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Chapter 1

Introduction

Many processes in Nature can be described by using partial differential equations (PDEs).

For instance, heat transfer is modelled by using the heat equation. In its simplest form, one

denotes by ℎ(𝑥, 𝑡) the temperature at a point 𝑥 and a time 𝑡. The heat equation ℎ𝑡 = ℎ𝑥𝑥
balances the rate of change of ℎ(𝑥, 𝑡) with respect to the time 𝑡 and the change in the rate of

change with respect to the position 𝑥. This equation is an example of a linear PDE but there

are many phenomena that require nonlinear equations. It was a great discovery around

1967–68 that some classes of nonlinear PDEs can be solved effectively. The Korteweg–

de Vries equation (describing waves in shallow water) provides a well-studied example

of exactly solvable nonlinear PDE. Such equations are very important and the range of

their applicability is exceptionally wide (e.g., they describe waves in a canal, tsunami’s,

propagation of light in nonlinear optics, and much more). For PDEs that encode processes

in Nature, knowledge of physical conservation laws and symmetries is important for study

of their properties. This interrelation between physics and mathematics leads to a beautiful

and exciting area of research, to which this thesis intends to contribute. A crucial idea in

this thesis is the concept of smooth deformation. Via synthesis of old and new geometric

techniques we resolve Mathieu’s problem, which was a long-standing open problem in the

geometry of exactly solvable nonlinear PDEs.

The geometry of PDEs was born in the seminal works by Lie [89, 90], Bäcklund [5],

Monge [104], Darboux [27], Bianchi [11], and E. Cartan [20]. Cartan’s ideas were pursued

by Spencer and his school [44, 117] in the 1960’s. In essence, this branch if geometry aims

to put PDEs and their solutions in a geometrical framework. For example, an equation

such as ℎ𝑡 = ℎ𝑥𝑥 is interpreted as a hypersurface in 6-dimensional space with coordinates

(𝑥, 𝑡, ℎ, ℎ𝑡, ℎ𝑥, ℎ𝑥𝑥) and some additional structures related to the derivatives. Ehresmann

introduced the definition of jet spaces in [36]. This is an infinite-dimensional analogue of

the above idea, with coordinates corresponding to all higher derivatives 𝜕𝑘ℎ/𝜕𝑥𝑘. This

concept was developed later by Ovsiannikov [107] and others [48, 118]. The discovery

of integrability [102] and Hamiltonian interpretation of integrability [91] (see also [37,

127]) were a great contribution to the geometry of PDEs. Another crucial fact was the

understanding that integrable systems admit infinite series of higher symmetries [12, 79,

106]. A symmetry of a given PDE is a particular type of map sending solutions of the

PDE to solutions. For example, any constant 𝑐 yields the symmetry ℎ ↦→ ℎ+ 𝑐 of the heat
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equation ℎ𝑡 = ℎ𝑥𝑥. Zakharov and Shabat constructed a new method for solving nonlinear

PDE in [128] based on the core idea of Gel’fand, Levitan, and Marchenko. Later Ablowitz,

Kaup, Newell, and Segur generalised this approach [1].

The deformation approach is an important tool in the study of PDE. Gardner’s defor-

mations are an example of such concept. By definition, Gardner’s deformation is a family

of pairs consisting of deformation of equation and Miura’s map which takes solutions of

deformed equation to solutions of original equation. Using Gardner’s deformation, one can

recover recurrence relation between the Hamiltonians of a given PDE.

This thesis is devoted to solution of Mathieu’s deformation problem for the 𝑁=2 su-

persymmetric 𝑎=4 Korteweg–de Vries equation (SKdV); the problem is to find integrable

deformation for the 𝑁=2, 𝑎=4-SKdV that would reproduce its conservation laws. This

problem was formulated by Mathieu in 1991 in [84]. Various attempts to solve it were

undertaken since then but progress was limited.

The main results of the thesis are as follows:

1. There is no supersymmetry-invariant scaling-homogeneous polynomial Gardner’s de-

formation for the 𝑁=2 supersymmetric 𝑎=4 Korteweg–de Vries equation such that

under reduction this deformation would contain the classical Gardner deformation

for the Korteweg–de Vries equation.

2. The super-Hamiltonians of the 𝑁=2 supersymmetric 𝑎=4 Korteweg–de Vries equa-

tion can be derived from the Hamiltonians of the Kaup–Boussinesq equation, and

there is an explicit procedure for doing that.

3. For the Kaup–Boussinesq equation, there is a non-trivial Gardner’s deformation that

retracts under reduction to the classical Gardner formulas for the Korteweg–de Vries

equation.

Secondly, we track the relations between zero-curvature representation for PDEs and Gard-

ner’s deformations in Z2-graded setup. This allows us to construct the second solution of

Mathieu’s deformation problem for the 𝑁=2, 𝑎=4-SKdV equation.

4. Marvan’s technique for inspection of nonremovablity of spectral parameter in Lie

algebra-valued zero-curvature representations for partial differential equations is gen-

eralised to the Z2-graded case.

5. The parameter in zero-curvature representation found by Das et al. for the 𝑁=2 su-

persymmetric 𝑎=4 Korteweg–de Vries equation is nonremovable. This zero-curvature

representaion yields a non-trivial Gardner’s deformation for the 𝑁=2, 𝑎=4-SKdV

equation.
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6. The zero-curvature representation found by Karasu–Kalkanlı, Sakovich and Yurduşen

determines a non-trivial Gardner’s deformation for Krasil’shchik–Kersten system.

7. Zero-curvature representations give rise to a natural class of non-Abelian variational

Lie algebroids.

This thesis is devoted to the Korteweg–de Vries equation,

𝑢12;𝑡 = −𝑢12;𝑥𝑥𝑥 − 6𝑢12𝑢12;𝑥, (1.1)

and its generalizations [102]. We consider the completely integrable, multi-Hamiltonian

evolutionary 𝑁=2 supersymmetric Korteweg–de Vries equation

𝑢𝑡 = −𝑢𝑥𝑥𝑥 + 3
(︀
𝑢𝒟1𝒟2𝑢

)︀
𝑥
+
𝑎− 1

2

(︀
𝒟1𝒟2𝑢

2
)︀
𝑥
+ 3𝑎𝑢2𝑢𝑥, 𝒟𝑖 =

𝜕

𝜕𝜃𝑖
+ 𝜃𝑖 ·

d

d𝑥
, (1.2)

for a scalar, complex bosonic 𝑁=2 superfield

𝑢(𝑥, 𝑡; 𝜃1, 𝜃2) = 𝑢0(𝑥, 𝑡) + 𝜃1 · 𝑢1(𝑥, 𝑡) + 𝜃2 · 𝑢2(𝑥, 𝑡) + 𝜃1𝜃2 · 𝑢12(𝑥, 𝑡),

where 𝜃1 and 𝜃2 are Grassmann variables satisfying 𝜃21 = 𝜃22 = 𝜃1𝜃2 + 𝜃2𝜃1 = 0.

The SKdV equation is most interesting (in particular, bi-Hamiltonian, whence com-

pletely integrable) if 𝑎 ∈ {−2, 1, 4}, see [60, 84]. Let us consider the bosonic limit (or

bosonic part),

𝑢1 = 𝑢2 ≡ 0, (1.3)

of system 𝑁=2 SKdV equation in components (3.5): by setting 𝑎 = −2 we obtain the

triangular system which consists of the modified KdV equation upon 𝑢0 and the equation

of KdV-type; in the case 𝑎 = 1 we obtain the Krasil’shchik–Kersten system; for 𝑎 = 4, we

obtain a higher symmetry of the Kaup–Boussinesq equation,

𝑢0;𝜉 =
(︀
−𝑢12 + 2𝑢20

)︀
𝑥
, 𝑢12;𝜉 =

(︀
𝑢0;𝑥𝑥 + 4𝑢0𝑢12

)︀
𝑥
. (1.4)

Let us briefly list the content of chapters in this thesis.

In Chapter 2 we study Gardner’s deformations for classical (non-graded) equations.

We construct new Gardner’s deformation of the Kaup–Boussinesq equation; the new fam-

ily contains Gardner’s deformation of KdV equation under reduction. Using this new

Gardner’s deformation for the Kaup–Boussinesq equation, we obtain recurrence formulas

for the Hamiltonians of this equation. We prove that this new Gardner’s deformation is

non-trivial, i.e., it generates infinitely many non-trivial Hamiltonians. Indeed, we prove

that every second Hamiltonian obtained by these formulas is non-trivial. We show also
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that Gardner’s deformations can be considered as an initial point for construction of new

integrable systems. In particular, we derive the Kaup–Newell equation from the Gardner

deformation for the Kaup–Boussinesq equation.

In Chapter 3 we consider Gardner’s deformations for supersymmetric equations. We

present our first solution of Gardner deformation problem formulated by Mathieu for the

𝑁=2 supersymmetric 𝑎=4 Korteweg–de Vries equation (SKdV). On the one hand, we prove

non-existence of supersymmetry-invariant scaling-homogeneous polynomial Gardner’s de-

formation for the 𝑁=2, 𝑎=4-SKdV equation in super-fields such that the deformation

would retract to Gardner’s formulas for the KdV equation. On the other hand, we propose

a two-step scheme for recursive production of integrals of motion for the 𝑁=2, 𝑎=4-SKdV.

New Gardner’s deformation of the Kaup–Boussinesq equation, which is contained in the

bosonic limit of the super-hierarchy, yields the recurrence relation between the Hamilto-

nians of the limit, whence we determine the bosonic super-Hamiltonians of the full 𝑁=2,

𝑎=4-SKdV hierarchy.

Chapter 4 is devoted to Lie algebra-valued zero-curvature representations for Z2-graded

partial differential equations (PDE). We generalise to Z2-graded setup Marvan’s technique

for inspection of nonremovability of spectral parameter in zero-curvature representations.

We prove that cohomological interpretation of this result works also in the Z2-graded case.

We prove that the parameter in zero-curvature representation for 𝑁=2, 𝑎=4-SKdV found

by Das et al. is nonremovable.

In Chapter 5 we consider Gardner’s deformations and zero-curvature representation in

context of differential covering over PDE (known also as systems of nonlocalities). We stress

that Gardner’s deformations, zero-curvature representations, and covering over PDE are

different realisations of one object. We illustrate a link between deformation techniques

of two types, namely, Marvan’s technique for inspection of nonremovability of spectral

parameters in zero-curvature representations and Frölicher–Nijenhuis bracket formalism

developed by Krasil’shchik et al. Using this relation between zero-curvature representations

and Gardner’s deformations, we construct the second solution of deformation problem for

the 𝑁=2, 𝑎=4-SKdV equation. We prove that the zero-curvature representation found by

Das et al. yields the covering (i.e., a system of nonlocalities) that under reduction contains

Gardner’s deformation for the KdV equation as well as Gardner’s deformation for the

𝑁=1 supersymmetric Korteweg–de Vries equation (sKdV). We study the (non)removability

of parameters under gauge and other types of transformations in matrix zero-curvature

representations, as well as in nonlocal structures which were introduced by Gardner or

Sasaki for the classical Korteweg–de Vries equation and which were constructed by Das et

al. [28] for the 𝑁=2, 𝑎=4-SKdV equation.

In Chapter 6 we show that zero-curvature representation for PDE give rise to a natural

class of non-Abelian variational Lie algebroids. We realise non-Abelian variational Lie

algebroids via BRST-like homological Hamiltonian vector field on superbundles. This
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relates the research to the geometry of quantum inverse scattering. Let us recall here that

Berezin developed new super-mathematics with an eye towards its applications in quantum

mechanics and statistical physics [10, 86, 87].

The results obtained in this thesis are related to research of the following scientific

schools. Recently, Krasil’shchik et al. developed cohomological deformation theory that

describes infinitesimal behaviour of families of nonlocalites over PDEs. We use this ap-

proach intensively in Chapter 5. Independently from each other, Marvan and Sakovich

developed a method for inspection of (non)removability of parameters in zero-curvature

representations for PDEs. We generalise this method to the Z2-graded case in Chap-

ter 4 and we use this generalisation for solving Gardner’s deformation problem for the

𝑁=2, 𝑎=4-SKdV equation. Thirdly, Dubrovin et al. and Ferapontov developed novel ap-

proaches for construction of new integrable systems on the basis of known ones, focusing

also on the global structure of the space of integrable systems. In Chapter 2 we describe

a regular way of obtaining initial data for those approaches and we comment on the adja-

cency relations between integrable systems in the arising moduli spaces. Finally, we recall

that Faddeev and his school contributed fundamentally to the concept of quantum inverse

scattering method; we approach their scheme in Chapter 6. The results of this thesis may

also be interesting to specialists in supersymmetry (e.g. supergravity) and to experts in

superintegrability in the sense of Winternitz.

The chapters of this thesis are based directly on recent peer-review articles and one

preprint.

∙ Chapter 2 is based on the articles [JMP10, JPCS14].

∙ Chapter 3 is based on the article [JMP10].

∙ Chapter 4 is based on the preprint [1301.7143].

∙ Chapter 5 is based on the article [JMP12] and preprint [1301.7143].

∙ Chapter 6 is based on the article [JNMP14].

[JMP10] Hussin V., Kiselev A. V., Krutov A. O., Wolf T. (2010) 𝑁=2 supersymmetric

𝑎=4-KdV hierarchy derived via Gardner’s deformation of Kaup–Boussinesq equation,

J. Math. Phys. 51:8, 083507, 19 p. arXiv:0911.2681 [nlin.SI]

[JMP12] Kiselev A. V., Krutov A. O. (2012) Gardner’s deformations of the graded Korte-

weg–de Vries equations revisited, J. Math. Phys. 53:10, 103511, 18 p. arXiv:1108.2211

[nlin.SI]

[JNMP14] Kiselev A. V., Krutov A. O. (2014) Non-Abelian Lie algebroids over jet spaces,

J. Nonlin. Math. Phys. 21:2, 188-213. arXiv:1305.4598 [math.DG]
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[JPCS14] Kiselev A. V., Krutov A. O. (2014) Gardner’s deformations as generators of new

integrable systems, J. Phys. Conf. Ser. 482, Proc. Int. workshop ‘Physics and Mathe-

matics of Nonlinear Phenomena’ (June 22–29, 2013; Gallipoli (LE), Italy), 012021, 6 p.

arXiv:1312.6941 [nlin.SI]

[1301.7143] Kiselev A. V., Krutov A. O. (2014) On the (non)removability of spectral

parameters in Z2-graded zero-curvature representations and its applications. – 22 p.

Preprint arXiv:1301.7143v2 [math.DG]
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Chapter 2

Gardner’s deformations of non-graded
equations

Let us first briefly recall some definitions (see [12, 62, 106] and [94] for detail); this material

is standard so we now fix the notation.

2.1 The geometry of infinite jet space 𝐽∞(𝜋)

Let 𝑀𝑛 be a smooth real 𝑛-dimensional orientable manifold. Consider a smooth vector

bundle 𝜋 : 𝐸𝑛+𝑚 →𝑀𝑛 with𝑚-dimensional fibres and construct the space 𝐽∞(𝜋) of infinite

jets of sections for 𝜋. Let 𝜇𝑘𝑥0
be a set of local sections 𝑠 ∈ Γ(𝜋) such that 𝑠 is vanish in

𝑥0 ∈𝑀𝑛 together with its derivatives with order less or equal 𝑘:

𝜇𝑘𝑥0
= {𝑠 ∈ Γ(𝜋) | ∃𝑟 ∈ Γ(𝜋) : 𝑠 = (𝑥− 𝑥0) · 𝑟} .

Consider the equivalence classes of (local) sections at a point 𝑥0

𝐽𝑘𝑥0
(𝜋) = Γ(𝜋)/𝜇𝑘𝑥0

.

The jet space 𝐽𝑘(𝜋) of 𝑘-th jets of sections for the vector bundle 𝜋 is the union

𝐽𝑘(𝜋) =
⋃︁

𝑥0∈𝑀𝑛

𝐽𝑘𝑥0
(𝜋).

The infinite jet space 𝐽∞(𝜋) is the projective limit,

𝐽∞(𝜋) = lim
←−

𝑘→+∞

𝐽𝑘(𝜋).

A convenient organization of local coordinates is as follows: let 𝑥𝑖 be some coordinate

system on a chart in the base 𝑀𝑛 and denote by 𝑢𝑗 the coordinates along a fibre of the

bundle 𝜋 so that the variables 𝑢𝑗 play the rôle of unknowns; one obtains the collection 𝑢𝑗𝜎 of

jet variables along fibres of the vector bundle 𝐽∞(𝜋)→𝑀𝑛 (here |𝜎| > 0 and 𝑢𝑗∅ ≡ 𝑢𝑗). (In

particular, we have 𝑛 = 2, 𝑚 = 1, 𝑥1 = 𝑥, 𝑥2 = 𝑡, 𝑢1 = 𝑢12 for the KdV equation (1.1) and

𝑛 = 2, 𝑚 = 2, 𝑥1 = 𝑥, 𝑥2 = 𝜉, 𝑢1 = 𝑢12, 𝑢
2 = 𝑢0 for the Kaup–Boussinesq equation (1.4).)
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Chapter 2. Gardner’s deformations of non-graded equations

We define the ring of smooth function on 𝐽∞(𝜋) as inductive limit

𝐶∞(𝐽∞(𝜋)) =
{︀
𝑓 : 𝐽∞(𝜋)→ R | ∃𝑘 ∈ N such that 𝑓 ∈ 𝐶∞(𝐽𝑘(𝜋))

}︀
.

In this setup, the total derivatives 𝐷𝑥𝑖 are commuting vector fields

𝐷𝑥𝑖 =
𝜕
𝜕𝑥𝑖

+
∑︁
𝑗,𝜎

𝑢𝑗𝜎𝑖
𝜕

𝜕𝑢𝑗𝜎

on 𝐽∞(𝜋). We also denote total derivatives by d
d𝑥𝑖

. We will use both notations and will

not make any distinction between them.

Consider a system of partial differential equations

ℰ =
{︀
𝐹 ℓ(𝑥𝑖, 𝑢𝑗, . . . , 𝑢𝑗𝜎, . . . ) = 0, ℓ = 1, . . . , 𝑟 <∞

}︀
;

without any loss of generality for applications we assume that the system at hand sat-

isfies mild assumptions which are outlined in [62, 106]. Then the system ℰ and all its

differential consequences 𝐷𝜎(𝐹
ℓ) = 0 (thus presumed existing, regular, and not leading to

any contradiction in the course of derivation) generate the infinite prolongation ℰ∞ of the

system ℰ .
Let us denote by �̄�𝑥𝑖 the restrictions of total derivatives 𝐷𝑥𝑖 to ℰ∞ ⊆ 𝐽∞(𝜋). We recall

that the vector fields �̄�𝑥𝑖 span the Cartan distribution 𝒞 in the tangent space 𝑇ℰ∞. At

every point 𝜃∞ ∈ ℰ∞ the tangent space 𝑇𝜃∞ℰ∞ splits in a direct sum of two subspaces. The

one which is spanned by the Cartan distribution ℰ∞ is horizontal and the other is vertical :

𝑇𝜃∞ℰ∞ = 𝒞𝜃∞ ⊕ 𝑉𝜃∞ℰ∞. We denote by Λ1,0(ℰ∞) = Ann 𝒞 and Λ0,1(ℰ∞) = Ann𝑉 ℰ∞ the

𝐶∞(ℰ∞)-modules of contact and horizontal one-forms which vanish on 𝒞 and 𝑉 ℰ∞, respec-
tively. Denote further by Λ𝑟(ℰ∞) the 𝐶∞(ℰ∞)-module of 𝑟-forms on ℰ∞. There is a natural
decomposition Λ𝑟(ℰ∞) =

⨁︀
𝑞+𝑝=𝑟 Λ

𝑝,𝑞(ℰ∞), where Λ𝑝,𝑞(ℰ∞) =
⋀︀𝑝 Λ1,0(ℰ∞) ∧

⋀︀𝑞 Λ0,1(ℰ∞).
This implies that the de Rham differential d̄ on ℰ∞ is subjected to the decomposition d̄ =

d̄ℎ+d̄𝒞, where d̄ℎ : Λ
𝑝,𝑞(ℰ∞)→ Λ𝑝,𝑞+1(ℰ∞) is the horizontal differential and d̄𝒞 : Λ

𝑝,𝑞(ℰ∞)→
Λ𝑝+1,𝑞(ℰ∞) is the vertical differential. In local coordinates, the differential d̄ℎ acts by the

rule

d̄ℎ =
∑︁

𝑖
d𝑥𝑖 ∧ �̄�𝑥𝑖 .

We will use this formula in what follows. By definition, we put Λ̄(ℰ∞) =
⨁︀

𝑞>0 Λ
0,𝑞(ℰ∞)

and we denote by 𝐻
𝑛
(·) the senior dℎ-cohomology groups (also called senior horizontal

cohomology) for the infinite jet bundles which are indicated in parentheses, cf. [63].

We denote 𝑓(𝑥𝑖, [𝑢𝑗]) = 𝑓(𝑥1, . . . , 𝑥𝑛, 𝑢1, . . . 𝑢𝑚, 𝑢1𝑥, . . . , 𝑢
𝑗
𝜎) for |𝜎| < 𝑘(𝑓).

A conserved current 𝜂 for the system ℰ is the continuity equation

𝑛∑︁
𝑖=1

�̄�𝑥𝑖(𝜂𝑖)
.
= 0 on ℰ∞,

8



2.2. Gardner’s deformations

where
.
= denotes equality upon a system ℰ and 𝜂𝑖(𝑥

𝑖, [𝑢𝑗]) are the coefficients of the hori-

zontal (𝑛− 1)-form,

𝜂 =
𝑛∑︁
𝑖=1

(−1)𝑖+1𝜂𝑖 · d𝑥1 ∧ . . . ∧ ̂︁d𝑥𝑖 ∧ . . . ∧ d𝑥𝑛 ∈ Λ̄𝑛−1(𝜋),

where ̂︁d𝑥𝑖 denotes omitted element. The coefficient 𝜂1 is called conserved density and

coefficients 𝜂2, . . . , 𝜂𝑛 are called flux components. The conservation of 𝜂 is the equality

d̄ℎ
⃒⃒
ℰ∞ 𝜂

.
= 0 on ℰ∞.

A conservation law
∫︀
𝜂 ∈ 𝐻𝑛

(𝜋) for an equation ℰ is the equivalence class of conserved

currents 𝜂, modulo the globally defined exact currents d̄𝜉 ∈
∫︀
0 (i.e. two conservation laws

𝜂1 and 𝜂2 are equivalent if their difference is a exact form 𝜂1 − 𝜂2 = d̄𝜉).

The vector field

𝜕(𝑢)𝜙 =
𝑚∑︁
𝑗=1

∑︁
|𝜎|>0

𝐷𝑥𝜎(𝜙)
𝜕

𝜕𝑢𝑗𝜎

is the evolutionary derivation along the fibre of the infinite jet bundle 𝐽∞(𝜋) → 𝑀𝑛 over

the vector bundle 𝜋 with fibre variables 𝑢. The 𝑚-tuple 𝜙 = t(𝜙1, . . . , 𝜙𝑚) ∈ Γ(𝜋)⊗𝐶∞(𝑀𝑛)

𝐶∞(𝐽∞(𝜋)) is the generating section of 𝜕
(𝑢)
𝜙 . By construction, the generating section of

𝜙 is a section of the induced vector bundle 𝜋*∞(𝜋) : 𝐸
𝑛+𝑚 ×𝑀𝑛 𝐽∞(𝜋) → 𝐽∞(𝜋); here we

implicitly use the fact that 𝜋 : 𝐸𝑛+𝑚 →𝑀𝑛 is a vector bundle and hence the tangent space

at the points of its fibres are the fibres themselves (otherwise, the construction would be

𝜙 ∈ Γ(𝜋*∞(𝑇𝜋)) for a fibre bundle 𝜋). We denote κ(𝜋) ≡ Γ(𝜋*∞(𝜋)) for brevity.

The restriction of evolutionary vector field 𝜕
(𝑢)
𝜙 on ℰ∞ is called an infinitesimal symme-

try (see [12, 42, 62]) of the equation ℰ = {𝐹 𝑙 = 0}𝑟𝑙=1 if the determining equations

𝜕(𝑢)𝜙

⃒⃒
ℰ∞ (𝐹 𝑙)

.
= 0, 𝑙 = 1, . . . , 𝑟,

hold by virtue of equation ℰ .

2.2 Gardner’s deformations

Definition 1 ([59, 82, 101]). Let ℰ = {𝑢𝑡 = 𝑓(𝑥, [𝑢])} be a system of evolution equations

(in particular, a completely integrable system). Suppose ℰ(𝜀) = {�̃�𝑡 = 𝑓𝜀(𝑥, [�̃�], 𝜀) | 𝑓𝜀 ∈
im d

d𝑥
} is a deformation of ℰ such that at each point 𝜀 ∈ ℐ of an interval ℐ ⊆ R there is

the Miura contraction m𝜀 = {𝑢 = 𝑢([�̃�], 𝜀)} : ℰ(𝜀) → ℰ . Then the pair (ℰ(𝜀),m𝜀) is the

(classical) Gardner deformation for system ℰ .
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Chapter 2. Gardner’s deformations of non-graded equations

Under the assumption that ℰ(𝜀) be in the form of a (super-)conserved current, the

Taylor coefficients �̃�(𝑘) of the formal power series �̃� =
∑︀+∞

𝑘=0 �̃�
(𝑘) ·𝜀𝑘 are termwise conserved

on ℰ(𝜀) and hence on ℰ . Therefore, the contraction m𝜀 yields the recurrence relations,

ordered by the powers of 𝜀, between these densities �̃�(𝑘), while the equality ℰ(0) = ℰ
specifies its initial condition.

Example 1 ([102]). The contraction

m𝜀 =
{︀
𝑢12 = �̃�12 ± 𝜀�̃�12;𝑥 − 𝜀2�̃�212

}︀
(2.1a)

maps solutions �̃�12(𝑥, 𝑡; 𝜀) of the extended equation ℰ(𝜀),

�̃�12;𝑡 +
(︀
�̃�12;𝑥𝑥 + 3�̃�212 − 2𝜀2 · �̃�312

)︀
𝑥
= 0, (2.1b)

to solutions 𝑢12(𝑥, 𝑡) of Korteweg–de Vries equation (1.1). Plugging the series �̃�12 =∑︀+∞
𝑘=0 𝑢

(𝑘)
12 · 𝜀𝑘 into the expression m𝜀 for �̃�12, we obtain the chain of equations ordered

by the powers of 𝜀,

𝑢12 =
+∞∑︁
𝑘=0

�̃�
(𝑘)
12 · 𝜀𝑘 ± �̃�

(𝑘)
12;𝑥 · 𝜀𝑘+1 −

∑︁
𝑖+𝑗=𝑘
𝑖,𝑗≥0

�̃�
(𝑖)
12 �̃�

(𝑗)
12 · 𝜀𝑘+2.

Let us fix the plus sign in (2.1a) by reversing 𝜀→ −𝜀 if necessary. Equating the coefficients

of 𝜀𝑘, we obtain the relations

𝑢 = �̃�
(0)
12 , 0 = �̃�

(1)
12 + �̃�

(0)
12;𝑥, 0 = �̃�

(𝑘)
12 + �̃�

(𝑘−1)
12;𝑥 −

∑︁
𝑖+𝑗=𝑘−2
𝑖,𝑗≥0

�̃�
(𝑖)
12 �̃�

(𝑗)
12 , 𝑘 ≥ 2.

Hence, from the initial condition �̃�
(0)
12 = 𝑢12, we recursively generate the densities

�̃�
(1)
12 = −𝑢12;𝑥, �̃�

(2)
12 = 𝑢12;𝑥𝑥 − 𝑢212, �̃�

(3)
12 = −𝑢12;𝑥𝑥𝑥 + 4𝑢12;𝑥𝑢12,

�̃�
(4)
12 = 𝑢12;4𝑥 − 6𝑢12;𝑥𝑥𝑢12 − 5𝑢212;𝑥 + 2𝑢312,

�̃�
(5)
12 = −𝑢12;5𝑥 + 8𝑢12;𝑥𝑥𝑥𝑢12 + 18𝑢12;𝑥𝑥𝑢12;𝑥 − 16𝑢12;𝑥𝑢

2
12,

�̃�
(6)
12 = 𝑢12;6𝑥 − 10𝑢12;4𝑥𝑢12 − 28𝑢12;𝑥𝑥𝑥𝑢12;𝑥 − 19𝑢212;𝑥𝑥 + 30𝑢12;𝑥𝑥𝑢

2
12 + 50𝑢212;𝑥𝑢12 − 5𝑢412,

�̃�
(7)
12 = −𝑢12;7𝑥 + 12𝑢12;5𝑥𝑢12 + 40𝑢12;4𝑥𝑢12;𝑥 + 68𝑢12;𝑥𝑥𝑥𝑢12;𝑥𝑥 − 48𝑢12;𝑥𝑥𝑥𝑢

2
12

− 216𝑢12;𝑥𝑥𝑢12;𝑥𝑢12 − 60𝑢312;𝑥 + 64𝑢12;𝑥𝑢
3
12, etc.

The conservation �̃�12;𝑡 =
d
d𝑥

(︀
·
)︀
implies that each coefficient 𝑢

(𝑘)
12 is conserved on (1.1).

The densities 𝑢
(2𝑘)
12 = 𝑐(𝑘) · 𝑢𝑘12 + . . . , 𝑐(𝑘) = const, determine the Hamiltonians ℋ(𝑘)

12 =∫︀
ℎ
(𝑘)
12 [𝑢12] d𝑥 of the renowned KdV hierarchy. Let us show that all of them are nontrivial.

10



2.2. Gardner’s deformations

Consider the zero-order part �̆�KdV
12 such that �̃�12

(︀
[𝑢12], 𝜀

)︀
= �̆�KdV

12 (𝑢12, 𝜀) + . . . , where the

dots denote summands containing derivatives of 𝑢12. Taking the zero-order component

of (2.1a), we conclude that the generating function �̆�KdV
12 satisfies the algebraic recurrence

relation 𝑢12 = �̆�KdV
12 −𝜀2

(︀
�̆�KdV
12

)︀2
. We choose the root by the initial condition �̆�KdV

12

⃒⃒
𝜀=0

= 𝑢12,

which yields

�̆�KdV
12 =

(︁
1−

√︀
1− 4𝜀2𝑢12

)︁⧸︀
(2𝜀2). (2.2)

Moreover, the Taylor coefficients �̆�
(𝑘)
12 (𝑢12) in �̆�

KdV
12 =

∑︀+∞
𝑘=0 �̆�

(𝑘)
12 ·𝜀2𝑘 equal 𝑐(𝑘) ·𝑢𝑘+1

12 , where

𝑐(𝑘) are positive and grow with 𝑘. This is readily seen by induction on 𝑘 with the base

�̆�
(0)
12 = 𝑢12. Expanding both sides of the equality 𝑢12 = �̆�KdV

12 − 𝜀2 ·
(︀
�̆�KdV
12

)︀2
in 𝜀2, we notice

that

�̆�
(𝑘)
12 =

∑︁
𝑖+𝑗=𝑘−1,
𝑖,𝑗≥0

�̆�
(𝑖)
12 · �̆�

(𝑗)
12 =

∑︁
𝑖+𝑗=𝑘−1

𝑐(𝑖)𝑐(𝑗) · 𝑢𝑘+1
12 .

Therefore, the next coefficient, 𝑐(𝑘) =
∑︀

𝑖+𝑗=𝑘−1 𝑐(𝑖) · 𝑐(𝑗), is the sum over 𝑖, 𝑗 ≥ 0 of

products of positive numbers, whence 𝑐(𝑘 + 1) > 𝑐(𝑘) > 0. This proves the claim.

Let us list the densities ℎ
(𝑘)
KdV ∼ 𝑢

(2𝑘)
12 mod imd/d𝑥 of the first seven Hamiltonians

for (1.1). These will be correlated in section 3.5 with the lowest seven Hamiltonians

for (1.2), see [84] and (3.12) below. We have

ℎ
(1)
KdV = 𝑢212, ℎ

(2)
KdV = 2𝑢312 − 𝑢212;𝑥 + 2𝑢312 + 𝑢12;𝑥𝑥, ℎ

(3)
KdV = 5𝑢412 + 5𝑢12;𝑥𝑥𝑢

2
12 + 𝑢212;𝑥𝑥,

ℎ
(4)
KdV = −14𝑢512 + 70𝑢212𝑢

2
12;𝑥 + 14𝑢12𝑢12;𝑥𝑥𝑥𝑢12;𝑥 + 𝑢212;𝑥𝑥𝑥,

ℎ
(5)
KdV = 42𝑢612 − 420𝑢312𝑢

2
12;𝑥 + 9𝑢212𝑢12;6𝑥 + 126𝑢212𝑢

2
12;𝑥𝑥 + 𝑢212;4𝑥 − 7𝑢312;𝑥𝑥 − 35𝑢412;𝑥,

ℎ
(6)
KdV = 1056𝑢712 − 18480𝑢412𝑢

2
12;𝑥 + 7392𝑢312𝑢

2
12;𝑥𝑥 + 55𝑢212𝑢12;8𝑥 − 1584𝑢212𝑢

2
12;𝑥𝑥𝑥

+ 66𝑢12𝑢
2
12;4𝑥 + 3520𝑢12𝑢

3
12;𝑥𝑥 − 6160𝑢12𝑢

4
12;𝑥 − 8𝑢212;5𝑥 + 3696𝑢212;𝑥𝑥𝑢

2
12;𝑥,

ℎ
(7)
KdV = 15444𝑢812 − 432432𝑢512𝑢

2
12;𝑥 + 4004𝑢412𝑢12;6𝑥 + 216216𝑢412𝑢

2
12;𝑥𝑥 + 2145𝑢312𝑢12;8𝑥

− 45760𝑢312𝑢
2
12;𝑥𝑥𝑥 + 3861𝑢212𝑢

2
12;4𝑥 + 133848𝑢212𝑢

3
12;𝑥𝑥 − 360360𝑢212𝑢

4
12;𝑥

− 936𝑢12𝑢
2
12;5𝑥 + 36𝑢212;6𝑥 + 6552𝑢212;4𝑥𝑢12;𝑥𝑥 + 72072𝑢212;𝑥𝑥𝑥𝑢

2
12;𝑥 − 28314𝑢412;𝑥𝑥.

