
that pose the highest privacy risks, this needs to be verified. A white
hat hacker is required in order to try to infiltrate a service-oriented
smart grid architecture. This might also identify unforeseen vulnera-
bilities.

Since this new approach to energy management is not incorporated
in the current law, research needs to be done to the extent that the law
supports this new architecture.

Furthermore, a social study is necessary to evaluate the support the
new architecture can expect from citizens. Some might not value the
advantages of smart grid over the risk of potential privacy violation.

ACKNOWLEDGEMENTS

The authors of this paper would like to thank Femke Kramer and Rein
Smedinga for the guidance they provided in the weeks leading up to
the 10th student colloquium of the University of Groningen. We would
also like to thank the reviewers of this paper for providing us with their
valuable feedback. In particular, we would like to thank Andrea Pagani
for sharing his insights on this topic and proof reading our paper.

REFERENCES

[1] Apache shiro — java security framework. http://shiro.apache.
org/, 2013.

[2] Objectives - nobel. http://web.ict-nobel.eu:91/project/
objectives, 2013.

[3] Omnet++. http://www.omnetpp.org/, 2013.
[4] Public-key infrastructure. http://en.wikipedia.org/wiki/

Public-key_infrastructure, 2013.
[5] Smart grids european technology platform. http://www.

smartgrids.eu/, 2013.
[6] Smarte - iminds. http://www.iminds.be/nl/onderzoek/

overzicht-projecten/p/detail/smarte, 2013.
[7] A. Bekbatyrova and S. B. Signorjnsdttir. Cyber security in the smart grid.

In SC@RUG, 2012, pages 17–22. RuG, 2012.
[8] S. Karnouskos. Future smart grid prosumer services. In Innovative Smart

Grid Technologies (ISGT Europe), 2011 2nd IEEE PES International
Conference and Exhibition on, pages 1–2. IEEE, 2011.

[9] S. Karnouskos, P. G. Da Silva, and D. Ilic. Energy services for the smart
grid city. In Digital Ecosystems Technologies (DEST), 2012 6th IEEE
International Conference on, pages 1–6. IEEE, 2012.

[10] A. R. Metke and R. L. Ekl. Security technology for smart grid networks.
Smart Grid, IEEE Transactions on, 1(1):99–107, 2010.

[11] M. Strobbe, T. Verschueren, K. Mets, S. Melis, C. Develder, F. De Turck,
T. Pollet, and S. Van de Veire. Design and evaluation of an architecture
for future smart grid service provisioning. In Network Operations and
Management Symposium (NOMS), 2012 IEEE, pages 1203–1206. IEEE,
2012.

[12] T. Verschueren, W. Haerick, K. Mets, C. Develder, F. De Turck, and
T. Pollet. Architectures for smart end-user services in the power grid.
In Network Operations and Management Symposium Workshops (NOMS
Wksps), 2010 IEEE/IFIP, pages 316–322. IEEE, 2010.

SC@RUG 2013 proceedings

17

Qualitative Comparison of 2D Digital Inpainting Techniques

Jelle Nauta & Sander Feringa

Abstract—Digital inpainting is a technique for filling in missing or damaged regions in images. Different methods have been
developed for this, using a wide range of techniques. In this paper we compare three of such methods that focus on geometric
smoothness: one that uses iterative smoothness-based propagation along isophotes based on Navier-Stokes fluid dynamics, one
that uses connected filters, and one that uses a Fast Marching Method. To give a broader view of the field, we also explain one
self-similarity-based technique, but since its application differs so much from that of geometric smoothness, it is not included in
our comparison. The criteria on which our comparison is based are the domains of application, visual results, computational
performance, simplicity and the ease of implementation. We conclude that among the geometric smoothness methods, there is a
tradeoff between speed and visual quality. We observe that results are in general only good for very narrow inpainting regions, so
finally we briefly discuss combinations of geometric and self-similarity methods.

Index Terms—image inpainting, image restoration, fast marching, Navier-Stokes, fluid dynamics, isophotes, geometric smoothness

1 INTRODUCTION

Image inpainting is the process of filling in missing information in im-
ages in such a way that the result looks genuine to a human observer.
This is useful in restoration of damaged images (paintings, films) and
for removing unwanted occlusions from images (e.g. tourists block-
ing the view in a holiday picture, or logos and subtitles in images or
films). As such, inpainting is not a new field: in the pre-digital era,
pictures where often retouched using airbrush or standard fine painting
techniques. The digital inpainting techniques developed over the past
years attempt to imitate this craft, and often follow similar principles.
Adobe Photoshop is a famous example of software that incorporates
inpainting algorithms.

Digital inpainting techniques typically first require the user to des-
ignate a region in the image to be inpainted (we call this the “missing
region”). In this paper we always assume that the region is known
and focus on the inpainting algorithms themselves. An important con-
cept to which we often refer is that of isophotes. In grayscale images
these are simply lines of equal grayvalue, but the concept is easily gen-
eralized to colour images by treating the three colour channels sepa-
rately. For a good inpainting result, the isophotes should continue as
smoothly as possible into the missing region according to Telea [13].

According to Bugeau et al. in [3], the three main paradigms into
which inpainting can be grouped are based on:

• Geometric smoothness

• Self-similarity

• Sparse representation

The first two groups can be thought of as preserving respectively
structure (i.e. isophotes arriving at the border of the missing re-
gion) and texture (the pattern of the image surrounding the missing
region). The third group, using sparse representations for inpainting,
like Maikal uses in [11], is relatively new and uses a dictionary of basis
images which have been created from a database. In recent years, im-
pressive results have been achieved by using databases. One example
is a technique by Whyte et al. [15], which is geared towards inpainting
photos of objects that are readily available online (e.g. tourist attrac-
tions) and infers 3D information from multiple viewpoints. Another

• Jelle C. Nauta is a Master student at the RUG, E-mail:
jcnauta@gmail.com.

• Sander O. Feringa is a Master student at the RUG, E-mail:
sander.feringa@gmail.com.

example is a method by Hays and Efros [7] that uses millions of pho-
tographs to find a suitable inpainting, in which the intriguing challenge
of semantics is addressed as well (i.e. you would not expect an area of
your backyard to be inpainted with an elephant, despite the surround-
ing trees).

In this paper we focus on the pioneering work in geometric smooth-
ness. We also address self-similarity, and discuss the combination of
both approaches. By comparing several methods, we give an impres-
sion of the problems, possible solutions and their properties. Our com-
parison is based on the following criteria:

• Domain of application and visual results

• Conceptual simplicity and ease of implementation

• Computational performance

In doing so we provide an overview of the field, point out the lim-
itations of each technique, and outline the importance of combining
methods.

2 DESCRIPTIONS OF ALGORITHMS

In this section, we give a short explanation of different techniques
in order to give the reader some insight into the problems and some
of their solutions. First we treat three methods based on geometric
smoothness, followed by an example of a self-similarity based method.
For an in-depth understanding of the technicalities we refer to the pa-
pers throughout the text.

2.1 Geometric smoothness algorithms
Methods focussing on geometric smoothness use the information of
pixels close to the missing region. Most of them are formulated as
Partial Differential Equations (PDE’s) or in terms of neighbouring
pixel-value differences. The first method we explain in this section
was developed by Oliveira et al. [12] and is much akin to regular im-
age smoothing. As such it is not specifically geared towards preserv-
ing structure, but nevertheless a good introduction to the geometric
smoothness methodology. The second method we explain was devel-
oped by Bertalmio et al.. The initial algorithm [10] determines the di-
rection of isophotes (the gradient rotated by 90 degrees) and attempts
to minimize differences in smoothness in this direction. The method
was shown in [9] to be analogous to the well-studies Navier-Stokes
equations. Finally, we treat a method by Telea [13] that uses a fast
marching method to anisotropically transport the information of pix-
els in a small region around the boundary into the missing region.

The interested reader may also have a look at other examples of
PDE methods, like the Total Variational (TV) model [4] and the
Curvature-Driven Diffusion (CDD) [5] model, both by Chan and
Chen.

18

2.1.1 Convolution filter method

Oliveira et al. use in their paper ”Fast Digital Image Inpainting”
[12] an inpainting method using the convolution of the image with a
3x3 filter over missing image regions to isotropically diffuse known
image information into the missing pixels. Let the image region to
be inpainted be denoted by Ω. The 1 pixel wide boundary outside
that regions is defined as δΩ. The inpainting itself can be seen as an
isotropic diffusion process that uses the information in δΩ to fill in Ω.
To save computing time and to keep the visual quality of the rest of
the image we only convolve the filter with the image data at Ω instead
of the complete image. The convolutions are done in iterations with
the number of iterations defined either manually or depending on a
certain threshold function that is evaluated periodically (possibly after
every iteration). The algorithm in its general form is discribed in the
following pseudocode:

Algorithm FILTERINPAINING(I, Ω, M)
Input.An image I, a selected region Ω, a mask M.
Output. The inpainted image O
1. initialise Ω with data in I
2. for (iter = 0; iter < num iteration; iter++)
3. convolve Ω with kernel M

The kernel used is a weighted average Gaussian kernel that only
uses neighbouring pixels and has a zero weight in the centre. This
kernel is known as the mask. Masks can be seen in fig. 1 together with
often used maskvalues. Oliveira states that the most time-consuming
process of creating this model was creating the correct masks. This
because the values for the masks had to be found emperically.

a b a
b 0 b
a b a

c c c
c 0 c
c c c

Fig. 1. Two weighted average kernels used with the algorithm. Often
used values are: a = 0.073235, b = 0.176765, c = 0.125

As can be seen in the top left image of fig. 2, the standard imple-
mentation of the connected filter method has problems with hard con-
trast rich edges. This edge reconnection problem can be solved with
diffusion barriers. A diffusion barrier is a two pixels wide block that
is placed manually on a specific spot (often on a hard contrast edge)
where the user wants to block the diffusion to preserve the contrast.
When the convolution process hits such a barrier, it stops iterating and
continues to fill in the colour value from δΩ, until Ω is completely
filled in.

Fig. 2. Yellow crossing lines that need to be removed (back left) and the
result after applying standard connected filter algorithm (top left). User-
added diffusion barriers (right back) and the result produced with the
connected filter and the diffusion barriers [12].

2.1.2 Smoothness-based propagation along isophotes
This method was first described by Bertalmio et al. in [10] and elab-
orated upon by Bertamlio himself in [9] and by Bornemann in [2].
The problem that inspired this method was the smooth continuation
of lines of equal brightness (for greyscale images) into the missing
region. Bertamlio [9] made the connection to the well-studied Navier-
Stokes equations from fluid dynamics, giving the method a solid theo-
retical foundation and efficiënt implementation.

The method works by iteratively adjusting all the pixel values in
the missing region and is explained very well in [10]. The adjustment
is based on the difference in smoothness between a pixel itself and
its neighbours as illustrated in fig. 3, and is explained below. Note
that the figure shows a one-dimensional case, but we are dealing with
two-dimensional images.

To still use this idea on a 2D image, a vectorfield is defined over the
image which determines the direction in which the method is applied
for each pixel. The vectors in the field are chosen in the direction of
least variance (a 90-degree rotation of the gradient) to preserve the
direction of incoming structures (isophotes) and must be recalculated
after a few iterations. The border pixels of course remain unchanged
throughout the iterative process, and the pixels in the missing region
may initially have any value (they can be completely white as in for
example image restoration or glare removal).

To determine the value by which pixel i is adjusted in an iteration,
the second (discrete spatial) derivative is calculated with respect to the
direction of least variance. For pixel i:

∂ 2 p
∂ i2

= (p(i+1)− p(i))− (p(i)− p(i−1))

= p(i+1)+ p(i−1)−2 · p(i)

where p(i) denotes the value of the ith pixel (the pixelvalue p is treated
as a discrete function of spatial coördinate i). In each iteration, p(i) is
adjusted as follows (also see again fig. 3):

p(i, t +1) = p(i, t)+
∂ 2 p(i, t)

∂ i2
− ∂ 2 p(i+1, t)

∂ i2

Fig. 3. One iteration of smoothness based pixel adjustment. The bars
represent greyscale pixels, the fat-bordered bars represent the pixels
bordering the (very small) “missing” region.

The kind of images that are produced iteratively by this method are
shown in fig. 4.

2.1.3 Fast marching method
Telea defines in his paper [13] a method of inpainting that uses the
simplest interpolation technique combined with a special technique to
fill in the region Ω using the Fast Marching Method (FMM). Fig. 5
shows the situation as seen from the perspective of a single point p
on the boundary δΩ that needs to be painted in. We can take a small
area Bε (p) with size ε of the known image Img and use that to define
the new colour value of p. A first-order approximation Iq(p) of what
the value of point p should become is given in eq. 1. I is the image
itself, point q is a point in I that is used for defining p’s value using the
gradient ∇I(q).

Iq(p) = I(q)+∇I(q)(p−q), (1)

SC@RUG 2013 proceedings

19

Fig. 4. Image taken from [10] showing the progression of the inpainting
along isophotes.

Fig. 5. The inpainting principle as discribed by Telea [13].

I(p) =
∑q∈Bε(p)

w(p,q)Iq(p)

∑q∈Bε(p)
w(p,q)

(2)

The final new value of p, I(p) is calculated by eq. 2 by taking
the sum of all points q in the area Bε (p), thereby making it weighted
by the function w(p,q) as seen in eq. 3. The directional component
dir(p,q) (eq. 4) controls the contribution of the pixels in relation to
the normal direction N (as seen in fig. 5: the closer to N, the higher the
contribution. The geometric distance component dst(p,q) (eq. 5) de-
creases the contribution of the pixels that are in distance farther away
from p. And the level set distance component lev(p,q) (eq. 6) en-
sures that pixels that are closer to the boundary to p contribute more
then the pixels that are farther away. d2

0 and T0 are normally set to
1, the interpixel distance. Controlling the contributionlevels of these
three components gives the user some influence over the outcome of
the inpainting process.

w(p,q) = dir(p,q) ·dst(p,q) · lev(p,q) (3)

dir(p,q) =
p−q
||p−q|| ·N(p) (4)

dst(p,q) =
d2

0
||p−q||2 (5)

lev(p,q) =
T0

1+ |T (p)−T (q)| (6)

But all these interpolation calculations are only for the inpainting of
one pixel and we need to fill in Ω completely. Since one inpainting step
treats a boundary layer of only one pixel thick, we iteratively apply
the inpainting step. This way the boundary is systematically pushed
inward until the entire region is filled. To create the one-pixel wide
boundary layers, an FMM is used. Telea [13] explains that in short,
FMM solves the Eikonal Equation (eq. 7) in which T is the distance
map from Ω to δΩ.

|∇T |= 1 on Ω, with T = 0 on δΩ, (7)

The following pseudocode describes this whole process:

Algorithm FMMINPAINTING(I, Ω)
Input.An image I, a selected region Ω
Output. The inpainted image O
1. initialise δΩi as the boundary of Ω in I
2. δΩ = δΩi
3. while δΩ is not empty
4. p = pixel of δΩ closest to δΩi
5. inpaint p using eq. 2
6. advance δΩ into Ω
7. add Ω to O

T consists of level sets, or isolines (as in height maps), which are
equivalent to the different δΩ’s we need. FMM ensures that all the
isolines are only 1 pixel wide and that they are always processed in the
correct order. When the FMM operation is finished and the inpainting
algorithm is completed for every isoline, Ω is completely filled.

2.2 Self-similarity based
All the above inpainting methods are used for painting in small and
often thin and long regions in an image. There are however also oth-
ertypes of Ω for which inpainting is needed. Criminisi defines two in
[1]: (i) “texture synthesis” algorithms for generating large image re-
gions from sample textures, and (ii) “inpainting” techniques for filling
in small image gaps. One of the methods that use texture synthesis is
the one developed by Cheng et al [14] (which is an enhanced version
of the work done by Criminisi et al [1]). Chengs method uses exem-
plar based inpainting algorithm based on patches of the image with
texture details that are used to paint in Ω. The order in which Ω is
filled is determined by a predefined priority function. This is done to
preserve the connectivity of object boundaries. Cheng states that the
patch-based technique itself works fine but that the predefined priority
function of Criminisi’s method becomes unreliable when the number
of iterations grows.

Fig. 6. Exemplar based image inpainting, (a) shows the result of Crim-
inisi’s method, (b) shows the result of Chengs method [14].

The original priority function P(p) for a point p from Criminisi [1]
is defined as in eq. 8 with p ∈ δΩ. C(p) is the so called confidence
term that holds texture information and D(p) is the data term that holds
structure properties.

P(p) =C(p)D(p), (8)

C(p) and D(p) are defined in eq. 9 and eq. 10, where α is the
normalization factor (α = 255 for a standard 8 bit image), ∇ 1

p is the
isophote vector and np is the unit vector that is oriented orthogonal to
δΩ of p.

Qualitative Comparison of 2D Digital Inpainting Techniques – Jelle Nauta and Sander Feringa

20

C(p) =
∑q∈Ψp∩Φ C(q)

|Ψp|
, 0≤C(p)≤ 1, (9)

D(p) =
|∇ 1

p ·np|
α

, 0≤ D(p)≤ 1, (10)

According to Cheng, the problem lies with the calculation of the
confidence term, namely: as incremental fillings go by, its value drops
to zero too rapidly. He calls this phenomenon the “dropping effect”.
This effect produces patches that look too much alike the samples.
Cheng notes that multiplication is known for its sensitivity to extreme
values and that it overamplifies the input. A multiplication is used in
the equation for P(p) and the solution should be to replace it by an
addition. However, after this change C(p) still goes to zero too fast
and another solution must be found. C(p) should be regulated by a
factor ω which Cheng emperically sets to 0.7. ω can be seen as a
lower threshold value to P(p). The C(p) term is now replaced with
RC(p), shown in eq. 11.

RC(p) = (1−ω)×C(p)+ω, 0≤ ω ≤ 1, (11)

Better control should be available over how much influence RC(p)
and D(p) should have on the final priority function. To accomplish
this, the values α and β are added with α +β = 1. All these changes
combined give the new equation for a robust priority function RP(p)
as seen in eq. 12.

RP(p) = α ·RC(p)+β ·D(p), 0≤ α,β ≤ 1,α +β = 1, (12)

Fig. 7. Both Chengs method, (a) and (b) are made with different com-
ponent weights. Source: [14].

As can been seen in fig. 6 and fig. 7: the quality of inpaining is
very impressive, especially considering that inpaining large regions is
much harder compared to inpainting thin lines. When larger regions
need to be inpainted it is very important that neighbouring texture data
from the image is used. The geometric smoothness-based methods
only look at a very small area around a point on δΩ that needs to be
painted in. As the width of Ω becomes larger, the chances of repetion
in the inpainted result become higher as well. Texture-based inpainting
gets important in such cases, since repetition is less visible with the use
of larger textures.

3 COMPARISON OF METHODS

The methods introduced in the previous section need to be compaired.
Our comparison is split up into subsections concerning visual results,
computational performance, and ease of implementation.

3.1 Domain of application and visual results
The different approaches we consider in this report have specific areas
of application. In this section we explain the type of images the algo-
rithms perform well on, and the ones they perform poorly on. Texture
and structure play an important role in this.

3.1.1 Convolution filter method
Since the convolution filter method by Oliveira et al. is essentially
the extension of a regular noise removal method. As such, it is only
usable for small missing regions since neither structure nor texture is
preserved. The reason the algorithm still achieves acceptable results
is stated (with citation) in [12]: “the human visual system can toler-
ate some amount of blurring in areas not associated to high contrast
edges”. The obvious advantages of this method are its speed and sim-
plicity. An example where the algorithm works well is shown in fig.
8

Fig. 8. A good performance by the convolution filter method as given in
[12].

The shortcomings of the algorithm are illustrated in fig. 9 (a frag-
ment from an image in [12]): the plant is blurred to the point of being
discontinuous in the masked regions.

Fig. 9. Illustration of the limitations of the convolution filter method as
given in [12].

SC@RUG 2013 proceedings

21

3.1.2 Navier Stokes fluid dynamics method
The method by Bertalmio et al. performs well on images where a
curved region is masked. A prototypical example of this is given in
fig. 10

Fig. 10. A schematic example in which the algorithm by Bertalmio et
al. from [10] works very well. The paper did not directly use the Navier-
Stokes equations as in [9] but the visual results are very similar.

Pure PDE-methods try to create a smooth transition in the missing
region, completely disregarding the texture of the surrounding area.
An example showing how this can lead to unwanted results is shown
in fig. 11, where the texture of the street is not imitated when filling in
the region of the microphone. For larger missing regions, the problem
becomes worse.

Fig. 11. Illustration of Navier-Stokes limitations as given in [9].

3.1.3 Fast marching method
Telea’s Fast Marching approach [13] achieves similar results to those
of Bertalmio et al. Telea provides a comparison in his paper, as shown
in fig. 12. In both cases, the result of the fragment is not very satis-
factory, although the result of Bertalmio et al. appears slightly better.
Despite this, the inpainting results on the overall image appear quite
good at first sight.

A notable improvement by Bornemann that was inspired by Telea’s
method is given in [2]. The results as reported in the paper are shown
in fig. 13. Note that Bornemann’s method is five times slower than
Telea’s, but the result is also much better.

3.2 Computational performance
Since we are doing a literature comparison without testing any code
on a single machine, we can only relay information from the papers
and rough estimations on computational performance. We divide the
inpainting algorithms into three classes: fast, medium and slow. An
example of a fast algorithm would be the inpainting of 15% scratched
regions on a image of about 1 megapixel in a few seconds or faster
on a typical 2009-2013 period PC. Medium speed would be about 20
to 40 seconds on that same operation and slow would be around 1
minute or slower for that same operation. Applications usefull for
people who work on a daily basis with digital inpainting tools will
only be considered usable if the inpainting operation is done in a few
seconds at most.

Oliveira’s connected filter has fast computational performance, tak-
ing only a few seconds on average for our example test. Note that this

Fig. 12. A masked image fragment (top), inpainting by Bertalmio et al.
[9](middle) and Telea’s result (bottom)

Fig. 13. A masked image fragment (top), inpainting by Telea’s method
[13](middle) and the result by Bornemann and März [2](bottom)

was even achieved on a PC with a 450 MHz Pentium II CPU, 128 MB
RAM and Windows 98, done with 100 iterations. Oliveira states that
the cost of inpainting for his algorithm is linear to the size of Ω and

Qualitative Comparison of 2D Digital Inpainting Techniques – Jelle Nauta and Sander Feringa

22

that operations are cache intensive. Standard scratch removal of the fa-
mous scratched Lincoln portait is 0.61 seconds. The example image of
the ”Three Girls”, fig. 6 in Oliveira’s paper, needed only 1.21 seconds
with his method on that same 450 MHz Pentium II PC. Bartalmio’s
first implementation in [10] needed 7 minutes in its standard version
and about 2 minutes with a two-level multiresolution approach, using
an Pentium 300 Mhz, 128 MB RAM and Linux. Oliveira’s algorithm
can be qualified as fast and should be extremely fast on modern PC’s
since CPU power, cache sizes and RAM size has increased dramati-
cally in that timespan.

The other authors are less specific about their computational perfor-
mance figures but we still try to give an overview. Telea states in his
paper that for his FMM method a performance can be achieved of 3
seconds on a 800x600 image with a 15% region needing to be painted
in on an 800 Hhz PC. So his method seems to be about 4 times as
slow as Oliveira’s method. Bertalmio’s Navier-Stokes solution from
[9] only states: ”The results shown here are obtained in a few sec-
onds of CPU time of a standard PC under Linux.” The images he uses
seem to be, at least partially, the same as Telea’s. On Chengs examplar
based method of [14] must be noted that it specialises in large areas,
not in inpainting standard scratches or lines of around 15 pixel wide
lines as the other papers do. Criminisi’s method took 2 seconds to in-
paint a 40x40 pixels region in a 200x200 pixels image on a 2.5 GHz
Pentium IV with 1 GB RAM. The removal of a bungee jumper region
of 12% in a 205x307 image was completed in 18 seconds. We note
that his version takes more time to complete the inpainting operation
and should be classified as medium speed.

When we consider how Oliveira’s method works we can conclude
that it is logical that his version is the fastest since it cleary has the
lowest complexity by applying only a 2D-Laplacian filter on Ω as the
compelete operation. Since the others use much more complicated
algorithms and perform more complex operations we are overall im-
pressed with the performance of these inpainting algorithms and ex-
pect them to have good performance on present-day PC’s, laptops and
even high-end mobile platforms such as smartphones and tablets.

3.3 Simplicity and ease of implementation
According to Bertalmio [9], his inpainting algorithm is “programmed
in tens of lines of C++ code”. Nevertheless, the mathematical com-
plexity of this model and its lack of intuitivity make this the hardest to
understand of the three techniques we studied, (together with Borne-
mann’s use of a structure tensor in a fast marching method).