At the same time, the densities 𝑢
(2𝑘+1)
12 = d

d𝑥

(︀
·
)︀
∼ 0 are trivial (i.e. for all 𝑘 ∈ N exists

𝑔2𝑘+1 ∈ 𝐶∞(ℰ∞) such that 𝑢
(2𝑘+1)
12 = d

d𝑥
𝑔2𝑘+1). Indeed, for 𝜔0 :=

∑︀+∞
𝑘=0 𝑢

(2𝑘)
12 · 𝜀2𝑘 and

𝜔1 :=
∑︀+∞

𝑘=0 𝑢
(2𝑘+1)
12 · 𝜀2𝑘 such that �̃� = 𝜔0 + 𝜀 · 𝜔1, we equate the odd powers of 𝜀 in (2.1a)

and obtain 𝜔1 =
1

2𝜀2
d
d𝑥

log
(︀
1− 2𝜀2𝜔0

)︀
.

In what follows, using deformation (2.1) of (1.1), we fix the coefficients of differential

monomials in 𝑢12 within a bigger deformation problem (see section 2.3) for two-component

system (3.10).
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2.3 New deformation of the Kaup–Boussinesq equa-

tion

In this section we construct a new Gardner’s deformation for the Kaup–Boussinesq equa-

tion (1.4), which is the bosonic limit of the 𝑁=2 supersymmetric system (3.8). We will

use known deformation (2.1) to fix several coefficients in the Miura contraction m𝜀, which

ensures the difference of the new solution (2.3)–(2.4) from previously known deformations

of (1.4), see [52]. We prove that the new deformation is maximally nontrivial: It yields

infinitely many nontrivial conserved densities, and none of the Hamiltonians is lost.

Let us summarize well-known properties of the Kaup–Boussinesq equation [54, 56, 105]:

Proposition 1 ([56]). Completely integrable Kaup–Boussinesq system (1.4) is a tri-Ha-

miltonian equation(︂
𝑢0
𝑢12

)︂
𝜉

= 𝐴12
1

(︂
𝛿/𝛿𝑢0
𝛿/𝛿𝑢12

)︂(︁∫︁ [︀
2𝑢20𝑢12 − 1

2
𝑢212 − 1

2
𝑢20;𝑥
]︀
d𝑥
)︁

= 𝐴0
1

(︂
𝛿/𝛿𝑢0
𝛿/𝛿𝑢12

)︂(︁
−
∫︁
𝑢0𝑢12 d𝑥

)︁
= 𝐴2

(︂
𝛿/𝛿𝑢0
𝛿/𝛿𝑢12

)︂(︁
−
∫︁
𝑢12 d𝑥

)︁
.

The senior Hamiltonian operator 𝐴2 is(︃
𝑢0;𝑥 + 2𝑢0

d
d𝑥

𝑢12;𝑥 − 4𝑢0𝑢0;𝑥 − 2𝑢20
d
d𝑥

+ 2𝑢12
d
d𝑥

+ 1
2

(︀
d
d𝑥

)︀3
𝑢12;𝑥 − 2𝑢20

d
d𝑥

+ 2𝑢12
d
d𝑥

+ 1
2

(︀
d
d𝑥

)︀3 −4𝑢0𝑢12 d
d𝑥
− 4 d

d𝑥
∘ 𝑢0𝑢12 − 𝑢0

(︀
d
d𝑥

)︀3 − (︀ d
d𝑥

)︀3 ∘ 𝑢0
)︃
.

The junior Hamiltonian operators 𝐴0
1 and 𝐴12

1 are obtained from 𝐴2 by the shifts of the

respective fields, c.f. [29, 115]:

𝐴0
1 =

(︃
d
d𝑥

−2𝑢0;𝑥 − 2𝑢0
d
d𝑥

−2𝑢0 d
d𝑥
−2𝑢12;𝑥 − 4𝑢12

d
d𝑥
−
(︀

d
d𝑥

)︀3)︃ =
1

2
· d

d𝜆

⃒⃒⃒⃒
𝜆=0

𝐴2

⃒⃒⃒
𝑢0+𝜆

and

𝐴12
1 =

(︂
0 d

d𝑥
d
d𝑥

0

)︂
=

1

2
· d

d𝜇

⃒⃒⃒⃒
𝜇=0

𝐴2

⃒⃒⃒
𝑢12+𝜇

.

The three operators 𝐴0
1, 𝐴

12
1 , and 𝐴2 are Poisson compatible (i.e. their linear combination

𝜆1𝐴
0
1 + 𝜆2𝐴

12
1 + 𝜆3𝐴2 are Hamiltonian operator).

Kaup–Boussinesq equation (1.4) admits an infinite sequence of integrals of motion. We

will derive them via the Gardner deformation. Unlike it was in [52], from now on we always

assume that (2.1a) is recovered under �̃�0 := 0.
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2.3. New deformation of the Kaup–Boussinesq equation

The Magri scheme for Kaup–Boussinesq equation is following

. . .

𝜙3

𝐴 0
1

-

𝑡3 ≡ 𝑡 Bosonic limit of SKdV

ℎ2 = 𝑢12𝑢0
𝛿

- 𝜓3

𝐴 2

-

𝜙2

𝐴 0
1

-

𝑡2 ≡ 𝜉 Kaup–Boussinesq equation

ℎ1 = 𝑢12
𝛿

- 𝜓2

𝐴 2

-

𝜙1

𝐴
1
21

-

𝐴 0
1

-

𝑡1 ≡ 𝑥 translation w.r.t. 𝑥

ℎ0 = 𝑢0
𝛿

- 𝜓1

𝐴 2

-

We assume that both the extension ℰ(𝜀) of (1.4) and the contraction m𝜀 : ℰ(𝜀) → ℰ
into (1.4) are homogeneous polynomials in 𝜀. From now on, we denote reduction (1.4)

by ℰ .
First, let us estimate the degrees in 𝜀 for such polynomials ℰ(𝜀) and m𝜀, by balancing

the powers of 𝜀 in the left- and right-hand sides of (1.4) with 𝑢0 and 𝑢12 replaced by the

Miura contraction m𝜀 =
{︀
𝑢0 = 𝑢0

(︀
[�̃�0, �̃�12], 𝜀

)︀
, 𝑢12 = 𝑢12

(︀
[�̃�0, �̃�12], 𝜀

)︀}︀
. The time evolution

in the left-hand side, which is of the form 𝑢𝜉 = 𝜕
(𝑢)
�̃�𝜉

(m𝜀) by the chain rule, sums the degrees

in 𝜀: deg 𝑢𝜉 = degm𝜀 + deg ℰ(𝜀). At the same time, we notice that system (1.4) is only

quadratic-nonlinear. Hence its right-hand side, with m𝜀 substituted for 𝑢0 and 𝑢12, gives
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the degree 2× degm𝜀, irrespective of deg ℰ(𝜀). Consequently, we obtain the balance1 1 : 1

for max degm𝜀 : max deg ℰ(𝜀). This is in contrast with the balance 1 : 2 for polynomial

deformations of bosonic limit (3.10) for initial SKdV system (1.2), which is cubic-nonlinear2

(c.f. [84]).

Obviously, a lower degree polynomial extension ℰ(𝜀) contains fewer undetermined coef-

ficients. This is the first profit we gain from passing to (3.8) instead of (1.2). By the same

argument, we conclude that m𝜀 : ℰ(𝜀) → ℰ , viewed as the algebraic system upon these

coefficients, is only quadratic-nonlinear w.r.t. the coefficients in m𝜀 (and, obviously, linear

w.r.t. the coefficients in ℰ(𝜀); this is valid for any balance degm𝜀 : deg ℰ(𝜀)). Hence the

size of this overdetermined algebraic system is further decreased.

Second, we use the unique admissible homogeneity weights for Kaup–Boussinesq sys-

tem (1.4),

|𝑢0| = 1, |𝑢12| = 2, |d/d𝜉| = 2;

here |d/d𝑥| ≡ 1 is the normalization. The Miura contraction m𝜀 =
{︀
𝑢0 = �̃�0 + 𝜀 · (. . . ),

𝑢12 = �̃�12 + 𝜀 · (. . . )
}︀
, which we assume regular at the origin, implies that |�̃�0| = 1 and

|�̃�12| = 2 as well. We let |𝜀| = −1 be the difference of weights for every two successive

Hamiltonians for the 𝑁=2, 𝑎=4–SKdV hierarchy, see [84] and (3.12) below. In this setup,

all functional coefficients of the powers 𝜀𝑘 both in ℰ(𝜀) and m𝜀 are homogeneous differential

polynomials in 𝑢0, 𝑢12, and their derivatives w.r.t. 𝑥. It is again important that the

time 𝜉 of weight |d/d𝜉| = 2 in (3.8) precedes the time 𝑡 with |d/d𝑡| = 3 in the hierarchy

of (1.2), where |𝜃𝑖| = −1
2
and |𝑢| = 1. As before, we have further decreased the number of

undetermined coefficients.

The polynomial ansatz for Gardner’s deformation of (1.4) is generated by the procedure

GenSSPoly with SsTools [73, 126]. We thus obtain the determining system m𝜀 : ℰ(𝜀)→ ℰ .
Using SsTools and Crack, we split it to the overdetermined system of algebraic equa-

tions, which are linear w.r.t. ℰ(𝜀) and quadratic-nonlinear w.r.t. m𝜀. Moreover, we claim

that this system is triangular. Indeed, it is ordered by the powers of 𝜀, since the determin-

ing system is identically satisfied at zeroth order and because equations at lower orders

of 𝜀 involve only the coefficients of its lower powers from m𝜀 and ℰ(𝜀).
Thirdly, we use the deformation (2.1) of the Korteweg–de Vries equation [102]. We

recall that

∙ Miura’s contraction m𝜀 is common for all two-component systems of the Kaup–

Boussinesq hierarchy;

1This estimate is rough and can be improved by operating separately with the components of m𝜀

and ℰ(𝜀) since, in particular, Kaup–Boussinesq system (1.4) is linear in 𝑢12.
2Reductions other than (1.3) can produce quadratic-nonlinear subsystems of cubic-nonlinear sys-

tem (1.2), e.g., if one sets 𝑢0 = 0 and 𝑢2 = 0, see (3.13) on p. 38.
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2.3. New deformation of the Kaup–Boussinesq equation

∙ for any 𝑎, the bosonic limit of (1.2), see (3.5) and (3.10), incorporates Korteweg–de

Vries equation (1.1).

Using (2.1a), we fix those coefficients in m𝜀 which depend only on 𝑢12 and its derivatives,

but not on 𝑢0 or its derivatives. Apparently, we discard the knowledge of such coefficients

in the extension of bosonic limit (3.10), since for us now it is not the object to be deformed.

But the minimization of the algebraic system, which we have achieved by passing to (3.8),

is so significant that this temporary loss in inessential. Furthermore, the above reasoning

shows that the recovery of the coefficients in the extension ℰ(𝜀) amounts to solution of

linear equations, while finding the coefficients in m𝜀 would cost us the necessity to solve

nonlinear algebraic systems. We managed to fix some of those constants for granted.

We finally remark that the normalization of at least one coefficient in the deformation

problem cancels the redundant dilation of the parameter 𝜀, which, otherwise, would remain

until the end. This is our fourth simplification.3

We let the degrees degm𝜀 = deg ℰ(𝜀) be equal to four (c.f. [84]). Under this assumption,

the two-component homogeneous polynomial extension ℰ(𝜀) of system (1.4) contains 160

undetermined coefficients. At the same time, the two components of the Miura contrac-

tion m𝜀 depend on 94 coefficients. However, we decrease this number by nine, setting the

coefficient of �̃�12;𝑥 equal to +1 and, similarly, to −1 for �̃�212 (see (2.1a), where the ± sign

is absorbed by 𝜀 ↦→ −𝜀). Likewise, we set equal to zero the seven coefficients of �̃�12;𝑥𝑥,

�̃�12�̃�12;𝑥, �̃�12;𝑥𝑥𝑥, �̃�
3
12, �̃�

2
12;𝑥, �̃�12�̃�12;𝑥𝑥, and �̃�12;𝑥𝑥𝑥𝑥 in m𝜀.

The resulting algebraic system with the shortened list of unknowns and with the auxil-

iary list of nine substitutions is handled by SsTools and then solved by usingCrack [125].

Theorem 1 ([47]). Under the above assumptions, the Gardner deformation problem for

Kaup–Boussinesq equation (1.4) has a unique real solution of degree 4. The Miura con-

traction m𝜀 is given by

𝑢0 = �̃�0 + 𝜀�̃�0;𝑥 − 2𝜀2�̃�12�̃�0, (2.3a)

𝑢12 = �̃�12 + 𝜀
(︀
�̃�12;𝑥 − 2�̃�0�̃�0;𝑥

)︀
+ 𝜀2

(︀
4�̃�12�̃�

2
0 − �̃�212 − �̃�20;𝑥

)︀
+ 4𝜀3�̃�12�̃�0�̃�0;𝑥 − 4𝜀4�̃�212�̃�

2
0.

(2.3b)

The extension ℰ(𝜀) of (1.4) is

�̃�0;𝜉 = −�̃�12;𝑥 + 4𝑢0�̃�0;𝑥 + 2𝜀
(︀
�̃�0�̃�0;𝑥

)︀
𝑥
− 4𝜀2

(︀
�̃�20𝑢12

)︀
𝑥
, (2.4a)

�̃�12;𝜉 = �̃�0;𝑥𝑥𝑥 + 4
(︀
�̃�0�̃�12

)︀
𝑥
− 2𝜀

(︀
�̃�0�̃�12;𝑥

)︀
𝑥
− 4𝜀2

(︀
�̃�0�̃�

2
12

)︀
𝑥
. (2.4b)

System (2.4) preserves the first Hamiltonian operator 𝐴𝜀1 =
(︁

0 d/d𝑥
d/d𝑥 0

)︁
from 𝐴12

1 for (1.4).

3There is one more possibility to reduce the size of the algebraic system: this can be achieved by a

thorough balance of the differential orders of m𝜀 and ℰ(𝜀).
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The Miura contraction m𝜀 is shared by all equations in the Kaup–Boussinesq hierarchy.

Solving the linear algebraic system, we find the extension
(︀
lim𝐵 ℰ𝑎=4

SKdV

)︀
(𝜀) for the bosonic

limit (3.10) of (1.2) with 𝑎=4:

�̃�0;𝑡 = −�̃�0;𝑥𝑥𝑥 − 6
(︀
�̃�0�̃�12

)︀
𝑥
+ 12�̃�20�̃�0;𝑥 + 12𝜀

(︀
�̃�20�̃�0;𝑥

)︀
𝑥
+ 6𝜀2

(︀
�̃�0�̃�

2
12 − 4�̃�12�̃�

3
0 + �̃�0�̃�

2
0;𝑥)
)︀
𝑥

+ 𝜀3
(︀
(−24)�̃�12�̃�20�̃�0;𝑥

)︀
𝑥
+ 𝜀4

(︀
24�̃�212�̃�

3
0

)︀
𝑥
, (2.5a)

�̃�12;𝑡 = −�̃�12;𝑥𝑥𝑥 − 6�̃�12�̃�12;𝑥 + 12
(︀
�̃�20�̃�12

)︀
𝑥
+ 6�̃�0�̃�0;𝑥𝑥𝑥 + 12�̃�0;𝑥𝑥�̃�0;𝑥

+ 6𝜀
(︀
�̃�0;𝑥𝑥�̃�0;𝑥 − 2�̃�20�̃�12;𝑥

)︀
𝑥

+ 2𝜀2
(︀
�̃�312 − 18�̃�212�̃�

2
0 − 6�̃�12�̃�0�̃�0;𝑥𝑥 − 3�̃�12�̃�

2
0;𝑥 − 6�̃�0�̃�12;𝑥�̃�0;𝑥

)︀
𝑥

+ 24𝜀3
(︀
�̃�12�̃�

3
0�̃�12;𝑥

)︀
𝑥
+ 24𝜀4

(︀
�̃�312�̃�

2
0

)︀
𝑥
. (2.5b)

Now we expand the fields �̃�0(𝜀) =
∑︀+∞

𝑘=0 �̃�
(𝑘)
0 · 𝜀𝑘 and �̃�12(𝜀) =

∑︀+∞
𝑘=0 �̃�

(𝑘)
12 · 𝜀𝑘, and plug

the formal power series for �̃�0 and �̃�12 in m𝜀. Hence we start from �̃�
(0)
0 = 𝑢0 and �̃�

(0)
12 =

𝑢12, which is standard, and proceed with the recurrence relations between the conserved

densities 𝑢
(𝑘)
0 and 𝑢

(𝑘)
12 ,

�̃�
(1)
0 = −𝑢0;𝑥, �̃�

(𝑛)
0 = − d

d𝑥
�̃�
(𝑛−1)
0 +

∑︁
𝑗+𝑘=𝑛−2

2�̃�
(𝑘)
12 �̃�

(𝑗)
0 , ∀𝑛 ≥ 2;

�̃�
(1)
12 = 2𝑢0𝑢0;𝑥 − 𝑢12;𝑥, �̃�

(2)
12 = 𝑢212 + 𝑢12;𝑥𝑥 − 4𝑢12𝑢

2
0 − 3𝑢20;𝑥 − 4𝑢0𝑢0;𝑥𝑥,

�̃�
(3)
12 =

∑︁
𝑗+𝑘=2

2�̃�
(𝑗)
0

d
d𝑥
�̃�
(𝑘)
0 − d

d𝑥
�̃�
(2)
12 +

∑︁
𝑗+𝑘=1

(︁
�̃�
(𝑗)
12 �̃�

(𝑘)
12 + ( d

d𝑥
�̃�
(𝑗)
0 )( d

d𝑥
�̃�
(𝑘)
0 )
)︁

−
∑︁

𝑗+𝑘+𝑙=1

4�̃�
(𝑗)
12 �̃�

(𝑘)
0 �̃�

(𝑙)
0 − 4𝑢12𝑢0𝑢0;𝑥,

�̃�
(𝑛)
12 = − d

d𝑥
�̃�
(𝑛−1)
12 +

∑︁
𝑗+𝑘=𝑛−1

2�̃�
(𝑗)
0

d
d𝑥
�̃�
(𝑘)
0 +

∑︁
𝑗+𝑘=𝑛−2

(�̃�
(𝑗)
12 �̃�

(𝑘)
12 + ( d

d𝑥
(�̃�

(𝑗)
0 ) d

d𝑥
(�̃�

(𝑘)
0 ))

−
∑︁

𝑗+𝑘+𝑙=𝑛−2

4�̃�
(𝑗)
12 �̃�

(𝑘)
0 �̃�

(𝑙)
0 −

∑︁
𝑗+𝑘+𝑙=𝑛−3

4�̃�
(𝑗)
12 �̃�

(𝑘)
0

d
d𝑥
�̃�
(𝑙)
0

+
∑︁

𝑗+𝑘+𝑙+𝑚=𝑛−4

4�̃�
(𝑗)
12 �̃�

(𝑘)
12 �̃�

(𝑙)
0 �̃�

(𝑚)
0 , ∀𝑛 ≥ 4.

Example 2. Following this recurrence, let us generate the eight lowest weight nontriv-

ial conserved densities, which start the tower of Hamiltonians for the Kaup–Boussinesq

hierarchy.

We begin with �̃�
(0)
0 = 𝑢0 and �̃�

(0)
12 = 𝑢12. Next, we obtain the densities

�̃�
(2)
0 = 𝑢0;𝑥𝑥 + 2𝑢0𝑢12, �̃�

(2)
12 = −4𝑢0;𝑥𝑥𝑢0 − 3𝑢20;𝑥 + 𝑢12;𝑥𝑥 − 4𝑢20𝑢12 + 𝑢212,

which contribute to the tri-Hamiltonian representation of (1.4), see Proposition 1. Now
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2.3. New deformation of the Kaup–Boussinesq equation

we proceed with

�̃�
(4)
0 = 𝑢0;4𝑥 − 12𝑢0;𝑥𝑥𝑢

2
0 + 6𝑢0;𝑥𝑥𝑢12 − 18𝑢20;𝑥𝑢0 + 10𝑢0;𝑥𝑢12;𝑥 + 6𝑢12;𝑥𝑥𝑢0 − 8𝑢30𝑢12 + 6𝑢0𝑢

2
12,

�̃�
(4)
12 = −8𝑢0;4𝑥𝑢0 − 20𝑢0;𝑥𝑥𝑥𝑢0;𝑥 − 13𝑢20;𝑥𝑥 + 32𝑢0;𝑥𝑥𝑢

3
0 − 48𝑢0;𝑥𝑥𝑢0𝑢12 + 72𝑢20;𝑥𝑢

2
0 − 38𝑢20;𝑥𝑢12 −

− 80𝑢0;𝑥𝑢12;𝑥𝑢0 + 𝑢12;4𝑥 − 24𝑢12;𝑥𝑥𝑢
2
0 + 6𝑢12;𝑥𝑥𝑢12 + 5𝑢212;𝑥 + 16𝑢40𝑢12 − 24𝑢20𝑢

2
12 + 2𝑢312,

�̃�
(6)
0 = 𝑢0;6𝑥 − 40𝑢0;4𝑥𝑢

2
0 + 10𝑢0;4𝑥𝑢12 − 200𝑢0;𝑥𝑥𝑥𝑢0;𝑥𝑢0 + 28𝑢0;𝑥𝑥𝑥𝑢12;𝑥 − 130𝑢20;𝑥𝑥𝑢0 −

− 198𝑢0;𝑥𝑥𝑢
2
0;𝑥 + 38𝑢0;𝑥𝑥𝑢12;𝑥𝑥 + 80𝑢0;𝑥𝑥𝑢

4
0 − 240𝑢0;𝑥𝑥𝑢

2
0𝑢12 + 30𝑢0;𝑥𝑥𝑢

2
12 + 240𝑢20;𝑥𝑢

3
0 −

− 380𝑢20;𝑥𝑢0𝑢12 + 28𝑢0;𝑥𝑢12;𝑥𝑥𝑥 − 400𝑢0;𝑥𝑢12;𝑥𝑢
2
0 + 100𝑢0;𝑥𝑢12;𝑥𝑢12 + 10𝑢12;4𝑥𝑢0 −

− 80𝑢12;𝑥𝑥𝑢
3
0 + 60𝑢12;𝑥𝑥𝑢0𝑢12 + 50𝑢212;𝑥𝑢0 + 32𝑢50𝑢12 − 80𝑢30𝑢

2
12 + 20𝑢0𝑢

3
12,

�̃�
(6)
12 = −12𝑢0;6𝑥𝑢0 − 42𝑢0;5𝑥𝑢0;𝑥 − 80𝑢0;4𝑥𝑢0;𝑥𝑥 + 160𝑢0;4𝑥𝑢

3
0 − 120𝑢0;4𝑥𝑢0𝑢12 − 49𝑢20;𝑥𝑥𝑥 +

+ 1200𝑢0;𝑥𝑥𝑥𝑢0;𝑥𝑢
2
0 − 312𝑢0;𝑥𝑥𝑥𝑢0;𝑥𝑢12 − 336𝑢0;𝑥𝑥𝑥𝑢12;𝑥𝑢0 + 780𝑢20;𝑥𝑥𝑢

2
0 − 206𝑢20;𝑥𝑥𝑢12 +

+ 2376𝑢0;𝑥𝑥𝑢
2
0;𝑥𝑢0 − 716𝑢0;𝑥𝑥𝑢0;𝑥𝑢12;𝑥 − 456𝑢0;𝑥𝑥𝑢12;𝑥𝑥𝑢0 − 192𝑢0;𝑥𝑥𝑢

5
0 + 960𝑢0;𝑥𝑥𝑢

3
0𝑢12 −

− 360𝑢0;𝑥𝑥𝑢0𝑢
2
12 + 297𝑢40;𝑥 − 366𝑢20;𝑥𝑢12;𝑥𝑥 − 720𝑢20;𝑥𝑢

4
0 + 2280𝑢20;𝑥𝑢

2
0𝑢12 − 290𝑢20;𝑥𝑢

2
12 −

− 336𝑢0;𝑥𝑢12;𝑥𝑥𝑥𝑢0 + 1600𝑢0;𝑥𝑢12;𝑥𝑢
3
0 − 1200𝑢0;𝑥𝑢12;𝑥𝑢0𝑢12 + 𝑢12;6𝑥 − 60𝑢12;4𝑥𝑢

2
0 +

+ 10𝑢12;4𝑥𝑢12 + 28𝑢12;𝑥𝑥𝑥𝑢12;𝑥 + 19𝑢212;𝑥𝑥 + 240𝑢12;𝑥𝑥𝑢
4
0 − 360𝑢12;𝑥𝑥𝑢

2
0𝑢12 + 30𝑢12;𝑥𝑥𝑢

2
12 −

− 300𝑢212;𝑥𝑢
2
0 + 50𝑢212;𝑥𝑢12 − 64𝑢60𝑢12 + 240𝑢40𝑢

2
12 − 120𝑢20𝑢

3
12 + 5𝑢412, etc.

We will use these formulas in the next section, where, as an illustration, we re-derive the

seven super-Hamiltonians of [84].

Theorem 2 ([47]). In the above notation, the following statements hold:

∙ The conserved densities �̃�
(2𝑘)
0 and �̃�

(2𝑘)
12 of weights 2𝑘+1 and 2𝑘+2, respectively, are

nontrivial for all integers 𝑘 ≥ 0.

∙ Consider the zero-order components �̆�0(𝑢0, 𝑢12, 𝜀) and �̆�12(𝑢0, 𝑢12, 𝜀) of the series

�̃�0
(︀
[𝑢0, 𝑢12], 𝜀

)︀
and �̃�12

(︀
[𝑢0, 𝑢12], 𝜀

)︀
with differential-polynomial coefficients. Then

these generating functions are given by the formulas

(︀
�̆�0(𝑢0, 𝑢12, 𝜀

2)
)︀2

=
1

8𝜀2
·
[︂
4𝜀2(𝑢20 + 𝑢12)− 1 +

√︁
1 + 8𝜀2(𝑢20 − 𝑢12) + 16𝜀4(𝑢20 + 𝑢12)2

]︂
,

(2.6a)

�̆�12(𝑢0, 𝑢12, 𝜀
2) =

1

2𝜀2
·

[︃
1−

√︂
1
2
− 2𝜀2(𝑢12 + 𝑢20) +

1
2

√︁
1 + 8𝜀2(𝑢20 − 𝑢12) + 16𝜀4(𝑢20 + 𝑢12)2

]︃
.

(2.6b)

∙ The generating functions for the odd-index conserved densities �̃�
(2𝑘+1)
0 and �̃�

(2𝑘+1)
12

are expressed via the even-index densities, see (2.8) and (2.9), respectively. We claim

that all the odd-index densities are trivial.

17



Chapter 2. Gardner’s deformations of non-graded equations

Proof. The densities �̃�
(𝑘)
0 and �̃�

(𝑘)
12 , which are conserved for the bosonic limit (3.10) of the

𝑁=2, 𝑎=4–SKdV system (3.5), retract to the conserved densities for Korteweg–de Vries

equation (1.1) under 𝑢0 ≡ 0, see Example 1. The corresponding reduction of �̆�12(𝑢0, 𝑢12, 𝜀)

is generating function (2.2). This implies that �̆�12 =
∑︀+∞

𝑘=0 𝑐(𝑘)𝑢
𝑘
12 · 𝜀2𝑘 + . . . , whence the

densities �̃�
(2𝑘)
12 are nontrivial.

Following the line of reasonings on p. 11, we consider the zero-order terms in Miura’s

contraction (2.3), which yields

𝑢0 = �̆�0 ·
(︀
1− 2𝜀2�̆�12

)︀
, (2.7a)

𝑢12 = �̆�12 + 𝜀2
(︀
4�̆�20�̆�12 − �̆�212

)︀
− 4𝜀4�̆�20�̆�

2
12. (2.7b)

Therefore,

�̆�0 =
𝑢0

1− 2𝜀2�̆�12
=

+∞∑︁
𝑘=0

𝑢0 ·
(︀
2𝜀2�̆�12

)︀𝑘
.

Since the coefficients 𝑐(𝑘) of 𝑢𝑘12 · 𝜀2𝑘 in �̆�12 are positive, so are the coefficients of 𝑢0𝑢
𝑘
12 · 𝜀2𝑘

in �̆�0 for all 𝑘 ≥ 0. This proves that the conserved densities �̃�
(2𝑘)
0 are nontrivial as well.

Second, squaring (2.7a) and adding it to (2.7b), we obtain the equality 𝑢20 + 𝑢12 =

�̆�20 + �̆�12 − 𝜀2�̆�212. In agreement with �̆�0
⃒⃒
𝜀=0

= 𝑢0 and �̆�12
⃒⃒
𝜀=0

= 𝑢12, we choose the root

�̆�12 =
[︀
1 −

√︁
1− 4𝜀2 ·

(︀
𝑢12 + 𝑢20 − �̆�20

)︀]︀
/(2𝜀2) of this quadratic equation. Hence (2.7a)

yields the bi-quadratic equation upon �̆�0,

1− 4𝜀2
(︀
𝑢12 + 𝑢20 − �̆�20

)︀
= 𝑢20

⧸︀
�̆�20.

As above, the proper choice of its root gives (2.6a), whence we return to �̆�12 and finally

obtain (2.6b).

Finally, let us substitute the expansions �̃�0 = 𝜐0(𝜀
2)+𝜀·𝜐1(𝜀2) and �̃�12 = 𝜔0(𝜀

2)+𝜀 · 𝜔1(𝜀
2)

in (2.3) for �̃�0 and �̃�12, see Example 1. By balancing the odd powers of 𝜀 in (2.3a), it is

then easy to deduce the equality

𝜐1 ≡
+∞∑︁
𝑘=0

�̃�
(2𝑘+1)
0 · 𝜀2𝑘 = 1

4𝜀2
· d

d𝑥
log
(︀
1− 4𝜀2 · 𝜐0

)︀
, where 𝜐0 ≡

+∞∑︁
ℓ=0

�̃�
(2ℓ)
0 · 𝜀2ℓ. (2.8)

The balance of odd powers of 𝜀 in (2.3b) yields the algebraic equation upon 𝜔1, whence,
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2.4. Gardner’s deformations as generators of new integrable systems

in agreement with the initial condition 𝜔1(0) = �̃�
(1)
12 , we choose its root

𝜔1 =
[︁
1− 2𝜀2𝜔0 + 4𝜀2𝜐20 + 4𝜀4

(︀
𝜐21 − 2𝜔0𝜐

2
0 + 𝜐0𝜐1;𝑥 + 𝜐1𝜐0;𝑥

)︀
− 8𝜀6𝜐21𝜔0

−
(︁
1 + 4𝜀2

(︀
2𝜐20 − 𝜔0

)︀
+ 4𝜀4

(︀
𝜔2
0 + 2𝜐0𝜐1;𝑥 − 8𝜔0𝜐

2
0 + 2𝜐1𝜐0;𝑥 + 2𝜐21 + 4𝜐40

)︀
+ 16𝜀6

(︀
2𝜔2

0𝜐
2
0 − 2𝜐21𝜔0 − 𝜔0𝜐0𝜐1;𝑥 − 𝜔0𝜐1𝜐0;𝑥 − 2𝜐20𝜐1𝜐0;𝑥 + 2𝜐1𝜐0𝜔0;𝑥

+ 2𝜐21𝜐
2
0 − 4𝜔0𝜐

4
0 + 2𝜐30𝜐1;𝑥

)︀
+ 16𝜀8

(︀
𝜐41 + 2𝜔2

0𝜐
2
1 + 4𝜔2

0𝜐
4
0 − 2𝜐21𝜐0𝜐1;𝑥 − 4𝜔0𝜐

3
0𝜐1;𝑥 + 8𝜐21𝜔0𝜐

2
0 + 2𝜐31𝜐0;𝑥

+ 𝜐20𝜐
2
1;𝑥 + 𝜐21𝜐

2
0;𝑥 + 4𝜔0𝜐

2
0𝜐1𝜐0;𝑥 − 2𝜐0𝜐1;𝑥𝜐1𝜐0;𝑥

)︀
+ 64𝜀10

(︀
𝜐0𝜐1;𝑥𝜐

2
1𝜔0 − 2𝜔2

0𝜐
2
0𝜐

2
1 − 𝜐31𝜐0;𝑥𝜔0 − 𝜐41𝜔0

)︀
+ 64𝜀12𝜐41𝜔

2
0

)︁1/2]︁⧸︀
(16𝜀6𝜐1𝜐0).

(2.9)

We claim that, using the balance of the even powers of 𝜀 in (2.3), the representation∑︀+∞
𝑘=0 �̃�

(2𝑘+1)
12 · 𝜀2𝑘 ∈ im d

d𝑥
can be deduced, whence �̃�

(2𝑘+1)
12 ∼ 0.