Olivera’s method of isotropic diffusion is by far the easiest to im-
plement and understand, but not very powerful visualy.

Telea’s FMM is in-between as far as simplicity is concerned. His
paper gives a link to the location of the C++ source, but unfortunately
this file was not found when we requested it. Regardless, the algorithm
seems easy enough to implement once the concepts are clear.

We did not find clear indications in Cheng’s paper in his self-
similarity method that his solution is very difficult to implement but
since no clear information is given on this subject we cannot conclude
anything.

4 CONCLUSION

In this paper we made a comparison of three pioneering inpainting
methods from some years ago that are based on geometric smooth-
ness, and we considered the importance of combining these with a
self-similarity approach.

Oliveira’s connected filter method is very simple and achieves the
lowest visual quality, but is also one of the fastest possible inpainting
solutions. Under some circumstances (e.g. low contrast) low detail
images where only thin lines need to be painted in, it may suffice.
Bertalmio’s method gives the highest visual inpainting quality, but it
is also by far the slowest algorithm. In comparison, Telea’s method
is a tradeoff between computational and visual performance, being in-
between Oliveria and Bertalmio in these respects.

None of the geometrical approaches are adequate for inpainting
larger areas, but a self-similarity based method like Cheng’s is bet-
ter for these cases, since it preserves texture. Since the advent of the

first inpainting methods around 2000, results have gradually been get-
ting better, largely due to evolution of techniques and by combining
methods. For example, Li [8] obtains good results by combining com-
pletion of salient structures (the most defining edges of an image) with
subsequent texture propagation. In [6], Du uses hierarchical image
segmentation to prioritize smoothness, and using texture filling im-
proves the results notably. This combination of structure and texture
is a recurring theme.

For general inpainting solutions we conclude that the best re-
sults are obtained by combining the geometric smoothness and self-
similarity techniques in a general inpainting solution. This way, one
can both remove scratches and fill in larger areas. One possible im-
provement in future work would be to automatically analyze the image
and missing region, and select appropriate inpainting algorithms based
on this. Current computer hardware is so fast that speed issues are of
less importance.

REFERENCES

[1] P. P. A. Criminisi and K. Toyama. Region filling and object removal
by exemplar-based image inpainting. IEEE Trans. Image Processing,
13(9):1200–1212, 2004.

[2] F. Bornemann and T. März. Fast image inpainting based on coherence
transport. Journal of Mathematical Imaging and Vision, 28(3):259–278,
2007.

[3] A. Bugeau, M. Bertalmı́o, V. Caselles, and G. Sapiro. A comprehensive
framework for image inpainting. Image Processing, IEEE Transactions
on, 19(10):2634–2645, 2010.

[4] T. F. Chan and J. Shen. Mathematical models for local deterministic in-
paintings. Technical Report CAM 00-01, 2000.

[5] T. F. Chan and J. Shen. Non-texture inpainting by curvature driven diffu-
sions (ccd). Technical Report CAM 00-35, 2000.

[6] X. Du, D. Cho, and T. D. Bui. Image inpainting and segmentation using
hierarchical level set method. In Computer and Robot Vision, 2006. The
3rd Canadian Conference on, pages 52–52. IEEE, 2006.

[7] J. Hays and A. A. Efros. Scene completion using millions of photographs.
In ACM Transactions on Graphics (TOG), volume 26, page 4. ACM,
2007.

[8] S. Li and M. Zhao. Image inpainting with salient structure completion
and texture propagation. Pattern Recognition Letters, 32(9):1256–1266,
2011.

[9] A. B. M. Bertalmio and G. Sapiro. Navier-stokes, fluid dynamics, and
image and video inpainting. Computer Vision and Pattern Recognition,
2001. CVPR 2001., 1:355–362, 2001.

[10] V. C. M. Bertalmio, G.Sapiro and C. Ballester. Image inpainting. In
Proceedings SIGGRAPH 2000, Computer Graphics Proceedings Annual
Conference Series, pages 417–424, 2000.

[11] J. Mairal, M. Elad, and G. Sapiro. Sparse representation for color image
restoration. Image Processing, IEEE Transactions on, 17(1):53–69, 2008.

[12] M. M. Oliveira, B. Bowen, R. McKenna, and Y. sung Chang. Fast digital
image inpainting. pages 261–266, 2001.

[13] A. Telea. An image inpainting technique based on the fast marching
method. Journal of Graphics Tools, 9(1):23–34, 2004.

[14] S.-K. L. C.-W. W. Wen-Huang Cheng, Chun-Wei Hsieh and J.-L. Wu.
Robust algorithm for exemplar-based image inpainting. Proceedings of
the International Conference on Computer Graphics, Imaging and Visu-
alization, 2005.

[15] O. Whyte, J. Sivic, and A. Zisserman. Get out of my picture! internet-
based inpainting. In British Machine Vision Conference, pages 1–11,
2009.

SC@RUG 2013 proceedings

23

A Study about Middleware for Smart Environment

Fatimah Alsaif

Abstract—Ubiquitous computing, and specifically a smart environment, starting from a smart home to more complex one like a

smart city, is an emerging paradigm for interactions between people and computers. Its aim is to break away from desktop

computing to provide computational services to a user when and where required. Large numbers of heterogeneous computing

devices provide new functionalities, enhance user productivity, and ease everyday tasks. In home, office, and public spaces,

ubiquitous computing will unobtrusively augment work or recreational activities with information technology that optimizes the

environment for people’s needs. These smart environments demand efficient interoperation mechanisms among different

heterogeneous sensors including the discovery and the management of these devices. The diverse domains of applications also

require interoperation among themselves. The middleware plays a key role to achieve this interoperation. From the previous

works there are various kinds of devices and different integration methods. The rationale behind this paper is to study the

existence or lack of a suitable middleware infrastructure at smart homes for the development of applications and services at

ubiquitous computing environments. This is done by surveying the state of the art in the area, and illustrating the requirements of

ubiquitous computing in middleware which are dynamicity, scalability, dependability, security and privacy. After that, discuss the

current middleware practices which are RUNES, ANGEL, GTSH, Gaia, Serenity, and SM4ALL. Comparing them considering the

mentioned ubiquitous requirements, the result is that there are a few smart homes infrastructures and practices (two out of the six

mentioned practices) that consider most of the ubiquitous computing needs. Where most of those projects such as RUNES,

ANGEL, GTSH, and Serenity touched the topics of dynamicity, scalability, and dependability at the middleware-service level. Also,

a few of them like ANGEL, Gaia, and Serenity filled the security and/or privacy needs. The SM4All project was the only one that

cover all the mentioned requirements. Since, the area of networked embedded systems at smart homes grows at a rapid pace,

several industrial and academic research activities are underway. This paper is ambitious to help investigate the works that have

been done befor for smart environment, and to show the requirements for the future smart homes.

Index Terms—Device discovery, middleware framework, smart home,hetrohenious device discovery, domotics, embeded

systems, smart home middelware, smart home practices.

1 INTRODUCTION
Smart environments have many examples in our life like home
automation and assistive living. Everyone wants to live in comfort-
able places where all of their requirements depend on technology,
usability, stability and longevity. This smart environment means that
the individual user has his own smart space supported physically
with the devices and services that are enabled to him in the real life
automatically. The provision of middleware is the main idea of smart
spaces. The most proprietary feature of the smart devices is to be
hidden and easy to move and deploy at smart spaces [1].
 To consider the home as smart home, it must first support and
supply the people who live in it with their daily needs. It has to meet
their needs correctly to the home events, and change if necessary.
For stakeholder inhabitants, the smart homes must be easy to use for
their behaviour and be ready for any change. For new devices and
services, smart homes must be ready to apply them and make them
easy to use without forcing the inhabitants into unwanted vendor or
technology lock-in. Also without requiring significant physical,
administrative or cognitive effort.
 However some automatic pet systems are available now in the
markets, they are also used to compare the standards and protocols
that can block the creation of smart homes where we can find a large
variety of devices and services which can easily inter-communicate.
It is necessary that developers can abstract away from the detailed
topography, protocols, data formats and control of sensors, actuators
and other information devices, and instead of that they have to focus
on information processing from many sources. This makes a flexible
architecture and has the possibility to produce responses to
information which are uncertain and noisy which exactly meet
sensor-rich environment. A common approach to addressing such
issues is thr-

ough the use of middleware [2].
 Nowadays, the systems of networked embedded are growing at a
rapid speed and many industrial and academic study activities are
well underway. As a reason of growing attention is the availability of
small, cheap devices, with high networking abilities. These new
technologies improvement are the target today to be used easier at
home than before. The cheap devices are not sufficient by
themselves, the interoperation and creation of dynamic adaptable
programs for their interoperation will be the keystone of success. To
be clear, any action towards this point of view needs important
change in the embedded middleware development strategies of the
past, with many respects such as functionality and operational
environment.
 This paper tends to study the existence or lack of suitable
middleware infrastructure practices for the development of applica-
tions and services in ubiquitous computing environments at smart
homes. For doing this study, I choose one of the latest projects that
focus on middleware at smart homes called Smart Homes for All
(SM4All). SM4All project aims to design and implement a new
middleware platform for inter-working of smart embedded services
in immersive environments and person-centric. The dynamic service
reconfiguration at SM4All tend to use the semantic techniques and
composability. The most significant characteristics of such a middle-
ware are its tolerance to faults, rapid scaling of the network, fulfilling
security requirements, dynamicity of its components, and operating
on embedded devices [3].
 This paper offers an overview of the current state of the art in the
fields related to the SM4All project. During the overview of the state
of the art related to SM4All, I consider two aspects. First, looking at
the concept of middleware, the methodologies, and technologies
which are relevant for the SM4All project. Second, reviewing a
number of existing and recent research projects which share with
SM4All the focus on pervasive computing and embedded systems
with some comparisons. Smart homes projects and ubiquitous

� Fatimah A. Alsaif, Distributed Systems Research Group, E-Mail:
F.A.S.Alsaif@org.nl.

24

computing is the focus area in this study with the specific
requirements. Also, this study finds out the common reached
middleware technologies and gives the needs for the future's point of
view in the area of smart homes according to the requirement of
ubiquitous computing. The rest of the paper is organized as follows.
Section 2 starts with general introduction into middleware. Section 3
illustrates the recent protocols and standards applied at middleware.
Section 4 shows the categorization of middleware technologies
according to the context of the study. Section 5 provides illustration
for the main requirements of smart spaces with regard to middleware
technology for services in ubiquitous computing. Section 6 gives
some practices of current smart homes projects. Section 7 studies the
middleware of SM4ALL and the rest of the practices described in
section 6, according to the characteristics given in section 5. Section
8 describes the future directions of research work within the
middleware for smart homes. Section 9 is the research conclusion.

2 MIDDLEWARE IN SMART HOMES
Smart homes interaction components like complex communication
and data management gradually become impossible to deal with,
because of their popularity and increasing numbers instead of
support from a mediating infrastructure. Building abstraction layers
with common services made available to developers manage the
complex systems in traditional distribution. These abstractions are
called middle-ware. In other words, middleware is the software layer
which abstracts and provides an uniform interface to the application
and the user of the system from the distribution of the resources of an
information system.
 A layer between application and system software is the definition
of middleware which supports incorporation between many products
and platforms, while keeping the integrity of all solutions in terms of
accuracy. For example, the developer's point of view, we can use the
middleware to introduce services to form new devices and sensors.
The new devices which enter the smart home needs to be installed
with the environment. An essential question has to be answered:
where do the new devices sit in the network: are they a master, slave
or a peer? What does the sensor do? How fast can it release and
absorb information? What options does it perform? these questions
need to be answered. To address these issues in an efficient way, it is
desirable to design a system that can seamlessly integrate new
devices without user interference, and this is what we call a
middleware [3].
 The system and application's decoupling through middleware
introduces lots of different advantages: introduction of new devices,
components can reuse services, modules and other systems can be
transparent; and a uniform view of the world simplifies the
development process [2][4].

3 MIDDLEWARE PROTOCOLS
 Building automation was focused for one purpose by technolog-
ies and standards which take a more device centric and protocol-
based view of the domain to manage many kinds of controllable
modules by a common abstraction presented a unified interface. By
this, it can make the operations automatic through many kinds of
controllable modules. Examples of used protocols are:
� The Building Automation Control network (BACnet) and

Local operation netWork (LonWorks) are examples of
systems which are designed to become the building of
automation and control networks. BACnet was specially built
in an attempt to make a united protocol for improving
interaction between many systems and products in
commercial building [5].

� Open Building Information Xchange (OBIX) defined Exten-
sible Markup Language (XML) standard and the service of
the web that makes the information exchange easier and

smoother to transform information between smart homes and
intelligent buildings and applications [5].

� Universal Plug and Play (UPnP) is a protocol that has an
important role in device-neutral technology that's used by the
abstraction layer of the device. UPnP helps the program inde-
pendence because it depends on standard technologies such as
the Transmission Control Protocol which is of the Internet
Protocol suite (TCP/IP), User Datagram Protocol (UDP),
Hyper Text Transfer Protocol (HTTP), XML and Simple
Object Access Protocol (SOAP). It offers support for control,
discovery, presentation and event notification [6][3].

� The framework of Open Services Gateway initiative (OSGi)
which is a service platform for Java and also it is a dynamic
module system, service gateways in the sever-centric architec-
ture were built by the main purpose. OSGi is the central
combine point to manage the network of the house with
various technologies of communication, and to make service
from many devices to load and set on the main service
gateway. The meaning of the framework is to make it easy to
create the use of applications and services on a gateway area
[7][8][3].

� ProSyst has improved a program that called mBedded Server,
compliant with the OSGi dynamic services program which is
completely able to interconnect and has the control on smart
devices and be able to remotely repair at home network [8].

� The basic service network infrastructure that runs on top of
Java is called Jini, that makes the service easy to join and exit
without problems on the network or the users of the network.
Jini provides the solution for the developing ubiquitous
computing needs required [1].

� Open industry standard called (X10) can work as a controller
to communicate devices in smart environment. Generally X10
enabled the work with power line wiring to signal and control,
and the work with commands like on/off [5].

� The most well known standards are the wireless technology
protocols, such as Bluetooth, ZigBee, Radio Frequency
Identi-fication (RFID), Wireless Fidelity (WiFi), and cellular
technolo-gies. These standards are combined to be used to
build a smart home. There are many wireless technologies
that work effectively and also support remote data transfer,
remote control and sensing devices that are candidate for
enclosure in the smart home portfolio [9].

4 MIDDLEWARE CLASSIFICATION
Various classifications of middleware exist, in the context of the
present review, I classified middleware in service based, event based
and object-oriented.
 1. Object-Oriented middleware
 Object-Oriented middleware is based on the notion of remote
method invocations, which typically are synchronous. Many
transactions can be supported by object middleware that can group in
each transaction the similar requests between the objects [10]. The
programming language Java has its own flavors of object-oriented
middleware e.g., OSGi is a recent initiative also based on Java.
 2. Service based middleware
 A service is an abstract functionality that can be invoked ignoring
implementation details and simply focusing on the service signature.
This type of middleware has become popular with the increasing
adoption of standards known as Web services [11][12]. The Web
services standards comprise a great number of protocols and
technologies, though only some of them have gained widespread use
e.g., SOAP which is the basic protocol for binding two services and
is widely used on the Web.
 3. Event based middleware
 Event based communications are export interfaces abstract
functionality that can provide an intuitive reactive communication

SC@RUG 2013 proceedings

25

paradigm that can be exploited to implement asynchronous
interactions. An event based interaction assumes that the interacting
parties either play the role of publishing or subscribing. Client can
refer to their interest in a subset of all the produced events by issuing
subscriptions [13]. An example of popular standard for event-based
communications in middleware platforms is Jini.

5 UBIQUITOUS COMPUTING AND MIDDLEWARE REQUIREMENTS
These days, we can find few ubiquitous computing environments
tend to be extremely specialized and depends on application-specific
program. These programs improved to interactive environments sh-
ould be able to connect and control lots of components in both
hardware and software. They have to work in real-time, dynamically
add and clear components to a working system without interrupting
its process, control allocation of resources, and represent a means to
find out the persistent-state of the information. These components
are not instructed to extremely cooperate, because of that they don't
only have to be connected, but there's also a call to show the logic of
this interconnection. On the other hand, these connections aren't just
protocols, but they are also consist of explicit knowledge of the way
to use these protocols. So, to simply view the connections as appli-
cation programming interface is not enough. It is difficult to reach
goals without a common program to cooperate among different
applications. To form an application in this domain it is required to
define a popular design methodology that depends on new models
which are independent from the technology. In order to form the
improvement of interactive environment applications, this will
require a model that summarizes the main components of an
ubiquitous computing environment [1]. We can classify these into
three layers:
� Physical layer which deals with technological constrains.
� Middleware layer which structure the cooperation of abstract

services.
� Application layer that concerns the user interfaces.

 Middleware will show an access abstraction for many ubiquitous
devices, which allows them to interact and cooperate. That will let
the applications writing gradually scale both in services offered, and
on devices composing the system. It is intended that the model will
present a standardized view of main interactive environment
functionality [14].
 Middleware which connects the distributed components together
has to address lots of needs of ordinary systems, like heterogeneity,
mobility, scalability, and tolerance for the component problems.
Moreover it has to protect the user's information, like location and
preferences, with their private preferences, and make sure that the
applications take the automatic actions and enable the users to
understand and control it. At last, many of distributed components
which are available in smart home systems show a need of simple
techniques for deploying, and the need of sensors which have
configuring and managing networks, actuators, processing
components, and repositories. The most important Ubiquitous
Computing Re-quirements (UCR) or challenges which have to be
presented by a middleware infrastructure to serve the ubiquitous
computing could be under the following headings [14][15].
� Dynamicity: as in classical networks, the sensors and services

are no more static, e.g., the monitoring of the environment
and its management, although the overall distributed system
which is consisting of all the sensors and devices and
appliances requires constant dealing with the user's context,
practice, etc., by adding, removing, and composing on-the-fly
basic elements like sensors' services, devices, and appliances.

� Scalability: to submerge the users in the system, the sensor's
numbers, devices, and applications must be large. The current
situations less than the order of magnitude e.g., the current
best-in-class smart houses count for tenths of sensors, devices,

and appliances. The subsequent generation smart houses for
all will tend to add up hundreds of devices.

� Dependability: the users heavily depend on the environment/
system itself, when they are at the centre of it, and payment
on the environment or the system itself, so it has to be highly
dependable.

� Security and privacy: the security of the overall hidden
environment is definite; in addition, an environment, if
hacked, may prove any sensible information on the users, so
the structure of a system like that will pay special attention to
protect privacy, that has to be built-in the system, not added-
on recently, as in existing design practices.

6 SMART HOMES PRACTICES
Supporting a wide range of household devices are focused by many
of research and industrial projects over heterogeneous network
environments that have been performed. Most of the solutions
examine the combination and integration of technology and services
through home networking to have a better life. The existing solutions
or projects are kinds of what we call embedded systems. Embedded
systems are specified computers that are used in big machines or
systems to have control of devices like communication, machined of
the offices, automobiles and devices at home. These Embedded
system in immersive realities, i.e., scenarios in which invisible
embedded systems need to continuously interact with human users to
supply sensed information and to react to service needs from the
users themselves. The main cause which is having the user at the
centre controlling the home, has many new challenges to the
middleware these days and the technologies of services for the
embedded systems, in terms of considering scalability,
dependability, dynamicity, security and privacy [16].
 These considerations subjects need the techniques of novel and
the technologies of middleware aimed to person-centric fixed
system. One of the most common scenarios that need person centric
fixed systems, home-care and domotics assistance are specially
remarkable in Europe nowadays context. Fields as home-care and
domotics where housing meets technology in its various forms such
as informatics, communication, robotics, mechanics, and ergonomics
in order to improve new homes from the theory of safety, comfort,
and the care of old people. Users need to have the ability of having a
unique view on all the hardware in their homes. So, a challenge these
days for homes is total interoperability and cooperation. From
another point of view, people want to interact with their devices at
home, independently of their status and abilities. [16].
 Many projects in Europe, recently e.g., DEFIE, DOMOH,
MOSAIC-HS, and HOMETALK made their own domotic concerns
for particular end-user. So, no one domotic middleware infrastruc-
ture is really for all, i.e., they don't enough take into account
handicapped and elderly people [27]. Recently there was an
important project in the field of SM4ALL. SM4ALL wants to
achieve studying and improving an innovative middleware platform
for inter-working of smart fixed services in immersive and person-
centric environments, by using the techniques of semantic and
compos-ability, to make the dynamic guarantee, working alone and
gradual improvement, during protecting the security and privacy of
the platform and the people who use it. This presents the challenging
scenario of home building in the presence of users with a variety of
abilities and needs e.g., young able bodied, aged and disabled.
SM4ALL satisfies the requirements for interoperability and ways of
dynamics, during preserving human intervention to the low level.
The design of SM4ALL middleware allows the automatic discovery
and connec-tion of devices with various network protocols, e.g.
Bluetooth, ZigBee, etc. using UPnP and OSGi standards. From the
technical point of view, the suggested solution is an applicable and
an effective one [3][17].

A Study about Middleware for Smart Environment – Fatimah Alsaif

26

 In Europe, some addressed projects with concerns that are
partially related to SM4ALL are RUNES, ANGEL, GTSH, Gaia,
Serenity.
 1. Reconfigurable Ubiquitous Networked Embedded Systems
 (RUNES) [18].
� Project description: project RUNES makes it easy to create

large-scale, widely distributed and heterogeneous systems of
networked embedded which deal with and adapt to their
environments. RUNES introduce an adaptive middleware
program, well known language which make the application
creation process simple.

� Project user’s needs: RUNES project helps innovative user
applications for networked embedded systems. Its main
objectives to supply an adaptive middleware program and
application improvement tools which allow programmers to
be flexible to interact with the environment where necessary,
during affording a level of abstraction which makes the
application easy to construct and use.

� Project interaction: the approach of RUNES is based on a
small and well-organized middleware kernel that supports
greatly customizable and modularized services that are
component-based middleware. These services can be tailored
to definite embedded environments, and support adaptivity by
reconfiguration at run time. Users can be able to interact with
the system throughout normal interfaces such as Personal
Digital Assistant (PDAs) or computers.

 2. Advanced Networked embedded platform as a Gateway to
 Enhance quality of Life (ANGEL) [19].
� Project description: the ANGEL project's objectives to

provide ways and tools for instruct complex heterogeneous
systems in which Wireless Sensor Networks (WSNs) and
ordinary com-munication networks cooperate to monitor and
increase the life's quality in common practices such as at
home, car and city environment.

� Project user’s needs: the user scenarios addressed by the
ANGEL project were personalized indoor environmental
moni-toring and control for wellbeing, post-acute and chronic
disease management, and personal wellness and interrelated
enabling services.

� Project interaction: users can communicate with WSNs
throughout a allocated node called gateway. This node is ac-
countable for supplying queries into the network, also
meeting responses and introducing those responses to the
users. The gateway interacts with the user directly or remotely
through wired or mobile communication networks and
communicates with the WSN by short-range wireless links,
consequently providing the link to a service center.

 3. Gator Tech Smart House (GTSH) [20].
� Project description: GTSH project is a laboratory house

specifically instructed to help older people in enlarging
independence and improving the life's high quality. The
objective of the project is to make helpful environments like
homes which can sense themselves and the people who live in
and enact mappings between the physical world, intervention
services, and remote monitoring.

� Project user’s needs: the project is interested in older persons.
It gives solutions to user’s traditional life needs, starting from
food preparation to home security and management of
emergency.

� Project interaction: the project provides programmable
pervasive smart spaces. This smart space works as a runtime
environment and a software library. The user can interact with
the system transparently in a continuous and ubiquitous way.

 4. Gaia [21].

� Project description: Gaia presents the operating system
functionality to physical spaces. To extend the reach of
traditional computing systems to include the devices and the
surrounding physical space, so both physical and virtual may
be allowed to interrelate. Consequently, physical spaces
become interactive systems, or in other terms, Active Spaces.
The aim of Gaia is to construct and perform a middleware
operating system which manages the resources contained in
an active space.

� Project user’s needs: it was intended that the Gaia project will
improve the capability of small cooperative teams by merging
hardware and software resources according to different user
context. In this scope, the major significant user needs
covered by Gaia are the resources dynamic adaptation.

� Project interaction: user can interact and manage Gaia
applications by a regular computer interface such as PDA,
and a voice interface. Gaia also offeres a service that can
directly detect user situation as location by using log-in
information and sensors.

 5. Security and dependability in Ambient Intelligence Systems
 (Serenity) [22].
� Project description: Serenity is one of the projects supported

by the European Commission. Serenity provides a private and
dep-endable solution for the heterogeneous and dynamic
architectures.

� Project user’s needs: the project scenario tends to support the
ambient intelligence, which is the idea that people will be
enclosed by intelligent and interactive interfaces embedded in
everyday objects around us. This will help raise the effective-
ness and increase productivity of individuals.

� Project interaction: the main concepts that are used by
serenity are ubiquitous communication, ubiquitous
computing, and intelligent user interfaces, by means of a more
emphasis on the privacy and security issues.

7 SM4ALL VERSUS SMART HOMES PRACTICES
 In particular, comparing RUNES, ANGEL, GTSH, Gaia, and
Serenity projects with the SM4ALL project, the SM4ALL project
defines a general architecture for embedded middleware. This
embedded middleware is targeted to immersive scenarios, through
which the home-care and domotics are chosen as showcases.
Specific features are offered by the SM4ALL platform e.g.,
dynamicity that takes care of the capability to manage the new
devices insertion and removal, and scalability that considers the
number of embedded services to be managed. In addition, the
SM4ALL platform design focuses on ontologies for telling service
capabilities. These service capabilities are used for gaining the
dynamic configuration and structuring the services, while maintain
the users privacy. The security of the smart environment gained
specific emphasis, considering to who and which can do what, also
to probable intrusion of spy services and devices [16][23].
 Finally, the SM4ALL project is an embedded pervasive platform
developed for smart houses truly for all, in which users with different
needs and abilities (such as aged, disabled, and young able bodied)
can interact through basic and advanced interfaces with the services
provided by the diverse domotic devices and appliances [16][23].
 To make things more specific, the main areas SM4All involve are
middleware, networking and embedded operating systems. Con-
sidering the main areas relevant to the SM4All project, in this paper
the focus is on the middleware area. The middleware area is further
subdivided into object-oriented, service based, and event based as
described before in section 4. Tables 1,2,3,4, and 5 show what each
project focuses on at the three areas of the middleware (Service
based, Event based and Object-Oriented), this is done in terms of the

SC@RUG 2013 proceedings

27

five fundamental aspects that we already defined in section 5,
namely, dynamicity, scalability, dependability, security, and privacy.

Table 1. The Middleware Platform of RUNES Project and UCR

Middleware
Requirements

Object-
Oriented

Based

Event
Based

Service
Based

Dynamicity × × √
Scalability × × √

Dependability × × √
Security × × ×
Privacy × × ×

Table 2. The Middleware Platform of ANGEL Project and UCR

Middleware
Requirements

Object-
Oriented

Based

Event
Based

Service
Based

Dynamicity × × ×
Scalability × √ ×

Dependability × √ ×
Security × × ×
Privacy × √ ×

Table 3. The Middleware Platform of GTSH Project and UCR
Middleware

Requirements
Object-
Oriented

Based

Event
Based

Service
Based

Dynamicity × × √
Scalability × × √

Dependability × × ×
Security × × ×
Privacy × × ×

Table 4. The Middleware Platform of Gaia Project and UCR
Middleware

Requirements
Object-
Oriented

Based

Event
Based

Service
Based

Dynamicity × √ ×
Scalability × × ×

Dependability × √ ×
Security × √ ×
Privacy × √ ×

Table 5. The Middleware Platform of Serenity Project and UCR
Middleware

Requirements
Object-
Oriented

Based

Event
Based

Service
Based

Dynamicity × × ×
Scalability × × ×

Dependability × × ×
Security √ × ×
Privacy √ × ×

Table 6. Smart Homes Related Projects Middleware platforms and

UCR

Middleware
Requirements

RUNES ANGEL GTSH

Gaia Serenity SM4All

Dynamicity √ × √ √ × √
Scalability √ √ √ × × √

Dependability √ √ × √ × √
Security × × × √ √ √
Privacy × √ × × √ √

 Table 6 provides a summary of the middleware area covered in
the surveyed projects in general according to the findings in the
tables 1,2,3,4, and 5. The notice is that most projects (four out of the
six projects) touched the topics of dynamicity, scalability, and
dependability at the middleware-service level. Also, a few of them

(three out of the six projects) filled the security and privacy needs.
But, from figure 1 we can easily notice that the only project that
covers all defined requirements is SM4All project.

Fig. 1. Smart Homes Related Projects Middleware platforms and

UCR.

 Moreover, the visions for all the surveyed practices (RUNES,
ANGEL, GTSH, Gaia, Serenity, SM4ALL) tended to satisfy some or
most of the following smart environment characteristics:
� Humans should be able to manage and control the new

immersive environments, and all efforts to improve any smart
environment has to be approached and designed according to
the requirements and needs of the users to present novel
experience to users. These environments and systems would
synthesize all available information about each user,
personaliz-ed treatment may be offered by individuals or
groups depending on their profiles. This needs technologies of
novel for data dissemination, integration, user profiling, and
context comput-ation.

� The provided infrastructural services such as storage and
retrieval of service descriptions, communication, etc. And the
middleware itself would be managed widely in a distributed
manner; so that, a peer-to-peer paradigm, should be enforced,
so as to guarantee dynamicity, scalability and dependability.
The nativity of the middleware has to be service-ready, to
supply the service deployment and on the fly installation.

� The economic scale, reusability, and the ability to extend,
middleware has to be developed to contain all main aspects of
the immersive scenarios. To supply any further environment-
specific needs on content or the interfaces of the users has to
be improved in a adapted fashion on top of it.

� Openness of the middleware is important too. The
technologies of web service, and service-oriented access, are a
promising solution to this, when adequately complemented
with certain solutions for their scalability, dependability,
dynamicity and security.

8 FUTURE DIRECTIONS
The major last ubiquitous computing environments such as Active
Campus [24], Oxygen [25] and Easy Living [26] have their own
independence improvement with low consideration of interoperab-
ility [1]. It would be a good and helpful effect if these ubiquitous
environments were improved from a popular middleware
infrastructure and leave the varied nature of these ubiquitous
environments transparent to the managing system.
 The current practices are not reasonable, the point of view
demands that the following characteristics are enforced [15]:
� Heterogeneity supplying: the devices which are combined

from resource-poor sensors, actuators and mobile client
devices to servers all have to be supplied and supported by
networking interfaces and programming languages. Also,
legacy devices might be presented.

0

1

2

3

4

5

Privacy

Security

Dependability

Scalability

Dynamicity

A Study about Middleware for Smart Environment – Fatimah Alsaif

28

� Mobility supporting: all devices specially sensors sets and
applications are able to mobile and being movable, the
protocols of communication that underpin the system has to
supply specific flexible forms of routing. The information of
context may require to combine with context-aware compon-
ents. The components which are flexible are needed.

� Controlling and traceability: the devices and all the
information flows between components of any smart system
must be open to inspection and manipulation, so as to present
adequate unde-rstanding and system control for the users, and
to make it possible to debug.

� Tolerance for component failures: in the ordinary process,
sensors and other components may fail, disconnection
sometimes happen, but the system must continue operating,
without needing any other resources to detect and handle
failures.

� Ease of deployment and configuration: the hardware and
software components must be easy to use, deploy and
configure to be suitable to the non-expert user and
environmental needs.

9 CONCLUSION
Since the main goal for this paper is to study whether the existing
middleware practices at smart homes support the requirements of
ubiquitous computing environments or not. This paper concludes
that there are good smart homes infrastructures and practices e.g.,
SM4All and Gaia projects, that consider most of the basics of the
ubiquitous computing needs (e.g., dynamicity, scalability, depend-
ability, security and/or privacy). This done by first introducing the
concept of middleware and its protocols and standards which are
relevant for the projects e.g., UPnP and OSGi. Then, I classify
middleware according to three types: object-oriented, service based,
and object oriented base. Following this, a definition of requirements
for smart spaces with regard to middleware technology are
highlighted. These requirements are kept generic (e.g., dynamicity,
dependability, scalability, security, and privacy) in order to allow the
identification of criteria for the evaluation of middleware technology.
 After that, I choose SM4ALL, RUNES, ANGEL, GTSH, Gaia,
and Serenity as examples of the current practice middleware
technologies projects at smart homes, discussing them with their
comparisons for the middleware part according to the mentioned
classification and the given ubiquitous requirements. The findings
are that some projects touched the topics of dynamicity, scalability,
and dependability at the middleware-service level. Also, a few of
them filled the security and privacy needs. The only project that
covers all defined requirements is SM4All.
 However, the horizons of the present practices middleware will
have to expand more and more to cater for the new requirements of
ubiquitous computing (e.g., support of heterogeneity, mobility,
tolerance for component failures, controlling and traceability, and
ease of deployment and configuration) if they want to survive in the
emerging smart space environments. This study help giving a look of
the existing works of middleware at smart homes, and showing the
requirements for the future vision. Moreover, it is not clear at this
point exactly what smart space middleware will consist of. What is
likely, however, is that various smart space architectures will emerge
independently of each other which greatly increases the need for
middleware to provide interoperability between heterogeneous
systems.

REFERENCES
S. Cummins, A. Davy, J. Finnegan, and R. Carroll, “State of the Art:
Middleware in Smart Space Management,” M-Zones, http://www.m-
zones.org/deliverables/d1_1/papers/4-03 middleware.pdf. 2003.

L. Coyle, S. Neely, G. Stevenson, M. Sullivan, S. Dobson, and P.
Nixon, “Sensor fusion-based middleware for smart homes,”
International Journal of ARM, Vol. 8, no. 2, pp. 53–60, June 2007.
E. Warriach, E. Kaldeli, A. Lazovik, and M. Aiello, “An Interplatform
Service-Oriented Middleware for the Smart Home,” International
Journal of Smart Home, vol. 7, no. 1, pp. 115-142, Jan. 2013.
Rowstron and P. Druschel, “Pastry: Scalable, Decentralized Object
Location, and Routing for Large-Scale Peer-to-Peer Systems,”
IFIP/ACM International Conference on Distributed Systems Platforms
Heidelberg, pp. 329- 350, 2001.
N. Vlug, F. Fouchal, T. Hassan, S. Firth, B. Fies, K. Ellis, V.
Lappalainen, M. Hannus, K. Lindow, T. Buchert, " Deliverable 3.4
Recommendations for New Standards to Overcome Interoperability
Barriers," Technical Report TR-3.4 (1.0), Loughborough University,
UK., Dec. 2011.
Upnp, “Upnp device architecture version 1.1,” Upnp Forum,
http://www.upnp.org/specs/arch/UPnParch-DeviceArchitecture-
v1.1.pdf. 2008.
OSGi Service platform core specification Official Website,
http://www.osgi.org/Specifications/HomePage.
Wu, , C. Liao, L. Fu, “Service-oriented smart-home architecture based
on osgi and mobile-agent technology,” IEEE Trans. Systems, Man, and
Cybernetics, Part C: Applications and Reviews, vol. 37, pp. 193 –205,
Mar. 2007.
S. Al Mehairi, H. Barada, and M. Al-Qutayri, "Integration of
Technologies for Smart Home Application," Computer Systems and
Applications, IEEE/ACS International Conference, pp. 241,246, 2007.
W. Emmerich, “Software Engineering and Middleware: A Roadmap,”
ACM Proc. on the Future of Software Engineering, pp. 117 - 129, 2000.
G. Alonso, F. Casati, H Kuno, and V. Machiraju, Web Services.
Springer-Verlag, pp. 1-354, 2004.
M. Papazoglou, Web Services: Principles and Technology. Pearson–
Prentice Hall, pp. 1-782 pages, 2007.
P. Pietzuch, " Hermes: A scalable event-based middleware," Technical
Report TR-590 (1476-2986) 590, University of Campridge, Computer
Laboratory, United Kingdom, June 2004.
S. Maffioletti, “Requirements for an Ubiquitous Computing
Infrastructure”, unifr.ch, http://diuf.unifr.ch/~maffiole/Documents/
Papers/ParadigmForUbiComp.pdf, 2001.
B. Wuest, O. Drogehorn, K. David, "Framework for middleware in
ubiquitous computing systems," Personal, Indoor and Mobile Radio
Communications, IEEE, vol. 4, no. 16, pp. 2262 - 2267, Sept. 2005.
S. Carro, P. Antol´ın, F. Olmos, M. Bel, V. Cruz, "SM4ALL: D8.1.d
Project Exploitation & Dissemination & Clustering Activities,"
Technical Report TR- 224332 (2.0), European Commission, Seventh
Framework Programme FP7- ICT, July 2012.
E. Warriach, E. Kaldeli, J. Bresser, A. Lazovik, M. Aiello,
"Heterogeneous device discovery framework for the Smart Homes,"
IEEE, GCC Conference and Exhibition (GCC), pp. 637-640, 2011.
RUNES IST Project Official Website, http://www.ist-runes.org/.
ANGEL project Official Website, http://www.ist-angel-project.eu.
Gator Tech Smart House project Official Website,
http://www.icta.ufl.edu/gt.htm.
Gaia project Official Website, http://gaia.cs.uiuc.edu/.
Y. Law, P. Havinga, "Security and dependability for Ambient
Intelligence: Informative but busy," Journal of Ambient Intelligence and
Smart Environments, vol. 3, no. 4, pp. 373-374. Dec. 2011.
R. Baldoni, M. Mecella, "Portfolio of Wireless Sensor Networks
Wireless Sensor Networks & Cooperating Objects & Cooperating
Objects FP7 Projects," WSN&CO, FP7 Projects,
ftp://ftp.cordis.europa.eu/pub/fp7/ict/docs/necs/booklet-necs-wsnco_en.
pdf. 2008.
Active Campus UCSD Official Website, http://activecampus.ucsd.edu/.
MIT Oxygen project Official Website, http://oxygen.lcs.mit.edu/.
Microsoft’s Easy Living project Official Website,
http://research.microsoft.com/easyliving/.
R. Baldoni, C. Aiello, M. Mecella, " D1.1 Project Presentation,"
Technical Report TR- 1.0, University of Groningen, Groningen,
Netherlands, Dec. 2008.

SC@RUG 2013 proceedings

29

Opportunities for Heterogeneous CPU–GPU Task Scheduling

Christiaan Arnoldus and Robert Witte

Abstract—It is common to exploit the co-processors of modern computer systems to speed up computations which were traditionally
done on the CPU. While this is already very common for computer graphical and scientific applications, there is no reason why this
cannot be extended to many different kinds of applications.
In this paper we study the current state of general-purpose computing using accelerators, with an emphasis on the everyday user.
We discuss several aspects of heterogeneous task scheduling, which becomes a concern when you have many different processors
to execute a task on. We also show that there are several frameworks in development to support processor heterogeneity, but most
of these are still unsuited for mass adoption due to their experimental or low-level nature.
Besides conjecture we also did performance measurements on our everyday hardware, in order to find out if the promised performance
increase is met. We conclude that this is indeed the case. We also take a look at power consumption and show that the fastest
solution may not be the most energy-efficient one when heterogeneity is involved. Finally, we discuss the future work necessary to
turn heterogeneous task scheduling into a mainstream programming paradigm.

Index Terms—Heterogeneous computing, CPU, GPU, scheduling, task-centric programming.

1 INTRODUCTION

Since the beginning of computer development, reaching peak perfor-
mance has been a goal. In the last decades, we have seen manufac-
turers increase the computational potential of their hardware by in-
creasing clock rates and combining multiple processors in one chip.
Computers were also equipped with specialized co-processors in addi-
tion to the traditional central processing unit (CPU), such as: graphics
processing units (GPUs), general-purpose graphics processing units
(GPGPUs, for example AMD Fusion) and the Cell processor. Systems
that contain multiple types of processors are called heterogeneous sys-
tems. Heterogeneous systems are common nowadays and include not
only PCs, but also smart phones for example. With current develop-
ment different types of processors can be combined on a single die,
which saves space and allows memory sharing between the proces-
sors, making them suitable for such mobile devices. In our research
we focus on PCs with a CPU and a GPU. Heterogeneous systems can
harness a lot of computational power and the challenge is how to use
all that power efficiently.

While most applications today only use one type of processor, peak
performance can only be achieved when all available processors are
used at the same time. This gives rise to the field of task schedul-
ing on heterogeneous systems, that is, scheduling tasks over different
types of processors. With heterogeneous scheduling new ways of in-
creasing performance emerge and great results have been booked with
heterogeneous scheduling in scientific applications. However, with-
out a standard framework, porting applications to multiple platforms
is an issue; rewriting large parts of code severely impairs productiv-
ity and development. To tackle this issue several frameworks have
been created: the Barcelona Supercomputing Center has created a pro-
gramming model called OmpSs, Augonnet et al. [2] have created a
high-level scheduling framework called StarPU and on a lower level
OpenCL and OpenACC exist to support heterogeneous task schedul-
ing. These frameworks are a nice starting point when it comes to het-
erogeneous scheduling.

We envision that heterogeneous scheduling will become even more
common in the future and will be embedded in the operating system or
kernel, just like CPU scheduling, thus making heterogeneous schedul-
ing readily available for every application. Our research is aimed at
the advantages of heterogeneous scheduling and to test its potential in

• Christiaan Arnoldus is a computing science student at the University of
Groningen, email: c.arnoldus@student.rug.nl.

• Robert Witte is a computing science student at the University of
Groningen, email: r.witte.1@student.rug.nl.

everyday applications. By everyday applications we understand appli-
cations that can be used by all people to support their regular lives and
thus excludes specialistic applications that require technical knowl-
edge.

The paper is a review paper and is structured as follows: the follow-
ing section takes a more detailed look at heterogeneous task schedul-
ing and its challenges. In section 3 we describe the frameworks men-
tioned to achieve heterogeneous scheduling and take a more detailed
look at them. In section 4 we discuss the scheduling algorithms that
can be used and present some results that have been booked using
these algorithms. In section 5 we present our own experimental re-
sults and in section 6 we discuss the platform-dependant development
challenges that occur. In the conclusion we answer the following re-
search questions:

1. Is heterogeneous task scheduling a good fit for everyday appli-
cations?

2. What future work is necessary to make heterogeneous program-
ming mainstream?

2 HETEROGENEOUS TASK SCHEDULING

Here we take a look at heterogeneous scheduling in a task-driven en-
vironment, as is done in StarPU and OmpSs. A task is a part of a
computation that can be executed by a processing element (PE). A
processing element is a processor or core that can execute tasks. An
accelerator is a co-processor specifically designed for one type of com-
putation. Assuming that each task can be computed on every PE, the
goal of heterogeneous scheduling is to use all available PEs in such
a way that maximum performance is achieved. A few challenges that
occur when using heterogeneous scheduling are: distribution of tasks
over available PEs, load balancing, task analysis, energy consumption,
responsiveness of the system and different hardware architectures.

Distribution of tasks over all available resources is done by using
a scheduling algorithm. The heterogeneous scheduler will, depending
on the algorithm used, distribute the tasks to the individual PE sched-
ulers. Multiple proven algorithms exist and are in use; more on these
algorithms in section 4. At runtime, after distribution of tasks, load
balancing should occur; the tasks may not have been distributed fairly
regarding complexity and data size or perhaps a certain PE simply per-
forms a lot better than the other. To illustrate this, highly parallel tasks
are in general executed a lot faster on the GPU, while tasks with large
critical sections are executed faster on a CPU. Data locality should
also be taken into account; when the size of the input data is so large
that transfer to an accelerator incurs great overhead, or when I/O op-
erations are involved, it may be preferable to execute the task on the

30

CPU. Hints could be provided by the programmer to increase per-
formance, however it would be better if the system could analyse and
evaluate the tasks its own.

When not only the maximum processing capacities of the available
PEs are taken into account, but also the ‘nature’ of a task, more effi-
cient scheduling can be done. Heuristic evaluation of previously ex-
ecuted tasks, code analysis and smart compilers all could have a role
in analysing tasks for future distribution. But since analysis takes time
and processing power, a stand-off has to be made to find an optimum.
There is no clear answer yet to what will become the standard schedul-
ing algorithm, but the FCRM results in section 4.4 look promising.

The previously addressed challenges mainly involved performance;
to execute the tasks in such a fashion that minimal time is needed.
However, this may not be the only motive for scheduling. Energy
consumption and overall responsiveness of the system could be goals
as well. As is pointed out later in the paper, in section 5, not every
PE needs the same amount of energy to execute a certain task, which
might lead to an argument from the environmentalists to distribute for
energy efficiency. Also, depending on the urge of the task or the needs
of the user, maximal load on every PE might may not be needed or
wanted. for example, some tasks could be executed on the GPU to
save computational power on the CPU for context switching.

And to top it off, besides software challenges, hardware challenges
arise as well. Because of the differences in architecture compared
to CPUs, accelerators require special programming languages. The
most popular type of accelerator is currently the GPU. Because GPUs
were initially intended to be used solely for graphical applications, the
first general-purpose applications for GPUs were implemented using
graphical APIs and programming languages, such as Cg, GLSL and
HLSL [4]. The Compute Unified Device Architecture (CUDA) in-
cluded the first general-purpose programming language for use with
GPUs. Since CUDA is only available for NVIDIA GPUs, a demand
for a common, open standard emerged. An open standard, managed
by the Khronos Group, was eventually established with the name Open
Computing Language (OpenCL) [4]. Section 3.1 includes a descrip-
tion of OpenCL. CUDA is omitted, as it does not support heterogene-
ity by itself, for it is only used to program one specific kind of acceler-
ator. OpenCL and CUDA are compared in section 6.2. For these dif-
ferent kinds of hardware, different implementations are needed, some-
thing the programmer has to provide. Besides that, performance may
depend on the hardware brand as well, another challenge in the field
of heterogeneous scheduling.

There also exist libraries to implement data parallelism directly in
traditional programming languages. Besides OpenACC these include:
C++ AMP from Microsoft, Bolt from AMD (C++) or Aparapi (Java)
[1]. However, these libraries are outside the scope of our research.

3 FRAMEWORKS FOR HETEROGENEOUS COMPUTING

Before taking a look at the frameworks for heterogeneous scheduling,
we should take a look at the aim of such a framework, in order to
have a better view of each framework. There are several development
challenges that a task-centric framework for heterogeneous computing
should address. Based on implied requirements in the literature, these
include:

1. Support heterogeneity: the framework should support running
tasks on different processors, ideally with a common program-
ming language. Most accelerators have their own execution
model, which makes writing portable code a major challenge [2].

2. Coherent data management: the framework should provide a
way to get a coherent view of all hardware memory banks used
by the different processors. As with the previous point, most ac-
celerators have their own data manipulation interface, which is
not portable to different systems [2].

3. Scheduling: the framework should be able to dynamically divide
tasks over the different processors, so that each of them gets used
efficiently.

3.1 OpenCL
A popular framework for heterogeneous computing is OpenCL, which
provides a common programming language for CPUs, GPUs and other
specialized co-processors. It also provides APIs for explicitly moving
data and tasks between co-processors [2]. One of OpenCL’s greatest
strength is its broad hardware support [13], even having been adopted
by Intel [6] and AMD [1] as their main accelerated programming lan-
guage, as well as being compatible with NVIDIA hardware [14]. The
downside of OpenCL is that its APIs, which are designed to support a
large range of hardware, are rather low-level; it does not provide sup-
port for task scheduling or global data management [2, 13]. Another
disadvantage is that is has a steep learning curve and many perfor-
mance pitfalls over the different architectures [13].

3.2 StarPU
A high-level framework for heterogeneous computing is StarPU, in-
troduced by Augonnet et al. [2]. StarPU is a tasking API that provides
developers with a way to execute parallel tasks over heterogeneous
hardware. Tasks are specified as so-called codelets, an abstract rep-
resentation of a task that can be executed on a PE. A codelet is a
description of the task, the data included and whether it requires read
and/or write access. Because these tasks are executed asynchronously,
StarPU can reorder them to increase performance [2]. The implemen-
tation can be provided separately for each architecture which makes
StarPU code very portable [2]. In the future, middleware tools, such as
programming environments and high performance computing (HPC)
libraries, could be built on top of StarPU. This allows programmers
to exploit the benefits of heterogeneous scheduling with limited effort
[2].

The scheduling of tasks over the different PEs is done with proven
algorithms. In addition to choosing a built-in scheduling algorithm,
the developer can provide scheduling hints to improve performance
and even implement new scheduling strategies where necessary. More
details about relevant scheduling algorithms and the performance of
those algorithms will be provided in section 4.

In addition to a scheduling library and its portability, StarPU also
provides a coherent view of all available memory in the system, reliev-
ing the developer of manually moving data between different proces-
sors. It uses a caching method to minimize the number of data trans-
fers needed as well as partitioning functions and eviction heuristics to
overcome memory limits on co-processors [2].

A disadvantage of StarPU is that is does not take the size of the input
data into account when scheduling [11]. It is also the responsibility of
the developer to provide implementations for all architectures that a
certain task can be executed on, which means that it does not provide
a common programming language (although later versions do support
OpenCL [14]). Unfortunately, we were not able to get StarPU up and
running on our systems due to both library and driver issues and thus
have no original results.