2.4 Gardner’s deformations as generators of new in-

tegrable systems

The aim of this section is to further and illustrate a practical concept which was outlined

earlier by Kiselev in [59]. Namely, we revisit the problem of integrable deformation of

a given infinite-dimensional system; the seminal paper was [102]. Much work towards

description of the arising moduli spaces has been performed by Dubrovin et al. [32], cf. [34,

33]. (It must be recalled that cohomological theories in this context and organization of the

moduli spaces are sensitive to the choice of admissible classes of differential functions – e. g.,

polynomial, rational, or analytic – in which such structures are sought for.) In the world

of integrable systems there is a closely related aspect of integrability-preserving transition

between (solutions to) systems of PDEs (e. g., via Bäcklund transformations, see [50]; a

different approach was developed in [15]). Here one could employ the ‘heavy artillery’ [49,

50] of jet-bundle techniques for deformation of the Cartan structure elements in coverings

over PDEs by using the Frölicher–Nijenhuis bracket, see Chapter 5 for illustration.

Having its roots in topological QFT and yet possessing numerous applications else-

where, a task of extending low-order hierarchies with higher-order symbols remains a topic

of particular interest in the field ([32], also [39, 40]). For instance, such is the approach

to hydrodynamic-type systems viewed as the weak dispersion limits of larger, initially

concealed models. Not limited to the above-mentioned class of evolution equations, this

concept suits well for PDE systems of order > 2 whenever those are taken as drafts for

the (re)construction of larger models; certain restrictions could be imposed by hand at
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Chapter 2. Gardner’s deformations of non-graded equations

exactly this moment in order to narrow, e. g., the classes of solutions of the draft systems,

cf. [39, 40]. At the same time, there co-exist many schemes for extension of the symbol for

a given system (e. g., one follows the perturbative approach of [32] or applies the Lax-pair

based techniques from [82]).

From a broader perspective, there arise two natural questions: which systems are pro-

claimed ‘interesting’, thus delimiting the sets of start- and endpoints in the proliferation

schemes, and where one could take those ‘interesting’ systems from — or pick the drafts

of new interesting PDEs. Leaving now aside the ever-growing supply from Physics or a

straightforward idea of ploughing the available lists of already known integrable systems,

let us focus on a self-starting, regular algorithm which exploits the classical ideas from

geometry of differential equations ([12, 62, 106]).

Specifically, we take the existence of infinitely many integrals of motion as a selection

rule for nonlinear evolutionary systems; by default, we shall always assume that the collec-

tion of conversed quantities at hand is maximal, that is, it can not be extended within a

class of conservation laws with local densities (otherwise, a count of infinities could become

risky). As a rule, such systems tend to be bi-Hamiltonian at least in the case when the

spatial dimension 𝑛 is equal to 1, with 𝑥1 ≡ 𝑥, see [91] and also [115]. Let us note also that

a requirement of existence of conserved quantities is, generally speaking, stronger than a

‘symmetry integrability’ assumption [100]. (However in applications it is often convenient

to weaken the former requirement in favour of the latter; we shall profit from the use of

both approaches, see Example 4 and Proposition 2 in what follows.)

As soon as we agree to study only those evolutionary systems which admit infinite

towers of integrals of motion, it is natural to first ex- and then inspect the existence of

a (much better if polynomial) recurrence relation between the integrals’ conserved densi-

ties [52, 59, 82, 102]. This yields a regular procedure for consecutive calculation of the

integrals of motion on the basis of all previously known data by starting from the ‘seed’

constants. Let us emphasize that such relations between the densities are much more valu-

able and informative than ordinary recursion operators 𝑅 : 𝜙𝑖 ↦→ 𝜙𝑖+1 for symmetries or

say, 𝑅† : 𝜓𝑖 ↦→ 𝜓𝑖+1 for the ‘cosymmetries’ of evolutionary PDE; in a sense, every algorithm

which explicitly produces the densities contains the built-in homotopy formula for rever-

sion of the variational derivative that takes densities to the respective generating functions

𝜓, cf. [62, S 4.2] and [106].

The classical notion of Gardner’s deformation m𝜀 : ℰ(𝜀)→ ℰ for a completely integrable

system ℰ was designed for serving exactly this purpose [102]; in the course of years, it

has become the parent structure for a plethora of concepts ranging from the Lax pair

to formal 𝜏 -function, etc. (for a more general approach to the geometry of Gardner’s

deformations see [59]). Quite remarkably, this good old construction (see Definition 1) also

answers the second question which we posed so far: for a system ℰ which undergoes the

deformation, this procedure yields “promising” drafts ℰ ′ of “interesting” new systems ℰ ′′.
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2.4. Gardner’s deformations as generators of new integrable systems

Kiselev sketched this line of reasoning in [59] and we now discuss it in more detail. Our

surprising conclusion is that the world of completely integrable systems could be much

more ‘tense’ and regularly organized than it may first seem; for the adjacency relations

ℰ → ℰ ′′ spin a web across that set, with topology still to be explored; to the best of our

knowledge, a study of the physical sense for a property of two models ℰ and ℰ ′′ to be

adjacent has not yet begun.

Let us repeat the classical definition of Gardner’s deformation for evolutionary PDE.

Let ℰ = {𝑢𝑡 = 𝑓(𝑥, [𝑢])} be a system of evolution equations (in particular, a completely

integrable system). Suppose ℰ(𝜀) = {�̃�𝑡 = 𝑓𝜀(𝑥, [�̃�], 𝜀) | 𝑓𝜀 ∈ im d
d𝑥
} is a deformation

of ℰ such that at each point 𝜀 ∈ ℐ of an interval ℐ ⊆ R there is the Miura contraction

m𝜀 = {𝑢 = 𝑢([�̃�], 𝜀)} : ℰ(𝜀) → ℰ . Then the pair (ℰ(𝜀),m𝜀) is the (classical) Gardner

deformation for system ℰ .
We say that the coefficient 𝜙(�̃�, �̃�𝑥, . . . ) of the highest power of 𝜀 in the right-hand side of

a polynomial (in 𝜀) Gardner’s extension ℰ(𝜀) determines the adjoint system ℰ ′ = {�̃�𝑡𝑘 = 𝜙}.

Example 3. The evolution equation

�̃�𝑡3 = −6�̃�2�̃�𝑥 (𝑡3 = 𝑡 in (1.1)) (2.10)

is adjoint to Korteweg–de Vries equation (1.1) with respect to its Gardner’s deforma-

tion (2.1).

We notice that the adjoint systems are often dispersionless, although this is not always

the case (cf. [59] and [52]). Let us now address the natural problem of extension of the new,

adjoint equation – and its hierarchy which appears by construction of Gardner’s deforma-

tion – by adding terms with higher-order derivatives (in particular, by switching on the

dispersion in ℰ ′). There are many techniques for solving this problem: a straightforward

computational algorithm, which does not require that the adjoint system be hydrodynamic

type, is illustrated in what follows by using the ‘symmetry integrability’ approach (2.10)

and software [73]; we then report on the second iteration of such proliferation scheme

and discuss the third and other steps to follow. We use capital letters for unknowns in

extensions of adjoint system.

Example 4. It is readily seen that equation (2.10) is the second element in the infinite

hierarchy of adjoint systems (corresponding to Gardner’s extensions of higher KdV flows,

with the Miura contraction m𝜀 common for all of them), which is

...
...

ℰ ′KdV2
= {�̃�12;𝑡5 = �̃�412�̃�12;𝑥}, 𝜙5 = �̃�412�̃�12;𝑥,

ℰ ′KdV1
= {�̃�12;𝑡3 = −6�̃�212�̃�12;𝑥}, 𝜙3 = −6�̃�212�̃�12;𝑥,

ℰ ′KdV0
= {�̃�12;𝑡1 = �̃�12;𝑥}, 𝜙1 = �̃�12;𝑥.
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Chapter 2. Gardner’s deformations of non-graded equations

Clearly, the scaling weights are not uniquely determined for the dependent variables in the

adjoint hierarchy; for definition, set [𝑈 ] = 1, [d/d𝑥] = 1, and [d/d𝑡𝑘] = (𝑘−1)[𝑈 ]+[d/d𝑥] =

𝑘, which is consistent with the dynamics. For all 𝑘 ∈ N, let us now list all scaling-

homogeneous differential polynomials 𝑓𝑘 of weights [𝑓𝑘] = [𝑈 ] + [d/d𝑡𝑘] = 𝑘 + 1 with

undetermined coefficients, excluding at once those terms which are already contained in

the respective right-hand sides of the adjoint hierarchy ℰ ′KdV𝑘
. For instance, we let

...

𝑓5 = 𝑞5𝑈
6 + 𝑞6𝑈

3𝑈𝑥𝑥 + 𝑞7𝑈
2𝑈𝑥𝑥𝑥 + 𝑞8𝑈

2(𝑈𝑥)
2 + 𝑞9𝑈𝑈4𝑥 + 𝑞10𝑈𝑈𝑥𝑥𝑈𝑥 + 𝑞11𝑈5𝑥 + 𝑞12𝑈𝑥𝑥𝑥𝑈𝑥

+ 𝑞13(𝑈𝑥𝑥)
2 + 𝑞14(𝑈𝑥)

3,

𝑓3 = 𝑞1𝑈
4 + 𝑞2𝑈𝑈𝑥𝑥 + 𝑞3𝑈𝑥𝑥𝑥 + 𝑞4(𝑈𝑥)

2,

𝑓1 = 0.

The Ansatz for the full hierarchy is thus

𝑈𝑡𝑘 = 𝜙𝑘 + 𝑓𝑘,

. . .

𝑈𝑡5 = 𝜙5 + 𝑓5 = 𝑈4𝑈𝑥 + 𝑞5𝑈
6 + 𝑞6𝑈

3𝑈𝑥𝑥 + 𝑞7𝑈
2𝑈𝑥𝑥𝑥 + 𝑞8𝑈

2(𝑈𝑥)
2 + 𝑞9𝑈𝑈4𝑥 + 𝑞10𝑈𝑈𝑥𝑥𝑈𝑥

+ 𝑞11𝑈5𝑥 + 𝑞12𝑈𝑥𝑥𝑥𝑈𝑥 + 𝑞13(𝑈𝑥𝑥)
2 + 𝑞14(𝑈𝑥)

3,

𝑈𝑡3 = 𝜙3 + 𝑓3 = −6𝑈2𝑈𝑥 + 𝑞1𝑈
4 + 𝑞2𝑈𝑈𝑥𝑥 + 𝑞3𝑈𝑥𝑥𝑥 + 𝑞4(𝑈𝑥)

2,

𝑈𝑡1 = 𝜙1 + 𝑓1 = 𝑈𝑥.

By solving the determining system of algebraic equations (𝑈𝑡𝑖)𝑡𝑗 = (𝑈𝑡𝑗)𝑡𝑖 upon the un-

determined coefficients 𝑞𝛼 and then taking its nontrivial solution (if any), we obtain a

new, dispersionful hierarchy (which is symmetry integrable by construction). Specifically,

for (1.1) and its adjoint (2.10) the solution is

...

𝑈𝑡5 =
1
30

(︀
𝑈4𝑥 + 6𝑈5 + 10𝑈2𝑈𝑥𝑥 + 10𝑈(𝑈𝑥)

2
)︀
𝑥

𝑈𝑡3 = − 𝑈𝑥𝑥𝑥 − 6𝑈2𝑈𝑥,

𝑈𝑡1 = 𝑈𝑥,

which is none other than the hierarchy of modified Korteweg–de Vries equation.

Consider the second term in one of the two towers of Kaup–Boussinesq hierarchy (1.4).

Its Gardner deformation (2.3) is known from Section 2.3; let us recall that the extended

equations are (here 𝜉 = 𝑡2)

�̃�0;𝑡2 = −�̃�12;𝑥 + 4𝑢0�̃�0;𝑥 + 2𝜀
(︀
�̃�0�̃�0;𝑥

)︀
𝑥
− 4𝜀2

(︀
�̃�20𝑢12

)︀
𝑥
, (2.4a)

�̃�12;𝑡2 = �̃�0;𝑥𝑥𝑥 + 4
(︀
�̃�0�̃�12

)︀
𝑥
− 2𝜀

(︀
�̃�0�̃�12;𝑥

)︀
𝑥
− 4𝜀2

(︀
�̃�0�̃�

2
12

)︀
𝑥
. (2.4b)
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2.4. Gardner’s deformations as generators of new integrable systems

By definition, the adjoint system is

�̃�0;𝑡𝑘 = (�̃�𝑘0�̃�
𝑘−1
12 )𝑥, �̃�12;𝑡𝑘 = (�̃�𝑘−10 �̃�𝑘12)𝑥. (2.12)

Proposition 2 ([67]). Let us require that the dispersionful extension of (2.12) itself is an

infinite-dimensional integrable system and that it is scaling-invariant with respect to the

weights [𝑈0] = [𝑈12] =
1
2
and [d/d𝑡𝑘] = 𝑘 for 𝑘 ∈ N. Then there is a unique solution to the

extension problem:

...
...

𝑈0;𝑡3 = (𝑈0;𝑥𝑥 + 6𝑈0𝑈0;𝑥𝑈12 + 6𝑈3
0𝑈

2
12)𝑥, 𝑈12;𝑡3 = (𝑈12;𝑥𝑥 − 6𝑈0𝑈12𝑈12;𝑥 + 6𝑈2

0𝑈
3
12)𝑥,

𝑈0;𝑡2 = 𝑈0;𝑥𝑥 + 2(𝑈2
0𝑈12)𝑥, 𝑈12;𝑡2 = −𝑈12;𝑥𝑥 + 2(𝑈0𝑈

2
12)𝑥,

𝑈0;𝑡1 = 𝑈0;𝑥, 𝑈12;𝑡1 = 𝑈12;𝑥.

This is the Kaup–Newell hierarchy [55].

It would be quite logical to iterate the reasoning by first constructing a Gardner’s

deformation – or several such deformations – for the Kaup–Newell system, and then by

extending the available adjoint system(s). However, this algorithmically simple problem

appears unexpectedly complex as far as computations are concerned. Specifically, by using

the analytic software [73] we obtain a ‘no-go’ result: there is no Gardner’s deformation for

the Kaup–Newell equation under the following set of assumptions:

∙ we supposed that the deformation (ℰ(𝜀),m𝜀) is polynomial in 𝜀 and differential poly-

nomial in �̃�0 and �̃�12;

∙ we let such deformations be scaling homogeneous with respect to the weights [�̃�0] =

[�̃�12] =
1
2
and [𝜀] = −1

2
;

∙ the polynomial Ansätze for Gardner’s deformations were bounded by using deg𝜀(m𝜀) 6
5 and deg𝜀(ℰ(𝜀)) 6 10 (here we note that max(deg𝜀m𝜀) = 2 × max(deg𝜀(ℰ(𝜀))) for
the Kaup–Newell system).

Let as also note that the extended equation ℰ(𝜀) for the Kaup–Newell system can depend

on derivatives of �̃�0 and �̃�12 with respect to 𝑥 of orders up to but not exceeding two.4 We

expect that the Kaup–Newell system can be Gardner deformed strictly outside the class

of differential polynomials (but can not be deformed within such class of functions).

4The proof is as follows: Consider the determining equation (m𝜀)𝑡 = 𝑓(m𝜀) for Gardner’s deformation

and calculate the differential orders of both sides; by the chain rule, this yields that ord𝑥(m𝜀)+ord𝑥(𝑓𝜀) =

ord𝑥(𝑓) + ord𝑥(m𝜀), which implies a rough estimate ord𝑥(𝑓𝜀) = ord𝑥(𝑓).
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It therefore remains an open problem to find Gardner’s deformation(s) for the Kaup–

Newell system and extend the arising adjoint equation(s) so that new, higher-order com-

pletely integrable hierarchies are attained.

We conclude that Gardner’s deformations of infinite-dimensional completely integrable

systems can be effectively used not only through their ‘m𝜀-parts,’ which encode the recur-

rence relations between conserved densities, but – viewed via their ‘ℰ(𝜀)-parts’ – as a source
of new completely integrable systems, or draft approximations to larger systems for which

the integrability is retained.

The reproduction process is self-starting. Moreover, whenever there is a Gardner defor-

mation for the new hierarchy, one could attempt another iteration. This scheme yields the

oriented graph whose vertices are integrable systems and whose edges associate new such

systems to the ones at their starting points. We emphasize that the degree of a vertex can

be greater than two, meaning that a given system admits several deformations (cf. [52, 59]),

and that, in principle, multiple edges may occur. A study of topology of such graph and

its correlation with the structure of moduli spaces for higher perturbations of low-order

models is a challenging open problem.

24



Chapter 3

Gardner’s deformations of Z2-graded
equations

3.1 Preliminaries: the Z2-graded infinite jet bundles

In this section we recall necessary definitions from supergeometry (we refer to [10, 30, 87]

and [12, 42, 62, 78, 106] for further detail); this material is standard.

Let 𝑀𝑛 be an 𝑛-dimensional smooth manifold. Let us consider two vector bundles

over the same base 𝑀𝑛, 𝜋0 : 𝐸𝑚0+𝑛
0̄

→ 𝑀𝑛 and 𝜋1 : 𝐸𝑚1+𝑛
1̄

→ 𝑀𝑛 with fibre dimensions

𝑚0 and 𝑚1, respectively.
1 Let 𝜋1̄ = Π𝜋1 be the odd neighbour of the vector bundle 𝜋1.

By definition, this neighbour is the vector bundle 𝜋1̄ : Π𝐸𝑛+𝑚1

1̄
→ 𝑀𝑛 over the same base

and with the same vector space R𝑚1 take as prototype for the fibers. The coordinates

𝜉1, . . . , 𝜉𝑚1 along the fibers (𝜋1̄)−1(𝑥) ≃ R𝑚1 are proclaimed Z2-parity odd, i.e., we in-

troduce the Z2-grading p : 𝑥𝑖 ↦→ 0̄, 𝜉𝑘 ↦→ 1̄ for the ring of smooth R-valued functions

on the total space Π𝐸𝑚1+𝑛
1̄

of the superbundle; the grading then acts by multiplicative

(semi)group homomorphism p : 𝐶∞(Π𝐸𝑚1+𝑛
1̄

) → Z2 =
(︀
{1,−1},×

)︀
≃
(︀
{0̄, 1̄},+

)︀
. We

have that 𝐶∞(Π𝐸𝑚1+𝑛
1̄

) ≃ Γ(
⋀︀∙(𝐸𝑚1+𝑛

1̄
)*), where (𝐸𝑚1+𝑛

1̄
)* denotes the space of fibrewise-

linear functions on 𝛴𝑚1+𝑛. By construction, the new space of graded coordinate functions

on Π𝐸𝑚1+𝑛
1̄

is an R-algebra and a 𝐶∞(𝑀𝑛)-module. Finally, let us construct the Whitney

sum 𝜋 = 𝜋0̄ ×𝑀𝑛 𝜋1̄ of the bundles 𝜋0̄ = 𝜋0 and 𝜋1̄ over the base 𝑀𝑛.

Consider the jet space 𝐽∞(𝜋) of sections of the superbundle 𝜋. Namely, for the su-

perbundle 𝜋 we define the infinite jet superbundle 𝜋∞ : 𝐽∞(𝜋) → 𝑀𝑛 as follows: we let

(𝜋∞)
0̄ = (𝜋0̄)∞, (𝜋∞)

1̄ = Π((𝜋1)∞) (see [56] for details). The set of variables describing

𝐽∞(𝜋) is composed by

∙ even coordinates 𝑥𝑖 on 𝑀𝑛,

∙ even coordinates 𝑢𝑗 and parity-odd coordinates 𝜉𝑘 along the fibres of 𝜋; these objects

themselves are elements of the set of

1In particular, we let 𝑛 = 2 so that the independent variables are 𝑥1 = 𝑥 and 𝑥2 = 𝑡; we have that

𝑚0 = 1, 𝑚1 = 0 for the Korteweg–de Vries equation, 𝑚0 = 2, 𝑚1 = 0 for the hierarchy of the Kaup–

Boussinesq equation, and 𝑚0 = 2, 𝑚1 = 2 for the 𝑁=2 supersymmetric KdV equation, see [10, 84, 99].
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∙ even variables 𝑢𝑗𝜎 and parity-odd variables 𝜉𝑘𝜎 for the fibres of the infinite jet bundle

𝜋∞ : 𝐽∞(𝜋)→𝑀𝑛.

In the above notation we let 𝜎 be the multi-index that labels partial derivatives of the

unknowns 𝑢𝑗 and 𝜉𝑘 w.r.t. even variables 𝑥𝑖; by convention, 𝑢𝑗∅ ≡ 𝑢𝑗 and 𝜉𝑘∅ ≡ 𝜉𝑘. The

parity function p on homogeneous elements of 𝐶∞(𝐽∞(𝜋)) by its acting on generators

p(𝑥𝑖) = 0̄, p(𝑢𝑗) = 0̄, p(𝜉𝑘) = 1̄,

p(𝑢𝑗𝜎) = 0̄, p(𝜉𝑘𝜎) = 1̄, |𝜎| > 0,

and satisfying following rules

p(𝑎 · 𝑏) = p(𝑎) + p(𝑏),

p(𝑎+ 𝑏) = p(𝑎) = p(𝑏), iff p(𝑎) = p(𝑏),

where 𝑎, 𝑏 ∈ 𝐶∞(𝐽∞(𝜋)).
The left total derivatives on 𝐽∞(𝜋) are expressed by the formula

𝐷𝑥𝑖 =
𝜕

𝜕𝑥𝑖
+

𝑚0∑︁
𝑗=1

∑︁
𝜎0̄

𝑢𝑗𝜎0̄+1𝑖

𝜕

𝜕𝑢𝑗𝜎0̄
+

𝑚1∑︁
𝑘=1

∑︁
𝜎1̄

𝜉𝑘𝜎1̄+1𝑖

𝜕

𝜕𝜉𝑘𝜎1̄
.

These vector fields commute (in a usual sense, even though the objects 𝐷𝑥𝑖 contain the

directed derivations). By definition, we put 𝐷𝜏 = 𝐷𝜏1
𝑥1 ∘ · · · ∘𝐷

𝜏𝑛
𝑥𝑛 .

Let us recall the definition of a system of partial differential equations and its prolon-

gation in context of Z2-graded setup. Consider a system of partial differential equations

ℰ =
{︀
𝐹 ℓ(𝑥𝑖, 𝑢𝑗, . . . , 𝑢𝑗𝜎0̄ , 𝜉

𝑘, . . . , 𝜉𝑘𝜎1̄) = 0, ℓ = 1, . . . , 𝑟
}︀
;

without any loss of generality for applications we assume that the system at hand satisfies

some mild assumptions which are outlined in [12, 62, 106]. Then the system ℰ and all its

differential consequences 𝐷𝜎(𝐹
ℓ) = 0 (thus presumed existing, regular, and not leading to

any contradiction in the course of derivation) generate the infinite prolongation ℰ∞ of the

system ℰ .
Like in non-graded case for the Z2-graded setup we have that the de Rham differential d̄

on ℰ∞ is subjected to the decomposition d̄ = d̄ℎ + d̄𝒞, where d̄ℎ : Λ
𝑝,𝑞(ℰ∞) → Λ𝑝,𝑞+1(ℰ∞)

is the horizontal differential and d̄𝒞 : Λ
𝑝,𝑞(ℰ∞)→ Λ𝑝+1,𝑞(ℰ∞) is the vertical differential.

The differential d̄ℎ can be expressed in coordinates by inspection of its action on ele-

ments of 𝐶∞(ℰ∞) = Λ0,0(ℰ∞), whence for any 𝜑 we have that

d̄ℎ𝜑 =
𝑛∑︁
𝑖=1

d𝑥𝑖 ∧ �̄�𝑥𝑖(𝜑), (3.1a)

d̄𝒞𝜑 =

𝑚0∑︁
𝑗=1

∑︁
𝜎0̄

𝜔𝑗𝜎0̄ ∧
𝜕𝜑

𝜕𝑢𝑗𝜎0̄
+

𝑚1∑︁
𝑘=1

∑︁
𝜎1̄

𝜁𝑘𝜎1̄ ∧
𝜕𝜑

𝜕𝜉𝑗𝜎1̄
, (3.1b)
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where we put

𝜔𝑗𝜎0̄ = d𝑢𝑗𝜎0̄ −
𝑛∑︁
𝑗=1

𝑢𝑗𝜎0̄+1𝑖
d𝑥𝑖, 𝜁𝑗𝜎1̄ = d𝜉𝑗𝜎1̄ −

𝑛∑︁
𝑖=1

𝜉𝑗𝜎1̄+1𝑖
d𝑥𝑖.

We note further that d𝑥𝑖, d𝑢𝑗𝜎0̄ , and d𝜉𝑘𝜎1̄ satisfy the following commutation relations:

d𝑥𝑖 ∧ d𝑥𝑗 = −d𝑥𝑗 ∧ d𝑥𝑖, d𝑥𝑖 ∧ d𝑢𝑗𝜎0̄ = −d𝑢
𝑗
𝜎0̄
∧ d𝑥𝑖, d𝑥𝑖 ∧ d𝜉𝑘𝜎1̄ = −d𝜉

𝑘
𝜎1̄
∧ d𝑥𝑖,

d𝑢𝑗𝜎0̄ ∧ d𝑢𝑘𝜏0̄ = −d𝑢
𝑘
𝜏0̄
∧ d𝑢𝑗𝜎0̄ , d𝜉𝑘𝜎1̄ ∧ d𝑢𝑗𝜏0̄ = −d𝑢

𝑗
𝜏0̄
∧ d𝜉𝑘𝜎1̄ , d𝜉𝑘𝜎1̄ ∧ d𝜉𝑗𝜏1̄ = +d𝜉𝑗𝜏1̄ ∧ d𝜉𝑘𝜎1̄ ;

we refer to [63] for the geometric theory of variations in the frames of which one discovers

why differential one-forms should anticommute in the Z2-graded sense.

The substitution of a Z2-graded vector field 𝑋 into a Z2-graded differential form 𝜔 is

defined by the formula i𝑋(𝜔) = (−1)p(𝑋)·p(𝜔)𝜔(𝑋). We have that

i�̄�𝑥𝑖
(𝜔𝑗𝜎0̄) = i�̄�𝑥𝑖

(𝜁𝑘𝜎1̄) = 0 for all 𝑖, 𝑗, 𝑘 and |𝜎| > 0.

These equalities mean that the Cartan distribution can be described equivalently in terms

of the Cartan forms 𝜔𝑗𝜎0̄ and 𝜁𝑘𝜎1̄ .

The restriction of Cartan’s distribution from 𝐽∞(𝜋) onto ℰ∞ is horizontal with re-

spect to the projection 𝜋∞
⃒⃒
ℰ∞ : ℰ∞ →𝑀 . This determines the connection 𝒞ℰ∞ : D(𝑀)→

D(ℰ∞), where D(𝑀) and D(ℰ∞) are the 𝐶∞(𝑀)- and 𝐶∞(ℰ∞)-modules of vector fields

on 𝑀 and ℰ∞, respectively. We denote by D(Λ1(ℰ∞)) the 𝐶∞(ℰ∞)-module of derivations

𝐶∞(ℰ∞) → Λ1(ℰ∞) taking values in the 𝐶∞(ℰ∞)-module of one-forms on ℰ∞. The con-

nection form 𝑈ℰ∞ ∈ D(Λ1(ℰ∞)) of 𝒞ℰ∞ is called the structural element of the equation ℰ∞.
Let 𝑞 be a natural number. Consider a superbundle 𝜋 with fibre dimensions 𝑚0̄ = 2𝑞−1

and 𝑚1̄ = 2𝑞−1. Let G𝑞 be a Grassmann algebra with 𝑞 odd generators 𝜃1, . . . , 𝜃𝑞. The

tensor product 𝜋𝑁=𝑞 = G𝑞⊗R𝜋 of the Grassmann algebraG𝑞 and superbundle 𝜋 is called the

𝑁=𝑞 superbundle. The 𝑁=𝑞 superfield 𝑢 is a section 𝑠 ∈ Γ(𝜋𝑁=𝑞) of the 𝑁=𝑞 superbundle

𝜋𝑁=𝑞. We extend the definition of parity function p to 𝐶∞(𝐽∞(𝜋𝑁=𝑞)) = G𝑞⊗C𝐶
∞(𝐽∞(𝜋))

by the formula p(𝑢) = p(q𝑖 ⊗ 𝑓 𝑖) = p(𝑞𝑖) + p(𝑓 𝑖), where q𝑖 ∈ G𝑞 and 𝑓 𝑖 ∈ 𝐶∞(𝐽∞(𝜋)).

Let us consider only parity-homogeneous superfields. The superfield 𝑢 is called bosonic if

𝑝(𝑢) = 0̄. The superfield 𝑢 is called fermionic if p(𝑢) = 1̄. The function 𝑓 𝑖 is called a

bosonic component of the superfield 𝑢 if p(𝑓 𝑖) = 0̄ and 𝑓 𝑖 is called a fermionic component

of the superfield 𝑢 if p(𝑓 𝑖) = 1̄. For example, for an 𝑁=2 superfield 𝑢 we have that

𝑢 = 1⊗ 𝑢0 + 𝜃1 ⊗ 𝑢1 + 𝜃2 ⊗ 𝑢2 + 𝜃1𝜃2 ⊗ 𝑢12, (3.2)

where 𝜃1 and 𝜃2 are Grassmann variables satisfying 𝜃21 = 𝜃22 = 𝜃1𝜃2 + 𝜃2𝜃1 = 0; and

𝑢0, 𝑢1, 𝑢2, 𝑢12 are the fibre coordinates in 𝜋. In what follows we will omit the tensor product

sign.
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3.2 𝑁=2 supersymmetric Korteweg–de Vries equations

Let us consider the 𝑁=2 supersymmetric Korteweg–de Vries equation [84, 85],

𝑢𝑡 = −𝑢𝑥𝑥𝑥 + 3
(︀
𝑢𝒟1𝒟2𝑢

)︀
𝑥
+
𝑎− 1

2

(︀
𝒟1𝒟2𝑢

2
)︀
𝑥
+ 3𝑎𝑢2𝑢𝑥, 𝒟𝑖 =

𝜕

𝜕𝜃𝑖
+ 𝜃𝑖 ·

d

d𝑥
, (1.2)

upon a scalar, complex bosonic 𝑁=2 superfield 𝑢. For 𝑎=4, this super-equation possesses

an infinite hierarchy of bosonic Hamiltonian super-functionals ℋ(𝑘) whose densities ℎ(𝑘)

are integrals of motion. We study whether these super-Hamiltonians can be produced

recursively by using those which are already obtained. In particular, this can be done

via Gardner’s deformations [99, 102], which suggests finding a parametric family of super-

equations ℰ(𝜀) upon the generating super-function �̃�(𝜀) =
∑︀+∞

𝑘=0 ℎ
(𝑘) · 𝜀𝑘 for the integrals

of motion such that initial super-equation (1.2) is ℰ(0). It is further supposed that, at

each 𝜀, the evolutionary equation ℰ(𝜀) is given in the form of a (super-)conserved current,

and there is the Gardner–Miura substitution m𝜀 : ℰ(𝜀)→ ℰ(0). Hence, expanding m𝜀 in 𝜀

and using the initial condition �̃�(0) = 𝑢 at 𝜀 = 0, one obtains the differential recurrence

relation between the Taylor coefficients ℎ(𝑘) of the generating function �̃� (see [102] or [4,

52, 59, 82, 84] and references therein for details and examples).

Let us summarize our main result. Under some natural assumptions, we prove the

absence of 𝑁=2 supersymmetry-invariant Gardner’s deformations for the bi-Hamiltonian

𝑁=2, 𝑎=4–SKdV. Still, we show that the deformation problem must be addressed in

a different way, and then we solve it in two steps. First, in section 3.3 we recall that

the tri-Hamiltonian hierarchy for the bosonic limit of (1.2) with 𝑎=4 contains the Kaup–

Boussinesq equation, see [18, 54, 105] and [19, 83, 108]. In section 2.3 we construct new

deformations for the Kaup–Boussinesq equation such that the Miura contraction m𝜀 in-

corporates Gardner’s map for the KdV equation ([102], c.f. [52, 82]). Second, extending

the Hamiltonians 𝐻(𝑘) for the Kaup–Boussinesq hierarchy to the super-functionals ℋ(𝑘) in

section 3.5, we reproduce the bosonic conservation laws for (1.2) with 𝑎=4. Finally, we de-

scribe necessary conditions upon a class of Gardner’s deformations for (1.2) that reproduce

its fermionic local conserved densities (c.f. [99]).

Remark 1. The recurrence relations between the (super-)Hamiltonians of the hierarchy are

much more informative than the usual recursion operators that propagate symmetries. In

particular, the symmetries can be used to produce new explicit solutions from known ones,

but the integrals of motion help to find those primary solutions.

Let us also note that, within the Lax framework of super-pseudodifferential operators,

calculation of the (𝑛+1)-th residue does not take into account the 𝑛 residues which are al-

ready known at smaller indices. This is why the method of Gardner’s deformations becomes

highly preferrable. Indeed, there is no need to multiply any pseudodifferential operators by

applying the Leibniz rule an increasing number of times, and all the previously obtained
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quantities are used at each inductive step. By this argument, we understand Gardner’s

deformations as the transformation in the space of the integrals of motion that maps the

residues to Taylor coefficients of the generating functions �̃�(𝜀) and which, therefore, en-

dows this space with additional structure (that is, with the recurrence relations between

the integrals).

Still there is a deep intrinsic relation between the Lax (or, more generally, zero-

curvature) representations for integrable systems and Gardner’s deformations for them.

Namely, both approaches manifest the matrix and vector field representations of Lie alge-

bras related to such systems, and the deformation parameter 𝜀 is inverse proportional to

the eigenvalue in the linear spectral problem [123] (see Chapter 5 for details).