3.3 OmpSs
Another approach at easing heterogeneous programming is the OmpSs
programming model, created by the Barcelona Supercomputing Cen-
ter (BSC), as an integration of their previous systems. OmpSs is an
extension to OpenMP, which enriches the OpenMP syntax by allowing
the developer to define data dependencies between tasks. This allows
tasks whose data dependencies have been fulfilled to execute, even if
a previously queued task is still waiting for input [11]. OmpSs also in-
troduces directives for specifying on which processors a task can run.
The OmpSs programming model is used by Podobas et al. [11] to build
a framework for scheduling tasks over heterogeneous hardware, simi-
lar to StarPU. Implementations for tasks have to be provided manually
for each supported processor, as with StarPU [3]. The performance
model of OmpSs is different from StarPU; whereas StarPU assumes
that execution time is independent of the content of the data for a cer-
tain task, OmpSs does not. OmpSs uses information from the user
(whatever that may be) to predict the complexity of tasks that have not
been run before [11]. Their argument is that the complexity of a task
does not correlate well with the size of the input data for a task.

SC@RUG 2013 proceedings

31

Unfortunately, we did not get OmpSs to work on our systems either,
as there seems to be a bug in OmpSs’ MCXX compiler, which caused
us to be unable to compile any program. We did contact the BSC for
this issue, but they were unable to reproduce it. Using other/earlier
versions for MCXX and the runtime library Nanos++ did not resolve
the issue.

3.4 Accelerated OpenMP
There is an initiative for extending compilers to support accelera-
tors using compiler directives, in a fashion similar to OpenMP. This
initiative is named OpenACC. The OpenMP and OpenACC work-
ing groups intend on merging their work to create an extension to
OpenMP that supports accelerators [10]. This extension is named Ac-
celerated OpenMP and provides, among other things, the ability to
spawn threads on accelerators. The advantage of using and extending
OpenMP is that developers use existing knowledge and code [13].

Scogland et al. [13] propose a set of extensions to Accelerated
OpenMP to make scheduling in a heterogeneous context easier. One of
these extensions allows work to be assigned to specific accelerators. It
is also possible to define the performance ratio between different pro-
cessors, for use by the scheduler. These extension make Accelerated
OpenMP similar to OmpSs, although the syntax is incompatible.

4 ALGORITHMS FOR HETEROGENEOUS TASK SCHEDULING

In this paper we take a look at the following scheduling algorithms:

1. Random
2. Weighted random
3. Work-steal
4. Forecast regression model scheduling (FCRM)

4.1 Random
Random scheduling is an algorithm based on, as the name suggests,
random distribution of tasks over the available PEs. This algorithm is
very fast and simple to implement. Its simplicity and the fact that it is
well-known makes it a good reference point [11].

4.2 Weighted Random
Weighted random is an algorithm in which every PE is randomly given
tasks. The difference with the previous algorithm is that the scheduler
takes a weight into account for every PE. The weight of a PE is a
number that corresponds with how much work can be loaded to a PE
with respect to the other PEs. The weight of a PE could be calculated
by benchmarks; this is done prior to any scheduling. Benefits of this
algorithm are that it is still simple, initialization is very fast and it takes
the performance difference of PEs into account.

4.3 Work-steal
Work-steal is an algorithm in which every PE has a separate queue that
stores tasks that have to be executed. A PE starts executing these tasks
and whenever its queue is empty, it will try to steal a task from the end
of another queue and start executing that task. This is a more dynamic
approach to scheduling as whenever a PE has finished executing tasks,
it will look for new tasks, resulting in load balancing during execution
and all threads will finish at around the same moment. The implemen-
tation of this algorithm is also simple and initialization is fast.

4.4 FCRM
Forecast regression model scheduling (FCRM) is a scheduling algo-
rithm presented by Podobas et al. [11]. It uses segmented regression
to estimate trends concerning the execution time of a task on different
PEs. The algorithm will try to estimate how much time a certain task
will take on the available PEs and uses roughly same weight system as
with weighted random to divide tasks. The main difference here is that
this algorithm does this at runtime, unlike weighted random which cal-
culates the weights pre-execution. It is done this way, so the algorithm
can also look at how well a certain PE performs at a certain task, in-
stead of only looking at the PE’s overall performance. Thus, not only
the processing capabilities of a PE are measured, but also which PE is

best suited to execute a certain task. Also, FCRM will take the data
locality into account, something that the weighted random scheduling
algorithm does not [11].

The advantages of this algorithm come from the dynamic learning
part and data locality. The algorithm will learn from previously exe-
cuted tasks and can better estimate the time needed to execute a future
task and thus distribute the upcoming tasks in a better fashion when it
comes to overall performance (as can be seen in the figures that fol-
low). Because of these heuristics FCRM is a more complex algorithm;
it takes more time to initialize and is harder to implement.

The following images are test results taken directly from Podobas
et al. [11]. Figure 1 illustrates the performance of FCRM. In fig. 1
it can be seen that the FCRM-preload algorithm performs best overall
and weighted-random is a close second. FCRM-preload is a condition
in which FCRM has seen every task and can distribute tasks the opti-
mal fashion. This is clearly a highly parallel task as the GPU finishes
at the third place. Figure 2 illustrates the learning curve of FCRM.
FCRM-preload again performs best, but as long as FCRM still has to
evaluate a lot of tasks and execution times, it performs significantly
worse. More detailed information about test setup, environment and
results can be found in the paper of Podobas et al. [11].

Fig. 1. FCRM performance, by Podobas et al. [11]

Fig. 2. FCRM learning curve, by Podobas et al. [11]

4.5 Comparing Algorithms

The four presented algorithms used to implement scheduling policies
have its benefits and pitfalls. The first three algorithms are very simple
to implement, perform reasonably well and have fast initialization, as
seen fig. 1. However, they do not take the nature of tasks or data local-
ity into account. FCRM is the most complete and complex algorithm
presented, but it comes at a cost of initialization speed.

As this is a field that is still very new, not many applications are
available that we can use for testing heterogeneous scheduling algo-
rithms. What we can say about the use of these scheduling algorithms
in everyday applications, is that many everyday tasks will be repeated;
take applications for school, games, graphical editor programs, movie
editing or converting, and so on. These are applications that could
benefit from learning, as with FCRM [11]. Take into account though
that applications that have a very short computation time will not ben-
efit much from this; the overhead of sending data from main memory

Opportunities for Heterogeneous CPUGPU Task Scheduling – Christiaan Arnoldus and Robert Witte

32

to the GPU or another PE might take more time than the actual cal-
culation. However, we do see a benefit for more time-consuming ap-
plications or applications in which other qualities can be improved by
heterogeneous scheduling. Especially for highly parallel tasks; het-
erogeneous scheduling can significantly increase performance of the
system. The test results of the following section support this.

5 EXPERIMENTAL RESULTS

In order to find out whether adding support for heterogeneity to our ev-
eryday applications is worth it, we have executed several performance
tests on our hardware, which are described in this section. These tests
do not fit our definition of everyday applications, as accelerated im-
plementations of such applications are still rare. What we are most
interested in is how these benchmarks perform on everyday hardware,
like integrated graphics processors (IGPs).

While time is an important aspect of performance, often the most
important aspect of performance, it is not the only aspect. Power con-
sumption may also be a concern in a world where awareness of en-
vironmental issues increases. Mobile devices like laptops and smart
phones increasingly feature accelerators as well and these devices ben-
efit from lower energy consumption, as this increases battery life. En-
ergy measurements have been included in section 5.3 to show how
energy consumption can influence scheduling decisions.

5.1 Experimental Setup
For our performance measurements we used two different setups, one
AMD machine and one Intel/NVIDIA machine. These names are cho-
sen for convenience and do not imply that Intel requires NVIDIA,
AMD excludes NVIDIA or some such. These machines are low- to
mid-range and may very well correspond to what an everyday user has
on his desk.

The AMD machine has an AMD Phenom 9650 CPU and an ATI
Radeon HD 4850 GPU. The tests run on this machine focus on
OpenCL, as CUDA is an NVIDIA-only technology. Several OpenCL
example kernels are available from the AMD Accelerated Parallel Pro-
cessing (APP) SDK [1], which can be run on both CPUs and GPUs.

The Intel/NVIDIA machine is a relatively old notebook (2009)
which runs a dual core 2.0 GHz processor and has a GeForce 9200M
GS graphics card, equipped with eight CUDA cores. Unless specified
otherwise all available resources were used.

5.2 Simulating Physical Bodies
Although NVIDIA comes with a large set of example applications in
their demo/sample suite, very few of the applications are runnable on
both the CPU and GPU, which would support our research about het-
erogeneous scheduling. One application that is runnable on both the
CPU and the GPU is a simulation of n physical bodies, called nbody.
Nbody numerically approximates the evolution of a system of bodies
in which each body continuously interacts with every other body. A
graphical representation of the example is available, which shows that
simultaneous computation and visualization is feasible with general-
purpose GPU computations.

The tests were performed in an everyday situation; multiple appli-
cations were running, including a browser, a text editor and a music
player. Three different input values were used and for each 10 iter-
ations were calculated and the built-in benchmark tool was used to
measure performance. While we would have liked to test the double-
precision performance benchmark as well, this CUDA device does not
support that.

Table 1. Results of running a single-precision nbody simulation on our
INTEL/NVIDIA machine.

CPU GPU
Input size Total time Perf. Total time Perf.

1024 0.807364 0.260 0.015285 13.720
2048 3.225992 0.260 0.060828 13.791
4096 12.920963 0.260 0.240246 13.967

Although nbody is not an everyday application, but it is very useful
to show that the speed-up achieved when using the GPU at the right
time can be enormous, even on such a weak GPU. This can be seen
in table 1, which compares the computation time and performance.
Timings are in seconds and performance is measured in GFLOP/s.
Table 2 shows the speed-up of the GPU when compared to the CPU.

Table 2. Speed-up of running nbody on our INTEL/NVIDIA machine.

Input Speed-up

1024 52.82
2048 53.03
4096 53.78

5.3 Ray Tracing
Our second benchmark is provided by ratGPU [12], which is a stan-
dalone renderer which uses OpenCL and optionally a C++ implemen-
tation on the CPU. RatGPU benchmarks the system by ray tracing four
scenes. RatGPU gives us the option to use the CPU, GPU or both at
the same time to do the ray tracing. We show the computational speed
differences between using merely a GPU (a very simple one in this
case) and using both the CPU and the GPU; thus using some form of
heterogeneous scheduling. While ratGPU lacks documentation on its
inner workings at the time of writing, the visualization suggests that
the image is decomposed in rectangular areas, which are scheduled
over the CPU and GPU in a greedy fashion.

We were surprised by the results on our INTEL/NVIDIA machine.
We expected the time needed by the GPU to ray trace the images to
be close to the time needed by a combination of CPU and GPU, as ray
tracing is a highly parallel task and thus very much suited for execution
on a highly parallel processor. However, this was not the case, as can
be seen in table 3. This is probably the result of using a weak GPU.
Timings are in seconds and we used the timing mechanism provided
by ratGPU.

Table 3. Results of running ratGPU ray tracing on our INTEL/NVIDIA
machine.

Mode Time Speed-up

GPU 3257.99 1
CPU (C++) 1908.93 1.707
GPU + CPU (C++) 1820.32 1.790

As mentioned, speed may not be the only relevant performance met-
ric. We also measured the average power consumption of our INTEL/
NVIDIA machine using a tool called powerstat [5] and included the
results in table 4. The total energy consumption during the whole com-
putation was calculated and included as well. While stressing the GPU
consumes less power than stressing the CPU and using both results in
the highest speed, it turns out that using just the CPU costs the least
energy, so that would be the smartest choice if conserving your laptop
battery is the highest priority. Note that, while this particular example
does not favour scheduling tasks to the GPU, in the previous bench-
mark the GPU performs better on every level and scheduling tasks to
the GPU would likely save power and increase performance.

Table 4. Energy consumption of our INTEL/NVIDIA machine while ray
tracing.

Working state Power (W) Energy (104 J)

Idle 16.92 NA
GPU under load 35.75 11.647
CPU under load 41.10 7.846
GPU + CPU under load 48.56 8.839

SC@RUG 2013 proceedings

33

We did the same ray-tracing benchmark on our AMD machine. The
results of this benchmark are included in table 5, where the speed-up is
relative to the time needed by just the GPU. In this case, using a more
powerful GPU, the results are more akin our expectations. It is inter-
esting to note that running the OpenCL implementation on the CPU is
not much slower than using the C++ implementation. We did find a
strange slowdown when using two OpenCL devices at the same time;
since this does not occur when using the C++ CPU implementation we
suspect this is the result of a software bug, either in ratGPU or AMD’s
OpenCL driver. No power consumption results are available for the
AMD machine, as the tools available did not work for a desktop PC
(battery versus net-power).

Table 5. Results of running ratGPU ray tracing on our AMD machine.

Mode Time (s) Speed-up

GPU 275.773 1
CPU (C++) 1470.54 0.19
CPU (OpenCL) 1557.3 0.18
GPU + CPU (C++) 256.65 1.07
GPU + CPU (OpenCL) 711.034 0.39

5.4 Image Processing
One possible everyday application which can be supported by hetero-
geneity is image processing, which people may use from their photo
editing package. Image processing often entails applying filters to im-
ages and the AMD APP [1] contains several OpenCL kernels which
can be used for that purpose. We have measured the performance of
these kernels using our AMD machine discussed in section 5.1, in par-
ticular kernels for applying Gaussian noise, Sobel edge detection and
recursive Gaussian blur.

The results for these measurements are included in tables 6 to 8,
which were acquired using the timing mechanisms that were shipped
with the samples. When run on the CPU, the kernels make use of
all available cores. Three different image sizes were tried, the other
settings retained their default values. The time values are given in
seconds and are the result of the average of 100 iterations. The kernel
time is the time taken by running the actual kernel and moving data
back and forth between the device, while total time includes the setup
time, which is the time required to compile the kernel and allocate
memory on the device.

Table 6. Results of running a Gaussian noise kernel on our AMD ma-
chine.

CPU GPU
Input size Kernel time Total time Kernel time Total time

10242 0.0440572 0.327617 0.0217584 0.488877
20482 0.187817 0.46065 0.082306 0.548544
40962 0.741743 1.55724 0.313115 0.747155

Table 7. Results of running a Sobel edge detection kernel on our AMD
machine.

CPU GPU
Input size Kernel time Total time Kernel time Total time

10242 0.0524023 0.271538 0.0199078 0.265988
20482 0.227918 0.462058 0.0748007 0.326518
40962 0.93972 1.18023 0.283620 0.499277

The tables 6 to 8 show that the GPU is consistently faster in the
chosen set of algorithms, although the speed-up may not be significant
when the image size is small, especially when one factors in the setup

Table 8. Results of running a recursive Gaussian blur kernel on our
AMD machine.

CPU GPU
Input size Kernel time Total time Kernel time Total time

10242 1.27465 1.97877 0.0331012 0.282886
20482 5.15031 5.37706 0.129927 0.410904
40962 21.2629 21.4885 0.531589 0.763503

time. The setup time may not be relevant though, since a compiled
kernel and allocated memory may be re-used if the same kernel is
executed multiple times during the same run of the program. As one
can tell from the speed-up matrix of table 9, the speed-up is more or
less independent of the input size. The speed-up is not independent of
the algorithm however, as the Gaussian noise and Sobel edge detection
algorithms only gain a modest speed-up, while the speed-up for the
recursive Gaussian blur is much larger. We cannot explain why the
speed-up is so much larger in this case, but it may be the result of an
OpenCL performance pitfall, as noted in section 3.1 or may be because
the other algorithms are less suited for execution on a GPU.

Overall, the absolute time values are not so impressive, as most are
below a second and it is unlikely that an everyday user would notice
the difference. But it should be noted that the speed-up becomes more
important when the input data becomes larger; even if the speed-up
is only two, waiting one hour is certainly preferable over waiting two
hours. Enabling the GPU for everyday applications would also be
good for exploration, as the computer can remain responsive while the
GPU is busy, while responsiveness may suffer if the CPU is busy. It
is also worth noting that, in some cases like our recursive Gaussian
blur experiment, the GPU may be able to provide near-real-time feed-
back while the user adjusts the parameters at an image size where the
CPU may not be able to do so. When both computation and visualiza-
tion happen on the GPU, it may no longer be necessary to move data
between main and video memory [9].

Table 9. Speed-up matrix of our AMD machine.

Input size Noise Edge detection Recursive blur

10242 2.02 2.63 38.5
20482 2.82 3.04 39.6
40962 2.36 3.31 40.0

6 TECHNICAL DISCUSSION

When it comes to accelerators, including but not limited to GPUs, sev-
eral technologies exist on both the hardware and the software side. On
hardware side, there are solutions offered by Intel, AMD and NVIDIA.
On the software side, the most common technologies to program ac-
celerators are CUDA (favoured by NVIDIA) and OpenCL (favoured
by the rest). This section discusses the experimental results and the
influence of manufacturers and their technologies on the field of het-
erogeneous task scheduling.

6.1 Intel versus AMD versus NVIDIA
There are several manufacturers who ship GPUs; Intel currently holds
the largest market share, followed by AMD, while NVIDIA comes
third [7]. It should be noted that these figures include IGPs, which are
integrated in the motherboard or CPU of the computer. IGPs are more
common than discrete graphics processors, but generally less powerful
and have less features, making them somewhat less attractive for the
applications discussed in this paper. Since Intel does not manufacture
discrete graphics processors and NVIDIA has stopped manufacturing
IGPs [7], the market shares for discrete GPUs are very different, with
NVIDIA taking the lead and AMD coming second [8]. Other GPU
manufacturers (VIA and Matrox) only have a negligible market share
[7].

Opportunities for Heterogeneous CPUGPU Task Scheduling – Christiaan Arnoldus and Robert Witte

34

While NVIDIA may not have the largest total market share of
graphics processors, they do have the largest market share of discrete
GPUs, which may be the reason that they and their CUDA execution
model gained the favour of the scientific community. Both OmpSs
[11] and StarPU [2] preferably use CUDA as a back-end for GPU sup-
port; in both cases OpenCL support was only added as an afterthought
[3, 14] and is still experimental in nature, even more so than the rest
of the frameworks.

So, right now, NVIDIA hardware seems to be the safest choice if
one wants to do general-purpose GPU computing. But, in order to be-
come truly mainstream, heterogeneous computing technologies have
to support a wide range of hardware, including AMD hardware and
possibly the Intel HD series IGPs, which support OpenCL [6]. For
this to happen there must be a programming standard shared between
all processors (for example OpenCL) or frameworks must be able to
transparently switch between programming models.

6.2 OpenCL versus CUDA

Both OpenCL and CUDA are used to implement small programs to be
run on an accelerator, known as kernels. The main difference between
OpenCL and CUDA is their hardware support, as noted in section 3.1.
Other than that, the architectures assumed by OpenCL and CUDA are
very similar, as are the syntax, keywords and built-in functions of the
two languages. As a result, it is not too difficult to port a kernel from
CUDA to OpenCL [4].

Fang et al. [4] made a comprehensive performance comparison on
CUDA and OpenCL. They found that CUDA may be up to 30% faster
than OpenCL, but also noted that these performance gaps are usually
the result of a programming pitfall or because the CUDA compiler is
older and therefore better optimized. There is no reason why OpenCL
should perform worse than CUDA and in fact it does not when ker-
nels are properly optimized. These optimizations are often platform-
dependant though, which diminishes OpenCL’s advantage of broad
hardware support a little.

7 CONCLUSION AND FUTURE WORK

In the introduction we asked ourselves two questions. The first ques-
tion was whether heterogeneous task scheduling is a good fit for every-
day applications. In section 5 we showed that the accelerators that the
everyday user has available can already be used to do certain tasks and
achieve at least similar, but usually much better, performance com-
pared to the CPU. Whether scheduling will play a major role in future
everyday heterogeneous systems remains to be seen, but we envision
it will. As described in section 2, choosing the most suited PE for a
certain computation is a complex problem and it is unlikely that the de-
velopers’ choice results in the best performance in all circumstances.

As for the second question, we must conclude that there is still a lot
of work to do before heterogeneous task scheduling can become main-
stream. The frameworks discussed in section 3 are still too experimen-
tal in nature for mass adoption, as their support for different hardware
and software configurations seems limited. If two computing science
students cannot get your software to work, it is unlikely that the aver-
age computer user can, so future work in this area is warranted. The
frameworks also have a bias towards NVIDIA technologies, as dis-
cussed in section 6, which is also undesirable. If the frameworks are
adapted to support more open technologies, developers can integrate
heterogeneous task scheduling in our everyday applications.

ACKNOWLEDGEMENTS

We wish to thank Dr Valeriu B. Codreanu for his feedback and willing-
ness to help with technical issues. We also thank our fellow students
that reviewed our draft paper.

REFERENCES

[1] Advanced Micro Devices. Accelerated Parallel Processing SDK.
URL http://developer.amd.com/tools/heterogeneous-computing/
amd-accelerated-parallel-processing-app-sdk.

[2] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier.
StarPU: a unified platform for task scheduling on heteroge-
neous multicore architectures. Concurr. Comput.: Pract. Ex-
per., 23(2):187–198, February 2011. ISSN 1532-0626. doi:
10.1002/cpe.1631.

[3] Barcelona Supercomputing Center. The OmpSs Programming
Model. URL http://pm.bsc.es/ompss.

[4] J. Fang, A. L. Varbanescu, and H. Sips. A Comprehensive Perfor-
mance Comparison of CUDA and OpenCL. In Parallel Process-
ing (ICPP), 2011 International Conference on, pages 216–225,
2011. doi: 10.1109/ICPP.2011.45.

[5] ‘Gayan’. powerstat: Power Consumption Calculator for
Ubuntu Linux. URL http://www.hecticgeek.com/2012/02/
powerstat-power-calculator-ubuntu-linux.

[6] Intel Software. Intel Developer Zone: Intel SDK for OpenCL
Applications. URL http://software.intel.com/en-us/vcsource/
tools/opencl-sdk.

[7] Jon Peddie Research. AMD, Intel, and Nvidia all
down in Q4 with negative 8% overall quarter-to-quarter,
2013. URL http://jonpeddie.com/press-releases/details/
amd-intel-nvidia-q4-graphics-gpu-shipments.

[8] Jon Peddie Research. Graphics add-in board
shipments crash from last quarter, 2013.
URL http://jonpeddie.com/press-releases/details/
add-in-board-report-Q4-2012-crash-down.

[9] Khronos Group. OpenCL 1.2 Reference Pages: clCreate-
FromGLTexture. URL http://www.khronos.org/registry/cl/sdk/
1.2/docs/man/xhtml/clCreateFromGLTexture.html.

[10] OpenACC working group. OpenACC: Directives For Accelera-
tors. URL http://www.openacc-standard.org.

[11] A. Podobas, M. Brorsson, and V. Vlassov. Exploring Heteroge-
neous Scheduling using the Task-Centric Programming Model.
2012.

[12] Santiago Orgaz. ratGPU standalone renderer. URL http://www.
ratgpu.com.

[13] T. Scogland, B. Rountree, Wu-chun Feng, and B. de Supinski.
Heterogeneous Task Scheduling for Accelerated OpenMP. In
Parallel Distributed Processing Symposium (IPDPS), 2012 IEEE
26th International, pages 144–155, May 2012. doi: 10.1109/
IPDPS.2012.23.

[14] University of Bordeaux. StarPU. URL http://runtime.bordeaux.
inria.fr/StarPU.

SC@RUG 2013 proceedings

35

Curve Skeletonization of 3D Shapes

P.M.D. Otterbein, M.C.P.M. Scheepens

Abstract—The extraction of curve skeletons of 3D shapes is a fundamental problem with many different applications. These include
for example virtual navigation, animation or visualization improvement. Because there is such a broad interest in this field, a lot of
different techniques have been developed over the years. Although skeleton extraction techniques have roughly the same purpose,
their fundamental idea can be very different. To make a comparison we study the different properties of the techniques and compile
a list of criteria. Based on that list we have evaluated each method to create a comparison between them. With the comparison
it is possible to distinguish between the different techniques in such a way that a appropriate technique for specific needs can be
identified.

Index Terms—Curve skeletonization, 3D shapes, 1D representation, transformation, volumetric methods, geometric methods, sur-
face and object representation, comparison.

1 INTRODUCTION

A curve skeleton is a 1D structure which represents a 3D object in a
simplified way. They are used in many applications which require a
representation of objects geometry and topology. These applications
are typical for the field of computer aided design, medical imaging,
computer graphics, scientific visualization, computational fluid dy-
namics, and remote sensing.

Because there is such a broad interest in this field, a lot of different
techniques have been developed over the years. Although skeleton ex-
traction techniques have roughly the same purpose, their idea and de-
sign can be very different. For example they can either work with geo-
metric methods or with volumetric methods. Geometric methods work
with polygon meshes or point sets and volumetric methods have reg-
ularly partitioned voxelized representations or discretized field func-
tions as input data. Also the algorithmic complexity has increased to
a point that analytical reasoning is not enough to relate the results of
a method to desirable skeleton properties. This leads to the question:
how can the different methods be compared and which method should
be used for a specific problem?

To solve this, we studied existing literature to find out what criteria
for skeletonization there are, like robustness, reconstruction properties
or connectivity [1]. This resulted in a list of important criteria which
are discussed in section 2. There we compared these criteria by iden-
tifying which important properties they represent and classify them in
contradicting properties or similar properties. Based on this identifi-
cation a list can be created with relevant criteria for skeletonization
method comparison.

The next step was to study existing skeletonization techniques, how
they work and what characteristics the results show. We also inves-
tigate advantages and disadvantages of them, like computation com-
plexity. This is described in section 3.

Based on our criteria we created a comparison of the different skele-
tonization techniques. This comparison is shown and discussed in sec-
tion 4. The discussion shows that is possible to distinguish between
the different techniques in such a way that a appropriate technique can
be identified with a set of criteria which are important for a specific
application.

Finally the conclusions of the findings are discussed in section 5.

• P.M.D. Otterbein is student at the Rijksuniversiteit Groningen,
E-mail: P.M.D.Otterbein@student.rug.nl.

• M.C.P.M. Scheepens is student at the Rijksuniversiteit Groningen,
E-mail: M.C.P.M.Scheepens@student.rug.nl.

2 CRITERIA

In this section we will present different properties of curve skeletons.
These properties indicate the quality of the method on the one hand
and the significance for a comparison on the other hand. After a gen-
eral description of each property, they will be discussed under these
two aspects. Not all properties which will be discussed are on the final
criteria list. Whether a property is a final criterion or not and why it is
or isn’t is also part of this section.

The following criteria are final comparison criteria: Homotopy
(2.1), invariant under isometric transformations (2.2), thinness (2.4),
centered (2.5), junction detection (2.7), robustness (2.9), smoothness
(2.10), detail preserving (2.11), hierarchic (2.12) and efficiency (2.14).

2.1 Homotopy

The curve-skeleton should be topologically equivalent to the original
object [2]. An object is topologically equivalent to another object if it
has the same number of connected components, tunnels and cavities.
Because a curve skeleton is a 1-D representation of the original objects
it cannot preserve cavities. That is why they are not a relevant indicator
for homotopy in our case.

The homotopy of a skeleton is a direct indicator for the quality. If a
skeleton is topologically preserving, it is also a good representation of
the original figure. This can be seen in figure 1. As a main quality in-
dicator it is also a good aspect to compare skeletons. No matter which
method is used, the result can always be compared to the original un-
der this aspect.

Fig. 1. Example an homotopic skeleton which has been produced by
the ’Telea and Jalba’ method. The skeleton is topologically equivalent
to the original object which shown light grey in the background. Image
from [3]

36

2.2 Invariant under Isometric Transformations
If a methods yields the same result after the figure has undergone an
isometric transformation, for example a rotation, as the transformed
result of the original figure, it is invariant under isometric transforma-
tions. This is very important for skeletonization as the orientation of
the figure should not alter the skeleton itself.

This property can easily be checked for each method, so it is very
applicable for comparison.

2.3 Reconstruction
Reconstruction of the original object from the curve-skeleton is possi-
ble for example by computing the union of the maximal inscribed balls
at each curve-skeleton point [4]. The results of the reconstruction then
can be compared for each method. This is based on assumption that
the reconstruction result says something about the quality of the skele-
ton. This however is not the case since reconstruction is impossible
for some the best shape descriptors [5].

This fact excludes reconstruction from the comparison factors.

2.4 Thinness
Curve skeletons should be one dimensional. Or in other words as thin
as possible. The thinness depends on the extraction method. For voxel-
based methods the thinness of the result should be one voxel. For
mesh-based methods the result should be polyline skeleton [3].

This is the general principle of skeleton extraction and a important
property of skeletons. That makes thinness a good comparison crite-
rion.

2.5 Centered
Whether a skeleton is centered or not is a important characteristic of
curve-skeletons. The centeredness shows how representative a skele-
ton is with respect to the original object surface. The problem is
the definition of it. When is a skeleton centered and when not? A
very loose definition would be if the skeleton lies within the object
boundaries it is centered. A very strict definition would be if skele-
ton lies centered on the medial surface of the corresponding surface
patch [6][7]. Since in most cases exact centeredness is not required
the approximated middle of the two definitions is appropriate.

Centeredness can be checked visually and differences can be com-
pared by that, as seen in figure 2. Although the definition is vague and
most applications do not require exact centeredness, the property is a
useful indicator whether a skeleton is roughly centered or not.

Fig. 2. Left: Example of a centered skeleton which has been produced
by the ’Au et al.’ method. The skeleton is almost perfectly in the mid-
dle of the shoulder. Right: Example of an off-centered skeleton which
has been produced by the ’Au et al. (surface skeleton)’ method. The
skeleton is constructed lower than in left picture. Images from [3]

2.6 Reliability
A method is reliable if every point on the object surface is visible from
at least one point on the curve-skeleton. This property is application
specific and important for example for virtual navigation [8].

It can be tested for example by checking for every surface point
whether it is visible or not and then compare the amount of visible

points. But as high reliability is only needed in very specific applica-
tions it does not qualify as a general comparison criterion.

2.7 Junction Detection

Methods can be divided into two classes: Methods that can detect junc-
tions before or during the extraction [9] and methods that detect joints
after the extraction [10]. Detecting joints after the extractions is triv-
ial because junctions are skeleton points which have more than two
neighbors. However these junction might have no significance with
respect to the original shapes. If the skeleton is used for animation
it can be the case that the skeleton joints should correspond to object
joints to animate the object based on the skeleton.

Given the fact that junction detection is such a dividing factor, it is
added to the list of criteria.

2.8 Connected

Whether there the resulting skeleton has the same connectivity prop-
erties or not, is a consequence of the homotopy of the method. So a
single connected object should yield a single connected skeleton, in
that case the skeleton is connected.

This property can be derived from the homotopy so it is not added
to the list.

2.9 Robustness

A method is robust if it is insensitive to noise. That means a noise-free
object and the same object with noise should yield a similar result.
Robust methods should also produce equivalent skeletons for different
resolutions, an example for this is shown in figure 3. The robustness
partly counters the centeredness as perfectly centered skeleton only
depends on the medial surfaces which would make it very sensitive to
noise on the boundary surface.

Robustness can be very important, for example in medical applica-
tions and it is important to know whether a method is robust or not.
For these reasons it appears on the list.

Fig. 3. Left: Skeleton which has been produced by the ’Au et al.’ method
with 14k image points. Right: Skeleton with the same method with
231k image points. The two skeletons do not differ very much thus
the method is robust. Images from [3]

2.10 Smoothness

If the resulting curve-skeleton of a method is smooth, it does not con-
tain any discontinuities or extreme changes in curvature which are
introduced by the sampling of the input or the representation of the
skeleton itself. In other words, smoothness is a indicator of how neat
the skeleton is produced, as seen in figure 4.

This is not only useful from an aesthetic point of view but can also
carry importance in applications that need high quality skeletons. Be-
cause it introduces an additional quality aspect it is added to list of
final criteria.

SC@RUG 2013 proceedings

37

Fig. 4. Left: Example of a skeleton with an introduced change in cur-
vature which has been produced by the ’Au et al.’ method. The green
circle indicates the part where a curve has been falsely introduced into
the skeleton. Right: Example of a smooth skeleton which has been pro-
duced by the ’Au et al. (surface skeleton)’ method. The skeleton does
not have any false curves. Images from [3]

2.11 Detail Preserving

A skeleton extraction method is detail preserving if it captures details
of the model like bumps and small cavities. It is desirable that the
amount of details captured can be adjusted by the user so it matches
the requirements of the application. Theoretically this can be also used
as a noise filter [3] because if almost no details are captured, the noise
in that regions is also ignored. A good configuration is shown in figure
5.

This property makes the skeleton extraction more adjustable and it
is important to know if a method is capable to do it or not. That is why
it is on the list of final criteria.

Fig. 5. Example of a detail preserving skeleton which has been pro-
duced by the ’Telea and Jalba’ method. All details are captured well and
the skeleton reaches into all toes of the frog foot. Image from [3]

2.12 Hierarchic

If a method supports hierarchic relations, relations between skeletons
and/or joints are defined [11]. So for example if the shoulder joint
is rotated all the joints of the arm are translated to the corresponding
position. Or maybe with multi-resolution rendering the highest reso-
lution skeleton should have the property that it contains all the points
of the lower resolution skeletons.

It is very important for a lot of applications in computer animation
and visualization, so whether hierarchy is supported or not is selected
as a criterion.

2.13 Point Sets

Points sets are a description of a 3D object which do specify anything
about the connectivity or any other internal or external information.
This depends on the method itself, so if a method needs such informa-
tions, for example all thinning methods, it cannot handle point sets.

We can conclude that if a method requires any internal or external
information of the original object it cannot handle point sets as an
input. Whether this property holds or not can be derived from the
method, that is why it does not appear on final list.

2.14 Efficiency
Not only the quality of the skeleton is important also the time which is
needed to extract it can play an important role. If real-time computa-
tion is needed methods with a low time complexity are more likely to
be chosen over methods with a high complexity, even if the results are
not as good as they could be.

This is an important property which should be known for any pro-
gram or algorithm, just to get an indication of computation time which
will be needed. We consider it is also as a comparison criteria.

3 METHODS

The methods to extract curve skeletons from a 3D shape can be clas-
sified into four groups: thinning and boundary propagation, distance
field methods, geometric methods and general field methods. The four
groups are explained detailedly in this section.

3.1 Thinning and Boundary Propagation
Thinning is an iterative and discrete process, in every step voxels from
the boundary are removed. The process stops if the required thinness
is obtained. To determine whether a voxel is to be removed, the algo-
rithm determines if the voxel is a simple point. A simple point has the
property that removal of a simple point does not affect the topology
of the object [2]. Another important property is that the calculation
for determining a voxel as simple point is done locally, thus thinning
algorithm are fast.

The process of thinning starts at the boundary of an object and
stops when all simple points in the object are removed. To determine
whether a voxel is a simple point, masks are applied to the boundary
voxel. The mask is usually of size 3x3x3 and contains conditions for
the topology. Figure 6 shows the process of thinning for a 2D object.

A minor problem are the end points of curve skeletons. These points
are classified as simple points, thus it is necessary to implement addi-
tional conditions to preserve the end points.

There exist several variations on the thinning method based on the
detection and removal of simple points.

In Directional Thinning the algorithm is only sensitive to voxels at
a particular site, the algorithm is than repeated for other directions.
Directional thinning is sensitive to the order of these directions and
therefore not rotation invariant. Also the resulting skeleton may not be
centered within the object.

Subfield sequential thinning methods create a set of subspaces (or
subfields), these subfields are iterated independently.

The last variation are fully parallel algorithms. These algorithms
inspect more than just the 26 local neighbors and can remove all un-
necessary boundary points in one iteration.

Fig. 6. The thinning process on an example 2D shape. Boundary points
are marked “B” at the beginning of each iteration and then removed if
they are simple. Image from [1]

Curve Skeletonization of 3D Shapes – P.M.D. Otterbein and M.C.P.M. Scheepens

38

3.2 Distance Field
The distance field is the smallest distance from interior point P to the
boundary B(O) of a 3D object O: D(P) = minQ∈B(O)(d(P,Q)). An
example for the distance metric d is Euclidean distance. Most algo-
rithms based on a distance field use the following steps to calculate a
skeleton: find ridge points (local maximums, saddle points) in the dis-
tance field), prune insignificant extreme points and finally re-connect
disconnected points.

The distance field helps to find locally centered voxels. The locally
centered voxels are candidate voxels for the skeleton and can be found
on the ridges in the field. Several methods exist to find the ridges:
distance ordered thinning, gradient searching, geodesic front propaga-
tion, divergence computation, parameter controlled thinning or surface
shrinking.

The set of candidate voxels obtained by these methods can be quite
large and contains many insignificant voxels. During the pruning step
several methods can be used to sift the collection: thinning, sphere
coverage, boundary visibility or clustering.

Pruning results in disconnected voxels. In order to create a set of
1D curves we need to reconnect these voxels. Mostly used are well-
known graph algorithms like minimum spanning tree or shortest path.

The distance field methods can extract the medial surface accu-
rately, but can have difficulties in finding the curve-skeleton. The most
important advantage of distance field based methods are the low com-
putation time and the possibility to recycle the distance field for other
applications.

3.3 Geometric Methods
In the case that an object is represented by a mesh or a sets with points
geometric methods can extract the skeleton from the object.

The Voronoi diagram needs a mesh vertex description of the object.
Based on the mesh vertex the Voronoi algorithms calculates regions
that are closest to the generator element. The edges of the Voronoi
diagram are an approximation of the medial surface of the edge. By
using a special erosion on the obtained Voronoi diagram we get the
curve skeleton.

It is also possible to fill the object with cores. The spread of a core
is maximal, the location and the radius are stored. The locations of the
center points can be used for the skeleton.

The methods described above are classified as medial-axis based
methods. Medial axis-based methods are very sensitive to noise and
need much computational time. Furthermore these methods do not
generate a skeleton but a medial surface. However, when a curve thin-
ning algorithm is applied, it is possible to derive the curve skeleton.

The Reeb graph is a method where the resulting graph has to be
mapped into 3D space, since the result is not a curve-skeleton and is
not in object space. The 1D structures in a Reeb Graph correspond to
critical points in the function that describes the gradient of the struc-
ture.

3.4 General Field Functions
General field functions are similar to distance field functions. Instead
of a distance measure field function a field measures from physics are
applied: potential field, electrostatic field or repulsive force functions.
The potential force is usually determined as the sum of potentials gen-
erated by the boundary of the object.

The curve skeleton is extracted similar to the distance field methods:
detect the local extreme points and connect. The extreme points can
be found in the calculated vector field for the force. In order to connect
detected extreme points a force following algorithm can be applied.

General field algorithms produce smoother curves for the skeleton
than distance based algorithms. Distance field only determines the
distance to the smallest distance to the boundary of the object, general
field receives input from more points on the boundary. The smoother
lines are considered an advantage over distance field algorithms. Fur-
thermore general field is less sensitive to noise, it uses more points as
input and thus can blur noise. A disadvantage is that general field is
computationally more expensive than distance field.

4 DISCUSSION

In this section we discuss the performance of the various methods
based on the ten properties we chose in the criteria section.

4.1 Thinning and Boundary Propagation

Thinning methods are homotopic. Simple points are defined as points
which do not affect the topology and thinning only removes voxels
with this property.

As mentioned earlier, directional thinning is sensitive to transfor-
mations. That means that the order of the directional transformations
in the method influences the result.

Thinning does not guarantee that a thin (1D) result is created. In the
case that an even number of points exist, most variants stop when the
skeleton has a width of two voxels. For example with two voxels re-
moval the removal of the last simple points would mean that no voxels
would remain, so two voxels are the end-state.

Centeredness is not guaranteed by thinning methods.
Some thinning methods can directly detect junctions, others use a

post-processing step.
Thinning is not a robust method since it very sensitive to noise.
Implementations of that method cannot deliver smooth skeletons,

because of the discrete input and the sensitivity to noise.
Thinning methods remove lots of fine details, thus do not preserve

details. Furthermore the discretization can create artifacts in the re-
construction.

Thinning methods cannot store hierarchical information, they either
remove or keep a pixel.

The time complexity of thinning depends on the number of input
voxels, it is almost linear. Most voxels are removed as simple points,
remaining voxels will return in every iteration.

Criterion Method performance
Homotopy yes
Invariant most variants
Thinness no
Centered some variants
Junction Detection some variants
Robustness no
Smoothness no
Detail preserving no
Hierarchic no
Efficiency good

Table 1. Performance of thinning methods on the criteria

4.2 Distance Field

Distance field methods themselves have no positive or negative homo-
topic property or guarantee thinness, since they do not extract a curve-
skeleton. The next steps in the process, pruning and re-connecting,
decide whether the result is homotopic and thin or not.

The invariance under isometric transformations is shown for dis-
tance fields methods.

Centeredness of the skeleton is achieved only by some variants of
the algorithms, it depends on the re-connecting of the candidate points.

Junction detection is only possible when special post-processing is
applied, the results from this process are sensitive to noise.

Also due to the sensitivity to noise, all Distance field methods are
not considered robust.

The distance field methods do extract smooth skeletons, appropriate
post-processing may introduce smoothness.

Details are preserved well by distance field algorithms, but the low
robustness can also introduce noise in the reconstruction.

Distance field methods can built a hierarchy of skeletons during the
pruning step, the number of selected voxels during pruning can be
adjusted, thus enabling to store the hierarchy.

SC@RUG 2013 proceedings

39

The complexity of the distance field algorithm is linear. The next
processing steps can have a higher complexity, but work with a small
set of points.

Criterion Method performance
Homotopy not applicable
Invariant yes
Thinness not applicable
Centered some variants
Junction Detection some variants
Robustness no
Smoothness some
Detail preserving yes
Hierarchic yes
Efficiency good

Table 2. Performance of distance field methods on the criteria

4.3 Geometric Methods
All presented geometric methods are homotopic.

The Reeb graph is not invariant under isometric transformations, it
uses for example a unidirectional height function. All other variants
are isometric.

Reeb graphs produce a 1D thin skeleton, Voronoi diagrams need a
post-processing step to acquire a 1D skeleton.

Centeredness is achieved by all algorithms of this group, but require
sufficient sampling.

Junctions are identified immediately by the geometric algorithms,
these are often used as centroids.

Geometric algorithms are not robust. The algorithms are sensitive
to noise.

Smoothness is usually lost during the post-processing step when
centroids are connected.

Geometric methods cannot preserve details well, as their focus is
on detecting shapes (Reeb graphs) or centroids.

Voronoi diagrams store hierarchical information by adjusting the
pruning step. Reeb graphs however do not contain hierarchical infor-
mation.

The complexity of the geometric methods is in most cases O(n2).

Criterion Method performance
Homotopy yes
Invariant most variants
Thinness some variants
Centered yes
Junction Detection yes
Robustness no
Smoothness some variants
Detail preserving no
Hierarchic some
Efficiency okay

Table 3. Performance of geometric methods on the criteria

4.4 General Field Functions
Field algorithms do not always create homotopic skeletons. The rea-
son is that numerical errors can occur.

General field algorithms are not sensitive to isometric transforma-
tions.

The algorithms for general fields force 1D thickness by following
forces or contours.

Centeredness is not a property of general field.
Joints are detected by the algorithms directly, since the joints are

critical points in the vector field.

General field is not very sensitive to noise, but problems because of
the numerical resolution of the space can occur.

Smoothness of the skeleton is given by the high number of averag-
ing steps in the algorithm.

General field methods use local critical points in their calculations,
which enables a high detail level.

General field algorithms create strict hierarchical skeletons, this is
achieved by variations of the number of seed points in the algorithm.

The computation time for general field methods is high. The com-
plexity is O(n2), but the data set is much larger as in other methods.

Criterion Method performance
Homotopy no
Invariant yes
Thinness yes
Centered no
Junction Detection yes
Robustness yes
Smoothness yes
Detail preserving yes
Hierarchic yes
Efficiency bad

Table 4. Performance of general field methods on the criteria

4.5 Final Discussion
We treated the skeletonization algorithms in a naive way. We only
compared the algorithms for their most important method. There are
many examples where ideas from the presented basic groups are com-
bined to a specialized skeleton extraction method. The advantages and
disadvantages of these combined algorithms were not investigated.

5 CONCLUSION

In this paper we have presented a comparison of 1D skeleton extrac-
tion methods. The methods were categorized by what criteria they
represent. Those criteria were:

1. Homotopy (2.1)

2. Invariant under isometric transformations (2.2)

3. Thinness (2.4)

4. Centered (2.5)

5. Junction Detection (2.7)

6. Robustness (2.9)

7. Smoothness (2.10)

8. Detail preserving (2.11)

9. Hierarchic (2.12)

10. Efficiency (2.14)

We discussed the meaning of the criteria and their effect on the
skeletonization process. We presented the four main categories of
skeletonization algorithms and briefly showed their way of operation.
The last step was that we compared the methods with our criteria and
listed advantages and disadvantages for them. Figure 7 shows how
the different methods perform on different objects and what a typical
skeleton of each method group looks like.

We concluded that there is not a “best” performing algorithm, the
performance depends on the criteria that are important to the user.
Thus it is possible to determine a suitable method for skeletonization
for your needs from our comparison, but we cannot recommend a sin-
gle algorithm which would perform best for all the different applica-
tions.

Curve Skeletonization of 3D Shapes – P.M.D. Otterbein and M.C.P.M. Scheepens

40

Fig. 7. Performance of the different algorithms visualized for various
shapes. Post-processing is not applied to the skeletons. Image from [1]

Although our comparison is not exhaustive, it establishes a basic
classification of the methods. A good extension of our work would be
to categorize every single major algorithm instead of general methods.

Finally we hope that our findings may stimulate the development
of efficient algorithms that exploit the desirable properties of each
method group.

ACKNOWLEDGEMENTS

The authors wish to thank Alexandru Telea for his valuable input as an
expert. Furthermore we would like to thank the staff and reviewers of
SC@RUG 2013 for the helpful input they provided.

REFERENCES

[1] N. D. Cornea, D. Silver, and P. Min, “Curve-skeleton properties, appli-
cations, and algorithms,” Visualization and Computer Graphics, IEEE
Transactions on, vol. 13, no. 3, pp. 530–548, 2007.

[2] T. Y. Kong and A. Rosenfeld, “Digital topology: introduction and sur-
vey,” Computer Vision, Graphics, and Image Processing, vol. 48, no. 3,
pp. 357–393, 1989.

[3] A. Sobiecki, H. C. Yasan, A. C. Jalba, and A. C. Telea, “Qualitative
comparison of contraction-based curve skeletonization methods.” unpub-
lished.

[4] N. Gagvani and D. Silver, “Animating volumetric models,” Graphical
Models, vol. 63, no. 6, pp. 443–458, 2001.

[5] P. Shilane, P. Min, M. Kazhdan, and T. Funkhouser, “The princeton
shape benchmark,” in Shape Modeling Applications, 2004. Proceedings,
pp. 167–178, 2004.

[6] G. Sanniti di Baja and S. Svensson, “A new shape descriptor for surfaces
in 3d images,” Pattern Recognition Letters, vol. 23, no. 6, pp. 703–711,
2002.

[7] T. K. Dey and J. Sun, “Defining and computing curve-skeletons with me-
dial geodesic function,” in ACM International Conference Proceeding Se-
ries, vol. 256, pp. 143–152, 2006.

[8] D.-G. Kang and J. B. Ra, “A new path planning algorithm for maximiz-
ing visibility in computed tomography colonography,” Medical Imaging,
IEEE Transactions on, vol. 24, no. 8, pp. 957–968, 2005.

[9] S. Svensson, I. Nyström, and G. S. di Baja, “Curve skeletonization of
surface-like objects in 3d images guided by voxel classification,” Pattern
Recognition Letters, vol. 23, no. 12, pp. 1419–1426, 2002.

[10] G. J. Brostow, I. Essa, D. Steedly, and V. Kwatra, Novel skeletal repre-
sentation for articulated creatures. Springer, 2004.

[11] N. D. Cornea, D. Silver, X. Yuan, and R. Balasubramanian, “Comput-
ing hierarchical curve-skeletons of 3d objects,” The Visual Computer,
pp. 945–955, 2005.

SC@RUG 2013 proceedings

41

Simplified graph representation by bundling

Jurgen Jans and Ralph Kiers

Abstract—Visualizing large graphs which contains many nodes and edges can be very difficult. Since many data sets contain both
hierarchical as non-hierarchical relations between the data items many edges need to be drawn. Drawings of such graphs generally
suffer from visual clutter caused by edges that intersect or overlap each other making it difficult to read the relationships between
nodes. In this paper we will discuss the following different edge bundling techniques: Hierarchical edge bundles[2], Force directed
edge bundling[3], winding roads[6] and Kernel density estimation[4]. We will compare these techniques based on the quality of their
results, the scalability (for large graphs), the computational speed and the simplicity of implementation. In the end we will see that the
Hierarchical edge bundling technique[2] is the best method to use when the dataset contains hierarchical relations, in all other cases
the Kernel density estimation[4] is the fastest, the winding roads[6] is the best for large datasets and Force directed edge bundling[3]
for node-link diagrams with low level relations,

Index Terms—graph bundling, hierarchical edge bundles, force directed edge bundling, winding roads, kernel density estimation,
edge bundling, curves, graph visualization, tree visualization, node-link diagrams, hierarchies, treemaps, comparison.