3.3 𝑁=2 𝑎=4–SKdV as bi-Hamiltonian super-extension

of Kaup–Boussinesq system

Let us begin with the Korteweg–de Vries equation (1.1). Its second Hamiltonian opera-

tor, 𝐴KdV
2 = d3/d𝑥3 + 4𝑢12 d/d𝑥 + 2𝑢12;𝑥, which relates (1.1) to the functional 𝐻

(2)
KdV =

−1
2

∫︀
𝑢212 d𝑥, can be extended2 in the (2 | 2)-graded field setup to the parity-preserving

Hamiltonian operator [85],

𝑃2 =

⎛⎜⎜⎜⎜⎝
− d

d𝑥
−𝑢2 𝑢1 2𝑢0

d
d𝑥

+ 2𝑢0;𝑥

−𝑢2
(︀

d
d𝑥

)︀2
+ 𝑢12 −2𝑢0 d

d𝑥
− 𝑢0;𝑥 3𝑢1

d
d𝑥

+ 2𝑢1;𝑥

𝑢1 2𝑢0
d
d𝑥

+ 𝑢0;𝑥
(︀

d
d𝑥

)︀2
+ 𝑢12 3𝑢2

d
d𝑥

+ 2𝑢2;𝑥

2𝑢0
d
d𝑥
−3𝑢1 d

d𝑥
− 𝑢1;𝑥 −3𝑢2 d

d𝑥
− 𝑢2;𝑥

(︀
d
d𝑥

)︀3
+ 4𝑢12

d
d𝑥

+ 2𝑢12;𝑥

⎞⎟⎟⎟⎟⎠ . (3.3)

Here the fields 𝑢0 and 𝑢12 are bosonic, 𝑢1 and 𝑢2 are fermionic together with their derivatives

w.r.t. 𝑥. Likewise, the components 𝜓0 ≃ 𝛿ℋ/𝛿𝑢0 and 𝜓12 ≃ 𝛿ℋ/𝛿𝑢12 of the columns

�⃗� = 𝑡
(︀
𝜓0, 𝜓1, 𝜓2, 𝜓12

)︀
are even-graded and 𝜓1, 𝜓2 are odd-graded. The operator (3.3) is

unique in the class of Hamiltonian total differential operators that merge to scalar 𝑁=2

super-operators which are local in 𝒟𝑖 and whose coefficients depend on the super-field 𝑢

and its super-derivatives, see (3.7) below. Operator (3.3) determines the 𝑁=2 classical

super-conformal algebra [22]. Conversely, the Poisson bracket given by (3.3) reduces to the

second Poisson bracket for (1.1), whenever one sets equal to zero the fields 𝑢0, 𝑢1, and 𝑢2
both in the coefficients of (3.3) and in all Hamiltonians; the operator 𝐴KdV

2 is underlined

in (3.3).

2Likewise, we extend Gardner’s deformation (2.1) of (1.1) to the deformation of two-component bosonic

limit (3.10) for (1.2) with 𝑎=4. Hence we reproduce the conservation laws for (3.10) and, again, extend

them to the bosonic super-Hamiltonians of full system (1.2).
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By construction, Mathieu’s extensions of Korteweg–de Vries equation (1.1) are deter-

mined by operator (3.3) and the bosonic Hamiltonian functional,

ℋ(2) =

∫︁ [︁
𝑢0𝑢0;𝑥𝑥−𝑢212 + 𝑢1𝑢1;𝑥 + 𝑢2𝑢2;𝑥 + 𝑎 ·

(︀
𝑢20𝑢12 − 2𝑢0𝑢1𝑢2

)︀]︁
d𝑥, (3.4)

which incorporates 𝐻
(2)
KdV as the underlined term; similar to (3.7), Hamiltonian (3.4) will

be realized by (3.6) as the bosonic 𝑁=2 super-Hamiltonian. Now we have that

𝑢𝑖;𝑡 =
(︀
𝑃2

)︀
𝑖𝑗

(︀
𝛿ℋ(2)/𝛿𝑢𝑗

)︀
, 𝑖, 𝑗 ∈ {0, 1, 2, 12}.

This yields the system

𝑢0;𝑡 = −𝑢0;𝑥𝑥𝑥 +
(︀
𝑎𝑢30 − (𝑎+ 2)𝑢0𝑢12 + (𝑎− 1)𝑢1𝑢2

)︀
𝑥
, (3.5a)

𝑢1;𝑡 = −𝑢1;𝑥𝑥𝑥 +
(︀

(𝑎+ 2)𝑢0𝑢2;𝑥 + (𝑎− 1)𝑢0;𝑥𝑢2 − 3𝑢1𝑢12 + 3𝑎𝑢20𝑢1
)︀
𝑥
, (3.5b)

𝑢2;𝑡 = −𝑢2;𝑥𝑥𝑥 +
(︀
−(𝑎+ 2)𝑢0𝑢1;𝑥 − (𝑎− 1)𝑢0;𝑥𝑢1 − 3𝑢2𝑢12 + 3𝑎𝑢20𝑢2

)︀
𝑥
, (3.5c)

𝑢12;𝑡 = −𝑢12;𝑥𝑥𝑥 − 6𝑢12𝑢12;𝑥 + 3𝑎𝑢0;𝑥𝑢0;𝑥𝑥 + (𝑎+ 2)𝑢0𝑢0;𝑥𝑥𝑥

+ 3𝑢1𝑢1;𝑥𝑥 + 3𝑢2𝑢2;𝑥𝑥 + 3𝑎
(︀
𝑢20𝑢12 − 2𝑢0𝑢1𝑢2

)︀
𝑥
. (3.5d)

Obviously, it retracts to (1.1), which we underline in (3.5), under the reduction 𝑢0 =

0, 𝑢1 = 𝑢2 = 0.

At all 𝑎 ∈ R, Hamiltonian (3.4) equals

ℋ(2) =

∫︁ (︀
𝑢𝒟1𝒟2(𝑢) +

𝑎
3
𝑢3
)︀
d𝜃d𝑥, where d𝜃 = d𝜃1d𝜃2. (3.6)

Likewise, the structure (3.3), which is independent of 𝑎, produces the 𝑁=2 super-operator

�̂� 2 = 𝒟1𝒟2
d
d𝑥

+ 2𝑢 d
d𝑥
−𝒟1(𝑢)𝒟1 −𝒟2(𝑢)𝒟2 + 2𝑢𝑥. (3.7)

Thus we recover Mathieu’s super-equations (1.2) [84], which are Hamiltonian with re-

spect to (3.7) and functional (3.6): 𝑢𝑡 = �̂� 2

(︀
𝛿
𝛿𝑢
(ℋ2)

)︀
. In component notation, super-

equations (1.2) are (3.5).

The assumption that, for a given 𝑎, super-system (1.2) admits infinitely many integrals

of motion yields the triplet 𝑎 ∈ {−2, 1, 4}, see [84]. The same values of 𝑎 are exhibited by

the Painlevé analysis for 𝑁=2 super-equations (1.2), see [17].

The three systems (1.2) have the common second Poisson structure, which is given

by (3.7), but the three ‘junior’ first Hamiltonian operators �̂� 1 for them do not coincide [85,

84, 58]. Moreover, system (1.2) with 𝑎=4 is radically different from the other two, both

from the Hamiltonian and Lax viewpoints.
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3.3. 𝑁=2 𝑎=4–SKdV as bi-Hamiltonian super-extension of Kaup–Boussinesq system

Proposition 3. The 𝑁=2 supersymmetric hierarchy of Mathieu’s 𝑎=4 Korteweg–de Vries

equation is bi-Hamiltonian with respect to local super-operator (3.7) and the junior Hamil-

tonian operator3 �̂� 𝑎=4
1 = d/d𝑥, which is obtained from �̂� 𝑎=4

2 by the shift 𝑢 ↦→ 𝑢 + 𝜆 of

the super-field 𝑢, see [29, 115]:

�̂� 𝑎=4
1 =

d

d𝑥
=

1

2
· d

d𝜆

⃒⃒⃒
𝜆=0

�̂� 𝑎=4
2

⃒⃒⃒
𝑢+𝜆

.

The two operators are Poisson compatible and generate the tower of nonlocal higher struc-

tures �̂� 𝑘+2 =
(︀
�̂� 2 ∘ �̂�

−1
1

)︀𝑘 ∘ �̂� 2, 𝑘 ≥ 1, for the 𝑁=2, 𝑎=4–SKdV hierarchy, see [45, 76].

Although �̂� 3 is nonlocal (c.f. [108]), its bosonic limits under (1.3) yield the local third

Hamiltonian structure 𝐴2 for the Kaup–Boussinesq equation, which determines the evolu-

tion along the second time 𝑡2 ≡ 𝜉 in the bosonic limit of the 𝑁=2, 𝑎=4–SKdV hierarchy

(see Proposition 1 on p. 12).

Remark 2. The Kaup–Boussinesq system [18, 54] arising here is equivalent to the Kaup–

Broer system (the difference amounts to notation). A bi-Hamiltonian 𝑁=2 super-extension

of the latter is known from [83]. A tri-Hamiltonian two-fermion 𝑁=1 super-extension of

the Kaup-Broer system was constructed in [19] such that in the bosonic limit the three

known Hamiltonian structures for the initial system are recovered. At the same time, a

boson-fermion 𝑁=1 super-extension of the Kaup–Broer equation with two local and the

nonlocal third Hamiltonian structures was derived in [108]; seemingly, the latter equaled

the composition �̂� 2 ∘ �̂�
−1
1 ∘ �̂� 2, but it remained to prove that the suggested nonlocal

super-operator is skew-adjoint, that the bracket induced on the space of bosonic super-

Hamiltonians does satisfy the Jacobi identity, and that the hierarchy flows produced by

the nonlocal operator remain local.

There is a deep reason for the geometry of the 𝑎=4–SKdV to be exceptionally rich.

All the three integrable 𝑁=2 supersymmetric KdV equations (1.2) admit the Lax rep-

resentations 𝐿𝑡3 = [𝐴(3), 𝐿], see [13, 85, 99, 110]. For 𝑎=4, the four roots of the Lax

operator 𝐿𝑎=4 = −(𝒟1𝒟2 + 𝑢)2, which are ℒ1,± = ±i(𝒟1𝒟2 + 𝑢), i2 = −1, and the super-

pseudodifferential operators ℒ2,± = ± d
d𝑥

+
∑︀

𝑖>0(· · · ) ·
(︀

d
d𝑥

)︀−𝑖
, generate the odd-index flows

of the SKdV hierarchy via 𝐿𝑡2𝑘+1
= [(ℒ2𝑘+1

2 )≥0, 𝐿]. In particular, we have 𝐴
(3)
𝑎=4 =

(︀
𝐿3/2

)︀
≥0

mod (𝒟1𝒟2 + 𝑢)3. However, the entire 𝑎=4 hierarchy is reproduced in the Lax form via

(ℒ𝑘1ℒ2)𝑡ℓ =
[︀(︀
ℒℓ1ℒ2

)︀
≥0,ℒ

𝑘
1ℒ2

]︀
for all 𝑘 ∈ N, c.f. [81]. Hence the super-residues4 of the

operators ℒ𝑘1ℒ2 are conserved.

Consequently, unlike the other two, super-equation (1.2) with 𝑎=4 admits twice as

many constants of motion as there are for the super-equations with 𝑎=−2 or 𝑎=1. For

3The nonzero entries of the (4× 4)-matrix representation 𝑃1 for the Hamiltonian super-operator �̂�
𝑎=4

1

are
(︀
𝑃1

)︀
0,12

=
(︀
𝑃1

)︀
2,1

=
(︀
𝑃1

)︀
12,0

= −
(︀
𝑃1

)︀
1,2

= d/d𝑥.
4We recall that the 𝑁=2 super-residue Sres𝑀 of a super-pseudodifferential operator𝑀 is the coefficient

of 𝒟1𝒟2 ∘
(︀

d
d𝑥

)︀−1
in 𝑀 .
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convenience, let us recall that super-equations (1.2) are homogeneous with respect to the

weights |d/d𝑥| ≡ 1, |𝑢| = 1, |d/d𝑡| = 3. Hence we conclude that, for each nonnegative

integer 𝑘, there appears the nontrivial conserved density Sresℒ𝑘1ℒ2, see above, of weight 𝑘+

1. The even weights also enter the play. Consequently, there are twice as many commuting

super-flows assigned to the twice as many Hamiltonians.

Example 5. The additional super-Hamiltonian ℋ(1) = 1
2

∫︀
𝑢2d𝜃d𝑥 for (1.2) with 𝑎=4,

and the second structure (3.7), — or, equivalently, the first operator �̂� 1 = d/d𝑥 and

the Hamiltonian ℋ(2), or �̂� 3 and ℋ(0) =
∫︀
𝑢 d𝜃d𝑥, see above, — generate the 𝑁=2

supersymmetric equation

𝑢𝜉 = 𝒟1𝒟2𝑢𝑥+4𝑢𝑢𝑥 = �̂� 3

(︂
𝛿

𝛿𝑢
(ℋ(0))

)︂
= �̂� 2

(︂
𝛿

𝛿𝑢
(ℋ(1))

)︂
= �̂� 1

(︂
𝛿

𝛿𝑢
(ℋ(2))

)︂
, 𝜉 ≡ 𝑡2.

(3.8)

Super-equation (3.8) was referred to as the 𝑁=2 ‘Burgers’ equation in [60, 72] due to the

recovery of 𝑢𝜉 = 𝑢𝑥𝑥 + 4𝑢𝑢𝑥 on the diagonal 𝜃1 = 𝜃2.

In components, the 𝑁=2 super-equation (3.8) reads

𝑢0;𝜉 =
(︀
−𝑢12 + 2𝑢20

)︀
𝑥
, 𝑢1;𝜉 =

(︀
𝑢2;𝑥 + 4𝑢0𝑢1

)︀
𝑥
,

𝑢2;𝜉 =
(︀
−𝑢1,𝑥 + 4𝑢0𝑢2

)︀
𝑥
, 𝑢12;𝜉 =

(︀
𝑢0;𝑥𝑥 + 4𝑢0𝑢12 − 4𝑢1𝑢2

)︀
𝑥
.

Clearly, it admits reduction (1.3); moreover, Kaup–Boussinesq system (1.4) (see [18, 54]

or [52, 82, 105] and references therein) is the only possible limit for (3.8),

𝑢0;𝜉 =
(︀
−𝑢12 + 2𝑢20

)︀
𝑥
, 𝑢12;𝜉 =

(︀
𝑢0;𝑥𝑥 + 4𝑢0𝑢12

)︀
𝑥
. (1.4)

System (1.4) is equivalent to the Kaup–Broer equation via an invertible substitution. In

these terms, super-equation (3.8) is a super-extension of the Kaup–Boussinesq system [19,

83, 108]. In their turn, the first three Poisson structures for (1.2) with 𝑎=4 are reduced

under (1.3) to the respective local structures for (1.4), see Proposition 1 on p. 12.

Our interest in the recursive production of the integrals of motion for (1.2) grew after

the discovery, see [60], of new 𝑛-soliton solutions,

𝑢 = A(𝑎) · 𝒟1𝒟2 log
(︁
1 +

𝑛∑︁
𝑖=1

𝛼𝑖 exp
(︀
𝑘𝑖𝑥− 𝑘3𝑖 · 𝑡± i 𝑘𝑖 · 𝜃1𝜃2

)︀)︁
, A(𝑎) =

{︂
1, 𝑎=1,
1
2
, 𝑎=4,

(3.9)

for super-equations (1.2) with 𝑎=1 or 𝑎=4 (but not 𝑎=− 2 or any other 𝑎 ∈ R ∖ {1, 4}). In
formula (3.9), the wave numbers 𝑘𝑖 ∈ R are arbitrary, and the phases 𝛼𝑖 can be rescaled to

+1 for non-singular 𝑛-soliton solutions by appropriate shifts of 𝑛 higher times in the SKdV

hierarchy. A spontaneous decay of fast solitons and their transition into the virtual states,

on the emerging background of previously invisible, slow solitons, look paradoxical for such

KdV-type systems (𝑎=1 or 𝑎=4), since they possess an infinity of integrals of motion.
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3.4. Deformation problem for 𝑁=2, 𝑎=4–SKdV equation

New solutions (3.9) of (1.2) with 𝑎=1 or 𝑎=4 are subject to condition (1.3) and there-

fore they satisfy the bosonic limits of these 𝑁=2 super-systems. In the same way, bosonic

limit (1.4) of (3.8) admits multi-soliton solutions in Hirota’s form (3.9), now with the expo-

nents 𝜂𝑖 = 𝑘𝑖𝑥± i𝑘2𝑖 𝜉± i𝑘𝑖𝜃1𝜃2, see [60]. This makes the role of such two-component bosonic

reductions particularly important. We recall that reduction (1.3) of (1.2) with 𝑎=1 yields

the Kersten–Krasil’shchik equation, see [57] or [60] and references therein. In Chapter 2

we considered the bosonic limit of the 𝑁=2, 𝑎=4 SKdV equation,

𝑢0;𝑡 = −𝑢0;𝑥𝑥𝑥 + 12𝑢20𝑢0;𝑥 − 6
(︀
𝑢0𝑢12

)︀
𝑥
, (3.10a)

𝑢12;𝑡 = −𝑢12;𝑥𝑥𝑥 − 6𝑢12𝑢12;𝑥 + 12𝑢0;𝑥𝑢0;𝑥𝑥 + 6𝑢0𝑢0;𝑥𝑥𝑥 + 12
(︀
𝑢20𝑢12

)︀
𝑥
, (3.10b)

which succeeds Kaup–Boussinesq equation (1.4) in its tri-Hamiltonian hierarchy. We shall

construct a new Gardner deformation for it (c.f. [52]) in section 2.3.

In general, system (3.5) with 𝑎=4 admits three one-component reductions (except 𝑢0 ̸≡
0) and three two-component reductions, which are indicated by the edges that connect the

remaining components in the diagram

𝑢0⃦⃦⃦
𝑢1 𝑢12 𝑢2.

System (3.5) with 𝑎=4 has no three-component reductions obtained by setting to zero only

one of the four fields in (3.2). We conclude this entire Chapter 3 by presenting a Gardner

deformation for the two-component boson-fermion reduction 𝑢0 ≡ 0, 𝑢2 ≡ 0 of the 𝑁=2,

𝑎=4–SKdV system, see (3.14) on p. 39.

3.4 Deformation problem for 𝑁=2, 𝑎=4–SKdV equa-

tion

In this section we formulate the two-step algorithm for a recursive production of the

bosonic super-Hamiltonians ℋ(𝑘)[𝑢] for the 𝑁=2 supersymmetric 𝑎=4–SKdV hierarchy.

Essentially, we convert the geometric problem to an explicit computational procedure.

Our scheme can be applied to other KdV-type super-systems (in particular, to (1.2) with

𝑎=− 2 or 𝑎=1).

We split the Gardner deformation problem for the 𝑁=2 supersymmetric hierarchy

of (1.2) with 𝑎=4 in two main and several auxiliary steps.

First, we note that Miura’s contraction m𝜀 : ℰ(𝜀) → ℰ , which encodes the recurrence

relation between the conserved densities, is common for all equations of the hierarchy.

Indeed, the densities (and hence any differential relations between them) are shared by all
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Chapter 3. Gardner’s deformations of Z2-graded equations

the equations. Therefore, we pass to the deformation problem for the 𝑁=2 super-Burgers

equation (3.8). This makes the first simplification of the Gardner deformation problem for

the 𝑁=2, 𝑎=4 super-KdV hierarchy.

Second, let ℎ(𝑘) be an𝑁=2 super-conserved density for an evolutionary super-equation ℰ ,
meaning that its velocity w.r.t. a time 𝜏 , d

d𝜏
ℎ(𝑘) = 𝒟1(. . . ) + 𝒟2(. . . ), is a total di-

vergence on ℰ . By definition of 𝒟𝑖, see (1.2), the 𝜃1𝜃2-component ℎ
(𝑘)
12 of such ℎ(𝑘) =

ℎ
(𝑘)
0 + 𝜃1 · ℎ(𝑘)1 + 𝜃2 · ℎ(𝑘)2 + 𝜃1𝜃2 · ℎ(𝑘)12 is conserved in the classical sense, d

d𝜏
ℎ
(𝑘)
12 = d

d𝑥
(. . . )

on ℰ . Let us consider the correlation between the conservation laws for the full 𝑁=2

super-system ℰ and for its reductions that are obtained by setting certain component(s)

of 𝑢 to zero. In what follows, we study bosonic reduction (1.3). Other reductions of

super-equation (1.2) are discussed in section 3.5, see (3.13) on p. 38.

We suppose that the bosonic limit lim𝐵 ℰ of the super-equation ℰ exists, which is the

case for (1.2) and (3.8). By the above, each conserved super-density ℎ(𝑘)[𝑢] determines

the conserved density ℎ
(𝑘)
12 [𝑢0, 𝑢12], which may become trivial. As in [13], we assume that

the super-system ℰ does not admit any conserved super-densities that vanish under reduc-

tion (1.3). Then, for such ℎ
(𝑘)
12 that originates from ℎ(𝑘) by construction, the equivalence

class {ℎ(𝑘) mod im𝒟𝑖} is uniquely determined by∫︁
ℎ
(𝑘)
12 [𝑢0, 𝑢12] d𝑥 =

∫︁
ℎ(𝑘)[𝑢]

⃒⃒
𝑢1=𝑢2=0

d𝜃d𝑥, here 𝑁=2 and d𝜃 = d𝜃1d𝜃2.

Berezin’s definition of a super-integration,
∫︀
d𝜃𝑖 = 0 and

∫︀
𝜃𝑖 d𝜃𝑖 = 1, implies that the

problem of recursive generation of the 𝑁=2 super-Hamiltonians ℋ(𝑘) =
∫︀
ℎ(𝑘) d𝜃d𝑥 for

the SKdV hierarchy amounts to the generation of the equivalence classes
∫︀
ℎ
(𝑘)
12 d𝑥 for the

respective 𝜃1𝜃2-component. We conclude that a solution of Gardner’s deformation problem

for supersymmetric system (3.8) may not be subject to the supersymmetry invariance. This

is a key point to reasonings.

We stress that the equivalence class of such functions ℎ
(𝑘)
12 [𝑢0, 𝑢12] that originate fromℋ(𝑘)

by (1.3) is, generally, much more narrow than the equivalence class {ℎ(𝑘)12 mod imd/d𝑥}
of all conserved densities for the bosonic limit lim𝐵 ℰ . Obviously, there are differential

functions of the form d
d𝑥

(︀
𝑓 [𝑢0, 𝑢12]

)︀
that can not be obtained5 as the 𝜃1𝜃2-component of

any
[︀
𝒟1(·) + 𝒟2(·)

]︀⃒⃒
𝑢1=𝑢2=0

, which is trivial in the super-sense. Therefore, let ℎ
(𝑘)
12 be any

recursively given sequence of integrals of motion for lim𝐵 ℰ (e.g., suppose that they are the

densities of the Hamiltonians ℋ(𝑘) for the hierarchy of lim𝐵 ℰ), and let it be known that

each ℋ(𝑘) =
∫︀
ℎ
(𝑘)
12 d𝑥 does correspond to the super-analogue ℋ(𝑘) =

∫︀
ℎ(𝑘) d𝜃d𝑥. Then the

reconstruction of ℎ(𝑘) requires an intermediate step, which is the elimination of excessive,

homologically trivial terms under d/d𝑥 that preclude a given ℎ
(𝑘)
12 to be extended to the

full super-density in terms of the 𝑁=2 super-field 𝑢. This is illustrated in section 3.5.

5Under the assumption of weight homogeneity, the freedom in the choice of such 𝑓 [𝑢0, 𝑢12] is decreased,

but the gap still remains.
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Thirdly, the gap between the two types of equivalence for the integrals of motion man-

ifests the distinction between the deformations
(︀
lim𝐵 ℰ

)︀
(𝜀) of bosonic limits and, on the

other hand, the bosonic limits lim𝐵 ℰ(𝜀) of 𝑁=2 super-deformations. The two operations,

Gardner’s extension of ℰ to ℰ(𝜀) and taking the bosonic limit lim𝐵 ℱ of an equation ℱ , are
not permutable. The resulting systems can be different. Namely, according to the classical

scheme ([102], [59]), each equation in the evolutionary system
(︀
lim𝐵 ℰ

)︀
(𝜀) represents a

conserved current, whence each Taylor coefficient of the respective field is conserved, see

Example 1. At the same time, for lim𝐵 ℰ(𝜀), the conservation is required only for the

field �̃�12(𝜀), which is the 𝜃1𝜃2-component of the extended super-field �̃�(𝜀). Other equations

in lim𝐵 ℰ(𝜀) can have any form.6

In this notation, we strengthen the problem of recursive generation of the super-

Hamiltonians for the 𝑁=2 super-equation (3.8). Namely, in section 2.3 we constructed

true Gardner’s deformations for its two-component bosonic limit (1.4). The solution to

the Gardner deformation problem generates the recurrence relation between the nontrivial

conserved densities ℎ
(𝑘)
12 which, in the meantime, depend on 𝑢0 and 𝑢12. By correlating

them with the 𝜃1𝜃2-components of the super-densities ℎ(𝑘) that depend on 𝑢, we derive

the Hamiltonians ℋ(𝑘), 𝑘 ≥ 0, for the 𝑁=2 supersymmetric 𝑎=4–KdV hierarchy, see

section 3.5.

3.5 Super-Hamiltonians for 𝑁=2, 𝑎=4–SKdV hierar-

chy

In this section we assign the bosonic super-Hamiltonians ℋ(𝑘) =
∫︀
ℎ(𝑘)[𝑢] d𝜃d𝑥 of (1.2)

with 𝑎=4 to the Hamiltonians 𝐻(𝑘) =
∫︀
ℎ
(𝑘)
12 [𝑢0, 𝑢12] d𝑥 of its bosonic limit (3.10). Also, we

establish the no-go result on the super-field, 𝑁=2 supersymmetry invariant deformations of

𝑎=4–SKdV that would retract to (2.1) under the respective reduction in super-field (3.2).

At the same time, we initiate the study of Gardner’s deformations for reductions of (3.5)

other than (1.3), and here we find the deformations of two-component fermion-boson limit

in it. However, we observe that the new solutions can not be merged with the deforma-

tion (2.5) for the bosonic limit of (3.5).

From Section 2.3 we know the procedure for recursive production of the Hamiltonians

𝐻(𝑘) =
∫︀
ℎ(𝑘) d𝑥 for bosonic limit (3.10) of the𝑁=2, 𝑎=4–SKdV equation, here ℎ(2𝑘) = �̃�

(2𝑘)
0

and ℎ(2𝑘+1) = �̃�
(2𝑘)
12 . In section 3.4, we explained why the reconstruction of the densities ℎ(𝑘)

for the bosonic super-Hamiltonians ℋ(𝑘) from ℎ(𝑘)
[︀
𝑢0, 𝑢12

]︀
requires an intermediate step.

Namely, it amounts to the proper choice of the representatives ℎ
(𝑘)
12 within the equivalence

6Still, the four components of the original 𝑁=2 supersymmetric equations within the hierarchy of (1.2)

are written in the form of conserved currents. A helpful counter-example, Gardner’s extension of the

𝑁 = 1 super-KdV equation, is discussed in [84, 98].
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class
{︀
ℎ(𝑘) mod im d

d𝑥

}︀
such that ℎ

(𝑘)
12 can be realized under (1.3) as the 𝜃1𝜃2-component

of the super-density ℎ(𝑘). This allows us to restore the dependence on the components 𝑢1
and 𝑢2 of (3.2) and to recover the supersymmetry invariance. The former means that each

ℎ(𝑘) is conserved on (3.5) and the latter implies that ℎ(𝑘) becomes a differential function

in 𝑢.

The correlation between unknown bosonic super-differential polynomials ℎ(𝑘)[𝑢] and

the densities ℎ(𝑘)
[︀
𝑢0, 𝑢12

]︀
, which are produced by the recurrence relation, is established

as follows. First, we generate the homogeneous super-differential polynomial ansatz for

the bosonic ℎ(𝑘) using GenSSPoly. Second, we split the super-field 𝑢 using the right-hand

side of (3.2) and obtain the 𝜃1𝜃2-component ℎ
(𝑘)
12

[︀
𝑢0, 𝑢1, 𝑢2, 𝑢12

]︀
of the differential func-

tion ℎ(𝑘)[𝑢]. This is done by the procedure ToCoo. which is also available in SsTools [73,

126]. Thirdly, we set to zero the components 𝑢1 and 𝑢2 of the super-field 𝑢. This gives the

ansatz ℎ
(𝑘)
12

[︀
𝑢0, 𝑢12

]︀
for the representative of the conserved density in the vast equivalence

class. By the above, the gap between ℎ
(𝑘)
12 and the known ℎ(𝑘) amounts to d

d𝑥

(︀
𝑓 (𝑘)
)︀
, where

𝑓 (𝑘)
[︀
𝑢0, 𝑢12

]︀
is a homogeneous differential polynomial. We remark that the choice of 𝑓 is

not unique due to the freedom in the choice of ℎ(𝑘) mod 𝒟1(. . . )+𝒟2(. . . ). We thus arrive

at the linear algebraic equation

ℎ
(𝑘)
12 − d

d𝑥
𝑓 (𝑘) = ℎ(𝑘), (3.11)

which implies the equality of the respective coefficients in the polynomials. The homoge-

neous polynomial ansatz for 𝑓 (𝑘) is again generated by GenSSPoly. Then equation (3.11) is

split to the algebraic system by SsTools and solved by Crack [125]. Hence we obtain the

coefficients in ℎ
(𝑘)
12 and 𝑓 (𝑘). A posteriori, the freedom in the choice of 𝑓 (𝑘) is redundant, and

it is convenient to set the surviving unassigned coefficients to zero. Indeed, they originate

from the choice of a representative from the equivalence class for the super-density ℎ(𝑘)[𝑢].

This concludes the algorithm for the recursive production of homogeneous bosonic 𝑁=2

supersymmetry-invariant super-Hamiltonians ℋ(𝑘) for the 𝑁=2, 𝑎=4–SKdV hierarchy.

Example 6. Let us reproduce the first seven super-Hamiltonians for (1.2), which were

found in [84]. In contrast with Example 2, we now list the properly chosen representa-

tives ℎ
(𝑘)
12

[︀
𝑢0, 𝑢12

]︀
for the equivalence classes of conserved densities �̃�

(2𝑘)
0 and �̃�

(2𝑘)
12 , here 𝑘 ≤

3. Then we expose the conserved super-densities ℎ(𝑘) such that the respective expressions

ℎ
(𝑘)
12 are obtained from the 𝜃1𝜃2-components

∫︀
ℎ(𝑘) d𝜃 by reduction (1.3).

ℎ
(0)
12 = 𝑢0 ∼ �̃�

(0)
0 , ℎ(0) = −𝒟1𝒟2(𝑢) ∼ 0, (3.12a)

ℎ
(1)
12 = 𝑢12 ∼ �̃�

(0)
12 , ℎ(1) = 𝑢, (3.12b)

ℎ
(2)
12 = −2𝑢12𝑢0 ∼ �̃�

(2)
0 , ℎ(2) = 𝑢2, (3.12c)

ℎ
(3)
12 = 3

4
𝑢212 − 3𝑢12𝑢

2
0 +

3
4
𝑢20;𝑥 ∼ �̃�

(2)
12 , ℎ(3) = 𝑢3 − 3

4
𝑢𝒟1𝒟2(𝑢), (3.12d)
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ℎ
(4)
12 = 3𝑢212𝑢0 − 4𝑢12𝑢

3
0 − 3

2
𝑢20𝑢0;𝑥𝑥 − 𝑢12;𝑥𝑢0;𝑥 ∼ �̃�

(4)
0 ,

ℎ(4) = 𝑢4 − 1
2
𝑢𝑢𝑥𝑥 − 3

2
𝑢2𝒟1𝒟2(𝑢), (3.12e)

ℎ
(5)
12 = −5

4
𝑢312 +

15
2
𝑢212𝑢

2
0 − 5𝑢12𝑢

4
0 + 5𝑢12𝑢0𝑢0;𝑥𝑥 +

15
8
𝑢12𝑢

2
0;𝑥 +

15
2
𝑢20𝑢

2
0;𝑥 +

5
16
𝑢212;𝑥+

+ 5
16
𝑢20;𝑥𝑥 ∼ �̃�

(4)
12 , ℎ(5) = 𝑢5 − 15

16
𝑢2𝑢𝑥𝑥 +

5
8
(𝒟1𝒟2𝑢)

2𝑢− 5
2
𝑢3𝒟1𝒟2𝑢, (3.12f)

ℎ
(6)
12 = −15

4
𝑢312𝑢0 + 15𝑢212𝑢

3
0 − 15

8
𝑢212𝑢0;𝑥𝑥 − 6𝑢12𝑢

5
0 − 75

4
𝑢12𝑢0𝑢

2
0;𝑥 − 3

8
𝑢12𝑢0;𝑥𝑥𝑥𝑥 +

+ 5𝑢30𝑢12;𝑥𝑥 + 15𝑢30𝑢
2
0;𝑥 +

15
8
𝑢0𝑢

2
12;𝑥 +

15
8
𝑢0𝑢

2
0;𝑥𝑥 ∼ �̃�

(6)
0 ,

ℎ(6) = 𝑢6 − 15
8
𝑢3𝑢𝑥𝑥 +

3
16
𝑢𝑢4𝑥 +

15
8
(𝒟1𝒟2𝑢)

2 − 15
4
𝑢4𝒟1𝒟2𝑢+ 15

8
𝑢𝑥𝑥𝒟1𝒟2𝑢−

+ 5
8
𝒟1𝒟2(𝑢)𝒟1(𝑢)𝒟1(𝑢𝑥), (3.12g)

ℎ
(7)
12 = −21

8
𝑢0;4𝑥𝑢0𝑢12 +

7
64
𝑢20;𝑥𝑥𝑥 +

105
16
𝑢20;𝑥𝑥𝑢

2
0 +

35
32
𝑢20;𝑥𝑥𝑢12 − 105

8
𝑢0;𝑥𝑥𝑢0𝑢

2
12 − 105

64
𝑢40;4𝑥 −

− 35
16
𝑢20;𝑥𝑢12;𝑥𝑥 +

105
4
𝑢20;𝑥𝑢

4
0 − 525

8
𝑢20;𝑥𝑢

2
0𝑢12 − 175

32
𝑢20;𝑥𝑢

2
12 +

7
64
𝑢212;𝑥𝑥 +

35
4
𝑢12;𝑥𝑥𝑢

4
0 +

+ 105
16
𝑢212;𝑥𝑢

2
0 − 35

32
𝑢212;𝑥𝑢12 − 7𝑢60𝑢12 +

105
4
𝑢40𝑢

2
12 − 105

8
𝑢20𝑢

3
12 +

35
64
𝑢412 ∼ �̃�

(6)
12 ,

ℎ(7) = 𝑢7 − 105
32
𝑢3𝑢𝑥𝑥 +

7
32
𝑢2𝑢4𝑥 − 35

64
𝑢(𝒟1𝒟2𝑢)

3 + 35
8
𝑢3(𝒟1𝒟2𝑢)

2 − 35
64
(𝒟1𝒟2𝑢)

2𝑢𝑥𝑥 −
− 21

4
𝑢5𝒟1𝒟2𝑢+ 105

16
𝑢2𝑢𝑥𝑥𝒟1𝒟2𝑢+ 315

64
𝑢𝑢2

𝑥𝒟1𝒟2𝑢+ 35
16
𝑢(𝒟1𝒟2𝑢)(𝒟1𝑢)(𝒟1𝑢𝑥)−

− 7
64
𝑢4𝑥𝒟1𝒟2𝑢− 7

8
𝑢(𝒟1𝑢𝑥𝑥)(𝒟1𝑢𝑥). (3.12h)

Of course, our super-densities ℎ(𝑘) are equivalent to those in [84] up to adding trivial

terms 𝒟1(. . . ) +𝒟2(. . . ).