1 INTRODUCTION

Graphs are widely used to visualize big sets of data in many research
areas such as: biology, microelectronics, social sciences, data min-
ing and computer science. Many data sets contain both hierarchical
as non-hierarchical components. The hierarchical components are for
example parent-child relations between the data items while the non-
hierarchical components are additional relations between the data sets.
Examples of such datasets are:

• A hierarchically organized software system, e.g., source code di-
vided into directories, files, and classes, and the relations be-
tween these elements, for instance, dependency relations.

• Social networks comprised of individuals at the lowest level of
the hierarchy and groups of individuals at higher levels of the
hierarchy. Relations could indicate if (groups of) people are ac-
quainted and what the nature of their relationship is.

• A hierarchically organized citation network consisting of publi-
cations at the lowest level of the hierarchy and departments and
institutes at higher levels of the hierarchy. Links between publi-
cations indicate one publication citing the other.

Since both the hierarchical as non-hierarchical components are visual-
ized as edges between the nodes (data items) in a graph, many edges
need to be drawn. Especially since improvements in the data acqui-
sition techniques are only increasing the size and complexity of the
acquired graphs. This will cause problems when we want to visualize
these graphs in a straight-forward way by just drawing straight lines
between the nodes. Many lines will intersect or overlap each other re-
sulting in much cluttering and thus decreasing the readability of such
graphs. Fig. 1 shows an example of the visual clutter that will occur
when the edges are drawn in a straight-forward manner. Many meth-
ods have been developed in order to reduce the cluttering of the edges
in the graph. They all aim to bundle spatially groups related, close,
edges of the graph into curved, dense, bundles, thereby reducing clut-
ter and making the overall graph structure easier to see. The results
of the different algorithms seem to produce similar results when been
used on similar datasets however differences between these algorithms

• Jurgen Jans is a MSc. Computing Science student at the University of
Groningen, E-mail: jurgenjans480@gmail.com.

• Ralph Kiers is a MSc. Computing Science student at the University of
Groningen, E-mail: r.s.kiers@student.rug.nl.

Fig. 1: Displaying adjaceny relations of a call graph(caller = green,
callee = red) using (a) a balloon tree, (b) a treemap.[3]

exist in terms of the computational speed, the simplicity of implemen-
tation, and the quality of the drawings output.

In this paper, we will focus us on the following four edge bundling
algorithms: Hierarchical edge bundles[2], Force directed edge
bundling[3], Kernel density estimation[4] and winding roads[6]. We
will compare and discuss them from the perspective of desirable qual-
ity criteria such as: the generation of uncluttered drawings, the scala-
bility (for large graphs), the computational speed and the simplicity of
implementation. In this paper we will describe the biggest and most
evident differences between the four above mentioned algorithms. We
will also look at what the different algorithms have in common.

The remaining part of this paper is organized as follows. In section 2
we give an overview of the existing techniques for tree visualization
and edge bundling. Section 3 we describe the four graph bundling al-
gorithms on which we have focused us in detail. Section 4 gives a
comparison of the graph bundling techniques as described in the pre-
vious section. Finally, section 5 presents the conclusions and explains
for which specific case each technique is most suited.

2 PREVIOUS WORKS

Since the different edge bundling algorithms all require a graph as
input in order to bundle the edges, we will first give an overview of the
different techniques that are commonly used for visualizing graphs.
After this we will have a look at related methods that reduce clutter in
graphs.

42

Fig. 2: Common tree visualization techniques. From left-to-right:
rooted tree, radial tree, balloon tree and treemap layout.[3]

2.1 Tree Visualization Techniques
The rooted tree as shown in Fig. 2a is one of the most well-known tree
visualizations. It is a tree in which one node is distinguished from the
other nodes and is called the root. It is best used for showing the hier-
archy in a data set. The relationship between parent and child nodes is
shown by lines (edges) that connect the nodes. The rooted tree shown
in Fig. 2a has a top-down layout were the root is located in the top of
the tree other variants are for example a left-to-right layout. Another
variant is the radial layout which shown in Fig. 2b. In this layout the
root node is placed in the center of the tree, the other nodes are placed
in concentric circles according to their depth in the tree. The balloon
tree(Fig. 2c) is a special type of the radial tree in which the sibling
subtrees are included in circles attached to the parent nodes. The last
type of graph shown in Fig. 2d is the treemap layout. This representa-
tion aims to make more efficiently use of the available space by using
a more space filling layout technique that displays a tree structure by
means of enclosure. Although it makes more optimal use of the avail-
able space it also makes it more difficult for viewers to perceive the
hierarchical relationship between nodes.

2.2 Edge bundling Techniques
One of the first attempts to reduce clutter in graphs visualizations in
order to increase the readability of a graph was done by the graph
drawing community. They suggested that one should try to bound the
number of edge crossings and also to avoid node-edge overlaps. This
resulted in multiple edge routing techniques as described by Dobkin et
al in [1] or Dwyer and Nachmanson in [8]. Although these approaches
efficiently reduce edge clutter by avoiding node-edge overlaps, they
do not help to identify high level edge patterns.

Another way to reduce clutter is by simplifying the graph prior to lay-
out by creating metanodes of nodes and edges that are strongly con-
nected as proposed by J.Abello, F. van Ham, and N.Krishmann in [5].
But an undesirable effect of this simplification process is that it also
changes the node positions which is critical when the positions encode
information.

3 BUNDLING METHODS

In this section we will have a look at the different edge bundling algo-
rithms as they are described in the corresponding papers. For each of
the algorithms we will describe their working, provide some examples
and describe their advantages and disadvantages. We will discuss the
algorithms in chronological order, this means in the order that the pa-
pers in which they have been published were released. Thus we start
with Hierarchical edge bundles, followed by the Force-Directed Edge
Bundling and Winding roads and we will conclude with the Kernel
Density Estimation.

3.1 Hierarchical Edge Bundles
The hierarchical edge bundle technique was first published by
D.Holten in [2]. One of the biggest advantages of this approach is
that it is usable in conjunction with existing tree visualization tech-
niques. This means that the adjacency edges can be bundled without
needing to change the hierarchical layout of the graph. This is done by
using the path along the hierarchy between two nodes that have an ad-
jacency relation as the control polygon of a spline curve. An example

Fig. 3: “Bundling adjacency edges by using the available hierarchy.
(a) Straight line connection between P0 and P4 ; (b) path along the
hierarchy between P0 and P4 ; (c) spline curve depicting the con-
nection between P0 and P4 by using the path from (b) as the control
polygon.”[3]

Fig. 4: “The bundle in (a) might contain each edge depicted in (b). (c)
and (d) show how different values of β (red = 1, green = 2

3 , and blue
= 1

3) can be used to alter the shape of spline curves. As shown in (e),
a fairly high bundling strength (= 0.8) can be chosen to retain visual
bundles while still resolving ambiguity.”[3]

is shown in Fig. 3 Fig. 3a shows the adjacency relation between the
nodes P0 and P4. A path along the hierarchy between the two nodes
can be made by making use of the least common ancestor as shown in
Fig. 3b. Now that we have a path between the two nodes, the adjacency
relation can be turned into a spline curve using the path as the control
polygon (Fig. 3c). The strength with which the edges are bundled is
controlled by a parameter β with β ∈ [0,1]. This parameter controls
the amount of bundling by straightening the spline curve. An example
is shown in figure Fig. 4. Fig. 4a shows that bundling ambiguity can
occur when trying to bundle the adjacency edges shown in Fig. 4b us-
ing a wrong value of β .Fig. 4c and Fig. 4d show how different values
of β (red = 1, green = 2

3 and blue = 1
3) can be used to alter the shape of

the spline curves. Fig. 4e shows the best solution in this case by using
a bundling strength of β = 0.8. Fig. 5 shows how increasing the value
β has influence on the bundling strength of the curves. The higher the
value is set the smaller the bundles get since the curves are stronger
bundled together. This way a trade off can be made between showing
the low-level and high-level adjacency relations.

3.2 Force-Directed Edge Bundling
Force-Directed Edge Bundling (FDEB)[3] is a self-organizing, force-
directed graph bundling technique designed to bundle general graphs
without the use of a hierarchy or control mesh. The main advantage
of FDEB is that there is no need for a hierarchical-clustering scheme
or spanning-tree generation method, which makes sure all the high-
level edge data is reflected in the graph. Furthermore, The behavior of
the algorithm is easy to understand due to the straightforward physics
model, and the layout criteria of the graph is easily modified, which
will be explained later.

SC@RUG 2013 proceedings

43

Fig. 5: Radial layout of a call graph(caller = green, callee = red), with an increasing bundling strength β (from left to right). A high β provides
high-level the adjacency relations, while a low β provides low-level adjacency relations. [3]

Fig. 6: Two interacting edges P and Q, with the spring force Fs and
electrostatic force Fe shown for p2.[3]

FDEB makes use of spring forces and edge compatibility measures in
oder to make a bundled graph. FDEB initially starts of as a node-link
diagram with straight edges. In order to change these straight edges
into a shape, such that they represent a bundled graph, the edges are
subdivided into segments. Fig. 6 shows the subdivision of two edges
that influence each other along with their subdivision points and the
spring forces acting upon point p2. When changing the shape of an
edge all the subdivision points can move, but the end points stay at a
fixed position. E.g. the points P0, P1, Q0 and Q1 in Fig. 6 stay fixed
and points p0 . . . p3, q0 . . .q3 can move. The attracting spring force
Fs = kp‖pi − pi−1‖ is calculated for each pair of neighboring points
p ∈ {p0 . . . pn−1}, with n being the number of subdivision points. The
local spring constant kp used in the calculation of Fs is calculated by
kp = K

‖P‖ , where K is a global spring constant used to control the
amount of bundling, ‖P‖ is the initial(straight) length of edge P. The
other spring force working on the subdivision points is the electrostatic
force Fe =

1
‖pi−qi‖ , where 0 ≤ i < n. The electrostatic force works be-

tween two corresponding subdivision points, e.g. p2 and q2 in Fig. 6,
an alternative to this is to calculate Fe for each pair (p,q), with p ∈ P
and q ∈ Q.

An other force on the subdivision points comes from edge compatibil-
ity measures. Edge compatibility measures determine how much two
edges interact with each other based on a certain criteria. Suppose we
have k such criteria, then the total edge compatibility for two edges P
and Q can be defined as

Ce(P,Q) =
k−1

∏
i=0

Ci(P,Q)

where Ci(P,Q) is a compatibility measure with Ci(P,Q)∈ [0,1] and Ce
is the total edge compatibility. An example of a compatibility measure
is the angle complexity Ca(P,Q), which gives a measure for the angle

between edges P and Q. Ca(P,Q) is defined as

Ca(P,Q) =

∣∣∣∣cos
(

arccos
(

P ·Q
‖P‖‖Q‖

))∣∣∣∣

with Ca(P,Q) ∈ [0,1]. The following edge compatibility measures are
used: angle compatibility, scale compatibility, position compatibility
and visibility compatibility. For a definition of the compatibilities refer
to [3].

Now that all the forces are defined it is possible to define the combined
force Fpi as

Fpi = kp (‖pi−1 − pi‖+‖pi − pi+1‖)+ ∑
Q∈E

Ce (P,Q)

‖pi −qi‖

with E the set of edges interacting with edge P, but excluding edge
P itself. Using Fpi the algorithm to compute the bundled graph is
as follows: Perform a fixed number of cycles, each cycle performs a
number of iterations. During an iteration pi is moved in the direction
of Fpi with a step size S. The algorithm starts with the initially with P0
subdivision points, step size S0, number of iterations I0 and number of
cycles C. After each cycle the number of subdivision points is doubled,
the step size is halved and the number of iterations is decreased. The
paper uses the initial values P0 = 1, S0 = 0.04, C = 6 and I0 = 50, each
cycle the number of iterations was decreased by a factor of 2

3 .

Fig. 7: Color mapping for edge density.[3]

Before rendering the graph is smoothed by convolving the subdivision
points with a Gaussian kernel. Rendering of the graph was done us-
ing the color map shown in Fig. 7, with low to high representing the
amount of edges going through a particular pixel. A final result of the
edge bundling algorithm is shown in Fig. 8.

3.3 Winding Roads
The winding roads edge bundling technique was first published in [6].
The main idea of this approach is to use edge routing in order to bundle
edges. It basically consists of two steps. First a grid is used to compute
the shortest routes for each edges, when this is done frequently used
paths can be used to bundle the edges.

In order to compute the shortest paths of each original edge it is neces-
sary to create a grid graph which connect all the original nodes. This
is done by dividing the graph plane into cells using nodes positions.
Different grid graphs that can be used are shown in Fig. 9 which is
generated on the 2000 air traffic network.

Simplified graph representation by bundling – Jurgen Jans and Ralph Kiers

44

Fig. 9: “Grid graphs generated on the 2000 Air Traffic (AT) network with (a) a quad tree (37395 nodes/69102 edges), (b) a Voronoı̈ diagram
(4531 nodes/13558 edges) and (c) the hybrid quad tree/Voronoı̈ approach (10146 nodes/30315 edges).”[6]

Fig. 10: “(a) Different clutter reductions of a graph representation, (b) using edge-edge clutter reduction method, (c) avoiding node-edge overlap
and (d) uncluttering dense zones.”[6]

Fig. 8: “US airlines graph (235 nodes, 2101 edges) (a) not bundled and
bundled using (b) FDEB with inverse-linear model, (c) GBEB, and (d)
FDEB with inverse-quadratic model.”[3].

The first grid graph as shown in Fig. 9a is a quad tree. In a quad tree,
the plane is divided into four parts until it contains at most one ele-
ment. This approach is efficient in terms of computation time because
the complexity is O(‖V‖ log(‖V‖)) but it generates a large grid with
37, 395 nodes and 69, 102 edges for the 2000 AT network example.

Another grid graph that can be used is the Voronoı̈ diagram (Fig. 9b).
In a Voronoı̈ diagram, cells are regions of the plane in which the points
of a cell are closer to the cells node than to any other node. In the
example image a constrained Voronoı̈ diagram is used instead of the
classical Voronoı̈ diagram since the classical diagram does not neces-
sary avoid edges that are overlapping nodes.This method generates a
small grid graph (4, 531 nodes/13, 558 edges for the 2000 AT network)
and can be computed in O(‖V‖ log(‖V‖)) time. But the downside is
that it generates large cells for sparse regions, this will result in large

detours during the routing process.

Therefore the best solution is to use a hybrid algorithm based on both
quad trees and Voronoı̈ diagrams (Fig. 9c). In this algorithm, the size
of quad tree cells are parametrized to generate different levels of clut-
ter reduction and then then the Voronoı̈ diagrams are used to construct
the final grid graph. Since the quad tree adds O(‖V‖) nodes, the
O(‖V‖ log(‖V‖)) time complexity is preserved. Therefore, the re-
sulting grid graph is of reasonable size (10, 146 nodes/ 30, 315 edges
on 2000 AT network).

The next step is to route the edges in the original graph onto the grid
that we have discussed in the previous step. This idea can be best
explained using a metaphor of roads and highways. Regular roads
will be transformed in to highways if they are highly used. This
can be done by first computing all the shortest paths between the
linked nodes in the original graph using Dijkstra’s shortest paths al-
gorithm. Next we can adjust the weights of every edge according
to the number of shortest paths that pass through this edge of the
grid. Reducing the weight of an edge is equivalent to transforming
it into a highway, since using that edge enables it to go faster from
one point to another. Finally a shortest path for every edge of the
original graph can be computed and the weights can be changed ac-
cordingly. This results in new edge bundles since the new distance
matrix of the graph promotes frequently used edges. Since Dijkstra’s
algorithm is used for finding the shortest paths the time complexity is
O(|V grid‖‖Egrid‖+‖V grid‖2log(‖Egrid‖)).

With the obtained weighted shortest paths it is possible to define dif-
ferent levels of clutter reduction by either adapting edge weights or
avoiding a particular path. Fig. 10 shows different levels levels of clut-
ter reduction. Fig. 10b shows the edge-edge clutter reduction. This re-
duction only reduces the clutter that is caused by edges crossing other

SC@RUG 2013 proceedings

45

edges. The image clearly shows that blue edges are routed through
nodes of the network. To obtain this level of clutter reduction, each
edge of the grid graph needs to be considered when routing the edges.
In particular, edges linking original nodes to nodes of the grid graph
can be used when computing the shortest paths on the grid graph.

As mentioned before edge-edge clutter reduction only allows us to re-
duce the clutter due to edge crossings but still makes it possible for
edges to overlap other nodes including the original graph nodes. This
can be reduced by using the node-edge clutter reduction as shown in
Fig. 10c. This reduction simply forbids the edges to be routed through
the original graph nodes. When comparing this example with the edge-
edge clutter reduction, it is easy to notice that the blue edges this time
are routed around the original nodes in the graph and can only cross
the grid nodes.

The last clutter reduction method shown in Fig. 10d is the uncluttering
highly dense zones reduction. This cluttering reducing method im-
proves the clutter reduction by promoting paths to pass through sparse
regions. When looking at the example, it can be seen that all blue
edges have been routed around the dense subgraph (in the middle of
the figure). This makes the graph more readable since the density in
this part of the graph is already high since the graph contains many
cells in this region.

3.4 Kernel Density Estimation Edge-Bundling

Kernel density estimation edge-bundling (KDEEB)[4] is an image
based graph bundling technique for general graphs. KDEEB works
by re-sampling the edges into edge points, calculating the density
map and then moving the edge pixels in the directing of the gradi-
ent. KDEEB’s biggest advantages are: that it is an oder of magnitude
faster than state-of-the-art techniques, and the algorithm works on gen-
eral graphs.

KDEEB makes use of a density map ρ created through the use of ker-
nel density estimation (KDE)[7]. The density map will contain large
values where the edge density is high, and local maxima are located
roughly in the center of local areas with a lot of edges.

Using the density map ρ , a KDEEB operator B is defined as the solu-
tion to the following differential equation:

dx
dt

=
h(t)∇ρ(t)

max(‖∇ρ(t)‖,ε) (1)

for all points x in the graph drawing, where h(t) is the kernel band-
width and ε = 10−5 to prevent devision by zero. The gradient of the
density map ∇ρ is normalized, this limits the movements of ‖dx‖ to
h(t). If h(t) decreases in time the movement of points x ∈ G where G
is a graph drawing converges. Equation (1) is solved by computing ρ
iteratively and by moving the points x ∈ G in the direction of ∇ρ , if x
is not an edge endpoint.

The chosen kernel K for KDE, which is used to compute ρ is K(x) =
1−‖x‖2. The bandwidth h used for KDE changes each iteration step,
such that h= λ ihmax where i is the current iteration step and hmax is the
initial kernel bandwidth. hmax is set to the average inter-edge distance
in the input graph. λ is a reduction factor set such that λ ∈ [0.5,0.9].
Because λ < 1 it is easy to see that h(t) decreases with time. Fig. 11
shows some iterations of ρ as a normalized height plot and the corre-
sponding bundles graph images. As can be seen the density maps get
sharper with each iteration. An other example of the KDEEB algo-
rithm can be seen in Fig. 12. The graph bundling was done on a graph
containing 100k randomly generated edges. As can be seen, KDEEB
still creates a nicely bundled graph even though the graph consisted
out of a lot of edges that had no underlying connection.

Fig. 11: “Evolution of density map and corresponding bundling for the
US migrations graph.”[4]

Fig. 12: Edge bundling on a graph with 100k randomly generated
edges[4]

4 COMPARISON

Now that we have described the four different edge bundling tech-
niques, we can make a comparison between them. In this section
we will consider the different techniques in the same order as we de-
scribed them and discuss the pros and cons of each algorithm and what
makes them unique compared to the other methods.

The hierarchical edge bundling technique[2] is the fastest algorithm of
the four that we have discussed in this paper. This is due the fact that
this technique makes use of the existence of the hierarchy tree which
tells where the edges should be bundled, therefore it is the only single
pass edge bundling method. All the other bundling methods are iter-
ative and thus by definition slower and less easy to control. Another
big advantage of this technique is that it does not have any require-
ments about the used tree layout, it can be applied on different tree
layouts without the need to change them thus keeping the hierarchical
layout in touch. It also offers the user a trade off between visualizing
the low-level and high-level adjacency relations between the nodes by
using the β strength bundling value. The disadvantage however is that
since this method extensively makes use of a hierarchy tree, it is only

Simplified graph representation by bundling – Jurgen Jans and Ralph Kiers

46

suitable for compound graphs. That is the graph should both have hier-
archical and association relations. Another disadvantage is that bundle
overlap may occur in cases where the layout contains a large number
of collinear nodes.

The force-directed edge bundling technique[3] is an iterative method
but easy to implement. Customizable behaviour can be added by
adding or removing edge compatibility measures. This method is
probably the slowest method of the four discussed in this paper but
offers a good opportunity to make it faster since each edge pair in-
teraction can be calculated in parallel. Therefore this method can be
parallelized although this is not a trivial thing to do. The downside of
this method is that it can only operate on node-link diagrams which
makes it less flexible as for example the hierarchical edge bundle tech-
nique. Another downside is that this technique is not very suitable to
be used with real world graphs due to the high data complexity.

The winding roads edge bundling technique [6] offers a good level of
clutter reduction combined with a good computation performance. It
is one of the few methods which is also very suitable for drawing scale
free networks (a graph whose degree distribution follows a power law)
and good for identifying relationships and high level edge patterns
even in real world graphs with a high data complexity. Another ad-
vantage of this method is that it guarantees that no edge-node overlaps
will occur in the resulting graphs and moreover that the node positions
wont be changed which makes it very suitable for graphs in which they
position of the nodes are important because they contain important in-
formation like for example geometric graphs. It is also able to remove
edge cluttering in high density areas by bundling the edges in sparse
regions instead. A downside however is that this method requires the
use of a grid graph which therefore adds additional nodes and edges to
the graph, increasing it’s total size.

The Kernel density estimation edge-bundling technique [4] is more
similar to the winding roads technique [6] but this method is paral-
lelized which makes it faster then the other iterative methods. Ac-
cording to [4] this method is 4 times faster than the force-directed
edge bundling technique[3] and 2 times faster than the Winding roads
technique [6]. When comparing the results of this method with the
other methods it’s clearly noticeable that the bundling is a lot tighter
than the force-directed edge bundling technique[3] and the hierarchi-
cal edge bundling technique[2]. Fig. 13 shows a comparison of the
result obtained with this method with the result of same graph using
the force-directed edge bundling technique[3]. There is also no need
for extra information, such as the edge compatibility measures used by
force-directed edge bundling technique[3].

5 CONCLUSION

In this paper we have discussed four different edge bundling
techniques: Hierarchical edge bundling[2], Force directed edge
bundling[3], winding roads[6]and Kernel density estimation[4]. We
have started with explaining how each technique is working and later
on elaborated further by making a comparison between them where
we discussed the different properties of each method and in which way
they differ from each other. From this we can conclude that in case you
have a compound graph containing both hierarchical and association
relations, the only method that is suitable to use is the Hierarchical
edge bundling technique[2] which is besides also the fastest method.
In case of a general graph one of the three other techniques can be
used. The best choice in this case depends on the type of graph, the
performance and the amount of detail that the resulting graph should
contain (high level or low level relations). When the graph to be bun-
dled is a real world graph or a scale free network to best choice would
be the winding roads technique [6] since this method is the best at vi-
sualization high level patterns in graphs with a high data complexity.
If the graph is a node link diagram and you want to show the low level
relations than the force-directed edge bundling technique[3] would be
the best choice. In all other cases the Kernel density estimation edge-
bundling technique [4] should be used since this algorithm is paral-

(a) Force-directed edge bundling

(b) kernel density estimation

Fig. 13: Comparison result US airlines[4]

lelized and therefore has the best performance of the three iterative
methods.

REFERENCES

[1] D.Dobkin, E. Gansner, E. Koutsofios, and S.North. Implementing a
general-purpose edge route. Proc. Graph Drawing 1997 (GD97) (1998),
2:262271, 1998.

[2] D. Holten. Hierarchical edge bundles: visualization of adjacency relations
in hierarchical data. IEEE Transactions on Visualization and Computer
Graphics, 12(5):741–748, 2006.

[3] D. Holten and J. J. van Wijk. Force directed edge bundling for graph
visualization. Comp. Graph. Forum, 28(3):983–990, 2009.

[4] C. Hurter, O. Ersoy, and A. Telea. Graph bundling by kernel density esti-
mation. Comp. Graph. Forum, 31(3):865–874, 2012.

[5] J.Abello, F. van Ham, and N.Krishmann. Askgraphview: A large graph
visualisation system. IEEE Transactions on Visualization and Computer
Graphics, 12(5):669676, 2006.

[6] A. Lambert, R. Bourqui, and D. Auber. Winding roads: routing edges into
bundles. Comp. Graph. Forum, 29(3):853–862, 2010.

[7] B. Silverman. Density Estimation for Statistics and Data Analysis. Mono-
graphs on Statistics and Applied Probability 26. 1992.

[8] T.Dwyer and L. Nachmanson. Fast edge-routing for large graphs. Proc.
Graph Drawing 2009 (GD09), 2, 2010.

SC@RUG 2013 proceedings

47

Push techniques and alternatives in the mobile phone browser

Erik Bakker, and Mark Kloosterhuis

Abstract— Focussing on websites for the mobile phone browser is also part of web development. Without the need to download
and install a mobile phone app it is possible to create a mobile phone website where people are able to chat live with eachother.
Displaying new information on a mobile phone website without the need to reload the entire webpage is researched in this paper.
This is also called bidirectional communication.

To create a chatbox mobile phone website websockets can be used to achieve this bidirectional communication. There are
several alternatives for websockets. In this paper we discuss websockets, Ajax and Comet as alternatives for websockets. These
three techniques will be reviewed and compared based on performance, how easy it is to implement them on client side and mobile
phone browser support.

Not every mobile phone browser is compatible with websockets without the need to download and install third party libraries.
Every mobile phone browser which is able to handle the XMLHttpRequest object is able to use the Ajax and Comet techniques,
which is almost every mobile phone browser.

Three mobile phone browsers are used to test the three different techniques: Chrome for Android, Firefox for Android and
Opera Mobile for Android. The Android operating system is used as a mobile phone test environment.

Index Terms—Mobile phone browser, mobile web development, push messages, websocket, Comet, Ajax, no reload, webpage

1 INTRODUCTION

Web development has rapidly evolved during the last few years.
Static web pages which are linked together causes web browsers to
reload web pages. Nowadays the user wants a dynamic web page
(WEB2.0[12]) which displays information without much waiting time
for the user. [8]
Almost everybody owns a mobile phone with a standard mobile phone
browser on it to search for information on the internet. Web develop-
ment is therefore also focussing on mobile web development for the
mobile phone browsers, like firefox for Android, chrome for Android,
Opera Mobile, etc.
To create something like Google Talk[5] without downloading and in-
stalling a mobile phone app, a website can be used. Messages should
then be displayed on the webpage right after they are sended by an-
other user. This without the need to reload the whole web page. Con-
sidering the cost of internet bandwidth that comes with mobile phones
it is handy to only send the information that is needed.
Our research is focussing on mobile web development for the mo-
bile phone browser and dynamic web pages which uses techniques to
show information on a mobile phone web page without the need to
fully reload the mobile phone web page.
Before we can start to compare the techniques to show information
on a web page without the need to reload it, we start making a selec-
tion of the techniques. Then we select the most popular mobile phone
browsers which are compatible with the chosen techniques. Once we
have selected the techniques and the browsers we are able to make a
comparison between the techniques in respect to the browsers. The
comparison consist of an explanation of the techniques, which tech-
nique performance best, which technique is the easiest to implement
and platform compatibility. Then an implementation is given of the
techniques. Finally a conclusion is given.

• Erik Bakker, MSc student at University of Groningen, E-mail:
E.M.Bakker.4@student.rug.nl.

• Mark Kloosterhuis, MSc student at University of Groningen, E-mail:
markkl@gmail.com.

2 SELECTION

A study examined the effects of five web design features customiza-
tion, adaptive behavior, memory load, content density, and speed
based on user preference for web-based services.
The 2009 study by a HCI study [14] tested site designs for online
flight reservations. The results of this study are valuable because
insights into the relative importance to users of interface attributes can
help web developers increase adoption and retention rates, and boost
online revenues. As seen in figure 1 they found that the most preferred
feature was high speed, followed distantly by minimal memory load,
adaptive behavior, low content density, and customization features.
The selection that we are going to use consist of selecting the
techniques which are able to show information without the need to
reload the web page to increase the overall speed of the web pages.
Also selecting the mobile phone browsers which are compatible with
all the selected techniques: websockets, Ajax and Comet.

Fig. 1. Relative importance of interface features. [14]

48

2.1 Techniques
The techniques we are going to select need to meet the following re-
quirements.

• The technique must be compatible on a mobile phone browser
without needing to download and install other software to func-
tion properly.

• The technique must be used by many not mobile phone WEB2.0
web pages. Thus a popular technique.

One of the first techniques that can be considered is Ajax. Ajax which
uses javascipt, can be executed on a mobile phone browser without
the need to download and install other software. Ajax is used by many
not mobile phone WEB2.0 web pages.
The second one is Comet, also known as reverse Ajax. This technique
also uses javascript and can be executed on a mobile phone browser
without the need to download and install other software.
The last one is websockets. This is a relative new technique within
mobile phone browsers. It is not yet supported by all modern mobile
phone browsers, but since the end of the year 2012 several browsers
are compatible with websockets by default.

There are much more techniques available, but we will discuss
only these three.

2.2 Mobile phone browsers
As explained in the previous chapters the mobile phone browsers are
selected on popularity and compatibility with the techniques. The
browsers that are popular are Android browser, Blackberry browser,
Opera Mobile, Chrome for Android, Firefox for Android and iOS
Safari. The most recent versions of these browsers do not all sup-
port websockets. [4] We have selected the following mobile phone
browsers:

• Chrome for Android, version >25.0

• Firefox for Android, version >19.0

• Opera Mobile, version >12.1

2.3 Operating System
There are several different operating systems available for mobile
phones. The most popular ones are iOS, Android and Blackberry.
We have selected Android as our operating system for testing envi-
ronment. The version of Android that we are using is 4.1.2.

3 COMPARISON

In the previous section we discussed the selection of the several tech-
niques, the selection of the several testing mobile browsers and the
operating system. In the next section we will compare the techniques
on how they work, performance, compatibility and how easy it is to
implement it on clientside.

3.1 Techniques
Three of the main techniques for web developers when developing an
interactive web appplication are WebSockets, Comet and Ajax. The
next section will discuss the working of the techniques.

3.1.1 Ajax
The classic web application uses HTTP requests to communicate with
the web server. When the user requests a web page, the server sends
the HTML code, CSS style sheet code, and JS code at once. When
the user fills in a form and submits it, the information is send to the
web server and the web server rebuilds the web page. The web server
then sends the web page back to the user.

The first steps to set up an Ajax webpage are equal to a classic
webpage. Request a web page via a HTTP request, the Javascript
code, HTML code, and CSS code are returned from the web server.

Additional Javascript code is send from the web server to the web
browser, which include the javascript code that Ajax is using. Ajax
is able to generate HTTP requests without refreshing the web page.
Javascript sets up a XMLHttpRequest with the web server. The web
server then executes Application logic and returns the response to
the web page. Javascript then processes the response and updates the
DOM/CSS. See Figure 2

Fig. 2. Ajax technique. [10]

3.1.2 Comet

Fig. 3. Comet: how it works.

Comet also know as reverse Ajax is a Web application model that
enables web servers to send data to the client without having to ex-
plicitly request it. Developers can utilize Comet techniques to create
event-driven Web apps. Comet is actually an umbrella term for mul-
tiple techniques for achieving client-server interaction. All methods
have in common that they rely on browser-native technologies such as
JavaScript, rather than on proprietary plug-ins.
Figure 3 is a representation of how comet will work in practice. The

SC@RUG 2013 proceedings

49

browser request a long-lived request number 1. The server than sus-
pend the request untill an server-side event is triggered. The outcome
of the event is then send to the browser. Long-lived request number 1
completes. During the request is suspended a client is able to commu-
nicate with the server.

3.1.3 Websocket
The WebSocket Protocol[3] is designed to supersede existing bidirec-
tional communication technologies that use HTTP as a transport layer
to benefit from existing infrastructure (proxies, filtering, authentica-
tion). Such technologies were implemented as trade-offs between effi-
ciency and reliability because HTTP was not initially meant to be used
for bidirectional communication. The WebSocket Protocol attempts to
address the goals of existing bidirectional HTTP technologies in the
context of the existing HTTP infrastructure; as such, it is designed to
work over HTTP ports 80 and 443 as well as to support HTTP proxies
and intermediaries, even if this implies some complexity specific to
the current environment.
However, the design does not limit WebSocket to HTTP, and future
implementations could use a simpler handshake over a dedicated port
without reinventing the entire protocol. This last point is important be-
cause the traffic patterns of interactive messaging do not closely match
standard HTTP traffic and can induce unusual loads on some compo-
nents.

Fig. 4. Websockets: how it works

3.2 Mobile browser
We will only be testing and comparing the browsers that support all
three techniques: WebSockets, Comet and Ajax. There are no popular
Android browsers that do not support Comet or Ajax. But there are a
lot of browser/version that do not support WebSockets including the
stock browser in Android.
One of the main downsides of using Websockets on Android devices
is that the stock browser does not accommodate WebSockets. When
developers decide to make a web application wrapped inside a real ap-
plication like the Facebook app in Android, the developers rely on the
Android stock browser. This makes it for web developers impossible
to use websockets inside a webview without implementing third party
libraries in their applications.

3.2.1 Firefox for Android
Developed by the Mozilla Foundation, the open-source Firefox for An-
droid was previously known under its codename of Fennec - and it’s
come a long way since the early days. Designed to offer a familiar

interface to those who use Firefox on the desktop, it’s a powerful - but
memory-hungry - browser going through a rapid development cycle.

3.2.2 Chrome for Android
It may seem strange for Google to offer two distinct browsers for An-
droid, but Chrome is a lot different to the stock Android browser.
Based on the same open-source Chromium engine as the desktop ver-
sion, Chrome for Android provides a familiar environment for anyone
used to the software on other devices. Better still, it synchronises with
Chrome on desktops and laptops, providing access to saved tabs, pass-
words and browsing history. Untill April 2013 the Chromium team
worked together with Apple on Apple’s Webkit layout engine, In April
2013 the Chromium announced [2] that they will be forking the We-
bkit layout engine into Blink.

3.2.3 Opera mobile for Android
Opera was originally a paid-for browser, with a free advertising-
supported version. The firm made the decision to go completely free
some time ago, in the face of dropping market share against the likes
of Firefox and Chrome. Its mobile variants have long been popular
options for smartphones and featurephones, however, and continue to
perform well on Android. In February 2013 Opera announced that
they will stop developing there own Presto layout engine in favour of
Google’s Webkit fork Blink. [11]

3.3 Performance techniques
Performance is an important aspect of web development. Users are
very impatient and expect websites to load quickly. On mobile de-
vices, network usage is one of the biggest aspects concerning perfor-
mance. Carriers usually charge network usage per megabyte and mo-
bile broadband is still not accessable to most mobile users. This is why
we decided to focus our performance analysis on network usage, but
we did not limit ourselves to it. Some techniques have inherrent per-
formance limitations and are therefor discussed in the corresponding
sections.

3.3.1 Ajax
Since Ajax uses polling[1] to enable bidirectional communication,
the overhead is consistent over time. According to kaazing [9] the
overhead of a header is 871 bytes, depending on the configuration.
This includes the request en response header. See listing 1 and listing 2

GET /PollingStock/PollingStock HTTP/1.1
Host: localhost:8080
User-Agent: Mozilla/5.0 (Windows NT 6.2; WOW64)

AppleWebKit/537.31 (KHTML, like Gecko) Chrome
/26.0.1410.64 Safari/537.31

Accept: text/html,application/xhtml+xml,application
/xml;q=0.9,*/;q=0.8

Accept-Language: en-us
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive
Referer: PollingStock/
Cookie: showInheritedConstant=false;

showInheritedProtectedConstant=false;
showInheritedProperty=false;

showInheritedProtectedProperty=false;
showInheritedMethod=false;

showInheritedProtectedMethod=false;
showInheritedEvent=false; showInheritedStyle=false;

showInheritedEffect=false

Listing 1. HTTP request header[9]

Push techniques and alternatives in the mobile phone browser – Erik Bakker and Mark Kloosterhuis

50

HTTP/1.x 200 OK
X-Powered-By: Servlet/2.5
Server: Sun Java System Application Server 9.1_02
Content-Type: text/html;charset=UTF-8
Content-Length: 21
Date: Sat, 07 Nov 2009 00:32:46 GMT

Listing 2. HTTP response header[9]

What happens if 1000 clients are simultaneously polling every second?
The network throughput will then be (871 ∗ 1000) = 871000 bytes=
6968000 bits per second. That is 6.6 Mbps. This is only the headerdata
that is send and received. There is no data in it.

3.3.2 Comet

Comet uses long-polling[15] to enable bidirectional communication.
This means that the overhead counts when sending a request from the
client to the server and when the server sends data to the client. Other
than Ajax Comet is not polling for example every 2 seconds, but waits
for the server to send data over the long-lived request. The respon-
setime of the server depends on the application logic. If the server
for example responds every 4 seconds then the average overhead with
1000 clients is: (871/4) ∗ 1000 = 217750 bytes = 1742000 bits per
second. That is 1.6 Mbps.

3.3.3 Websockets

Websockets do not use polling to enable bidirectional communication.
Websockets use pushing [13] to enable bidirectional communication.
According to the websocket protocol rfc [3] the opening and closing
handshake looks like listing 3 and listing 4

GET /chat HTTP/1.1
Host: server.example.com
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==
Origin: http:/example.com
Sec-WebSocket-Protocol: chat, superchat
Sec-WebSocket-Version: 13

Listing 3. Websocket client handshake [3]

HTTP/1.1 101 Switching Protocols
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+xOo=
Sec-WebSocket-Protocol: chat

Listing 4. Websocket server handshake [3]

Websockets keep the connection alive by sending a keep-alive mes-
sage every ten seconds, this message is four bytes in size. [3] Every
time data is send to the server or client the data is wrapped in a so
called websocket frame that has just two bytes of overhead. What
happens if 1000 clients are simultaneously polling every second? The
network throughput will then be (2∗1000) = 2000 bytes = 16000 bits
per second. That is 0.015 Mbps.

4 IMPLEMENTATION

Now we will discusse and give examples on how the different tech-
nologies are implemented on client side. Writing regular AJAX or
Comet code can be a lot of work, because different browsers have
different syntax for AJAX implementation. This means that you will
have to write extra code to test for different browsers. However, the
jQuery team [6] has taken care of this, so that we can write AJAX and
Comet functionality with only a few lines of code. All our client-side
technologies are implemented using the jQuery library to simply the
code.

4.1 Ajax
Ajax in combination with jQuery is the most simplest of the three
technologies to implement, in this example we do a new AJAX re-
quest every two second using the standard Javascipt function setInter-
val(function,interval).

var getData = function() {
$.ajax({

url: ’ajax.php’,
dataType: ’json’,
cache: false,
type: "POST"

}).done(function(data) {
if(text)

$(’#chat’).append(data.text);
});

};

setInterval(getData, 2000);

Listing 5. Basic Ajax example with a 1 second interval

4.2 Comet
The Comet front-end code is almost identical to the AJAX example
only here there is no need for a setInterval time function. Whenever
a AJAX request is complete or failed a new Comet(AJAX) request is
made.

var listen = function() {
$.ajax({

url: ’ajax.php’,
cache: false,
dataType: ’json’,
type: "POST"

})
.done(function(data) {

if(text)
$(’#chat’).append(data.text);

listen();
})
.fail(function(text) {

listen();
})
.always(function() {

listen();
});

};
listen();

Listing 6. Basic Comet example

4.3 Websockets
In this simple websocket example we open up a socket and wait
for incomming message’s. We used the jQuery plugin ’jquery-
websocket’[7] to futher reduce and to simplify the code in the example.

var ws = $.websocket("ws://127.0.0.1:8080/", {
events: {

message: function(e) {
$(’#chat’).append(e.data);

}
}

});
ws.send(’message’, ’hi’);

Listing 7. Basic WebSocket example

5 CONCLUSION

It is hard to say what technique is the best to use when creating a
website that requires Pushing to a mobile phone browser. When only
one message is expected it is best technique to use Ajax since other

SC@RUG 2013 proceedings

51

techniques will be overkill for performing simple tasks.
For applications where a lot of messages are expected for example
a chatbox client websocket is the best method to use. The amount
of data that is send with websockets over the mobile network is
very small in comparison with the other two techniques. However
websockets are not widely supported by all mobile phone browsers.
It could therefore be an obstacle for web developers to use websockets.

Now we have given three techniques which can be used to dis-
play information on a mobile phone website without needing to
refresh the entire web page, it is up to the web developer which
technique best fits the requirements of the mobile phone website.
With this paper we hope to help web developers to make the choise
for a technique a little bit easier.

REFERENCES

[1] S. Awamleh. Polling. http://whatis.techtarget.com/
definition/polling, April 2005.

[2] Chromium. Blink: A rendering engine for the chromium
project. http://blog.chromium.org/2013/04/
blink-rendering-engine-for-chromium.html, April
2013.

[3] I. E. T. Force. The websocket protocol. http://tools.ietf.org/
html/rfc6455, December 2011.

[4] @Fyrd. Web sockets can i use it. http://caniuse.com/
websockets, March 2013.

[5] Google. Google talk. http://www.google.com/talk/, Januari
2011.

[6] jQuery. jquery framework. http://www.jquery.com, April 2013.
[7] jQuery. jquery websocket framework. https://code.google.

com/p/jquery-websocket/, April 2013.
[8] kissmetrics. How loading time affects your bottom line. http://

blog.kissmetrics.com/loading-time, April 2011.
[9] P. Lubbers and F. Greco. Html5 web sockets: A quantum leap in scalabil-

ity for the web. http://www.websocket.org/quantum.html,
November 2009.

[10] magomimmo. Tutorial 10 - introducing ajax. https:
//github.com/magomimmo/modern-cljs/blob/master/
doc/tutorial-10.md, March 2013.

[11] Opera. Opera gears up at 300 million users. http:
//business.opera.com/press/releases/general/
opera-gears-up-at-300-million-users, February 2013.

[12] O’Reilly. What is web2.0. http://oreilly.com/pub/a/web2/
archive/what-is-web-20.html, September 2005.

[13] M. Rouse. Push (or server-push). http://whatis.techtarget.
com/definition/push-or-server-push, March 2011.

[14] Seneler, Basoglu, and Daim. Interface feature prioritization for web ser-
vices: Case of online flight reservations. Computers in Human Behavior,
25(4):862–877, July 2009.

[15] Wikipedia. Push technology. http://en.wikipedia.org/wiki/
Push_technology#Long_polling.

Push techniques and alternatives in the mobile phone browser – Erik Bakker and Mark Kloosterhuis

52

Verification of SAX assumption: time series values are distributed
normally

Harm de Vries, Herbert Kruitbosch

Abstract—In this paper we verify an assumption made in a recently proposed representation for time series: Symbolic Aggregate
ApproXimation (SAX). We outline the importance of representation of time series and give a short survey on time series represen-
tations. Opposed to other representations, SAX is a symbolic representation that also allows for tight lower bounding of a similarity
measure on a reduced representation with respect to the original raw representation. We point out that this latter property is important
for indexing of time series. Furthermore, we show that a tight lower bound in SAX correspond to well chosen breakpoints. Namely,
breakpoints according to the distribution of the time series values. When SAX was proposed, the authors defined these breakpoints
according to the standard normal distribution, since they claimed that all normalized time series are Gaussian. We verify this claim on
the UCR time series database for two specific mining tasks: indexing and anomaly detection. Finally, we show that this claim holds
for indexing of time series, but not necessarily for anomaly detection.

Index Terms—time series, representations, anomaly detection, indexing, mining tasks, SAX, breakpoints, normal distribution, Gaus-
sian distribution.

1 INTRODUCTION

A time series is a sequence of data points measured at successive
points in time. To date a tremendous amount of time series data
is generated by various applications e.g. heart beat monitoring,
daily stock prices, waterheights readings from sensors, etc. As a
consequence, there has been a growing interest in the analysis of time
series, i.e. extracting useful information from the data. Examples
of such analysis tasks are classification, clustering, querying and
detection of anomalies in time series.

A challenging aspect in all these tasks is that a time series is
often very large. Since each point in time is often considered as a
feature of the time series, this raw representation, which stores all
these points, results in a high-dimensional vector. Researchers avoid
working with a raw representations of time series for three main
reasons. Firstly, the features of a time series are typically highly
correlated and may contain high levels of noise [4]. Therefore the
exact values of the data points in a time series are by far less important
than global features, such as trends, patterns and shapes. Secondly,
the raw representation of the large data set often does not fit into main
memory. Consequently, most of the execution time of the mining al-
gorithm will be spent on moving data from the disk into main memory
and vice versa. This is highly inefficient and a reduced representation
that does fit into main memory can easily speed up the algorithm.
Thirdly, beside computational and memory issues associated with
high dimensional vectors, the concept of “most similar to” vanishes
in high-dimensional spaces. The reasons is that as dimensionality
increases, the similarity between feature vectors become so large that
we can not discern between the closest and furthest distance anymore.
This effect is known as the curse of dimensionality[7]. However, the
intrinsic dimensionality of a time series is often much lower, and the
similarity between two time series based on a reduced representation
can allow for a reasonable comparison that does not suffer from the
curse of dimensionality. In this paper we focus on the second problem
of a raw representation.

• Harm de Vries is a Msc. student at the university of Groningen, E-mail:
mail@harmdevries.com.

• Herbert Kruitbosch is a Msc. student at the university of Groningen,
E-mail: herbertkruitbosch@gmail.com.

Manuscript received 31 March 2008; accepted 1 August 2008; posted online
19 October 2008; mailed on 13 October 2008.
For information on obtaining reprints of this article, please send
e-mailto:tvcg@computer.org.

Due to the importance of a good representation in this process, much
literature has focused on representations for time series[11, 16, 10, 4].
In this paper we verify an assumption made in a recently proposed
symbolic representation, called Symbolic Aggregate approXimation
(SAX) [15], which has gained much attention over the last years. The
SAX representation assumes that a time series is distributed Gaussian.
We will test this assumption for both indexing, a task posed on many
time series, and anomaly detection, a task posed on a single time
series.

This paper has been organised in the following way. In section
2 we give a brief overview of all representations, and show that
SAX distinguishes itself by its symbolic representation. Furthermore
we outline the importance of lower bounding for representations in
indexing of time series, and show that SAX is suitable representation
for indexing and anomaly detection. In section 3 we show that the
assumption made by SAX holds for indexing but not for anomaly
detection. Section 4 concludes the paper and gives possible future
directions.

2 BACKGROUND AND RELATED WORK

Although the previous section gave an introduction to time series and
some of the problems they face regarding working with a raw repre-
sentation, we only shortly mentioned mining tasks for which these rep-
resentations are important. This section will first provide background
regarding such mining tasks which use time series as input. Then we
discuss the difference between continuous and symbolic representa-
tions, discuss some important continuous representations and review a
recently proposed symbolic representation. Finally we show how dis-
similarities in this symbolic representation are related to dissimilarities
in a raw representation.

2.1 Mining Tasks

We consider four of many mining tasks which are, according to the
data mining community, interesting [12]:

Indexing Given a query time series Q, and some dissimilarity mea-
sure D(Q,C), find the most similar time serie S in database DB.

Clustering Find natural groupings of the time series in database DB
under some dissimilarity measure D(Q,C).

Classification Given an unlabeled time series Q, assign it to one of
the predefined classes according to dissimilarity measure D.

53

Anomaly detection Given a time series Q, find the subsequence C
which is most dissimilar, according to dissimilarity measure D,
to the closest other subsequence.

All these mining tasks on time series have in common that they use
a dissimilarity measure, often called distance measure, to define how
alike two time series are. It is important to note that this paper focus on
the effects of different representations on dissimilarities and will not
discuss any specific similarity measure. However, the representations
we discuss all support the most commonly used similarity measures
as euclidean distance or dynamic time warping[5]. Furthermore, we
verify assumptions made in SAX with respect to two mining tasks:
indexing and anomaly detection.

2.2 Continuous and symbolic representations
As mentioned before, although most classical representations are con-
tinuous, the recently introduced representation is symbolic. A contin-
uous representation is allowed to attain any (continuous) real value or
a value in a continuous part R of all real values, whereas a symbolic
representation is only allowed to attain a countable and finite amount
of symbols. Typically we can define a time series in a given repre-
sentation as the vector (t1, t2, . . . , tn), then ti ⊆ R⊆ R for a continuous
representation and ti ∈ {s1,s2, . . . ,sm} for a symbolic representation
for 1 ≤ i ≤ n. This set of symbols {s1,s2, . . . ,sm} is called the al-
phabet and is finite. So, the essence is that ti is either continuous or
discrete for continuous and symbolic representations respectively.