Remark 3. Until now, we have not yet reported any attempt of construction of Gardner’s

super-field deformation for (1.2), which means that the ansatz for m𝜀 and ℰ(𝜀) is written in

super-functions of 𝑢 (c.f. [84]). This would yield the super-Hamiltonians ℋ(𝑘) at once, and

the intermediate deformation (2.5) of a reduction (1.3) for (1.2) would not be necessary.

At the same time, the knowledge of Gardner’s deformations for the reductions allows to

inherit a part of the coefficients in the super-field ansatz by fixing them in the component

expansions (e.g., see (2.1), (2.3), and (2.5)).

Unfortunately, this cut-through does not work for the 𝑁=2, 𝑎=4–SKdV equation.

Theorem 3 (𝑁=2, 𝑎=4 ‘no go’ [47]). Under the assumptions that 𝑁=2 supersymmetry-

invariant Gardner’s deformation m𝜀 : ℰ(𝜀) → ℰ of (1.2) with 𝑎=4 is regular at 𝜀 = 0, is

scaling-homogeneous, and retracts to (2.1) under the reduction 𝑢0 = 0, 𝑢1 = 𝑢2 = 0 in

super-field (3.2), there is no such deformation.

This rigidity statement, although under a principally different set of initial hypotheses,

is contained in [84]. In particular, there it was supposed that degm𝜀 = deg ℰ(𝜀) = 2, which

turns to be on the obstruction threshold, see below. We reveal the general nature of this

‘no go’ result.
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Proof. Suppose there is the super-field Miura contraction m𝜀,

𝑢 = �̃�+ 𝜀
(︀
𝑝3�̃�

2 − 𝑝1𝒟1𝒟2�̃�+ 𝑝2�̃�𝑥
)︀
+ 𝜀2

(︁
𝑝15�̃�

3 + 𝑝13�̃��̃�𝑥 + 𝑝10𝒟2(�̃�)𝒟1(�̃�)

− 𝑝12𝒟1𝒟2(�̃�)�̃�− 𝑝11𝒟1𝒟2(�̃�𝑥) + 𝑝14�̃�𝑥𝑥

)︁
+ · · · .

To recover deformation (2.1) upon 𝑢12 in 𝑢, we split m𝜀 in components and fix the coeffi-

cients of 𝜀�̃�12;𝑥 and 𝜀2�̃�212, see (2.1a). By this argument, the expansion of �̃�𝑥 yields 𝑝2 = 1,

while the equality −𝑝12𝒟1𝒟2(�̃�)�̃� + 𝑝10𝒟2(�̃�)𝒟1(�̃�) = (𝑝12 − 𝑝10)𝜃1𝜃2𝑢
2
12 + . . . implies

that 𝑝12 = 𝑝10 − 1. Next, we generate the homogeneous ansatz for ℰ(𝜀), which contains

�̃�𝑡 = · · · + 𝜀2 · d
d𝑥

(︀
𝑞17(𝒟2𝑢)(𝒟1𝑢)𝑢 + . . .

)︀
+ . . . in the right-hand side (the coefficient 𝑞17

will appear in the obstruction). We stress that now both m𝜀 and ℰ(𝜀) can be formal power

series in 𝜀 without any finite-degree polynomial truncation.

Now we split the determining equationm𝜀 : ℰ(𝜀)→ ℰ to the sequence of super-differential
polynomial equalities ordered by the powers of 𝜀. By the regularity assumption, the co-

efficients of higher powers of 𝜀 never contribute to the equations that arise at its lower

degrees. Consequently, every contradiction obtained at a finite order in the algebraic sys-

tem is universal and precludes the existence of a solution. (Of course, we assume that the

contradiction is not created artificially by an excessively low order polynomial truncation

of the expansions in 𝜀.)

This is the case for the 𝑁=2, 𝑎=4–SKdV. Using Crack [125], we solve all but two

algebraic equations in the quadratic approximation. The remaining system is

𝑞17 = −𝑝10, 𝑝10 + 𝑞17 + 1 = 0.

This contradiction concludes the proof.

Remark 4. In Theorem 3 for (1.2) with 𝑎=4, we state the non-existence of the Gardner

deformation in a class of differential super-polynomials in 𝑢, that is, of 𝑁=2 supersymme-

try-invariant solutions that incorporate (2.1). Still, we do not claim the non-existence of

local regular Gardner’s deformations for the four-component system (3.5) in the class of

differential functions of 𝑢0, 𝑢1, 𝑢2, and 𝑢12.

Consequently, it is worthy to deform the reductions of (3.5) other than (1.3). Clearly,

if there is a deformation for the entire system, then such partial solutions contribute to it

by fixing the parts of the coefficients.

Example 7. Let us consider the reduction 𝑢0 = 0, 𝑢2 = 0 in (3.5) with 𝑎=4. This is the

two-component boson-fermion system

𝑢1;𝑡 = −𝑢1;𝑥𝑥𝑥 − 3
(︀
𝑢1𝑢12

)︀
𝑥
, 𝑢12;𝑡 = −𝑢12;𝑥𝑥𝑥 − 6𝑢12𝑢12;𝑥 + 3𝑢1𝑢1;𝑥𝑥. (3.13)
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Notice that system (3.13) is quadratic-nonlinear in both fields, hence the balance degm𝜀 :

deg ℰ(𝜀) for its polynomial Gardner’s deformations remains 1 : 1.

We found a unique Gardner’s deformation of degree ≤ 4 for (3.13): the Miura contrac-

tion m𝜀 is cubic in 𝜀,

𝑢1 = �̃�1, 𝑢12 = �̃�12 − 1
9
𝜀3�̃�1�̃�1;𝑥𝑥, (3.14a)

and the extension ℰ(𝜀) is given by the formulas

�̃�1;𝑡 = −�̃�1;𝑥𝑥𝑥 − 3
(︀
�̃�1�̃�12

)︀
𝑥
,

�̃�12;𝑡 = −�̃�12;𝑥𝑥𝑥 − 6�̃�12�̃�12;𝑥 + 3�̃�1�̃�1;𝑥𝑥 +

+ 1
3
𝜀3
(︁
𝑢1𝑢1;𝑥𝑥𝑢12 − 3𝑢1𝑢1;𝑥𝑢12;𝑥 + 𝑢1;𝑥𝑢1;𝑥𝑥𝑥

)︁
𝑥
. (3.14b)

However, we observe, first, that contraction (2.1a) is not recovered7 by (3.14a) under 𝑢1 ≡
0. Hence deformation (3.14) and its mirror copy under 𝑢1 ↔ −𝑢2 can not be merged

with (2.3) and (2.5) to become parts of the deformation for (3.5).

Second, we recall that the fields 𝑢1 and 𝑢2 are, seemingly, the only local fermionic

conserved densities for (3.5) with 𝑎=4. Consequently, either the velocities �̃�1;𝑡 and �̃�2;𝑡
in Gardner’s extensions ℰ(𝜀) of (3.5) are not expressed in the form of conserved currents

(although this is indeed so at 𝜀 = 0) or the components 𝑢𝑖 = 𝑢𝑖
(︀[︀
�̃�0, �̃�1, �̃�2, �̃�12

]︀
, 𝜀
)︀
of the

Miura contractions m𝜀 are the identity mappings 𝑢𝑖 = �̃�𝑖, here 𝑖 = 1, 2, whence either

the Taylor coefficients �̃�
(𝑘)
𝑖 of �̃�𝑖 are not termwise conserved on (3.5) or there appear no

recurrence relations at all.

We obtained the no-go statement for regular, scaling-homogeneous polynomial Gardner’s

deformations of the 𝑁=2, 𝑎=4–SKdV equation under the assumption that the solutions

retract to original formulas (2.1) by Gardner [102].

We exposed the two-step procedure for recursive production of the bosonic super-

Hamiltonians ℋ(𝑘). We formulated the entire algorithm in full detail such that, with

elementary modifications, it is applicable to other supersymmetric KdV-type systems.

7Surprisingly, quadratic approximation (2.1a) in the deformation problem for (3.5) is very restrictive

and leads to a unique solution (2.3)–(2.5) for (3.10). Relaxing this constraint and thus permitting the

coefficient of 𝜀2�̃�2
12 in m𝜀 be arbitrary, we obtain two other real and two pairs of complex conjugate

solutions for the deformations problem. They constitute the real and the complex orbit, respectively,

under the action of the discrete symmetry 𝑢0 ↦→ −𝑢0, 𝜉 ↦→ −𝜉 of (1.4).
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Chapter 4

Zero-curvature representations: Z2-graded
case

Let us recall first the definition of Lie super-algebra [10, 86, 92]. Let 𝒜 be an algebra over

the field C and Z2 = Z/2Z = {0̄, 1̄} be the group of residues modulo 2. The algebra 𝒜 is

called a super-algebra if 𝒜 can be decomposed as the direct sum 𝒜 = 𝒜0̄ ⊕𝒜1̄ such that

𝒜0̄ · 𝒜0̄ ⊂ 𝒜0̄, 𝒜0̄ · 𝒜1̄ ⊂ 𝒜1̄, 𝒜1̄ · 𝒜1̄ ⊂ 𝒜0̄.

A nonzero element of 𝒜0̄ or 𝒜1̄ is called homogeneous (respectively, even or odd). Let

p(𝑎) = 𝑘 if 𝑎 ∈ 𝒜𝑘 for 𝑘 ∈ Z2. The number p(𝑎) is the parity of 𝑎.

The super-algebra g is a Lie super-algebra if it is endowed with the linear multiplication

[· , ·] that satisfies the equalities

[𝑥, 𝑦] = −(−1)p(𝑥)p(𝑦)[𝑦, 𝑥], (4.1)

[𝑥, [𝑦, 𝑧]] = [[𝑥, 𝑦], 𝑧]+ (−1)p(𝑥)p(𝑦)[𝑦, [𝑥, 𝑧]]. (4.2)

here 𝑥, 𝑦, and 𝑧 are arbitrary elements of 𝒜 and 𝑥, 𝑦 are presumed homogeneous.

Let us introduce the super-matrix space Mat(𝑝 | 𝑞;𝒜). Consider a square (𝑝 + 𝑞)-

dimensional matrix 𝑋 = ( 𝑅 𝑆
𝑇 𝑈 ) ∈ Mat(𝑝 | 𝑞;𝒜) and set

p(𝑋) = 0̄ if p(𝑅𝑖𝑗) = p(𝑈𝑖𝑗) = 0̄, p(𝑇𝑖𝑗) = p(𝑆𝑖𝑗) = 1̄;

p(𝑋) = 1̄ if p(𝑅𝑖𝑗) = p(𝑈𝑖𝑗) = 1̄, p(𝑇𝑖𝑗) = p(𝑆𝑖𝑗) = 0̄.

Taking into account the graded skew-symmetry (4.1) of the bracket [·, ·], we define the Lie
super-algebra structure on the space Mat(𝑝 | 𝑞;𝒜) by the formula

[𝑋, 𝑌 ] = 𝑋𝑌 − (−1)p(𝑋)p(𝑌 )𝑌 𝑋, 𝑋, 𝑌 ∈ Mat(𝑝 | 𝑞;𝒜). (4.3)

The Lie super-algebras gl(𝑚 | 𝑛) ≃ Mat(𝑚 | 𝑛,C) and sl(𝑚 | 𝑛) = {𝑋 ∈ gl(𝑚 | 𝑛)| str𝑋 =

0}, where str ( 𝑅 𝑆
𝑇 𝑈 ) = tr𝑅 − tr𝑈 , are called the general linear and special linear Lie

super-algebras, respectively.

To calculate the super-commutator [𝑋, 𝑌 ] of two nonhomogeneous elements 𝑋 and 𝑌 ,

we first split 𝑋 = 𝑋0̄ + 𝑋1̄ and 𝑌 = 𝑌0̄ + 𝑌1̄ so that p(𝑋0̄) = p(𝑌0̄) = 0̄ and p(𝑋1̄) =
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p(𝑌1̄) = 1̄. Using (4.3), we obtain

[𝑋, 𝑌 ] = [𝑋0̄ +𝑋1̄, 𝑌0̄ + 𝑌1̄] = [𝑋0̄, 𝑋0̄]+ [𝑋0̄, 𝑌1̄]+ [𝑋1̄, 𝑌0̄]+ [𝑋1̄, 𝑌1̄] =

= (𝑋0̄𝑌0̄ − 𝑌0̄𝑋0̄) + (𝑋0̄𝑌1̄ − 𝑌1̄𝑋0̄) + (𝑋1̄𝑌0̄ − 𝑌0̄𝑋1̄) + (𝑋1̄𝑌1̄ + 𝑌1̄𝑋1̄). (4.4)

The super-determinant, or the Berezinian of an invertible matrix𝑋 = ( 𝑅 𝑆
𝑇 𝑈 ) ∈ gl(𝑚 | 𝑛)

is given by the formula [10]

sdet

(︂
𝑅 𝑆

𝑇 𝑈

)︂
=

det(𝑅− 𝑆𝑈−1𝑇 )
det𝑈

.

Example 8. In what follows, we shall use the Lie super-algebra sl(1 | 2) ≃ sl(2 | 1),
see [41]. Its representation in the space Mat(2 | 1;C) is given by the eight basic vectors,

four even: 𝐸+, 𝐸−, 𝐻, and 𝑍, and four odd: 𝐹+, 𝐹−, 𝐹+, and 𝐹−, where

𝐸+ =

⎛⎝0 1 0

0 0 0

0 0 0

⎞⎠ 𝐸− =

⎛⎝0 0 0

1 0 0

0 0 0

⎞⎠ 𝐻 =

⎛⎝1/2 0 0

0 −1/2 0

0 0 0

⎞⎠ 𝑍 =

⎛⎝1/2 0 0

0 1/2 0

0 0 1

⎞⎠
𝐹+ =

⎛⎝0 0 0

0 0 0

0 1 0

⎞⎠ 𝐹− =

⎛⎝0 0 0

0 0 0

1 0 0

⎞⎠ 𝐹+ =

⎛⎝0 0 1

0 0 0

0 0 0

⎞⎠ 𝐹− =

⎛⎝0 0 0

0 0 1

0 0 0

⎞⎠ .

The elements of this basis satisfy the following commutation relations:

[𝐻,𝐸±] = ±𝐸± [𝐻,𝐹±] = ±1
2
𝐹± [𝐻,𝐹±] = ±1

2
𝐹±

[𝑍,𝐻] = [𝑍,𝐸±] = 0 [𝑍, 𝐹±] = 1
2
𝐹± [𝑍, 𝐹±] = −1

2
𝐹±

[𝐸±, 𝐹±] = [𝐸±, 𝐹±] = 0 [𝐸±, 𝐹∓] = −𝐹± [𝐸±, 𝐹∓] = 𝐹±

[𝐹±, 𝐹±] = [𝐹±, 𝐹±] = 0 [𝐹±, 𝐹∓] = [𝐹±, 𝐹∓] = 0 [𝐹±, 𝐹±] = 𝐸±

[𝐸+, 𝐸−] = 2𝐻 [𝐹±, 𝐹∓] = 𝑍 ∓𝐻.

The Lie super-algebra sl(2 | 1) contains the Lie algebra sl(2,C) as a subalgebra. The

vectors 𝐸± and 𝐻 form a basis in sl(2,C).
The Lie super-group 𝑆𝐿(2 | 1), which corresponds to the Lie super-algebra sl(2 | 1),

consist of the matrices with unit Berezinian: 𝑆𝐿(2 | 1) = {𝑆 ∈ 𝐺𝐿(2 | 1) | sdet𝑆 = 1}.

Remark 5. Consider the following three subgroups of the Lie super-group 𝑆𝐿(2 | 1):

𝐺+ =

{︂(︂
1 𝐵

0 1

)︂}︂
, 𝐺0 =

{︂(︂
𝐴 0

0 𝐷

)︂}︂
, 𝐺− =

{︂(︂
1 0

𝐶 1

)︂}︂
.

Each matrix 𝑆 ∈ 𝑆𝐿(2 | 1) can be represented [87] as a product 𝑆 = 𝑆+𝑆0𝑆−, where

𝑆+ ∈ 𝐺+, 𝑆0 ∈ 𝐺0, 𝑆− ∈ 𝐺−. Due to the multiplicativity of the Berezinian, sdet𝑆 =
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sdet𝑆+ · sdet𝑆0 · sdet𝑆− = 1, and in view of the obvious property sdet𝑆+ = sdet𝑆− = 1

for all elements of the groups 𝐺+ and 𝐺−, we conclude that sdet𝑆0 = 1 for all 𝑆0 ∈ 𝐺0.

For the Lie super-group 𝑆𝐿(2 | 1), the dimension of the matrix 𝐷 is equal to 1× 1 and

the dimension of the matrix 𝐴 is equal to 2 × 2. Let us show that 𝐺0 ≃ 𝐺𝐿(2 | 0). The

condition sdet𝑆0 = 1 for the matrix 𝑆0 ∈ 𝑆𝐿(2 | 1) implies the equality det𝐴 = det𝐷 of

the usual determinants of 𝐴 and 𝐷. Therefore, to each matrix 𝐴 ∈ 𝐺𝐿(2 | 0) we can put

into correspondence the matrix 𝑆𝐴 ∈ 𝐺0 by setting 𝑆𝐴 = ( 𝐴 0
0 det𝐴 ) and conversely, to each

matrix 𝑆 = ( 𝐴 0
0 𝐷 ) ∈ 𝐺0 we associate the matrix 𝐴 from 𝐺𝐿(2 | 0).

Consider the tensor product g ⊗R Λ̄(ℰ∞) of a finite-dimensional matrix complex Lie

superalgebra g and the exterior algebra Λ̄(ℰ∞) =
⨁︀

𝑖 Λ
0,𝑖(ℰ∞). The product is endowed

with the bracket

[𝐴⊗ 𝜇,𝐵 ⊗ 𝜈] = (−1)p(𝐵)p(𝜇)[𝐴,𝐵]⊗ 𝜇 ∧ 𝜈

for 𝜇, 𝜈 ∈ Λ̄(ℰ∞) and 𝐴,𝐵 ∈ g. Define the operator d̄ℎ that acts on elements of g⊗ Λ̄(ℰ∞)
by the rule

d̄ℎ(𝐴⊗ 𝜇) = 𝐴⊗ d̄ℎ𝜇,

where the horizontal differential d̄ℎ in the right-hand side is (3.1a). The tensor product

g ⊗ Λ̄(ℰ∞) is a differential graded associative algebra with respect to the multiplication

(𝐴⊗𝜇) ·(𝐵⊗𝜈) = (−1)p(𝐵)p(𝜇)(𝐴 ·𝐵)⊗𝜇∧𝜈 induced by the ordinary matrix multiplication

so that

[𝜌, 𝜎] = 𝜌 · 𝜎 − (−1)𝑟𝑠(−1)p(𝜌)p(𝜎)𝜎 · 𝜌,

d̄ℎ(𝜌 · 𝜎) = d̄ℎ𝜌 · 𝜎 + (−1)𝑟𝜌 · d̄ℎ𝜎

for 𝜌 ∈ g ⊗ Λ̄𝑟(ℰ∞) and 𝜎 ∈ g ⊗ Λ̄𝑠(ℰ∞). Elements of g ⊗ 𝐶∞(ℰ∞) are called g-

(super)matrices [94].

Definition 2 ([92, 94, 97]). A horizontal 1-form 𝛼 ∈ g ⊗ Λ̄1(ℰ∞) is called a g-valued

zero-curvature representation for the equation ℰ if the Maurer–Cartan condition

d̄ℎ𝛼 = 1
2
[𝛼, 𝛼]. (4.5)

holds by virtue of ℰ and its differential consequences.

Let 𝐺 be the Lie supergroup of the (matrix) Lie superalgebra g. Let 𝛼 and 𝛼′ be g-

valued zero-curvature representations. Then 𝛼 and 𝛼′ are called guage-equivalent if there

exists 𝑆 ∈ 𝐶∞(ℰ∞, 𝐺) such that

𝛼′ = 𝛼𝑆 = d̄ℎ𝑆 · 𝑆−1 + 𝑆 · 𝛼 · 𝑆−1, . (4.6)

Elements of 𝐶∞(ℰ∞, 𝐺), i.e., 𝐺-valued functions on ℰ∞, are called 𝐺-matrices.
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Definition 3. Let 𝛼𝜆 be a family of zero-curvature representations depending on a complex

parameter 𝜆 ∈ ℐ ⊆ C. The parameter 𝜆 is removable if the forms 𝛼𝜆 are gauge-equivalent

at different values of 𝜆 ∈ ℐ, and 𝜆 is non-removable otherwise.

Remark 6. There are other approaches to the idea of parameters’ (non)removability, e.g.,

under transformations which not necessarily are gauge (this is in contrast to the above

definition). It turns out that a given parameter in a family of zero-curvature representations

can be nonremovable with respect to a narrow class of gauge transformations but, at the

same time, it can be eliminated by using transformations from a wider group. For example,

Sasaki showed in [114] that the parameter in the standard Lax pair for the Korteweg–de

Vries equation can be eliminated by using the scaling symmetry of KdV (see Section 5.5).

We stress that this transformation is not gauge and therefore it acts across the gauge

group’s orbits. However, that parameter is non-removable in the sense of Definition 3

because there is no gauge transformation which would remove it.

We now recall classical Marvan’s result and its proof [94, 97] for non-graded PDE and

zero-curvature representations (c.f. Proposition 5 below).

Proposition 4 ([94]). Let 𝛼𝜆 be a family of g-valued zero-curvature representations

smoothly depending on a complex parameter 𝜆 ∈ ℐ ⊆ C. The parameter 𝜆 is remov-

able if and only if for each 𝜆 ∈ ℐ there is a g-matrix 𝑄𝜆, depending smoothly on 𝜆, such

that
𝜕

𝜕𝜆
𝛼𝜆 = d̄ℎ𝑄𝜆 − [𝛼𝜆, 𝑄𝜆].

Proof. Suppose that 𝜆 is removable. This means that for any fixed 𝜆0 there exists a 𝐺-

matrix 𝑆𝜆 such that 𝛼𝑆𝜆
𝜆0

= 𝛼𝜆 and 𝑆𝜆0 = 1 ∈ 𝐺 →˓ 𝐶∞(ℰ∞, 𝐺). The matrix �̇�𝜆0 =

𝜕/𝜕𝜆|𝜆=𝜆0𝑆𝜆 belongs to the tangent space at unit of 𝐺, i.e., to the Lie algebra g. We have

that

0 =
𝜕

𝜕𝜆

⃒⃒⃒⃒
𝜆=𝜆0

𝛼𝜆0 =
𝜕

𝜕𝜆

⃒⃒⃒⃒
𝜆=𝜆0

𝛼
𝑆−1
𝜆
𝜆 =

𝜕

𝜕𝜆

⃒⃒⃒⃒
𝜆=𝜆0

(︀
d̄ℎ(𝑆

−1
𝜆 )𝑆𝜆 + 𝑆−1𝜆 𝛼𝜆𝑆𝜆

)︀
=

=
𝜕

𝜕𝜆

⃒⃒⃒⃒
𝜆=𝜆0

(︀
−𝑆−1𝜆 d̄ℎ𝑆𝜆 + 𝑆−1𝜆 𝛼𝜆𝑆𝜆

)︀
=

= − 𝜕

𝜕𝜆

(︀
𝑆−1𝜆0

)︀
d̄ℎ(𝑆𝜆0)− 𝑆−1𝜆0 𝑑�̇�𝜆0 − 𝑆

−1
𝜆0
�̇�𝜆0𝑆

−1
𝜆0
𝛼𝜆0𝑆𝜆0

+ 𝑆−1𝜆0 �̇�𝜆0𝑆𝜆0 + 𝑆−1𝜆0 𝛼𝜆0�̇�𝜆0 = −d̄ℎ�̇�𝜆0 − �̇�𝜆0𝛼𝜆0 + 𝛼𝜆0�̇�𝜆0 + �̇�𝜆0 .

This implies that �̇�𝜆0 = d̄ℎ�̇�𝜆0 − [𝛼𝜆0 , �̇�𝜆0 ], where �̇� ∈ g⊗ Λ̄0(ℰ∞).
Conversely, suppose now that �̇�𝜆 = d̄ℎ𝑄𝜆 − [𝛼𝜆, 𝑄𝜆] for some 𝑄𝜆 ∈ g ⊗ 𝐶∞(ℰ∞). Let

𝑆𝜆 ∈ 𝐶∞(ℰ∞, 𝐺) be a solution of the matrix equation 𝜕𝑆/𝜕𝜆 = 𝑄𝜆𝑆𝜆 with initial data

𝑆𝜆0 = 1. Consider the expression 𝑍𝜆 = d̄ℎ𝑆𝜆 + 𝑆𝜆𝛼𝜆0 − 𝛼𝜆𝑆𝜆 = (𝛼𝑆𝜆
𝜆0
− 𝛼𝜆)𝑆𝜆. We have
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that

𝜕

𝜕𝜆
𝑍𝜆 =

𝜕

𝜕𝜆
(d̄ℎ𝑆𝜆 + 𝑆𝜆𝛼𝜆0 − 𝛼𝜆𝑆𝜆)

= d̄ℎ(�̇�𝜆) + �̇�𝜆𝛼𝜆0 − �̇�𝜆𝑆𝜆 − 𝛼𝜆�̇�𝜆
= d̄ℎ(𝑄𝜆𝑆𝜆) +𝑄𝜆𝑆𝜆𝛼𝜆0 − �̇�𝜆𝑆𝜆 − 𝛼𝜆𝑄𝜆𝑆𝜆 =

= d̄ℎ𝑄𝜆𝑆𝜆 +𝑄𝜆d̄ℎ𝑆𝜆 +𝑄𝜆𝑆𝜆𝛼𝜆0 − �̇�𝜆𝑆𝜆 − 𝛼𝜆𝑄𝜆𝑆𝜆 + (𝑄𝜆𝛼𝜆𝑆𝜆 −𝑄𝜆𝛼𝜆𝑆𝜆)

= (d̄ℎ𝑄𝜆 − 𝛼𝜆𝑄𝜆 +𝑄𝜆𝛼𝜆⏟  ⏞  
�̇�𝜆

−�̇�𝜆)𝑆𝜆 +𝑄𝜆(d̄ℎ𝑆𝜆 + 𝑆𝜆𝛼𝜆0 − 𝛼𝜆𝑆𝜆)

= 𝑄𝜆𝑍𝜆.

It is obvious that 𝑍𝜆0 = 0, whence 𝛼𝑆𝜆
𝜆0
−𝛼𝜆 = 0. Therefore, the parameter 𝜆 is removable.

The following proposition and its proof are proper Z2-generalizations of Marvan’s

Proposition 4 for classical, non-graded systems of partial differential equations [94, 97].

Proposition 5 ([66]). Let 𝛼𝜆 be a family of g-valued zero-curvature representations

smoothly depending on a complex parameter 𝜆 ∈ ℐ ⊆ C. The parameter 𝜆 is remov-

able if and only if for each 𝜆 ∈ ℐ there is a g-matrix 𝑄𝜆, depending smoothly on 𝜆, such

that p(𝑄𝜆) = 0̄ and
𝜕

𝜕𝜆
𝛼𝜆 = d̄ℎ𝑄𝜆 − [𝛼𝜆, 𝑄𝜆].

Proof. The first half of the proof (i.e., the necessity) coincides literaly with the proof of

Proposition 4; note that party of �̇�𝜆 will be the same as parity 𝑆𝜆, i.e. p(�̇�𝜆0) = 0̄.

This means that for any fixed 𝜆0 there exists a 𝐺-matrix 𝑆𝜆 such that 𝛼𝑆𝜆
𝜆0

= 𝛼𝜆 and

𝑆𝜆0 = 1 ∈ 𝐺 →˓ 𝐶∞(ℰ∞, 𝐺). The matrix �̇�𝜆0 = 𝜕/𝜕𝜆|𝜆=𝜆0𝑆𝜆 belongs to the tangent space

at unit of 𝐺, i.e., to the super Lie superalgebra g.

The converse s true by the same argument as above; we note that solutions 𝑆𝜆 exists

only for even g-matrices 𝑄𝜆.

Remark 7. We conclude that Marvan’s computational techniques [94, 97] work also in the

Z2-graded setup — with just one modification: the commutator [·, ·] in a Lie algebra is

replaced by the graded commutator [·, ·] in the Lie superalgebra. However, let us say a

word of caution.

Lemma 1 ([66]). Let 𝛼 = 𝛼0̄ + 𝛼1̄ be a g-valued zero-curvature representation of a given

Z2-graded equation ℰ such that p(𝛼0̄) = 0̄ and p(𝛼1̄) = 1̄. Then Marvan’s operator

�̄�𝛼 = d̄ℎ − [𝛼, ·], see [94], not necessarily is a differential.

We note that we have not seen any example of a ZCR with nonzero odd part (i.e., such

that 𝛼1̄ ̸= 0). It would be interesting to either find such example or prove that it can not

exist.
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Proof. Let 𝛽 ∈ g ⊗ Λ̄0(ℰ∞) so that 𝛽 = 𝛽 0̄ + 𝛽 1̄ and consider 𝛼 = 𝛼0̄ + 𝛼1̄, where

p(𝛼0̄) = p(𝛽 0̄) = 0̄ and p(𝛼1̄) = p(𝛽 1̄) = 1̄. Then we have that

�̄�𝛼 ∘ �̄�𝛼(𝛽) = �̄�𝛼(d̄ℎ𝛽 − [𝛼, 𝛽]) = d̄ℎ ∘ d̄ℎ𝛽 − d̄ℎ([𝛼, 𝛽])− [𝛼, d̄ℎ𝛽 − [𝛼, 𝛽] ]

= −[d̄ℎ𝛼, 𝛽]+ [𝛼, d̄ℎ𝛽]− [𝛼, d̄ℎ𝛽]+ [𝛼, [𝛼, 𝛽] ] = [𝛼, [𝛼, 𝛽] ]− 1
2
[[𝛼, 𝛼], 𝛽]

= [𝛼, 𝛼0̄𝛽 0̄ − 𝛽 0̄𝛼0̄ + 𝛼0̄𝛽 1̄ − 𝛽 1̄𝛼0̄ + 𝛼1̄𝛽 0̄ − 𝛽 0̄𝛼1̄ + 𝛼1̄𝛽 1̄ + 𝛽 1̄𝛼1̄]− [𝛼0̄𝛼0̄ + 𝛼0̄𝛼1̄ + 𝛼1̄𝛼0̄, 𝛽]

= 𝛼0̄𝛼0̄𝛽 0̄ + 𝛼0̄𝛽 0̄𝛼0̄ − 𝛼0̄𝛽 0̄𝛼0̄ − 𝛽 0̄𝛼0̄𝛼0̄ + 𝛼0̄𝛼0̄𝛽 1̄ + 𝛼0̄𝛽 1̄𝛼0̄ − 𝛼0̄𝛽 1̄𝛼0̄ − 𝛽 1̄𝛼0̄𝛼0̄

+ 𝛼0̄𝛼1̄𝛽 0̄ + 𝛼1̄𝛽 0̄𝛼0̄ − 𝛼0̄𝛽 0̄𝛼1̄ − 𝛽 0̄𝛼1̄𝛼0̄ + 𝛼0̄𝛼1̄𝛽 1̄ + 𝛼1̄𝛽 1̄𝛼0̄ + 𝛼1̄𝛼0̄𝛽 0̄ + 𝛼0̄𝛽 0̄𝛼1̄

− 𝛼1̄𝛽 0̄𝛼0̄ − 𝛽 0̄𝛼0̄𝛼1̄ + 𝛼1̄𝛼0̄𝛽 1̄ − 𝛼0̄𝛽 1̄𝛼1̄ − 𝛼1̄𝛽 1̄𝛼0̄ − 𝛽 1̄𝛼0̄𝛼1̄ + 𝛼1̄𝛼1̄𝛽 0̄ − 𝛼1̄𝛽 0̄𝛼1̄

− 𝛼1̄𝛽 0̄𝛼1̄ + 𝛽 0̄𝛼1̄𝛼1̄ + 𝛼1̄𝛼1̄𝛽 1̄ + 𝛼1̄𝛽 1̄𝛼1̄ − 𝛼0̄𝛼0̄𝛽 0̄ + 𝛽 0̄𝛼0̄𝛼0̄ − 𝛼0̄𝛼0̄𝛽 1̄ + 𝛽 1̄𝛼0̄𝛼0̄

− 𝛼1̄𝛼0̄𝛽 0̄ + 𝛽 0̄𝛼1̄𝛼0̄ − 𝛼1̄𝛼0̄𝛽 1̄ − 𝛽 1̄𝛼1̄𝛼0̄ − 𝛼0̄𝛼1̄𝛽 0̄ + 𝛽 0̄𝛼0̄𝛼1̄ − 𝛼0̄𝛼1̄𝛽 1̄ − 𝛽 1̄𝛼0̄𝛼1̄

= −𝛼0̄𝛽 1̄𝛼1̄ − 2𝛽 1̄𝛼0̄𝛼1̄ + 𝛼1̄𝛼1̄𝛽 0̄ − 2𝛼1̄𝛽 0̄𝛼1̄ + 𝛽 0̄𝛼1̄𝛼1̄ + 𝛼1̄𝛼1̄𝛽 1̄ + 𝛼1̄𝛽 1̄𝛼1̄ − 𝛽 1̄𝛼1̄𝛼0̄ ̸= 0.

This argument shows that for parity-even zero-curvature representations (which are con-

strained by 𝛼1̄ = 0) the operator �̄�𝛼 is a differential, and Marvan’s cohomology tech-

nique [94] works also in the Z2-graded setup.

Example 9. Let us consider the four-component generalization of the KdV equation,

namely, the 𝑁=2 supersymmetric Korteweg–de Vries equation (SKdV) [84]:

𝑢𝑡 = −𝑢𝑥𝑥𝑥 + 3
(︀
𝑢𝒟1𝒟2𝑢

)︀
𝑥
+
𝑎− 1

2

(︀
𝒟1𝒟2𝑢

2
)︀
𝑥
+ 3𝑎𝑢2𝑢𝑥, 𝒟𝑖 =

𝜕

𝜕𝜃𝑖
+ 𝜃𝑖 · �̄�𝑥, (1.2)

where

𝑢(𝑥, 𝑡; 𝜃1, 𝜃2) = 𝑢0(𝑥, 𝑡) + 𝜃1 · 𝑢1(𝑥, 𝑡) + 𝜃2 · 𝑢2(𝑥, 𝑡) + 𝜃1𝜃2 · 𝑢12(𝑥, 𝑡) (3.2)

is the complex bosonic super-field, 𝜃1, 𝜃2 are Grassmann variables such that 𝜃21 = 𝜃22 =

𝜃1𝜃2+𝜃2𝜃1 = 0, 𝑢0, 𝑢12 are bosonic fields (p(𝑢0) = p(𝑢12) = 0̄), and 𝑢1, 𝑢2 are fermionic fields

(p(𝑢1) = p(𝑢2) = 1̄). Expansion (3.2) converts (1.2) to the four-component system1 (3.5)

𝑢0;𝑡 = −𝑢0;𝑥𝑥𝑥 +
(︀
𝑎𝑢30 − (𝑎+ 2)𝑢0𝑢12 + (𝑎− 1)𝑢1𝑢2

)︀
𝑥
,

𝑢1;𝑡 = −𝑢1;𝑥𝑥𝑥 +
(︀

(𝑎+ 2)𝑢0𝑢2;𝑥 + (𝑎− 1)𝑢0;𝑥𝑢2 − 3𝑢1𝑢12 + 3𝑎𝑢20𝑢1
)︀
𝑥
,

𝑢2;𝑡 = −𝑢2;𝑥𝑥𝑥 +
(︀
−(𝑎+ 2)𝑢0𝑢1;𝑥 − (𝑎− 1)𝑢0;𝑥𝑢1 − 3𝑢2𝑢12 + 3𝑎𝑢20𝑢2

)︀
𝑥
,

𝑢12;𝑡 = −𝑢12;𝑥𝑥𝑥 − 6𝑢12𝑢12;𝑥 + 3𝑎𝑢0;𝑥𝑢0;𝑥𝑥 + (𝑎+ 2)𝑢0𝑢0;𝑥𝑥𝑥

+ 3𝑢1𝑢1;𝑥𝑥 + 3𝑢2𝑢2;𝑥𝑥 + 3𝑎
(︀
𝑢20𝑢12 − 2𝑢0𝑢1𝑢2

)︀
𝑥
.

1The Korteweg–de Vries equation upon 𝑢12, see (1.1), is underlined.
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The 𝑁=2 supersymmetric 𝑎=4-KdV equation (3.5) admits [28] the sl(2|1)-valued zero-

curvature representation 𝛼𝑁=2 = 𝐴 d𝑥+𝐵 d𝑡, where2

𝐴 =

⎛⎝−𝑖𝑢0 𝜀−1(𝑢20 + 𝑢12)− 𝜀−2𝑢0𝑖 −𝜀−1(𝑢2 + 𝑖𝑢1)

−𝜀 −𝑖𝑢0 − 𝜀−1 0

0 𝑖𝑢1 − 𝑢2 −2𝑖𝑢0 − 𝜀−1

⎞⎠ ;

The elements of the sl(2|1)-matrix

𝐵 =

⎛⎝𝑏11 𝑏12 𝑏13
𝑏21 𝑏22 𝑏23
𝑏31 𝑏32 𝑏33

⎞⎠ ,

are as follows,

𝑏11 = 4𝑖𝑢30 − 6𝑖𝑢0𝑢12 + 4𝑢0𝑢0;𝑥 − 𝑖𝑢0;𝑥𝑥 − 𝑢12;𝑥 − 4𝑖𝑢2𝑢1 + 𝜀−1(2𝑢20 − 𝑢12 − 𝑖𝑢0;𝑥)− 𝑖𝜀−2𝑢0,

𝑏12 = 𝜀−1(4𝑢40 + 2𝑢20𝑢12 + 4𝑢0𝑢0;𝑥𝑥 − 2𝑢212 + 4𝑢20;𝑥 − 𝑢12;𝑥𝑥 + 𝑢2𝑢2;𝑥 + 8𝑢2𝑢1𝑢0 + 𝑢1𝑢1;𝑥) +

+ 𝜀−2(2𝑖𝑢30 − 4𝑖𝑢0𝑢12 + 4𝑢0𝑢0;𝑥 − 𝑖𝑢0;𝑥𝑥 − 𝑢12;𝑥 − 2𝑖𝑢2𝑢1) + 𝜀−3(𝑢20 − 𝑢12 − 𝑖𝑢0;𝑥)−
− 𝑖𝜀−4𝑢0,

𝑏13 = 𝜀−1(−5𝑖𝑢0𝑢2;𝑥 − 5𝑢0𝑢1;𝑥 − 𝑢2;𝑥𝑥 + 𝑖𝑢1;𝑥𝑥 + 8𝑢2𝑢
2
0 − 2𝑢2𝑢12 − 4𝑖𝑢2𝑢0;𝑥 − 8𝑖𝑢1𝑢

2
0 +

+ 2𝑖𝑢1𝑢12 − 4𝑢1𝑢0;𝑥) + 𝜀−2(−𝑢2;𝑥 + 𝑖𝑢1;𝑥 − 3𝑖𝑢2𝑢0 − 3𝑢1𝑢0) + 𝜀−3(−𝑢2 + 𝑖𝑢1),

𝑏21 = 2𝜀(−2𝑢20 + 𝑢12) + 2𝑖𝑢0 + 𝜀−1,

𝑏22 = 4𝑖𝑢30 − 6𝑖𝑢0𝑢12 − 4𝑢0𝑢0;𝑥 − 𝑖𝑢0;𝑥𝑥 + 𝑢12;𝑥 − 4𝑖𝑢2𝑢1 + 𝜀−1(−2𝑢20 + 𝑢12 + 𝑖𝑢0;𝑥) +

+ 𝑖𝜀−1𝑢0 + 𝜀−3,

𝑏23 = 𝑢2;𝑥 − 𝑖𝑢1;𝑥 + 4𝑖𝑢2𝑢0 + 4𝑢1𝑢0 + 𝜀−1(𝑢2 − 𝑖𝑢1),

𝑏31 = 𝜀(−𝑢2;𝑥 − 𝑖𝑢1;𝑥 + 4𝑖𝑢2𝑢0 − 4𝑢1𝑢0) + 𝑢2 + 𝑖𝑢1,

𝑏32 = 5𝑖𝑢0𝑢2;𝑥 − 5𝑢0𝑢1;𝑥 − 𝑢2;𝑥𝑥 − 𝑖𝑢1;𝑥𝑥 + 8𝑢2𝑢
2
0 − 2𝑢2𝑢12 + 4𝑖𝑢2𝑢0;𝑥 + 8𝑖𝑢1𝑢

2
0 − 2𝑖𝑢1𝑢12 −

− 4𝑢1𝑢0;𝑥 + 𝜀−1𝑢0(𝑖𝑢2 − 𝑢1),
𝑏33 = 2(4𝑖𝑢30 − 6𝑖𝑢0𝑢12 − 𝑖𝑢0;𝑥𝑥 − 4𝑖𝑢2𝑢1) + 𝜀−3.

2This zero-curvature representation is not equal identically but it is gauge-equivalent to the respec-

tive formula in Das et al. [28]. The transformation between these objects contains the imaginary unit 𝑖.

Our choice of normalization is due to the following argument: all structures under study contain Gard-

ner’s deformation (5.41) of Korteweg–de Vries equation (1.1) (so that the structures retract to Gardner’s

deformation under suitable reductions).

We note further that the zero-curvature representation 𝛼𝑁=2 can be used for construction of a solution,

which is an alternative to the first solution reported in Chapter 3, of Gardner’s deformation problem [84, 99]

for the 𝑁=2, 𝑎=4 SKdV equation (we refer to Chapter 5 for detail). The parameter 𝜀 which we use here

is the parameter in the classical Gardner deformation of the KdV equation [101]. Therefore, we denote

this parameter by 𝜀 instead of 𝜆.
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Chapter 4. Zero-curvature representations: Z2-graded case

We claim that there is no sl(2|1)-matrix 𝑄 satisfying the equalities

𝜕

𝜕𝜀
𝐴 = �̄�𝑥(𝑄)− [𝐴,𝑄],

𝜕

𝜕𝜀
𝐵 = �̄�𝑡(𝑄)− [𝐵,𝑄].

Consequently, the parameter 𝜀 in 𝛼𝑁=2 is non-removable under gauge transformations.

Example 10. Consider another sl(2|2)-valued zero-curvature representation 𝛽 = 𝐴 d𝑥 +

𝐵 d𝑡 for the 𝑁=2, 𝑎=4-SKdV equation: we let

𝐴 =

⎛⎝𝜆− 𝑖𝑢0 −𝜆2 − (𝑢20 + 𝑢12) −𝑖𝑢1 − 𝑢2
1 −𝜆− 𝑖𝑢0 0

0 𝑢2 − 𝑖𝑢1 −2𝑖𝑢0

⎞⎠ ;

The elements of the sl(2|1)-matrix

𝐵 =

⎛⎝𝑏11 𝑏12 𝑏13
𝑏21 𝑏22 𝑏23
𝑏31 𝑏32 𝑏33

⎞⎠ ,

are given by the formulas

𝑏11 = 2𝜆(2𝑢20 − 𝑢12)− 4𝑖𝑢30 + 6𝑖𝑢0𝑢12 + 4𝑢0𝑢0;𝑥 + 𝑖𝑢0;𝑥𝑥 − 𝑢12;𝑥 + 4𝑖𝑢2𝑢1,

𝑏12 = 2𝜆2(−2𝑢20 + 𝑢12) + 2𝜆(−4𝑢0𝑢0;𝑥 + 𝑢12;𝑥)− 4𝑢40 − 2𝑢20𝑢12 − 4𝑢0𝑢0;𝑥𝑥 + 2𝑢212

− 4𝑢20;𝑥 + 𝑢12;𝑥𝑥 − 𝑢2𝑢2;𝑥 − 8𝑢2𝑢1𝑢0 − 𝑢1𝑢1;𝑥,
𝑏13 = 𝜆(𝑢2;𝑥 + 𝑖𝑢1;𝑥 − 4𝑖𝑢2𝑢0 + 4𝑢1𝑢0)− 5𝑖𝑢0𝑢2;𝑥 + 5𝑢0𝑢1;𝑥 + 𝑢2;𝑥𝑥 + 𝑖𝑢1;𝑥𝑥

− 8𝑢2𝑢
2
0 + 2𝑢2𝑢12 − 4𝑖𝑢2𝑢0;𝑥 − 8𝑖𝑢1𝑢

2
0 + 2𝑖𝑢1𝑢12 + 4𝑢1𝑢0;𝑥,

𝑏21 = 2(2𝑢20 − 𝑢12),
𝑏22 = 2𝜆(−2𝑢20 + 𝑢12)− 4𝑖𝑢30 + 6𝑖𝑢0𝑢12 − 4𝑢0𝑢0;𝑥 + 𝑖𝑢0;𝑥𝑥 + 𝑢12;𝑥 + 4𝑖𝑢2𝑢1,

𝑏23 = 𝑢2;𝑥 + 𝑖𝑢1;𝑥 − 4𝑖𝑢2𝑢0 + 4𝑢1𝑢0,

𝑏31 = 𝑢2;𝑥 − 𝑖𝑢1;𝑥 + 4𝑖𝑢2𝑢0 + 4𝑢1𝑢0,

𝑏32 = 𝜆(−𝑢2;𝑥 + 𝑖𝑢1;𝑥 − 4𝑖𝑢2𝑢0 − 4𝑢1𝑢0)− 5𝑖𝑢0𝑢2;𝑥 − 5𝑢0𝑢1;𝑥 − 𝑢2;𝑥𝑥 + 𝑖𝑢1;𝑥𝑥 + 8𝑢2𝑢
2
0

− 2𝑢2𝑢12 − 4𝑖𝑢2𝑢0;𝑥 − 8𝑖𝑢1𝑢
2
0 + 2𝑖𝑢1𝑢12 − 4𝑢1𝑢0;𝑥,

𝑏33 = 2𝑖(−4𝑢30 + 6𝑢0𝑢12 + 𝑢0;𝑥𝑥 + 4𝑢2𝑢1).

The sl(2|1)-matrix

𝑄 =

⎛⎝0 1 0

0 0 0

0 0 0

⎞⎠
satisfies the equations

𝜕

𝜕𝜆
𝐴 = �̄�𝑥(𝑄)− [𝐴,𝑄],

𝜕

𝜕𝜆
𝐵 = �̄�𝑡(𝑄)− [𝐵,𝑄].
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Solving the Cauchy problem

𝜕

𝜕𝜆
𝑆 = 𝑄𝑆, 𝑆|𝜆=0 = 1,

we obtain the 𝑆𝐿(2|1)-matrix

𝑆 =

⎛⎝1 𝜆 0

0 1 0

0 0 1

⎞⎠ .

This matrix 𝑆 defines the gauge transformation that removes the parameter 𝜆 from the

zero-curvature representation 𝛽, i.e., (𝛽)𝑆
−1

= 𝛽|𝜆=0. Consequently, the parameter 𝜆 in 𝛽

is removable.

We extended – to the Z2-graded case – Marvan’s method for inspecting the (non)removability

of a parameter in a given family of zero-curvature representations; specifically, we accom-

plished the task of balancing the signs in a nonselfcontradictory way. Let us note that

this generalization of the standard technique can be used further in solving Gardner’s

deformation problems for the 𝑁=2-supersymmetric KdV equations and other Z2-graded

completely integrable systems (see Chapter 5).
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Chapter 5

Non-local picture

The classical problem of construction of the Gardner deformation [101] for an infinite-

dimensional completely integrable system of evolutionary partial differential equations es-

sentially amounts to finding a recurrence relation between the integrals of motion. For

the 𝑁=2 supersymmetric generalizations of the Korteweg–de Vries equation [84, 99], the

deformation problem was posed when the integrable triplet of such super-systems was

discovered. In Chapter 3 we proved the ’no-go’ theorem stating that a classical polyno-

mial Gardner deformation for the 𝑁=2 supersymmetric 𝑎=4 KdV equation does not exist

within the superfield formalism (but that in principle, the deformation may exist whenever

the superfields are split in components), c.f. [84]. This is in contrast with the 𝑁=1 sKdV

case when the two approaches yield the supersymmetry-invariant deformation [99].

In this chapter we re-address, from a basically different viewpoint, the Gardner de-

formation problem for a vast class of (not necessarily supersymmetric) KdV-like systems.

Namely, in Chapter 3 we emphasized the geometric similarity of the Gardner deformations

and zero-curvature representations, each of them manifesting the integrability of nonlinear

systems (c.f. [43, 123]). Indeed, both constructions generate infinite sequences of nontrivial

integrals of motion. However, the standard Lax approach relies on the calculus of pseu-

dodifferential operators whereas the Gardner technique is more geometric and favourable

from a computational viewpoint.

Developing further the approach of [111], we reformulate the Gardner deformation prob-

lem for the graded extensions of the KdV equation in terms of constructing parameter-

dependent families of new bosonic and fermionic variables. We require that the ‘nonlocali-

ties’ possess two defining properties ([59, 78]): on the one hand, they should reproduce the

classical Gardner deformation from [101] under the shrinking of the 𝑁=2 super-equation

back to the KdV equation. On the other hand, we consider the nonlocalities that encode

the parameter-dependent zero-curvature representations for the super-systems at hand. In

this reformulation, we solve Mathieu’s Open problem 2 of [99] for the 𝑁=2 supersym-

metric 𝑎=4-KdV equation. However, our approach is applicable to a much wider class of

completely integrable (super-)systems.

In the recent paper [59] Kiselev understood Gardner’s deformations in the extended

sense, namely, in terms of coverings over PDE and diagrams of coverings. Zero-curvature

representations and Gardner’s deformations can be considered as such geometric struc-
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Chapter 5. Non-local picture

tures1 that obey some extra conditions.

5.1 Differential coverings and zero-curvature repre-

sentations

Definition 4 ([12, 80]). Let ℰ be a differential equation that admits the nonempty infinite

prolongation ℰ∞. A covering (or differential covering) over the equation ℰ is another

(usually, larger) system of partial differential equations ℰ̃ endowed with the 𝑛-dimensional

Cartan distribution 𝒞 and such that there is a mapping 𝜏 : ℰ̃ → ℰ∞ for which, at each

point 𝜃 ∈ ℰ̃ the tangent map 𝜏*,𝜃 is an isomorphism of the plane 𝒞𝜃 to the Cartan plane

𝒞𝜏(𝜃) at the point 𝜏(𝜃) in ℰ∞.

The construction of a covering over ℰ means the introduction of new variables such

that their compatibility conditions lie inside the initial system ℰ∞. In practice (see [62]),

it is the rules to differentiate the new variable which are specified in a consistent way; this

implies that those new variables acquire the nature of nonlocalities if their derivatives are

local but the variables themselves are not (e.g., consider the potential v =
∫︀
𝑢 d𝑥 satisfying

v𝑥 = 𝑢 and v𝑡 = −𝑢𝑥𝑥 − 3𝑢2 for the KdV equation 𝑢𝑡 + 𝑢𝑥𝑥𝑥 + 6𝑢𝑢𝑥 = 0). Whenever the

covering is indeed realized as the fibre bundle 𝜏 : ℰ̃ → ℰ , the forgetful map 𝜏 discards the

nonlocalities.

In these terms, zero-curvature representations and Gardner’s deformations are coverings

of special kinds (see Examples 12 and 15 below). We use the geometric similarity of

the two notions and construct new Gardner’s deformations from known zero-curvature

representations (but this is not always possible2).

Example 11 (A zero-curvature representation for the KdV equation). Consider the Kor-

teweg–de Vries (KdV) equation (1.1) and its Lax representation [37, 101, 103]

ℒ𝑡 = [ℒ,𝒜],

where

ℒ = d2

d𝑥2
+ 𝑢12, 𝒜 = −4 d3

d𝑥3
− 6𝑢12

d
d𝑥
− 3𝑢12;𝑥. (5.1)

The linear auxiliary problem [128] is

𝜓𝑥𝑥 + 𝑢12𝜓 = 𝜆𝜓,

−4𝜓𝑥𝑥𝑥 − 6𝑢𝜓𝑥 − 3𝑢12;𝑥𝜓 = 𝜓𝑡,

1Bäcklund (auto)transformations between PDE appear in the same context. In [59] Kiselev argued that

the former, when regarded as the diagrams, are dual to the diagram description of Gardner’s deformations.
2For example, Gardner’s deformation (2.3)–(2.4) does not correspond to any zero-curvature represen-

tation with values in a finite-dimensional Lie algebra.
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5.1. Differential coverings and zero-curvature representations

By definition, put 𝜓0 = 𝜓 and 𝜓1 = 𝜓𝑥. We obtain

𝜓0;𝑥 = 𝜓1,

𝜓1;𝑥 = (𝜆− 𝑢12)𝜓0,

𝜓0;𝑡 = −4 d
d𝑥
((𝜆− 𝑢12)𝜓0)− 6𝑢12𝜓1 − 3𝑢12;𝑥𝜓0 = 𝑢12;𝑥𝜓0 + (−4𝜆− 2𝑢12)𝜓1,

𝜓1;𝑡 = (−4𝜆2 + 2𝑢12𝜆+ 2𝑢212 + 𝑢12;𝑥)𝜓0 + (−𝑢12;𝑥)𝜓1.

We finally rewrite this system as two matrix equations [128],(︂
𝜓0;𝑥

𝜓1;𝑥

)︂
⏟  ⏞  

𝜓𝑥

=

(︂
0 1

𝜆− 𝑢12 0

)︂
⏟  ⏞  

𝐴

(︂
𝜓0

𝜓1

)︂
⏟  ⏞  

𝜓(︂
𝜓0;𝑡

𝜓1;𝑡

)︂
⏟  ⏞  

𝜓𝑡

=

(︂
𝑢12;𝑥 −4𝜆− 2𝑢12

−4𝜆2 + 2𝑢12𝜆+ 2𝑢212 + 𝑢12;𝑥𝑥 −𝑢12;𝑥

)︂
⏟  ⏞  

𝐵

(︂
𝜓0

𝜓1

)︂
.⏟  ⏞  

𝜓

This yields an sl2(C)-valued zero-curvature representation 𝛼KdV = 𝐴 d𝑥+𝐵 d𝑡 for the KdV

equation (1.1). The representation 𝛼KdV was rediscovered in [93].

Example 12 (Zero-curvature representations as coverings). Let g := sl2(C) as above. We

introduce the standard basis 𝑒, ℎ, 𝑓 in g such that

[𝑒, ℎ] = −2𝑒, [𝑒, 𝑓 ] = ℎ, [𝑓, ℎ] = 2𝑓.

We consider, simultaneously, the matrix representation

𝜌 : sl2(C)→ {𝑀 ∈ Mat(2, 2)| tr𝑀=0}

of g and its representation 𝜚 in the space of vector fields with polynomial coefficients on

the complex line with the coordinate 𝑤:

𝜌(𝑒) =

(︂
0 1

0 0

)︂
, 𝜌(ℎ) =

(︂
1 0

0 −1

)︂
, 𝜌(𝑓) =

(︂
0 0

1 0

)︂
,

𝜚(𝑒) = 1 · 𝜕/𝜕𝑤, 𝜚(ℎ) = −2𝑤 · 𝜕/𝜕𝑤, 𝜚(𝑓) = −𝑤2 · 𝜕/𝜕𝑤.

Let us decompose the matrices 𝐴𝑖 ∈ 𝐶∞(ℰ∞) ⊗ g (which occur in the zero-curvature

representation 𝛼 =
∑︀

𝑖𝐴𝑖d𝑥
𝑖) with respect to the basis in the space 𝜌(g),

𝐴𝑖 = 𝑎(𝑖)𝑒 ⊗ 𝜌(𝑒) + 𝑎
(𝑖)
ℎ ⊗ 𝜌(ℎ) + 𝑎

(𝑖)
𝑓 ⊗ 𝜌(𝑓), (5.2)

for 𝑎
(𝑖)
𝑗 ∈ 𝐶∞(ℰ∞).
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Chapter 5. Non-local picture

To construct the covering ℰ̃ over ℰ∞ with a new fiber variable 𝑤 over ℰ∞ (the ‘nonlo-

cality’), we switch from the representation 𝜌 to 𝜚. We thus obtain the vector fields

𝑉𝐴𝑖
= 𝑎(𝑖)𝑒 ⊗ 𝜚(𝑒) + 𝑎

(𝑖)
ℎ ⊗ 𝜚(ℎ) + 𝑎

(𝑖)
𝑓 ⊗ 𝜚(𝑓) (5.2′)

such that the prolongations of the total derivatives 𝐷𝑥𝑖 to ℰ̃ are defined by the formula

�̃�𝑥𝑖 = 𝐷𝑥𝑖 − 𝑉𝐴𝑖
. (5.3)

The extended derivatives act on the nonlocal variable 𝑤 as follows,

�̃�𝑥𝑖𝑤 = d𝑤 (−𝑉𝐴𝑖
).

Remark 8. The commutativity of the prolonged total derivatives,
[︀
�̃�𝑥𝑖 , �̃�𝑥𝑗

]︀
= 0 with 𝑖 ̸= 𝑗,

is equivalent to the Maurer–Cartan equation (4.5): Indeed, we have that

0 = [�̃�𝑥𝑖 , �̃�𝑥𝑗 ] = [𝐷𝑥𝑖−𝑉𝐴𝑖
, 𝐷𝑥𝑗 −𝑉𝐴𝑗

] = [𝐷𝑥𝑖 , 𝐷𝑥𝑗 ]− [𝐷𝑥𝑖 , 𝑉𝐴𝑗
]− [𝑉𝐴𝑗

, 𝐷𝑥𝑗 ]+ [𝑉𝐴𝑖
, 𝑉𝐴𝑗

] =

= −𝑉𝐷𝑥𝑖𝐴𝑖
+ 𝑉𝐷

𝑥𝑗
𝐴𝑖

+ 𝑉[𝐴𝑖,𝐴𝑗 ] = 𝑉𝐷
𝑥𝑗
𝐴𝑖−𝐷𝑥𝑖𝐴𝑗+[𝐴𝑖,𝐴𝑗 ] ⇔ 𝐷𝑥𝑗𝐴𝑖 −𝐷𝑥𝑖𝐴𝑗 + [𝐴𝑖, 𝐴𝑗] = 0.

This motivates the choice of the minus sign in (5.3).

Example 13 (A one-dimensional covering over the KdV equation). One obtains the cov-

ering over the KdV equation from the zero-curvature representation 𝛼 (see Example 11)

by using representation (5.2′) in the space of vector fields. Applying (5.2′) to the matrices

𝐴, 𝐵 ∈ sl2(C), we construct the following vector fields with the nonlocal variable 𝑤:

𝑉𝐴 = (1− (𝜆− 𝑢12)𝑤2) · 𝜕/𝜕𝑤,
𝑉𝐵 =

[︀
(−4𝜆− 2𝑢12)− 2𝑢12𝑤 − (−4𝜆2 + 2𝑢12𝜆+ 2𝑢212 + 𝑢12;𝑥𝑥)𝑤

2
]︀
· 𝜕/𝜕𝑤.

The prolongations of the total derivatives act on 𝑤 by the rules

𝑤𝑥 = −1 + (𝜆− 𝑢12)𝑤2, (5.4a)

𝑤𝑡 = −
(︀
(−4𝜆− 2𝑢12)− 2𝑢12;𝑥𝑤 − (−4𝜆2 + 2𝑢12𝜆+ 2𝑢212 + 𝑢12;𝑥𝑥)𝑤

2
)︀
. (5.4b)

We thus obtain the one-dimensional covering over the KdV equation (1.1). In what fol-

lows we show that this covering is equivalent to the covering (5.8) which is derived from

Gardner’s deformation (2.1) of the KdV equation (1.1).

Example 14 (The projective substitution and nonlinear realizations of Lie algebras in the

spaces of vector fields [111]). Let 𝑁 be a (𝑘0 + 1|𝑘1)-dimensional supermanifold with local

coordinates

𝑣 = (𝑣1, 𝑣2, . . . , 𝑣𝑘0+1, 𝑓 1, . . . , 𝑓𝑘1) ∈ 𝑁, and put 𝜕𝑣 = (𝜕𝑣1 , 𝜕𝑣2 , . . . , 𝜕𝑣𝑘0+1 , 𝜕𝑓1 , . . . , 𝜕𝑓𝑘1 )
t.
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5.1. Differential coverings and zero-curvature representations

For any 𝑔 ∈ g ⊆ gl(𝑘0 + 1|𝑘1), its image 𝑉𝑔 under the representation of g in the space of

vector fields on 𝑁 is given by the formula

𝑉𝑔 = 𝑣𝑔𝜕𝑣.

We note that 𝑉𝑔 is linear in 𝑣𝑖 and 𝑓 𝑗. By construction, the representation preserves all

commutation relations in the initial Lie algebra g:

[𝑉𝑔, 𝑉ℎ] = [𝑣𝑔𝜕𝑣,𝑣ℎ𝜕𝑣] = 𝑣[𝑔, ℎ]𝜕𝑣 = 𝑉[𝑔,ℎ], ℎ, 𝑔 ∈ g.

Locally, at all points of 𝑁 where 𝑣1 ̸= 0 we consider the projection

𝑝 : 𝑣𝑖 ↦→ 𝑤𝑖−1 = 𝜇𝑣𝑖/𝑣1, 𝑝 : 𝑓 𝑗old ↦→ 𝑓 𝑗new = 𝜇𝑓 𝑗old/𝑣
1, 𝜇 ∈ R, (5.5)

and its differential d𝑝 : 𝜕𝑣 → 𝜕𝑤. The transformation 𝑝 yields new coordinates on the open

subset of 𝑁 where 𝑣1 ̸= 0 and determines a basis in the fibres of 𝑇𝑁 over that subset:

𝑤 = (𝜇,𝑤1, . . . , 𝑤𝑘0 , 𝑓 1, . . . , 𝑓𝑘1),

𝜕𝑤 =
(︁
− 1

𝜇

(︁ 𝑘0∑︁
𝑖=1

𝑤𝑖𝜕𝑤𝑖 +

𝑘1∑︁
𝑗=1

𝑓 𝑗𝜕𝑓𝑗
)︁
, 𝜕𝑤2 , . . . , 𝜕𝑤𝑘0 , 𝜕𝑓1 , . . . , 𝜕𝑓𝑘1

)︁t
.

Consider the vector field 𝑋𝑔 = d𝑝(𝑉𝑔). In coordinates, we have

𝑋𝑔 = 𝑤𝑔𝜕𝑤. (5.6)

We note that generally, 𝑋𝑔 is nonlinear with respect to 𝑤𝑖 and 𝑓 𝑗. The commutation

relations between vector fields of such type are inherited from the relations in Lie algebra g:

[𝑋𝑔, 𝑋𝑓 ] = [d𝑝(𝑉𝑔), d𝑝(𝑉𝑓 )] = d𝑝([𝑉𝑔, 𝑉𝑓 ]) = d𝑝(𝑉[𝑔,𝑓 ]) = 𝑋[𝑔,𝑓 ].

We now take 𝑋𝑔 for the representation 𝜚(𝑔) of elements 𝑔 of Lie superalgebra g; see [109]

for other examples of representations of Lie algebras by using vector fields.

For the sake of definition we now set 𝑛 = 2, 𝑥1 = 𝑥, 𝑥2 = 𝑡 and we take 𝑘0 = 1, 𝑘1 = 0

so that 𝑤1 = 𝑤.

Using the representation 𝜚 we construct the prolongations of total derivatives,

�̃�𝑥 = �̄�𝑥 + 𝑤𝑥
𝜕

𝜕𝑤
, �̃�𝑡 = �̄�𝑡 + 𝑤𝑡

𝜕

𝜕𝑤
,

by inspecting the way in which they act on the nonlocal variable 𝑤 along 𝑊 :

𝑤𝑥 = �̄�𝑥 d𝑤, 𝑤𝑡 = �̄�𝑡 d𝑤.
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Chapter 5. Non-local picture

We thus obtain3 a one-dimensional covering 𝜏 : ℰ̃ = 𝑊 × ℰ∞ → ℰ∞ with nonlocal vari-

able 𝑤.