2.3 Continuous representations
We first focus on continuous representations before we review the
symbolic representation SAX. We follow the classification made by
Ding et al.[5] and show an overview of the major techniques in figure
1. The main categorization is based on the division in data adap-
tive and non-data adaptive methods. Data adaptive methods choose
a common representation of the data such that the global reconstruc-
tion error is minimized. In contrast, non-data adaptive consider local
properties and construct a approximation accordingly. As an example,
in figure 2 one can see that the building blocks of the non-data adap-
tive methods as Discrete Wavelet Transform (DWT), Discrete Fourier
Transform (DFT) and Piecewise Aggregate approximation (PAA) are
always the same, no matter what the nature of the input data is. On the
other hand, data adaptive methods such as PLA change their building
blocks to the data. For example the width and slope of the linear seg-
ments of Piecewise Linear Approximation (PLA) depend on the data
as shown in figure 2.

2.3.1 Discrete Fourier Transform
The first technique suggested for dimensionality reduction of time se-
ries was the Discrete Fourier Transform (DFT) [2]. The basic idea of
spectral decomposition is that we can represent any signal by the su-
perposition of a finite number of sine and cosine waves of different
frequencies. With each wave we associate a single complex number
known as the Fourier coefficient. In this way we can transform a signal
from the time domain to the so-called frequency domain without loss
of information. However, many of the Fourier coefficients are often
very small and therefore do not contribute much to the signal. We can
discard these coefficients to reduce dimensionality of the signal and
thus save storage space, yet preserving most of the information in the
data. An example of the DFT representation is shown in figure 2.

2.3.2 Discrete Wavelet Transform
Wavelets are mathematical functions that represent data in terms of the
averages and differences of a prototype function, called the analyzing
or mother wavelet [1]. In this sense, the wavelet transform is closely
related to the Fourier transform. However, a fundamental difference
is that wavelets are localized in time. In other words, all fourier co-
efficients represent global information about the signal, whereas some
wavelets coefficients portray information about very small, local sub-
segments of the time series. This property of wavelets allows for

• Data adaptive

– Piecewise Linear Approximation (PLA) †

– Adaptive Piecewise Constant Approximation (APCA) †

– Singular Value Decomposition (SVD) †

– Symbolic

∗ Non-lowerbounding strings
∗ SAX †
∗ Clipping †

– Trees

• Non-Data adaptive

– Discrete Wavelet Transform (DWT) †

– Random mapping

– Spectral

∗ Discrete Fourier Transform (DFT) †
∗ Discrete Cosine Transform (DCT) †
∗ Chebyshev Polynomials †

– Piecewise Aggregate Approximation (PAA) †

Fig. 1. Hierarchical overview of representations, where † denotes the
support for lower bounding.

multi-resolution analysis of data. The first coefficients represent a very
coarse view on the data, while latter coefficients can be thought of as
zooming in to a specific region of the signal. For wavelets we can
reduce dimensionality in similar way as for the Fourier transform by
discarding coefficients with low values. We show an example in figure
2 based on the Haar mother wavelet.

2.3.3 Piecewise Aggregate Approximation
The symbolic representation which will be discussed in section 2.4
uses Piecewise Aggregate Approximation (PAA) as a basis. PAA re-
duces the data by partitioning the time series into N disjoint frames of
equal size[16]. The representation is obtained by taking the mean of
all data points falling in each frame. This representation has two trivial
reductions. First, when the number of frames is equal to the length of
the time series, we keep the original time series. Second, when N = 1,
we obtain the mean of the signal. One of the main advantages is that a
PAA representation is very fast to compute.

2.3.4 Piecewise Linear Approximation
In Piecewise Linear Approximation we represent the time serie by K
linear segments[11]. Since K is typically much smaller than the num-
ber of data points N, we reduce the dimensionality of the signal. Since
an “optimal”K can be hard to determine, some implementations work
with a user specified maximum linearization error ε . In this way, a
datapoint is at most ε away from the linear segment.

2.4 Symbolic Aggregate approXimation
All representations we considered so far are continuous. This limits
the set of algorithms, data structures and definitions available for
them. For example, in anomaly detection we cannot meaningfully
define the probability of observing any particular set of wavelet
coefficients, since the probability of observing any real number is
zero. Such limitations have lead researchers to consider using a sym-
bolic representation of time series. There have been many symbolic
representations proposed over the years e.g. SDA[3], IMPACTS[9].
We focus here on SAX which is, to the best of our knowledge, the
only symbolic representation that allows for lower bounding[]. We
discuss the importance of this latter property in section 2.5.

An essential preprocessing step for SAX is that a time series is

Verification of SAX assumption: time series values are distributed normally – Harm de Vries, Herbert Kruitbosch

54

Fig. 2. The red curve is an example of a time series, the blue curve
represents the same curve using a high-level representation: DFT, DWT,
PAA and PLA. The black curves identify the building blocks of the high-
level representation. Therefore the blue curve is a superposition of the
black curves.

Fig. 3. The dark blue curve is a time series and is assumed to be
distribution with respect to the Gaussian distribution shown along the
y-axis. The breakpoints partitions this distribution in equi-probable re-
gions shown in green, red and light blue. The PAA representation of this
time series is shown as a grey curve, although each window is coloured
cyan, red or green, depending on the value of the PAA coefficient. The
SAX representation then assigns a, b and c to the cyan, red and green
windows, respectively. Image taken from [15].

normalized to zero mean and standard deviation of one, since it
is not meaningful to compare two time series with different mean
and/or amplitude. As an intermediate step the preprocessed time
series is transformed into a Piecewise Aggregate Approximation
representation by dividing the time series into w equal sized frames,
and assigning to each frame the mean value of all data points in
that frame. Finally we create a symbolic representation by mapping
real-valued PAA values into discrete symbols. Information loss is
inherent to this mapping, since it is impossible to determine the PAA
real-value from a SAX symbol. However, from the many mappings
possible, the information loss is minimal when symbols occur with
equal probability. This argument comes from the field of information
theory which states that the uniform distribution maximizes the
entropy for discrete distributions[8]. For example, consider the
extreme case in which all PAA values are mapped to the same out
of five symbols. In this way we lose all information contained in the
original data, since all time series are mapped to the same sequence
of symbols. Therefore any shape, trend or pattern visible in the PAA
representation will be lost in the SAX representation. In other words,
each time series representation will be exactly the same, and hence no
meaningful dissimilarity measure exist. In general, shapes and trends
become less visible if the distribution becomes less uniform.

As a consequence we need to know the underlying distribution
of the data to be able to split it into equal partitions. Lin et al. claim
that a set of multiple normalized time series have a highly Gaussian
distribution[15]. Therefore they determine breakpoints that will
produce equal-sized areas under a Gaussian curve. We properly define
both the alphabet and these breakpoints by the following definitions.

Definition 2.1. The ordered set Σ = (α0, ...,αa−1) is called the alpha-
bet of cardinality |Σ|= a.

Definition 2.2. The sorted numbers B = β1, ...,βa−1 are called nor-
malized Gaussian breakpoints for an alphabet of cardinality a if the
area under Gaussian curve N (0,1) from βi to βi+1 = 1

a . As a conse-
quence of this definition, β0 =−∞ and βa = ∞.

The exact values of these breakpoints depends on the user-
specified cardinality of the alphabet a, i.e. the number of
symbols. We can simply find these values in a statistical ta-
ble. For example, for a = 3 we have the following breakpoints:
β0 = −∞,β1 ≈ −0.43,β2 ≈ 0.43,β3 = ∞. In figure 3 we show a

Gaussian curve and the corresponding breakpoints β1 and β2. These
breakpoints divide the curve into a cyan, red and green area which are
of equal size.

Given these breakpoints we construct the symbolic representa-
tions in the following way. All PAA coefficients smaller than or
equal to the breakpoint β1 are mapped to symbol a. All other PAA
coefficients smaller than or equal to breakpoint β2, which are larger
than β1, are mapped to symbol b, etc. If we recapture this formally, a
PAA symbol ĉ is mapped to a symbol α j if and only if β j < ĉ≤ β j+1.
In figure 3 we show an example for an alphabet size of 3. In general
we map a set of PAA coefficients into a word in the following way.

Definition 2.3. Given a sequence of PAA coefficients C̄ = c̄1, . . . , c̄n,
and a set of breakpoints B = β1, ...,βa−1. Furthermore, let α j denote
the jth element of the alphabet with cardinality a, i.e. α1 = a, α2 = b,
etc. Then the set of PAA coefficients C̄ is mapped into a word Ĉ =
ĉ1, . . . , ĉn by

ĉi = α j iff β j < c̄i ≤ β j+1.

In figure 3 we also show an example of the transformation of a
PAA representation into a SAX word baabccbc. This figure also
demonstrates that the PAA representation can take any real value, in
particular the light blue windows have different real values. Yet, the
SAX representation only attains values a, b and c.

Finally Lin et al. specify a dissimilarity measure on SAX words
that lower bounds the similarity on the raw representation. We omit
further details and refer the interested reader to [15], but conclude that
this property allows for fast indexing of time series as discussed in the
next section.

2.5 Indexing and lowerbound
In the previous section we pointed out that SAX is the only known
symbolic representation that allows for lower bounding. In this
section we explain the importance of this property for indexing of
time series.

Faloutsos et al. showed in [6] that a necessary property for fast
similarity search is lower bounding of the distance on the repre-
sentation. This means that for all raw timeseries Q and C, and
representations Q′ and C′ respectively, we have that

DLB(Q′,C′)≤ D(Q,C). (1)

SC@RUG 2013 proceedings

55

1000 2000 3000
−4

−3

−2

−1

0

1

2

time

e
c
g

Fig. 4. Plot of the an ECG which contains an anomaly (marked red),
taken from the UCR time series data set. All periods in the non-anomaly
part are marked in alternating colors.

0 50 100 150 200
−4

−3

−2

−1

0

1

2

time

e
c
g

Fig. 5. Plot of ECG periods shown in figure 4. The curve that is clearly
different from the others is the anomaly.

In other words, we can guarantee that the dissimilarity between the
representations of the time series DLB(Q′,C′) is less or equal than the
dissimilarity in the raw time series D(Q,C).

To see that this can indeed give a speed up for indexing time
series, recall that the whole time series database is too large to fit
into main memory. Hence, the naive approach by simply comparing
two time series would result in slow processing since we have to
move time series between disk and main memory many times. So, a
better approach would be to have two versions of the data. A reduced
representation that does fit into main memory and a raw time series
that is saved on the disk. Then, to find the most similar time series,
we iterate over the representations in main memory. Now, for each
time series representation we can safely discard the time series when
the dissimilarity over the reduced representation is greater than the
dissimilarity to the most similar time series found so far. This way, we
hope to make as few disk calls as possible, but we can still guarantee
that we find the same solution as when we would iterate over the
original time series. We show pseudocode in Algorithm 1. The astute
reader might have already noticed that we could always obtain a
trivial lower bound on the representation by setting the dissimilarity
between every time series representation to zero. However, this would
not speed up algorithm 1, since we still have to make a disk call
for every time series in the loop. Hence, a useful measure for the
performance of the representation is the tightness of the lower bound
TLB, defined by

T LB =
DLB(Q′,C′)

D(Q,C)
(2)

In words, it is the ratio between the distance of the representations
and the distance of the time series in the original space. By the lower
bounding property of equation 1, we know that the tightness of the
lowerbound is at most one. In this case the distance on the represen-
tation and the raw time series are equal, and the algorithm would not
have to make any disk call.

This important result have highly influenced the choice of repre-
sentations over the years. In figure 1 we denote the representations
that support lowerbounding with a †, and point out that these
representations became popular because they support lower bounding.

Algorithm 1 Fast similarity search using lowerbounding
Require: timeserie Q

time series database DB
Ensure: Time serie S such that D(Q,S) is minimal

Representation Q′ of Q
Representation S′ of all S ∈ DB in main memory

bestSoFar = ∞
bestS = NaN
for S′ ∈ DB do

if DLB(S′,Q′)< bestSoFar then
Retrieve original S from disk
if D(S,Q)< bestSoFar then

bestSoFar = D(S,Q)
bestS = S

end if
end if

end for

A natural question that comes to mind is which representation
is most suitable for indexing. In Ding et al. [5], an extensive com-
parison of all lower bounding representations is performed based on
the tightness of lowerbound. The results are quite suprising. Over all
datasets there is not much difference between representations in terms
of pruning power. However for data sets with specific characteristics
there are some differences. For example SAX performs slightly worse
on periodic data than the spectral representations as DFT. We show
in this paper that we can improve SAX for periodic data by assuming
another distribution on which the breakpoints are based.

2.6 Anomaly detection

In anomaly detection we typically extract all subsequences of a user-
specified length in the time series. These subsequences may and in
many cases will overlap. The anomaly is defined as the subsequence
which is most dissimilar to the closest subsequence. However, we
must be careful, since matches to a subsequence tend to be located
few, i.e. one or two, points to the left or the right of the subsequence
in question[13]. We exclude these matches to meaningfully define an

Verification of SAX assumption: time series values are distributed normally – Harm de Vries, Herbert Kruitbosch

56

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

x

p
ro

b
a
b
ili

ty

Fig. 6. The blue bars form a histogram of all
training data in the UCR, each time series
in this data set was z-normalized with re-
spect to the mean and variance of that par-
ticular instance of a time series. Ultimately,
the histogram of all these values was scaled
to have an area of 1. The red curve is a
Gaussian approximation N (0,0.995) of this
histogram.

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

ecg value

p
ro

b
a
b
ili

ty

Fig. 7. A histogram of all ECG win-
dows of length 230 in the UCR data set,
the red curve is a normal approximation
N (0,0.995) of this histogram. The his-
togram is scaled to have an area of 1. This
histogram is generated with respect to algo-
rithm 3.

−2 −1 0 1 2
0

0.1

0.2

0.3

0.4

0.5

ecg value

p
ro

b
a
b
ili

ty

Fig. 8. Distribution of the ecg-values in all
z-normalized windows of length 10 in the
ECG time series from the UCR data set
(blue bars) and a Gaussian approximation
N (0,0.9) (red curve). The histogram area is
scaled to have an area of 1. This histogram
is generated with respect to algorithm 3.

anomaly. More formally we first define a subsequence and a non-self
match:

Definition 2.4. Given a time series T = (t1, . . . , tm) of length m, a sub-
sequence C of T is a sampling of length n with 1≤ n≤m of continuous
position from T , that is, C = tp, . . . , tp+n−1 for 1≤ p≤ m−n+1.

Definition 2.5. Given a time series T , containing a subsequence C of
length n beginning at position p and a subsequence M beginning at q,
we say that M is a non-self match to C at dissimilarity of D(M,C) if
|p−q| ≥ n.

The brute force algorithm requires a loop over all subsequences,
and for each of these subsequence we have to loop over all non-self
matching subsequences to determine the most similar subsequence.
Then the anomalous subsequence is the subsequence in the outer
loop with the largest dissimilarity. So, an anomalous subsequence
is the subsequence where the minimal dissimilarity regarding all
non-self-matching subsequences is maximal. We show pseudocode
for this process in algorithm 2. The astute reader might already have
noticed numerous speed ups in algorithm 2, e.g. by cleverly ordering
of the subsequences in the inner and outer for-loop. In HOT SAX[13]
the authors proposed a heuristic ordering in the outer- and inner-loop
based on the SAX representation of subsequences and a suffix tree.
However, this algorithm is outside the scope of this paper and we
refer the interested reader to [13]. We emphasize that the success of
HOT SAX is highly depended on tightness of the lower bound i.e.
the determined breakpoints in the underlying distribution of the time
series.

We conclude this section with a typical example of an anomaly
marked as the red subsequence in the electroencephalographic (ECG)
plot in figure 4. Figure 5 shows how equal these periods are.

3 IMPROVING SAX FOR ANOMALY DETECTION

We have seen in the previous section that an important property of a
representation for indexing time series is lower bounding. Further-
more, we have shown that SAX is the only known symbolic repre-
sentations that allows for tight lower bounding, and thus is a suitable
representation for indexing. In this section we verify Lin et al.’s claim
that breakpoints for SAX can be best determined by a Gaussian distri-
bution for all mining tasks, including anomaly detection.

3.1 Indexing
We first focus on indexing of time series where we are looking for
the most similar time series in a large database of heterogeneous time

Algorithm 2 Anomaly detection
Require: Timeserie T = (t1, . . . , tm)

anomalous subsequence length n
Ensure: Most anomalous subsequence C

bestSoFarDist = 0
bestSoFarLoc = 0
for p = 1→ |T |−n+1 do

NNDist = ∞ . Nearest Neighbour distance
for q = 1→ |T |−n+1 do

if |p−q| ≥ n then . Non-self match
if D((tp, . . . , tp+n−1),(tq, . . . , tq+n−1))< NNDist then

NNDist = D((tp, . . . , tp+n−1),(tq, . . . , tq+n−1)
end if

end if
end for
if NearestNeighbourDist > bestSoFarDist then

bestSoFarDist = NearestNeighbourDist
bestSoFarLoc = p

end if
end for

series. In order to verify the underlying distribution of most time
series data, we have to select a database of time series. We choose
to use the UCR time series database [14] since it is considered to be
the largest publicly available test data set for time series. The data
set consist of 42 diverse data sets, including heart beat monitoring
and diatom recognition, grouped into two parts. For computational
reasons we selected only the first part of twenty datasets. All datasets
are divided into a training set and test set, since the data sets are
mainly used for classification and clustering. However, we argue
that we can also use the data set to verify the underlying distribution
for indexing because the only difference is that indexing datasets are
much larger. Furthermore, we assume that a larger data set more
likely cause a Gaussian distribution of the time series values.

We verified the Gaussian distribution hypothesis of SAX by se-
lecting all normalized time series from the training sets, and plotting
the distribution of all data points. We show the result in figure 6 in
which we also plot an almost standard normal distribution. We can
clearly see that the distribution of normalized time series resembles
this normal distribution. This result is not surprising, since the data
set consist of diverse sets of time series. Therefore each time series

SC@RUG 2013 proceedings

57

on its own will have a highly non-Gaussian distribution, but on
average it will tend to a Gaussian distribution. This strong result is
known as the principle of maximum entropy [8] which states that if
we do not know the underlying distribution of the data we should
choose the distribution with the largest entropy. It is well known that
for continuous distributions with known mean and variance this is
the Gaussian distribution [8]. Hence we conclude that a Gaussian
distribution is appropriate to select the breakpoints for SAX in
indexing of time series, since indexing considers a set of time series.

3.2 Breakpoints for anomaly detection
In the previous section we have shown that the underlying density
is highly Gaussian for indexing of time series. However, the key
insight was that we could expect any type of time series. Hence,
the best we can do is to choose the distribution that contains
the most information i.e. the Gaussian distribution. This is not
the case for anomaly detection, in the sense that we only have
one specific time series. For one such time series, intrinsic knowl-
edge and empirical measurements may suggest a different distribution.

We verify the underlying distribution of the time series data on
the electroencephalographic (ECG) data shown in figure 4. This
time series is periodic, shown right in the figure, but contains
one anomaly. Algorithm 3 determines the empirical distribu-
tion of all subsequences of a certain length. Although we can
not make any statistical claims based on the distribution of only
one particular time series, we emphasize that this is an illustrative
example which may generalize well to most other periodic time series.

To verify the Gaussian distribution hypothesis in anomaly de-
tection we selected all subsequences of various lengths in the ECG
time series and plotted the empirical distribution. We visually verified
whether the underlying distributions resembled a Gaussian distribu-
tion. For small window sizes up to length 40 we noticed that the
distribution is still close to a Gaussian distribution. An example for
window size of 10 is shown in Figure 8. However, for larger window
sizes that are close to the period of the time series the distribution is
clearly not Gaussian anymore. We can see this in figure 7 where we
show the distribution of normalized subsequences of length 230.

Algorithm 3 Determine the empirical distribution of all values in all
windows in a time series
Require: Time series T = (t1, . . . , tm)

Subsequence size n
Ensure: Empirical distribution (or histogram) E

C = empty list, which will grow to size n · (|T |−n+1)
for i = 1→ |T |−n+1 do . Iterate over all subsequences

Sub = (ti, . . . , ti+n−1 . One subsequence, starting at i
µ = Sub . Mean of Sub
σ2 = ∑i(Subi−Sub)2 . Standard deviation of Sub
for Subi ∈ Sub do

ti =
Subi−µ

σ
. Z-normalize ti

Append ti to C
end for

end for
E = histogram of all values in C.

4 CONCLUSION AND FUTURE WORK

In this work we have investigated the symbolic representation SAX.
The lower bound property of this representation turns out to be very
important for the efficiency of indexing of time series. SAX obtains
a symbolic representation based on the underlying distribution of
a (set of) time series. In this paper we verified the claim that this
distribution resembles a standard normal distribution. We have both
shown empirically on the UCR time series database and theoretically

that for indexing of time series a Gaussian distribution is a logical
choice. This result and the lower bound property make SAX a very
effective representation for indexing of time series.

For anomaly detection, however, we have shown that the distri-
bution of time series values are not Gaussian distributed. We provided
an ECG time series taken from the UCR data set for which the
assumption that it is distributed Gaussian is invalid. Hence using
Gaussian breakpoints in a SAX representation may be suboptimal for
anomaly detection. Future research may conclude that breakpoints
based on the empirical distribution of the time series may better
capture the information contained in the time series. These studies
may incorporate testing this hypothesis on a larger data set suited
for anomaly detection by comparing results where Gaussian and
non-Gaussian breakpoints are used. Moreover, such research may also
evaluate if these non-Gaussian breakpoints also correspond to tighter
lower bounds. Finally, forthcoming studies may assess if our finding
that Gaussian breakpoints are not necessarily valid can be extended
to other mining tasks, like motif discovery, which only consider one
single time series.

REFERENCES

[1] Front Matter, chapter 0, pages i–xix.
[2] R. Agrawal, C. Faloutsos, and A. Swami. Efficient similarity search in

sequence databases. pages 69–84. Springer Verlag, 1993.
[3] H. Andre-Jonsson and D. Z. Badal. Using signature files for querying

time-series data. In First European Symposium on Principles of Data
Mining and Knowledge Discovery, pages 211–220, 1997.

[4] K. Chakrabarti, E. Keogh, S. Mehrotra, and M. Pazzani. Locally adaptive
dimensionality reduction for indexing large time series databases. ACM
Trans. Database Syst., 27(2):188–228, June 2002.

[5] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. Keogh. Query-
ing and mining of time series data: experimental comparison of repre-
sentations and distance measures. Proc. VLDB Endow., 1(2):1542–1552,
Aug. 2008.

[6] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast subsequence
matching in time-series databases, 1994.

[7] J. Friedman. On bias, variance, 0/1loss, and the curse-of-dimensionality.
Data Mining and Knowledge Discovery, 1:55–77, 1997.

[8] R. M. Gray. Entropy and information theory. Springer, 2011.
[9] Y.-W. Huang and P. S. Yu. Adaptive query processing for time-series data.

In Proceedings of the fifth ACM SIGKDD international conference on
Knowledge discovery and data mining, KDD ’99, pages 282–286, New
York, NY, USA, 1999. ACM.

[10] K. Kawagoe and T. Ueda. A similarity search method of time series
data with combination of fourier and wavelet transforms. In Temporal
Representation and Reasoning, 2002. TIME 2002. Proceedings.Ninth In-
ternational Symposium on, pages 86–92.

[11] E. Keogh, S. Chu, D. Hart, and M. Pazzani. Segmenting time series: A
survey and novel approach. In In an Edited Volume, Data mining in Time
Series Databases. Published by World Scientific, pages 1–22. Publishing
Company, 1993.

[12] E. Keogh and S. Kasetty. On the need for time series data mining bench-
marks: A survey and empirical demonstration. In SIGKDD’02, pages
102–111, 2002.

[13] E. Keogh, J. Lin, and A. Fu. Hot sax: efficiently finding the most un-
usual time series subsequence. In Data Mining, Fifth IEEE International
Conference on, page 8 pp., nov. 2005.

[14] E. Keogh, X. Xi, L. Wei, and C. . Ratanamahatana. The UCR Time Series
Classification/Clustering Homepage, 2006.

[15] J. Lin, E. Keogh, S. Lonardi, and B. Chiu. A symbolic representation of
time series, with implications for streaming algorithms. In Proceedings
of the 8th ACM SIGMOD workshop on Research issues in data mining
and knowledge discovery, DMKD ’03, pages 2–11, New York, NY, USA,
2003. ACM.

[16] B.-K. Yi and C. Faloutsos. Fast time sequence indexing for arbitrary
lp norms. In Proceedings of the 26th International Conference on Very
Large Data Bases, VLDB ’00, pages 385–394, San Francisco, CA, USA,
2000. Morgan Kaufmann Publishers Inc.

Verification of SAX assumption: time series values are distributed normally – Harm de Vries, Herbert Kruitbosch

58