Using representation (5.6) for the matrices 𝐴 and 𝐵 that determine the zero-curvature

representation 𝛼KdV = 𝐴 d𝑥 + 𝐵 d𝑡 for the KdV equation, we obtain their realizations in

terms of the vector fields:

𝑊𝐴 =
1

𝜇
(−𝜆𝑤2 + 𝜇2 + 𝑢12𝑤

2) 𝜕/𝜕𝑤,

𝑊𝐵 =
1

𝜇
(−𝑢12;𝑥𝑥𝑤2 − 2𝑢12;𝑥𝜇𝑤 + 4𝜆2𝑤2 − 4𝜆𝜇2 − 2𝜆𝑢12𝑤

2 − 2𝜇2𝑢12 − 2𝑢212𝑤
2) 𝜕/𝜕𝑤.

Therefore, the prolongations of the total derivatives act on the nonlocality 𝑤 as follows:

𝑤𝑥 = −
1

𝜇
(−𝜆𝑤2 + 𝜇2 + 𝑢12𝑤

2), (5.7a)

𝑤𝑡 = −
1

𝜇
(−𝑢12;𝑥𝑥𝑤2 − 2𝑢12;𝑥𝜇𝑤 + 4𝜆2𝑤2 − 4𝜆𝜇2 − 2𝜆𝑢12𝑤

2 − 2𝜇2𝑢12 − 2𝑢212𝑤
2). (5.7b)

The parameter 𝜇 is removable by the transformation 𝑤 → 𝜇𝑤, which rescales it to unit.

Applying this transformation to (5.7), we reproduce the covering (5.4).

Example 15 (A covering which is based on Gardner’s deformation). Consider the Gardner

deformation [101] of the KdV equation (1.1),

m𝜀 =
{︀
𝑢12 = �̃�12 − 𝜀�̃�12;𝑥 − 𝜀2�̃�212

}︀
: ℰ𝜀 → ℰ0, (2.1a)

ℰ𝜀 =
{︀
�̃�12;𝑡 = −(�̃�12;𝑥𝑥 + 3�̃�212 − 2𝜀2�̃�312)𝑥

}︀
, (2.1b)

Expressing �̃�12;𝑥 from (2.1a) and substituting it in (2.1b), we obtain the one-dimensional

covering over the KdV equation,

�̃�𝑥 =
1

𝜀
(�̃�12 − 𝑢12)− 𝜀�̃�212, (5.8a)

�̃�𝑡 =
1

𝜀
(𝑢12;𝑥𝑥 + 2𝑢212) +

1

𝜀2
𝑢12;𝑥 +

1

𝜀3
𝑢12 +

(︂
−2𝑢12;𝑥 −

2

𝜀
𝑢12 −

1

𝜀3

)︂
�̃�12 +

(︂
2𝜀𝑢12 +

1

𝜀

)︂
�̃�212,

(5.8b)

3Each zero-curvature representation with coefficients belonging to a matrix Lie algebra determines a

(linear) covering, whereas each covering with fibre 𝑊 can be regarded as a zero-curvature representation

the coefficients of which take values in the Lie algebra of vector fields on 𝑊 .

Indeed, let 𝑥1, . . ., 𝑥𝑛 be the independent variables in a given PDE and �̄�𝑥𝑖 be the corresponding

total derivative operators. Then zero-curvature representations and coverings are described by the same

equation (4.5),

[�̄�𝑥𝑖 +𝐴𝑖, �̄�𝑥𝑗 +𝐴𝑗 ] = 0, 𝑖, 𝑗 = 1, . . . , 𝑛.

In the case of zero-curvature representations, the coefficients 𝐴𝑖 and 𝐴𝑗 are functions with values in a Lie

algebra. In the case of coverings, the objects 𝐴𝑖 and 𝐴𝑗 are vertical vector fields on the covering manifold.

This correspondence between zero-curvature representations and coverings very often allows one to transfer

results on ZCRs to results on coverings and vice versa. Lemma 2 and Proposition 7 in section 5.4 illustrate

this general principle; similar results were considered in [49].
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5.2. Gauge transformations and coverings

We claim that covering (5.8) is equivalent to the covering that was obtained in [12,

p. 277] for the KdV equation. To prove this, we first put �̃�12 = −𝑣/𝜀. We have

−𝑣
𝜀
= − 1

𝜀2
𝑣 − 1

𝜀
𝑢12 −

1

𝜀
𝑣2,

in other words

𝑣𝑥 = 𝑢12 +

(︂
𝑣 +

1

2𝜀

)︂2

− 1

4𝜀2
.

Next, we put 𝑝 = 𝑣 + 1/(2𝜀), whence we obtain

𝑝𝑥 = 𝑢12 + 𝑝2 − 1

4𝜀2
, (5.9a)

𝑝𝑡 = −𝑢12;𝑥𝑥 − 2𝑢2 − 1

2𝜀2
𝑢12 +

1

4𝜀4
− 2𝑢12;𝑥𝑝− (2𝑢12 +

1

𝜀2
)𝑝2. (5.9b)

Dividing (5.4) by 𝑤2, we conclude that

𝑤𝑥 = −1 + (𝜆− 𝑢12)𝑤2,

𝑤𝑥
𝑤2

= − 1

𝑤2
− 𝑢12 + 𝜆.

On the other hand, we put 𝑝 = 1/𝑤, whence 𝑝𝑥 = −𝑤𝑥/𝑤2, and set 𝜆 = 1/(4𝜀2). This

brings (5.4) to the same notation as in formulas (5.9),

𝑝𝑥 = 𝑢12 + 𝑝2 − 𝜆,
𝑝𝑡 = −𝑢12;𝑥𝑥 − 2𝑢212 − 2𝜆𝑢12 + 4𝜆2 − 2𝑢12;𝑥𝑝− (2𝑢12 + 4𝜆)𝑝2.

The corresponding one-form of the zero-curvature representation for the KdV equation is

equal to

𝛼KdV
2 =

(︂
0 𝜆− 𝑢12
1 0

)︂
d𝑥+

(︂
−𝑢12;𝑥 −4𝜆2 + 2𝜆𝑢12 + 2𝑢212 + 𝑢12;𝑥𝑥

−4𝜆− 2𝑢12 𝑢12;𝑥

)︂
d𝑡. (5.10)

Below we show that this zero curvature representation is also equivalent to 𝛼KdV from

Example 11.

5.2 Gauge transformations and coverings

Let g be the Lie algebra of the Lie group 𝐺 (so that 𝐺 = 𝑆𝐿2(C) in the previous example).

Let us recall that for any-zero curvature representation 𝛼 of a given equation ℰ there exists

the zero-curvature representation 𝛼𝑆 such that

𝛼𝑆 = 𝑑𝑆 · 𝑆−1 + 𝑆 · 𝛼 · 𝑆−1, 𝑆 ∈ 𝐶∞(ℰ∞, 𝐺). (4.6)
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Chapter 5. Non-local picture

The zero-curvature representation 𝛼𝑆 is called gauge-equivalent to 𝛼 and 𝑆 is the gauge

transformation. Suppose 𝛼 = 𝐴𝑖 d𝑥
𝑖. The gauge transformation 𝑆 acts on the components

𝐴𝑖 of 𝛼 as follows

𝐴𝑆𝑖 = d
d𝑥𝑖

(𝑆)𝑆−1 + 𝑆𝐴𝑖𝑆
−1. (4.6′)

Example 16 (The relation between the coverings which stem from gauge equivalent zero

curvature representations). Let g = sl2(C) and𝐺 = 𝑆𝐿2(C). Suppose 𝑆 ∈ 𝐶∞(ℰ∞, 𝑆𝐿2(C)),
so that

𝑆 =

(︂
𝑠1 𝑠2
𝑠3 𝑠4

)︂
, det𝑆 = 1.

Let 𝛼 =
∑︀

𝑖𝐴𝑖d𝑥
𝑖 be a zero-curvature representation for an equation ℰ . Using decomposi-

tion (5.2) for 𝐴𝑖 ∈ 𝐶∞(ℰ∞)⊗ sl2(C), we inspect how the gauge transformation 𝑆 acts on

the components of 𝛼:

𝐴𝑆𝑖 = d
d𝑥𝑖

(𝑆)𝑆−1 + 𝑆(𝑎(𝑖)𝑒 ⊗ 𝜌(𝑒) + 𝑎
(𝑖)
ℎ ⊗ 𝜌(ℎ)𝑎

(𝑖)
𝑒 ⊗ 𝜌(𝑓))𝑆−1 =

= d
d𝑥𝑖

(𝑆)𝑆−1 + 𝑎(𝑖)𝑒 ⊗ (𝑆 · 𝜌(𝑒) · 𝑆−1) + 𝑎
(𝑖)
ℎ ⊗ (𝑆 · 𝜌(ℎ) · 𝑆−1) + 𝑎(𝑖)𝑒 ⊗ (𝑆 · 𝜌(𝑓) · 𝑆−1).

We have that

d
d𝑥𝑖

(𝑆)𝑆−1 =

(︂
𝑠1;𝑖𝑠4 − 𝑠2;𝑖𝑠3 𝑠2;𝑖𝑠1 − 𝑠1;𝑖𝑠2
𝑠3;𝑖𝑠4 − 𝑠4;𝑖𝑠3 𝑠4;𝑖𝑠1 − 𝑠3;𝑖𝑠2

)︂
=

(︂
𝑠1;𝑖𝑠4 − 𝑠2;𝑖𝑠3 𝑠2;𝑖𝑠1 − 𝑠1;𝑖𝑠2
𝑠3;𝑖𝑠4 − 𝑠4;𝑖𝑠3 −𝑠1;𝑖𝑠4 + 𝑠2;𝑖𝑠3

)︂
=

= (𝑠2;𝑖𝑠1 − 𝑠1;𝑖𝑠2)𝜌(𝑒) + (𝑠1;𝑖𝑠4 − 𝑠2;𝑖𝑠3)𝜌(ℎ) + (𝑠3;𝑖𝑠4 − 𝑠4;𝑖𝑠3)𝜌(𝑓),

𝑆 · 𝜌(𝑒) · 𝑆−1 =
(︂
−𝑠1𝑠3 𝑠21
−𝑠23 𝑠1𝑠3

)︂
= (𝑠21)𝜌(𝑒) + (−𝑠1𝑠3)𝜌(ℎ) + (−𝑠23)𝜌(𝑓),

𝑆 · 𝜌(ℎ) · 𝑆−1 =
(︂
𝑠1𝑠4 + 𝑠2𝑠3 −2𝑠1𝑠2

2𝑠3𝑠4 −𝑠1𝑠4 − 𝑠2𝑠3

)︂
= (−2𝑠1𝑠2)𝜌(𝑒) + (𝑠1𝑠4 + 𝑠2𝑠3)𝜌(ℎ) + (2𝑠3𝑠4)𝜌(𝑓),

𝑆 · 𝜌(𝑓) · 𝑆−1 =
(︂
𝑠2𝑠4 −𝑠22
𝑠24 −𝑠2𝑠4

)︂
= (−𝑠22)𝜌(𝑒) + (𝑠2𝑠4)𝜌(ℎ) + (𝑠24)𝜌(𝑓).

We finally obtain

𝐴𝑆𝑖 = (𝑠2;𝑖𝑠1 − 𝑠1;𝑖𝑠2 + 𝑠21𝑎
(𝑖)
𝑒 − 2𝑠1𝑠2𝑎

(𝑖)
ℎ − 𝑠

2
2𝑎

(𝑖)
𝑓 )⊗ 𝜌(𝑒) +

+ (𝑠1;𝑖𝑠4 − 𝑠2;𝑖𝑠3 − 𝑠1𝑠3𝑎(𝑖)𝑒 + (𝑠1𝑠4 + 𝑠2𝑠3)𝑎
(𝑖)
ℎ + 𝑠2𝑠4𝑎

(𝑖)
𝑓 )⊗ 𝜌(ℎ) +

+ (𝑠3;𝑖𝑠4 − 𝑠4;𝑖𝑠3 − 𝑠23𝑎(𝑖)𝑒 + 2𝑠3𝑠4𝑎
(𝑖)
ℎ + 𝑠24𝑎

(𝑖)
𝑓 )⊗ 𝜌(𝑓).

Passing to the vector field representation of 𝐴𝑆𝑖 by using formula (5.2′), we have

𝑉𝐴𝑆
𝑖
= (𝑠2;𝑖𝑠1 − 𝑠1;𝑖𝑠2 + 𝑠21𝑎

(𝑖)
𝑒 − 2𝑠1𝑠2𝑎

(𝑖)
ℎ − 𝑠

2
2𝑎

(𝑖)
𝑓 )⊗ 𝜚(𝑒) +

+ (𝑠1;𝑖𝑠4 − 𝑠2;𝑖𝑠3 − 𝑠1𝑠3𝑎(𝑖)𝑒 + (𝑠1𝑠4 + 𝑠2𝑠3)𝑎
(𝑖)
ℎ + 𝑠2𝑠4𝑎

(𝑖)
𝑓 )⊗ 𝜚(ℎ) +

+ (𝑠3;𝑖𝑠4 − 𝑠4;𝑖𝑠3 − 𝑠23𝑎(𝑖)𝑒 + 2𝑠3𝑠4𝑎
(𝑖)
ℎ + 𝑠24𝑎

(𝑖)
𝑓 )⊗ 𝜚(𝑓). (5.11)
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In other words, whenever we start from the covering of ℰ associated with a zero-curvature

representation 𝛼, such that the differentiation rules for the nonlocality 𝑤 are

d
d𝑥𝑖

(𝑤) = −𝑎(𝑖)𝑒 + 2𝑎
(𝑖)
ℎ 𝑤 + 𝑎

(𝑖)
𝑓 𝑤

2,

we obtain the covering which is associated with 𝛼𝑆:

d
d𝑥𝑖

(𝑤𝑆) = −(𝑠2;𝑖𝑠1 − 𝑠1;𝑖𝑠2 + 𝑠21𝑎
(𝑖)
𝑒 − 2𝑠1𝑠2𝑎

(𝑖)
ℎ − 𝑠

2
2𝑎

(𝑖)
𝑓 ) +

+ 2(𝑠1;𝑖𝑠4 − 𝑠2;𝑖𝑠3 − 𝑠1𝑠3𝑎(𝑖)𝑒 + (𝑠1𝑠4 + 𝑠2𝑠3)𝑎
(𝑖)
ℎ + 𝑠2𝑠4𝑎

(𝑖)
𝑓 )𝑤𝑆 +

+ (𝑠3;𝑖𝑠4 − 𝑠4;𝑖𝑠3 − 𝑠23𝑎(𝑖)𝑒 + 2𝑠3𝑠4𝑎
(𝑖)
ℎ + 𝑠24𝑎

(𝑖)
𝑓 )𝑤2

𝑆. (5.12)

We shall use this relation between the two coverings in the search of gauge transformations

between known zero-curvature representations for the KdV equation.

Example 17 (Gauge transformations between zero-curvature representations for the KdV

equation). Let us find the gauge transformations that bring coverings (5.4) and (5.8) to

the form (5.9).

For the transformation (5.4)→(5.9) we have

𝑝𝑥 = 𝑢12 + 𝑝2 − 𝜆 = −(𝑠2;𝑥𝑠1 − 𝑠1;𝑥𝑠2 + 𝑠21 − 𝑠22(𝜆− 𝑢12) +
− 2(𝑠1;𝑥𝑠4 − 𝑠2;𝑥𝑠3 − 𝑠1𝑠3 + 𝑠2𝑠4(𝜆− 𝑢12))𝑝−
− (𝑠3;𝑥𝑠4 − 𝑠4;𝑥𝑠3 − 𝑠23 + 𝑠24(𝜆− 𝑢12))𝑝2).

Solving this equation for 𝑠𝑖, we find a unique solution 𝑠2 = 𝑠3 = 𝑖, 𝑠1 = 𝑠4 = 0:

𝑆 =

(︂
0 𝑖

𝑖 0

)︂
, 𝑆−1 =

(︂
0 −𝑖
−𝑖 0

)︂
. (5.13)

The matrices of the zero curvature representations corresponding to the coverings (5.4)

and (5.9) are related as follows:(︂
0 𝑖

𝑖 0

)︂(︂
0 1

𝜆− 𝑢12 0

)︂(︂
0 −𝑖
−𝑖 0

)︂
=

(︂
0 𝜆− 𝑢12
1 0

)︂
.

On the other hand, for the transformation (5.8)→(5.9) we have

𝑝𝑥 = 𝑢12 + 𝑝2 − 1

4𝜀2
= −(𝑠2;𝑥𝑠1 − 𝑠1;𝑥𝑠2 − 𝑠21

𝑢12
𝜀

+ 𝑠1𝑠2
1

𝜀
− 𝑠22𝜀+

− 2(𝑠1;𝑥𝑠4 − 𝑠2;𝑥𝑠3 + 𝑠1𝑠3
𝑢12
𝜀
− (𝑠1𝑠4 + 𝑠2𝑠3)

1

2𝜀
+ 𝑠2𝑠4𝜀)𝑝−

− (𝑠3;𝑥𝑠4 − 𝑠4;𝑥𝑠3 + 𝑠23
𝑢12
𝜀
− 𝑠3𝑠4

1

𝜀
+ 𝑠24𝜀)𝑝

2).
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Solving this equation for 𝑠𝑖, we find a solution 𝑠1 = 𝑖/
√
𝜀, 𝑠2 = 𝑖/(2𝜀

√
𝜀), 𝑠3 = 0, 𝑠4 = 𝑖

√
𝜀.

Therefore,

𝑆 =

(︂
𝑖/
√
𝜀 𝑖/(2𝜀

√
𝜀)

0 −𝑖
√
𝜀

)︂
, 𝑆−1 =

(︂
−𝑖
√
𝜀 −𝑖/(2𝜀

√
𝜀)

0 𝑖/
√
𝜀

)︂
, (5.14)

The matrices of the zero-curvature representations corresponding to coverings (5.8) and (5.9)

satisfy the relation(︂
𝑖/
√
𝜀 𝑖/(2𝜀

√
𝜀)

0 −𝑖
√
𝜀

)︂(︂
0 1

4𝜀2
− 𝑢12

1 0

)︂(︂
−𝑖
√
𝜀 −𝑖/(2𝜀

√
𝜀)

0 𝑖/
√
𝜀

)︂
=

(︂
1
2𝜀

𝑢12
𝜀

−𝜀 − 1
2𝜀

)︂
.

Let us remember that in Example 11 we derived the zero-curvature representation for

the KdV equation from its Lax pair. Having done that, we also revised the transition from

this zero-curvature representation to the Gardner deformation of the KdV equation. In

what follows we extend this approach and find the generalizations of Gardner’s deforma-

tion (2.1) for Krasil’shchik–Kersten system and for graded systems, in particular, for the

𝑁=1 and 𝑁=2 supersymmetric Korteweg–de Vries equations.

Example 18 (Gardner’s deformation of Krasil’shchik–Kersten system). Let us consider

the Krasil’shchik–Kersten’s system, which is the bosonic limit of (3.5) for 𝑎=1:

𝑢12;𝑡 = − 𝑢12;𝑥𝑥𝑥 + 6𝑢12𝑢12;𝑥 − 3𝑢0𝑢0;𝑥𝑥𝑥 − 3𝑢0;𝑥𝑢0;𝑥𝑥 + 3𝑢12;𝑥𝑢
2
0 + 6𝑢12𝑢0𝑢0;𝑥, (5.15a)

𝑢0;𝑡 = − 𝑢0;𝑥𝑥𝑥 + 3𝑢20𝑢0;𝑥 + 3𝑢12𝑢0;𝑥 + 3𝑢12;𝑥𝑢0. (5.15b)

Krasil’shchik–Kersten system (5.15) admits [53] an sl3(C)-valued zero-curvature represen-

tation 𝛼KK
1 = 𝐴KK

1 d𝑥+𝐵KK
1 d𝑡 such that

𝐴KK
1 =

⎛⎝𝜂 𝑢12 − 𝑢20 + 9𝜂2 𝑢0
1 𝜂 0

0 6𝜂𝑢0 −2𝜂

⎞⎠ ,

𝐵KK
1 =

⎛⎝ 𝑏11 𝑏12 −18𝜂2𝑢0 − 3𝜂𝑢0;𝑥 − 𝑢0;𝑥𝑥 + 𝑢30 + 2𝑢0𝑢12
−36𝜂2 + 𝑢20 + 2𝑢12 −𝑏11 − 72𝜂3 − 6𝜂𝑢20 −6𝜂𝑢0 − 𝑢0;𝑥
−36𝜂2𝑢0 + 6𝜂𝑢0;𝑥 𝑏32 72𝜂3 − 6𝜂𝑢20

⎞⎠ ,

where the elements 𝑏11, 𝑏12, and 𝑏32 of the matrix 𝐵KK
1 are as follows:

𝑏11 = − 36𝜂3 + 3𝜂𝑢20 + 𝑢0;𝑥𝑢0 + 𝑢12;𝑥,

𝑏12 = − 324𝜂4 + 9𝜂2(𝑢20 − 2𝑢12)− 𝑢0;𝑥𝑥𝑢0 − 𝑢20;𝑥 − 𝑢12;𝑥𝑥 − 𝑢40 − 𝑢20𝑢12 + 2𝑢212,

𝑏32 = − 108𝜂3𝑢0 + 18𝜂2𝑢0;𝑥 + 6𝜂(−𝑢0;𝑥𝑥 + 𝑢30 + 2𝑢0𝑢12).

Let us construct the matrix 𝑆KK ∈ 𝑆𝐿3(C) →˓ 𝐶∞(ℰ∞, 𝑆𝐿3(C)) for gauge transforma-

tion (5.14). We set 𝜀 = 𝜂2 in expression for (5.14) and obtain

𝑆KK =

⎛⎝𝑖𝜂−1 𝑖1
2
𝜂−3 0

0 −𝑖𝜂 0

0 0 1

⎞⎠ .
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By applying the gauge transformation 𝑆KK to the zero-curvature representation 𝛼KK
1 , we

obtain the gauge-equivalent zero-curvature representation 𝛼KK
2 for Krasil’shchik–Kersten

system (5.15):

𝛼KK
2 = (𝛼KK

1 )𝑆
KK

= 𝐴KK
2 d𝑥+𝐵KK

2 d𝑡,

such that

𝐴KK
2 =

⎛⎝2
3
𝜂−2 𝑢20 − 𝑢12 𝑖𝜂−1𝑢0
−1 −1

3
𝜂−2 0

0 𝑖𝜂−1𝑢0 −1
3
𝜂−2

⎞⎠ ,

𝐵KK
2 =

⎛⎝ 𝑏11 𝑏12 𝑏13
−𝑢20 − 2𝑢12 + 𝜂−4 −𝑢0;𝑥𝑢0 − 𝑢12;𝑥 − 𝜂−2𝑢12 + 1

3
𝜂−6 𝑖𝜂−1𝑢0;𝑥 + 𝑖𝜂−3𝑢0

−𝑖𝜂−1𝑢0;𝑥 + 𝑖𝜂−3𝑢0 𝜂−1(−𝑖𝑢0;𝑥𝑥 + 𝑖𝑢30 + 2𝑖𝑢0𝑢12) −𝜂−2𝑢20 + 1
3
𝜂−6

⎞⎠ ,

where the elements 𝑏11, 𝑏12, and 𝑏13 of the matrix 𝐵KK
2 are these:

𝑏11 = 𝑢0;𝑥𝑢0 + 𝑢12;𝑥 + 𝜂−2(𝑢20 + 𝑢12)− 2
3
𝜂−6,

𝑏12 = 𝑢0;𝑥𝑥𝑢0 + 𝑢20;𝑥 + 𝑢12;𝑥𝑥 + 𝑢40 + 𝑢20𝑢12 − 2𝑢212 + 𝜂−2(𝑢0;𝑥𝑢0 + 𝑢12;𝑥) + 𝜂−4𝑢12,

𝑏13 = 𝜂−1(−𝑖𝑢0;𝑥𝑥 + 𝑖𝑢30 + 2𝑖𝑢0𝑢12)− 𝑖𝜂−3𝑢0;𝑥 − 𝑖𝜂−5𝑢0.

Let us recall that formula (5.6) yields the representation of matrices 𝐴KK
2 and 𝐵KK

2 in terms

of vector fields. By this argument, from the zero-curvature representation 𝛼KK
2 we obtain

the two-dimensional covering over Krasil’shchik–Kersten system (5.15); denoting the new

nonlocal variables by �̃�0 and �̃�12, we have that their derivatives are equal to

�̃�0;𝑥 = − �̃�0�̃�12 − 𝑖𝜂−1𝑢0 + 𝜂−2�̃�0, (5.16a)

�̃�12;𝑥 = − �̃�212 − 𝑢20 + 𝑢12 − 𝑖𝜂−1�̃�0𝑢0 + 𝜂−2�̃�12, (5.16b)

and

�̃�0;𝑡 = �̃�0(𝑢0;𝑥𝑢0 + 𝑢12;𝑥 − �̃�12𝑢20 − 2�̃�12𝑢12) + 𝜂−1(𝑖𝑢0;𝑥𝑥 − 𝑖𝑢0;𝑥�̃�
2
0 − 𝑖𝑢0;𝑥�̃�12 − 𝑖𝑢30 − 2𝑖𝑢0𝑢12)

+ 𝜂−2�̃�0(2𝑢
2
0 + 𝑢12) + 𝜂−3(𝑖𝑢0;𝑥 + 𝑖�̃�20𝑢0 − 𝑖�̃�12𝑢0) + 𝜂−4�̃�0�̃�12 + 𝑖𝜂−5𝑢0 − 𝜂−6�̃�0,

(5.16c)

�̃�12;𝑡 = − 𝑢0;𝑥𝑥𝑢0 − 𝑢20;𝑥 + 2𝑢0;𝑥�̃�12𝑢0 − 𝑢12;𝑥𝑥 + 2𝑢12;𝑥�̃�12 − �̃�212𝑢20 − 2�̃�212𝑢12 − 𝑢40 − 𝑢20𝑢12
+ 2𝑢212 + 𝜂−1�̃�0(𝑖𝑢0;𝑥𝑥 − 𝑖𝑢0;𝑥�̃�12 − 𝑖𝑢30 − 2𝑖𝑢0𝑢12)

+ 𝜂−2(−𝑢0;𝑥𝑢0 − 𝑢12;𝑥 + �̃�12𝑢
2
0 + 2�̃�12𝑢12)

+ 𝑖𝜂−3�̃�0�̃�12𝑢0 + 𝜂−4(�̃�212 − 𝑢12)− 𝜂−6�̃�12 (5.16d)

We note that under reduction 𝑢0 = 0 this covering retracts to Gardner’s deformation (5.8)

for KdV equation (1.1).
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Theorem 4. There is a “semi-classical” Gardner’s deformation4 for Krasil’shchik–Kersten

equation (5.15). Under reduction 𝑢0 = 0, this deformation contains classical Gardner’s

formulas (2.1). The Miura contraction from (5.18) to (5.15) is

𝑢0 = �̃�0 − 𝜀�̃�0;𝑥 + 𝜀2�̃�12�̃�0, (5.17a)

𝑢12 = �̃�12 − 𝜀(�̃�12;𝑥 + �̃�0;𝑥�̃�0) + 𝜀2(�̃�20;𝑥 + �̃�212 + �̃�12�̃�
2
0)− 2𝜀3𝑢0;𝑥�̃�12�̃�0 + 𝜀4�̃�212�̃�

2
0 (5.17b)

The extension ℰ(𝜀) of (5.15) is

�̃�0;𝑡 = 3𝜀4�̃�20�̃�12(2�̃�0;𝑥�̃�12 + �̃�12;𝑥�̃�0) + 3𝜀3�̃�0(−�̃�0;𝑥𝑥�̃�0�̃�12 − 3�̃�20;𝑥�̃�12 − �̃�0;𝑥�̃�12;𝑥�̃�0)
+ 3𝜀2(�̃�0;𝑥𝑥�̃�0;𝑥�̃�0 + �̃�30;𝑥 + 3�̃�0;𝑥�̃�

2
0�̃�12 + �̃�0;𝑥�̃�

2
12 + �̃�12;𝑥�̃�

3
0 + �̃�12;𝑥�̃�0�̃�12)

+ 3𝜀�̃�0(−�̃�0;𝑥𝑥�̃�0 − 2�̃�20;𝑥)− �̃�0;𝑥𝑥𝑥 + 3�̃�0;𝑥�̃�
2
0 + 3�̃�0;𝑥�̃�12 + 3�̃�12;𝑥�̃�0, (5.18a)

�̃�12;𝑡 =
d

d𝑥

(︁
−3𝜀4�̃�20�̃�312 + 3𝜀3�̃�0�̃�12(�̃�0;𝑥�̃�12 − �̃�12;𝑥�̃�0) + 𝜀2(3�̃�0;𝑥𝑥�̃�0�̃�12 + 3�̃�0;𝑥�̃�12;𝑥�̃�0 − 2�̃�312

− 6�̃�20�̃�
2
12) + 3𝜀(−�̃�0;𝑥𝑥�̃�0;𝑥 + �̃�0;𝑥�̃�0�̃�12 − �̃�12;𝑥�̃�20) + 3�̃�0;𝑥𝑥�̃�0 + �̃�12;𝑥𝑥 − 3�̃�20�̃�12 − 3�̃�212

)︁
.

(5.18b)

Proof. Let us express 𝑢0 and 𝑢12 from (5.16a)-(5.16b) and substitute them in (5.16c)-

(5.16d). We get

𝑢0 = 𝑖𝜂(�̃�0;𝑥 + �̃�0�̃�12)− 𝑖𝜂−1�̃�0,

𝑢12 = 𝜂2(−�̃�20;𝑥 − 2�̃�0;𝑥�̃�0�̃�12 − �̃�20�̃�212) + �̃�0;𝑥�̃�0 + �̃�12;𝑥 + �̃�20�̃�12 + �̃�212 − 𝜂−2�̃�12,
𝑢0;𝑡 = 3𝜂2(−�̃�0;𝑥𝑥�̃�0;𝑥�̃�0 − �̃�0;𝑥𝑥�̃�20�̃�12 − �̃�30;𝑥 − 3�̃�20;𝑥�̃�0�̃�12 − �̃�0;𝑥�̃�12;𝑥�̃�20 − 2�̃�0;𝑥�̃�

2
0�̃�

2
12

− �̃�12;𝑥�̃�30�̃�12)− �̃�0;𝑥𝑥𝑥 + 3�̃�0;𝑥𝑥�̃�
2
0 + 6�̃�20;𝑥�̃�0 + 9�̃�0;𝑥�̃�

2
0�̃�12 + 3�̃�0;𝑥�̃�

2
12 + 3�̃�12;𝑥�̃�

3
0

+ 3�̃�12;𝑥�̃�0�̃�12 − 3𝜂−2(�̃�0;𝑥�̃�
2
0 + �̃�0;𝑥�̃�12 + �̃�12;𝑥�̃�0),

𝑢12;𝑡 = 3𝜂2(�̃�0;𝑥𝑥𝑥�̃�0;𝑥 + �̃�0;𝑥𝑥𝑥�̃�0�̃�12 + �̃�20;𝑥𝑥 + �̃�0;𝑥𝑥�̃�0;𝑥�̃�12 + 2�̃�0;𝑥𝑥�̃�12;𝑥�̃�0 − �̃�0;𝑥𝑥�̃�0�̃�212
+ �̃�20;𝑥�̃�12;𝑥 − �̃�20;𝑥�̃�212 + �̃�0;𝑥�̃�12;𝑥𝑥�̃�0 − 2�̃�0;𝑥�̃�0�̃�

3
12 + �̃�12;𝑥𝑥�̃�

2
0�̃�12 + �̃�212;𝑥�̃�

2
0 − 3�̃�12;𝑥�̃�

2
0�̃�

2
12)

− 3�̃�0;𝑥𝑥𝑥�̃�0 − 3�̃�0;𝑥𝑥�̃�0;𝑥 + 3�̃�0;𝑥𝑥�̃�0�̃�12 + 3�̃�20;𝑥�̃�12 − 3�̃�0;𝑥�̃�12;𝑥�̃�0 + 12�̃�0;𝑥�̃�0�̃�
2
12

− �̃�12;𝑥𝑥𝑥 − 3�̃�12;𝑥𝑥�̃�
2
0 + 12�̃�12;𝑥�̃�

2
0�̃�12 + 6�̃�12;𝑥�̃�

2
12

+ 3𝜂−2(−2�̃�0;𝑥�̃�0�̃�12 − �̃�12;𝑥�̃�20 − 2�̃�12;𝑥�̃�12)

Setting now �̃�0;new = 𝑖𝜂�̃�0;old and �̃�12;new = 𝜂2�̃�12;old and denoting 𝜂 =
√
𝜀, we obtain (5.17)-

(5.18).

Theorem 5. Gardner’s deformation (5.17)-(5.18) for Krasil’shchik–Kersten system (5.15)

yields recurrence relations the between conserved densities 𝑤𝑛; the relations are defined by

4See Remark 10 on page 74.
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the formulas

𝑤0 = 𝑢12, 𝑤1 = 𝑢12;𝑥 + 𝑢0;𝑥𝑢0,

𝑤2 = 𝐷𝑥𝑤1 + 2𝐷𝑥(𝑣0𝑣1) + 𝑢20;𝑥 + 𝑢212 + 𝑢12𝑢
2
0,

𝑤3 = 𝐷𝑥𝑤2 +
2∑︁

𝑘=0

𝐷𝑥(𝑣𝑘𝑣2−𝑘) + 2𝐷𝑥(𝑣0𝑣1) + 2𝑤1𝑤0 + 𝑤1𝑣
2
0 + 2𝑤0𝑣1𝑣0 + 𝑢212𝑢

2
0,

𝑤𝑛 = 𝐷𝑥𝑤𝑛−1 +
𝑛−1∑︁
𝑘=0

𝐷𝑥(𝑣𝑘𝑣𝑛−1−𝑘) +
𝑛−2∑︁
𝑘=0

(𝐷𝑥(𝑣𝑘)𝐷𝑥(𝑣𝑛−2−𝑘) + 𝑤𝑘𝑤𝑛−2−𝑘)

+
∑︁

𝑘+𝑙+𝑗=𝑛−2

𝑤𝑘𝑣𝑙𝑣𝑗 +
∑︁

𝑘+𝑙+𝑗=𝑛−3

𝑤𝑘𝑣𝑙𝐷𝑥𝑣𝑗 +
∑︁
𝑘+𝑙+𝑗𝑖

𝑤𝑘𝑤𝑙𝑣𝑗𝑣𝑖,

where 𝑣𝑖 are given by

𝑣0 = 𝑢0, 𝑣1 = 𝑢0;𝑥, 𝑣𝑛 = 𝐷𝑥𝑣𝑛−1 +
𝑛−2∑︁
𝑘=0

𝑤𝑘𝑣𝑛−2−𝑘.

The generating function �̆�(𝑢0, 𝑢12, 𝜀) of the zero differential order component of the series

𝑤([𝑢0, 𝑢12], 𝜀) is given by the formula

�̆� =
12𝜀2(−𝑢20 + 𝑢12) + 𝑞2 − 4𝑞 + 4

6𝜀2𝑞
, (5.19)

where

𝑞 = 22/3
(︁
9𝜀2(2𝑢20 + 𝑢12) + 2

+ 3
√
3𝜀
√︁

4𝜀4(𝑢60 − 3𝑢40𝑢12 + 3𝑢20𝑢
2
12 − 𝑢312) + 𝜀2(8𝑢40 + 20𝑢20𝑢12 − 𝑢212) + 4𝑢20

)︁1/3
.

Proof. Plugging the series �̃�0 =
∑︀+∞

𝑘=0 𝜀
𝑘𝑣𝑘 and �̃�12 =

∑︀+∞
𝑘=0 𝜀

𝑘𝑤𝑘 into (5.18), we obtain the

recurrence relations between 𝑣𝑘 and 𝑤𝑘. The series coefficients 𝑤𝑘 are conserved because

�̃�12;𝑡 is in divergent form (i.e., the image of d/d𝑥). The series coefficients 𝑣𝑘 are auxiliary

quantities which are not conserved in the general case.

Consider the zero order components of (5.17). The following system of equations hold

for 𝑣(𝑢0, 𝑢12, 𝜀) and �̆�(𝑢0, 𝑢12, 𝜀):

𝑢0 = 𝑣 + 𝜀2�̆�, (5.20)

𝑢12 = �̆� + 𝜀2(𝑣2�̆� + �̆�2) + 𝜀4�̆�2𝑣2. (5.21)

From (5.20) we express 𝑣 and obtain

𝑣 =
𝑢0

1 + 𝜀2�̆�
,
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Substituting of this expression for 𝑣 in (5.21), we obtain a third order algebraic equation

in �̆�,

𝜀4�̆�3 + 2𝜀2�̆�2 + (𝜀2𝑢20 − 𝜀2𝑢12 + 1)�̆� − 𝑢12 = 0.

In agreement with the limit behaviour of its solution lim𝜀→0 �̆� = 𝑢12, we take root (5.19)

of this equation.

5.3 Zero-curvature representations of graded exten-

sions of the KdV equation

The graded extension of Maurer–Cartan’s equation (4.5) has the form

d
d𝑥𝑗
𝐴𝑖 − d

d𝑥𝑖
𝐴𝑗 + [𝐴𝑖, 𝐴𝑗] = 0, ∀𝑖, 𝑗 = 1, . . . ,𝑚 : 𝑖 ̸= 𝑗. (5.22)

Let us study in more detail the geometry of 𝑁=1 and 𝑁=2 supersymmetry-invariant

generalizations of the Korteweg–de Vries equation [84, 98].

𝑁 = 1 supersymmetric Korteweg–de Vries equation

The 𝑁 = 1 supersymmetric generalization of the KdV equation (1.1) is the sKdV equa-

tion [98]

𝜑𝑡 = −𝜑𝑥𝑥𝑥 − 3(𝜑𝒟𝜑)𝑥, 𝒟 =
𝜕

𝜕𝜃
+ 𝜃

𝑑

d𝑥
, (5.23)

where 𝜑(𝑥, 𝑡, 𝜃) = 𝜉 + 𝜃𝑢 is a complex fermionic super-field, 𝜃 is the Grassmann (or anti-

commuting) variable such that 𝜃2 = 0, the unknown 𝑢 is the bosonic field, and 𝜉 is the

fermionic field. By using the expansion 𝜑(𝑥, 𝑡, 𝜃) = 𝜉 + 𝜃𝑢 in (5.23), we obtain

𝑢𝑡 =−𝑢𝑥𝑥𝑥 − 6𝑢𝑢𝑥 + 3𝜉𝜉𝑥𝑥, (5.24a)

𝜉𝑡 =− 𝜉𝑥𝑥𝑥 − 3(𝑢𝜉)𝑥. (5.24b)

The KdV equation (1.1) is underlined in (5.24a).

Example 19 (Zero-curvature representation and Gardner’s deformation of the sKdV equa-

tion). The 𝑁=1 sKdV equation (5.24) admits the sl(2 | 1)-valued zero-curvature represen-

tation

𝛼𝑁=1 = 𝐴𝑁=1
1 d𝑥+𝐵𝑁=1

1 d𝑡,

where

𝐴𝑁=1
1 =

⎛⎝− 1
2𝜀
−𝑢+ 1

4𝜀2
𝜉

1 − 1
2𝜀

0

0 −𝜉 −1
𝜀

⎞⎠ ,
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𝐵𝑁=1
1 =

⎛⎝ 1
2
𝜀−3 − 𝑢𝑥 2𝑢2 + 𝑢𝑥𝑥 − 𝜉𝜉𝑥 + 1

2
𝜀−2𝑢− 1

4
𝜀−4 −𝜉𝑥𝑥 − 2𝜉𝑢− 1

2
𝜀−1𝜉𝑥 − 1

2
𝜀−2𝜉

−2𝑢− 𝜀−2 1
2
𝜀−3 + 𝑢𝑥 −𝜉𝑥 − 𝜉𝜀−1

−𝜉𝑥 + 𝜉𝜀−1 𝜉𝑥𝑥 + 2𝜉𝑢− 1
2
𝜀−1𝜉𝑥 +

1
2
𝜀−2𝜉 𝜀−3

⎞⎠ .

This zero-curvature can be obtained by reduction in zero-curvature representation (5.27)

which we will consider below for 𝑁=2, 𝑎 = 4-SKdV (1.2). Simultaneously, this zero-

curvature representation is a generalisation of zero-curvature representation (5.10) for

Korteweg-de Vires equation (1.1).

Let us construct the generalisation 𝑆𝑁=1 ∈ 𝑆𝐿(2 | 1) →˓ 𝐶∞(ℰ∞, 𝑆𝐿(2 | 1)) of gauge
transformation (5.14) where we had 𝑆 ∈ 𝑆𝐿2(C) ≃ 𝑆𝐿(2 | 0). Taking into account

Remark 5, we consider the ansatz 𝑆𝑁=1 = 𝑆𝑁=1
+ 𝑆𝑁=1

0 𝑆𝑁=1
− , where 𝑆𝜈 ∈ 𝐺𝜈 , 𝜈 ∈ {+, 0,−}.

Bearing in mind that 𝑆𝐿2(C) ≃ 𝑆𝐿(2 | 0) ⊂ 𝐺𝐿(2 | 0), we construct 𝑆 by using the

following scheme:

1. we obtain an element 𝑆𝑁=1
0 by the multiplication of 𝑆 from right and left by some

matrices from 𝐺𝐿(2|0);

2. we specify the matrices 𝑆𝑁=1
+ and 𝑆𝑁=1

− .

We construct the matrix 𝑆𝑁=1 as follows

𝑆𝑁=1 =

⎛⎝−1 −1
2
𝜀−1 0

0 𝜀 0

0 0 −𝜀

⎞⎠ =

=

⎛⎝1 0 0

0 1 0

0 0 1

⎞⎠
⏟  ⏞  

𝑆𝑁=1
+

⎛⎝𝑖
√
𝜀 𝑖
√
𝜀/𝜀2 0

0 𝑖
√
𝜀 0

0 0 −𝜀

⎞⎠
𝑆⏞  ⏟  ⎛⎝𝑖/

√
𝜀 𝑖/(2𝜀

√
𝜀) 0

0 −𝑖
√
𝜀 0

1 0 1

⎞⎠⎛⎝1 𝜀−1 0

0 1 0

0 0 1

⎞⎠
⏟  ⏞  

𝑆𝑁=1
0

⎛⎝1 0 0

0 1 0

0 0 1

⎞⎠
⏟  ⏞  

𝑆𝑁=1
−

.

(5.25)

By applying the gauge transformation 𝑆𝑁=1 to the zero-curvature representation 𝛼𝑁=1,

we obtain the gauge-equivalent zero-curvature representation 𝛽 for sKdV equation (5.24):

𝛽𝑁=1 = (𝛼𝑁=1)𝑆
𝑁=1

= 𝐴𝑁=1
2 d𝑥+𝐵𝑁=1

2 d𝑡, (5.26)

where

𝐴𝑁=1
2 =

⎛⎝ 0 𝜀−1𝑢 𝜀−1𝜉

−𝜀 −𝜀−1 0

0 𝜉 −𝜀−1

⎞⎠ ,

𝐵𝑁=1
2 =

⎛⎝𝑢𝑥 − 𝑢𝜀−1 1
𝜀
(−2𝑢2 − 𝑢𝑥𝑥 + 𝜉𝜉𝑥)− 1

𝜀2
𝑢𝑥 − 1

𝜀3
𝑢 1

𝜀
(−𝜉𝑥𝑥 − 2𝜉𝑢)− 1

𝜀2
𝜉𝑥 − 1

𝜀3
𝜉

2𝑢𝜀+ 𝜀−1 𝑢𝑥 + 𝑢𝜀−1 + 𝜀−3 𝜉𝑥 + 𝜉𝜀−1

−𝜉;𝑥𝜀+ 𝜉 −𝜉𝑥𝑥 − 2𝜉𝑢 𝜀−3

⎞⎠ .
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Let us recall that formula (5.6) yields the representation of the matrices 𝐴𝑁=1
2 and

𝐵𝑁=1
2 in terms of vector fields. By this argument, from the zero-curvature representation

𝛽𝑁=1 we obtain the two-dimensional covering over sKdV equation (5.24); one of the two

new nonlocal variables is bosonic (let us denote it by �̃�) and the other, 𝜉 is fermionic:

�̃�𝑥 = − �̃�2𝜀+ (�̃�− 𝑢)𝜀−1 − 𝜉𝜉,
𝜉𝑥 = − 𝜉�̃�𝜀+ (𝜉 − 𝜉)𝜀−1,

�̃�𝑡 =
1

𝜀3
(2�̃�2𝑢𝜀4 + �̃�2𝜀2 − 2�̃�𝑢𝜀2 − 2�̃�𝑢𝑥𝜀

3 − �̃�+ 2𝑢2𝜀2 + 𝑢+ 𝑢𝑥𝑥𝜀
2 + 𝑢𝑥𝜀− 𝜉�̃�𝜉𝑥𝜀4 +

+ 𝜉𝜉𝑥𝑥𝜀
3 + 𝜉𝜉�̃�𝜀3 + 2𝜉𝜉𝑢𝜀3 − 𝜉𝜉𝑥𝜀2),

𝜉𝑡 =
1

𝜀3
(−�̃�𝜉𝑥𝜀3 + 𝜉𝑥𝑥𝜀

2 + 𝜉𝑥𝜀+ 2𝜉�̃�𝑢𝜀4 + 𝜉�̃�𝜀2 − 𝜉𝑢𝜀2 − 𝜉𝑢𝑥𝜀3 − 𝜉 − 𝜉�̃�𝜀2 + 2𝜉𝑢𝜀2 + 𝜉).

We now express the local variables 𝑢 and 𝜉 from �̃�𝑥 and 𝜉𝑥 and substitute them in �̃�𝑡 and

𝜉𝑡. We thus obtain the Gardner deformation [99] of sKdV equation (5.24):

ℰ𝜀 =
{︁
�̃�𝑡 = 6�̃�2�̃�𝑥𝜀

2 − 6�̃��̃�𝑥 − �̃�𝑥𝑥𝑥 − 3𝜉�̃�𝜉𝑥𝑥𝜀
2 + 3𝜉𝜉𝑥𝑥− 3𝜉𝜉𝑥�̃�𝑥𝜀

2,

𝜉𝑡 = 3�̃�2𝜉𝑥𝜀
2 − 3�̃�𝜉𝑥 − 𝜉𝑥𝑥𝑥 + 3𝜉�̃��̃�𝑥𝜀

2 − 3𝜉�̃�𝑥

}︁
,

m𝜀 =
{︁
𝑢 = �̃�− 𝜀�̃�𝑥 + 𝜀2(𝜉𝜉𝑥𝜀

2−�̃�2), 𝜉 = 𝜉 − 𝜀𝜉𝑥 − 𝜀2𝜉�̃�
}︁
: ℰ𝜀 → ℰsKdV.

This deformation can also be obtained by using super-field formalism [99]. The original

Gardner deformation (2.1) of the KdV equation (1.1) is underlined in the above formulas.

𝑁 = 2 supersymmetric Korteweg–de Vries equation

Let us consider the four-component generalization of the KdV equation (1.1), namely, the

𝑁=2 supersymmetric Korteweg–de Vries equation (SKdV) [84]:

𝑢𝑡 = −𝑢𝑥𝑥𝑥 + 3
(︀
𝑢𝒟1𝒟2𝑢

)︀
𝑥
+
𝑎− 1

2

(︀
𝒟1𝒟2𝑢

2
)︀
𝑥
+ 3𝑎𝑢2𝑢𝑥, 𝒟𝑖 =

𝜕

𝜕𝜃𝑖
+ 𝜃𝑖 ·

d

d𝑥
, (1.2)

where

𝑢(𝑥, 𝑡; 𝜃1, 𝜃2) = 𝑢0(𝑥, 𝑡) + 𝜃1 · 𝑢1(𝑥, 𝑡) + 𝜃2 · 𝑢2(𝑥, 𝑡) + 𝜃1𝜃2 · 𝑢12(𝑥, 𝑡) (3.2)

is the complex bosonic super-field, 𝜃1, 𝜃2 are Grassmann variables such that 𝜃21 = 𝜃22 =

𝜃1𝜃2 + 𝜃2𝜃1 = 0, 𝑢0, 𝑢12 are bosonic fields, and 𝑢1, 𝑢2 are fermionic fields. Expansion (3.2)

converts (1.2) to the four-component system (3.5).

The Gardner deformation problem for the 𝑁 = 2 supersymmetric 𝑎 = 4 KdV equation

was formulated in [84]. In Chapter 3 it was shown that one can not construct such a

deformation under the assumptions that, first, the deformation is polynomial in ℰ , second,
it involves only the super-fields but not their components, and third, it contains known
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deformation (2.1) under the reduction 𝑢0 = 0, 𝑢1 = 𝑢2 = 0. Therefore, we shall find a

graded generalization of Gardner’s deformation (2.1) for the system of four equations (3.5)

treating it in components but not as a single equation (1.2) upon the super-field.

The SKdV equation (3.5) admits [28] the sl(2 | 1)-valued zero-curvature representation

𝛼𝑁=2 = 𝐴d𝑥+𝐵d𝑡 such that

𝐴 =

⎛⎝𝜂 − 𝑖𝑢0 𝜂2 − 2𝑖𝜂𝑢0 − 𝑢20 − 𝑢12 −𝑢2 − 𝑖𝑢1
1 𝜂 − 𝑖𝑢0 0

0 𝑢2 − 𝑖𝑢1 2𝜂 − 2𝑖𝑢0

⎞⎠ , (5.27a)

𝐵 =

⎛⎝𝑏11 𝑏12 𝑏13
𝑏21 𝑏22 𝑏23
𝑏31 𝑏32 𝑏33

⎞⎠ , (5.27b)

where the elements of 𝐵 are as follows:

𝑏11 = − 4𝜂3 − 2𝑖𝜂𝑢0;𝑥 − 4𝑖𝑢30 + 6𝑖𝑢0𝑢12 + 4𝑢0𝑢0;𝑥 + 𝑖𝑢0;𝑥𝑥 − 𝑢12;𝑥 + 4𝑖𝑢2𝑢1,

𝑏12 = − 4𝜂4 + 4𝑖𝜂3𝑢0 + 2𝜂2𝑢12 − 4𝑖𝜂𝑢30 + 8𝑖𝜂𝑢0𝑢12 + 2𝑖𝜂𝑢0;𝑥𝑥 − 4𝑢40 − 2𝑢20𝑢12 −
− 4𝑢0𝑢0;𝑥𝑥 + 2𝑢212 − 4𝑢20;𝑥 + 𝑢12;𝑥𝑥 − 𝑢2𝑢2;𝑥 + 4𝑖𝑢2𝑢1𝜂 − 8𝑢2𝑢1𝑢0 − 𝑢1𝑢1;𝑥,

𝑏13 = − 𝜂𝑢2;𝑥 − 𝑖𝜂𝑢1;𝑥 − 5𝑖𝑢0𝑢2;𝑥 + 5𝑢0𝑢1;𝑥 + 𝑢2;𝑥𝑥 + 𝑖𝑢1;𝑥𝑥 + 2𝑢2𝜂
2 + 2𝑖𝑢2𝜂𝑢0 −

− 8𝑢2𝑢
2
0 + 2𝑢2𝑢12 − 4𝑢2𝑢0;𝑥𝑖+ 2𝑢1𝜂

2𝑖− 2𝑢1𝜂𝑢0 − 8𝑢1𝑢
2
0𝑖+ 2𝑢1𝑢12𝑖+ 4𝑢1𝑢0;𝑥,

𝑏21 = − 4𝜂2 − 4𝑖𝜂𝑢0 + 4𝑢20 − 2𝑢12,

𝑏22 = − 4𝜂3 + 2𝑖𝜂𝑢0;𝑥 − 4𝑖𝑢30 + 6𝑖𝑢0𝑢12 − 4𝑢0𝑢0;𝑥 + 𝑖𝑢0;𝑥𝑥 + 𝑢12;𝑥 + 4𝑖𝑢2𝑢1,

𝑏23 = 𝑢2;𝑥 + 𝑖𝑢1;𝑥 − 2𝑢2𝜂 − 4𝑖𝑢2𝑢0 − 2𝑖𝑢1𝜂 + 4𝑢1𝑢0,

𝑏31 = 𝑢2;𝑥 − 𝑖𝑢1;𝑥 + 2𝑢2𝜂 + 4𝑖𝑢2𝑢0 − 2𝑖𝑢1𝜂 + 4𝑢1𝑢0,

𝑏32 = − 𝜂𝑢2;𝑥 + 𝑖𝜂𝑢1;𝑥 − 5𝑖𝑢0𝑢2;𝑥 − 5𝑢0𝑢1;𝑥 − 𝑢2;𝑥𝑥 + 𝑖𝑢1;𝑥𝑥 − 2𝑢2𝜂
2 − 2𝑖𝑢2𝜂𝑢0 +

+ 8𝑢2𝑢
2
0 − 2𝑢2𝑢12 − 4𝑖𝑢2𝑢0;𝑥 + 2𝑖𝑢1𝜂

2 − 2𝑢1𝜂𝑢0 − 8𝑖𝑢1𝑢
2
0 + 2𝑖𝑢1𝑢12 − 4𝑢1𝑢0;𝑥,

𝑏33 = − 8𝜂3 − 8𝑖𝑢30 + 12𝑖𝑢0𝑢12 + 2𝑖𝑢0;𝑥𝑥 + 8𝑖𝑢2𝑢1.

In Example 9 we prove that the parameter 𝜂 ∈ C is non-removable from 𝐴 and 𝐵 under

gauge transformation.

Remark 9. Let us recall that the vectors 𝑍, 𝐻 and 𝐸± that belong to sl(2 | 1) generate

a basis in gl(2,C) (see the respective formulas on p. 42 in Example 8 on page 42). We

notice that the vector 𝑍 commutes with any other vector from gl(2,C).

The reduction 𝑢0 = 𝑢1 = 𝑢2 = 0 converts zero-curvature representation (5.27) to the
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gl(2,C)-valued zero-curvature representation of the KdV equation (1.1),

𝐴KdV =

⎛⎝𝜂 𝜂2 − 𝑢12 0

1 𝜂 0

0 0 2𝜂

⎞⎠ ,

𝐵KdV =

⎛⎝ −4𝜂3 − 𝑢12;𝑥 −4𝜂4 + 2𝜂2𝑢12 + 2𝑢212 + 𝑢12;𝑥𝑥 0

2(−2𝜂2 − 𝑢12) −4𝜂3 + 𝑢12;𝑥 0

0 0 −8𝜂3

⎞⎠ .

Taking into account Remark 9, we obtain the sl(2,C)-valued zero-curvature representa-

tion (5.10) for the KdV equation (1.1) by omitting the summands 𝜂⊗𝑍d𝑥 and −4𝜂3⊗𝑍d𝑡
in 𝐴KdV and 𝐵KdV and by denoting 𝜂2 = 𝜆.

Proposition 6 ([65]). The 𝑁=2 supersymmetric 𝑎=4 Korteweg–de Vries equation (3.5)

admits the (1 | 1)-dimensional Z2-graded covering, which is given in formulas (5.30–5.31)

and which is such that, under the reduction 𝑢0 = 𝑢1 = 𝑢2 = 0 of (3.5) to the KdV

equation (1.1) and the consistent trivialization 𝑓 := 0 in (5.30a–5.31a), see also (5.32),

covering (5.30–5.31) reduces to the known Gardner deformation of (1.1) in the form of (5.8).

Proof. Let us extend the gauge transformation (5.14), which was determined by the element

𝑆 of the Lie group 𝑆𝐿(2,C). We let

𝑆𝑁=2 =

⎛⎝−1 −1
2
𝜀−1 0

0 𝜀 0

0 0 −𝜀

⎞⎠ . (5.28)

Acting by gauge transformation (5.28) on zero-curvature representation (5.27), we obtain

the graded zero-curvature representation that contains the “small” zero-curvature repre-

sentation which, in turn, originates from (5.8) and is gauge-equivalent to (5.10) for the

KdV equation (1.1). Specifically, we have that

𝐴 =

⎛⎝𝑖𝑢0 𝜀−1(𝑢20 + 𝑢12)− 𝑖𝜀−2𝑢0 𝜀−1(𝑢2 − 𝑖𝑢1)
−𝜀 𝑖𝑢0 − 𝜀−1 0

0 𝑢2 + 𝑖𝑢1 2𝑖𝑢0 − 𝜀−1

⎞⎠ , (5.29a)

𝐵 =

⎛⎝𝑏11 𝑏12 𝑏13
𝑏21 𝑏22 𝑏23
𝑏31 𝑏32 𝑏33

⎞⎠ , (5.29b)
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where the elements of the matrix 𝐵 are as follows,

𝑏11 = 4𝑖𝑢30 − 6𝑖𝑢0𝑢12 + 4𝑢0𝑢0;𝑥 − 𝑖𝑢0;𝑥𝑥 − 𝑢12;𝑥 − 4𝑖𝑢2𝑢1 + 𝜀−1(2𝑢20 − 𝑢12 − 𝑖𝑢0;𝑥)− 𝑖𝜀−2𝑢0,

𝑏12 = 𝜀−1(4𝑢40 + 2𝑢20𝑢12 + 4𝑢0𝑢0;𝑥𝑥 − 2𝑢212 + 4𝑢20;𝑥 − 𝑢12;𝑥𝑥 + 𝑢2𝑢2;𝑥 + 8𝑢2𝑢1𝑢0 + 𝑢1𝑢1;𝑥) +

+ 𝜀−2(2𝑖𝑢30 − 4𝑖𝑢0𝑢12 + 4𝑢0𝑢0;𝑥 − 𝑖𝑢0;𝑥𝑥 − 𝑢12;𝑥 − 2𝑖𝑢2𝑢1) + 𝜀−3(𝑢20 − 𝑢12 − 𝑖𝑢0;𝑥)−
− 𝑖𝜀−4𝑢0,

𝑏13 = 𝜀−1(−5𝑖𝑢0𝑢2;𝑥 − 5𝑢0𝑢1;𝑥 − 𝑢2;𝑥𝑥 + 𝑖𝑢1;𝑥𝑥 + 8𝑢2𝑢
2
0 − 2𝑢2𝑢12 − 4𝑖𝑢2𝑢0;𝑥 − 8𝑖𝑢1𝑢

2
0 +

+ 2𝑖𝑢1𝑢12 − 4𝑢1𝑢0;𝑥) + 𝜀−2(−𝑢2;𝑥 + 𝑖𝑢1;𝑥 − 3𝑖𝑢2𝑢0 − 3𝑢1𝑢0) + 𝜀−3(−𝑢2 + 𝑖𝑢1),

𝑏21 = 2𝜀(−2𝑢20 + 𝑢12) + 2𝑖𝑢0 + 𝜀−1,

𝑏22 = 4𝑖𝑢30 − 6𝑖𝑢0𝑢12 − 4𝑢0𝑢0;𝑥 − 𝑖𝑢0;𝑥𝑥 + 𝑢12;𝑥 − 4𝑖𝑢2𝑢1 + 𝜀−1(−2𝑢20 + 𝑢12 + 𝑖𝑢0;𝑥) +

+ 𝑖𝜀−1𝑢0 + 𝜀−3,

𝑏23 = 𝑢2;𝑥 − 𝑖𝑢1;𝑥 + 4𝑖𝑢2𝑢0 + 4𝑢1𝑢0 + 𝜀−1(𝑢2 − 𝑖𝑢1),

𝑏31 = 𝜀(−𝑢2;𝑥 − 𝑖𝑢1;𝑥 + 4𝑖𝑢2𝑢0 − 4𝑢1𝑢0) + 𝑢2 + 𝑖𝑢1,

𝑏32 = 5𝑖𝑢0𝑢2;𝑥 − 5𝑢0𝑢1;𝑥 − 𝑢2;𝑥𝑥 − 𝑖𝑢1;𝑥𝑥 + 8𝑢2𝑢
2
0 − 2𝑢2𝑢12 + 4𝑖𝑢2𝑢0;𝑥 + 8𝑖𝑢1𝑢

2
0 − 2𝑖𝑢1𝑢12 −

− 4𝑢1𝑢0;𝑥 + 𝜀−1𝑢0(𝑖𝑢2 − 𝑢1),
𝑏33 = 2(4𝑖𝑢30 − 6𝑖𝑢0𝑢12 − 𝑖𝑢0;𝑥𝑥 − 4𝑖𝑢2𝑢1) + 𝜀−3.

The projective substitution (5.5) yields the two-dimensional covering over the 𝑁=2,

𝑎=4 SKdV equation. Under the reduction 𝑢0 = 𝑢1 = 𝑢2 = 0 the covering contains (5.8),

which is equivalent to Gardner’s deformation (2.1) of the KdV equation (1.1). The 𝑥-

components of the derivation rules for the nonlocalites 𝑤 and 𝑓 are

𝑤𝑥 = −𝜀𝑤2 + 𝜀−1(𝑤 − 𝑢12)− 𝑓𝑢2 − 𝑖𝑓𝑢1 − 𝜀−1𝑢20 − 𝜀−2𝑖𝑢0, (5.30a)

𝑓𝑥 = − 𝜀𝑤𝑓 − 𝑖𝑢0𝑓 + 𝜀−1(𝑓 − 𝑢2 + 𝑖𝑢1); (5.30b)

here and in what follows we underline covering (5.8) that encodes the “small” Gardner

deformation for the KdV equation. The 𝑡-components of the “large” covering over the

𝑁=2, 𝑎=4 SKdV are

𝑤𝑡 = 𝜀(−4𝑤2𝑢20 + 2𝑤2𝑢12 − 𝑓𝑤𝑢2;𝑥 − 𝑖𝑓𝑤𝑢1;𝑥 + 4𝑖𝑓𝑢2𝑤𝑢0 − 4𝑓𝑢1𝑤𝑢0) + 2𝑖𝑤2𝑢0 +

+ 8𝑤𝑢0𝑢0;𝑥 − 2𝑤𝑢12;𝑥 − 5𝑖𝑓𝑢0𝑢2;𝑥 + 5𝑓𝑢0𝑢1;𝑥 + 𝑓𝑢2;𝑥𝑥 + 𝑖𝑓𝑢1;𝑥𝑥 + 𝑓𝑢2𝑤 − 8𝑓𝑢2𝑢
2
0 +

+ 2𝑓𝑢2𝑢12 − 4𝑖𝑓𝑢2𝑢0;𝑥 + 𝑖𝑓𝑢1𝑤 − 8𝑖𝑓𝑢1𝑢
2
0 + 2𝑖𝑓𝑢1𝑢12 + 4𝑓𝑢1𝑢0;𝑥 + 𝜀−1(𝑤2 + 4𝑤𝑢20 −

− 2𝑤𝑢12 − 2𝑖𝑤𝑢0;𝑥 − 4𝑢40 − 2𝑢20𝑢12 − 4𝑢0𝑢0;𝑥𝑥 + 2𝑢212 − 4𝑢20;𝑥 + 𝑢12;𝑥𝑥 − 𝑖𝑓𝑢2𝑢0 +

+ 𝑓𝑢1𝑢0 − 𝑢2𝑢2;𝑥 − 8𝑢2𝑢1𝑢0 − 𝑢1𝑢1;𝑥) + 𝜀−2(−2𝑖𝑤𝑢0 − 2𝑖𝑢30 + 4𝑖𝑢0𝑢12 − 4𝑢0𝑢0;𝑥 +

+ 𝑖𝑢0;𝑥𝑥 + 𝑢12;𝑥 + 2𝑖𝑢2𝑢1) + 𝜀−3(− 𝑤 − 𝑢20 + 𝑢12 + 𝑖𝑢0;𝑥) + 𝜀−4𝑖𝑢0, (5.31a)
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𝑓𝑡 = 2𝜀𝑤(−2𝑓𝑢20 + 𝑓𝑢12) + (−𝑤𝑢2;𝑥 + 𝑖𝑤𝑢1;𝑥 + 2𝑖𝑓𝑤𝑢0 − 4𝑖𝑓𝑢30 + 6𝑖𝑓𝑢0𝑢12 + 4𝑓𝑢0𝑢0;𝑥 +

+ 𝑖𝑓𝑢0;𝑥𝑥 − 𝑓𝑢12;𝑥 + 4𝑖𝑓𝑢2𝑢1 − 4𝑖𝑢2𝑤𝑢0 − 4𝑢1𝑤𝑢0) + 𝜀−1(5𝑖𝑢0𝑢2;𝑥 + 5𝑢0𝑢1;𝑥 + 𝑢2;𝑥𝑥 −
− 𝑖𝑢1;𝑥𝑥 + 𝑓𝑤 + 2𝑓𝑢20 − 𝑓𝑢12 − 𝑖𝑓𝑢0;𝑥 − 𝑢2𝑤 − 8𝑢2𝑢

2
0 + 2𝑢2𝑢12 + 4𝑖𝑢2𝑢0;𝑥 + 𝑖𝑢1𝑤 +

+ 8𝑖𝑢1𝑢
2
0 − 2𝑖𝑢1𝑢12 + 4𝑢1𝑢0;𝑥) + 𝜀−2(𝑢2;𝑥 − 𝑖𝑢1;𝑥 − 𝑖𝑓𝑢0 + 3𝑖𝑢2𝑢0 + 3𝑢1𝑢0) +

+ 𝜀−3(−𝑓 + 𝑢2 − 𝑖𝑢1). (5.31b)

It is noteworthy that the reduction 𝑢0 = 𝑢1 = 𝑢2 = 0 in (3.5) eliminates the presence of

the fermionic variables 𝑓 in (5.30a) and (5.31a) so that there remains only (5.8) in the

bosonic sector:

𝑤𝑥 = − 𝜀𝑤2 + 𝜀−1(𝑤 − 𝑢12), (5.32a)

𝑤𝑡 = 2𝜀𝑤2𝑢12 − 2𝑤𝑢12;𝑥 + 𝜀−1(𝑤2 − 2𝑤𝑢12 + 2𝑢212 + 𝑢12;𝑥𝑥), (5.32b)

𝑓𝑥 = − 𝜀𝑤𝑓 + 𝜀−1𝑓, (5.32c)

𝑓𝑡 = 2𝜀𝑤𝑓𝑢12 − 𝑓𝑢12;𝑥 + 𝜀−1𝑓(𝑢12 − 𝑤)− 𝜀−3𝑓. (5.32d)

This proves our claim.

In contrast with Gardner’s deformation of the 𝑁=1 sKdV equation (see Example 19 on

p. 64), covering (5.30–5.31), which we obtain for 𝑁=2 supersymmetric 𝑎=2 KdV equation,

can not be expressed in terms of the super-field. The reduction 𝑢0 = 0, 𝑢1 = 0 (and

the change of notation 𝑢2 → 𝜉, 𝑢12 → 𝑢) maps this covering over the 𝑁=2, 𝑎=4 SKdV

equation to the covering which was constructed in Example 19 for the𝑁=1 supersymmetric

Korteweg–de Vries equation (5.23).

Theorem 6. There is a “semi-classical” Gardner’s deformation5 for the 𝑁=2, 𝑎 = 4-SKdV

equation (e.g., in component form (3.5)). Under reduction 𝑢0 = 𝑢1 = 𝑢2 and trivialisation

𝑓 := 0, this deformation contains classical Gardner’s formulas (2.1). The Miura contraction

taking solutions of (5.34) to solutions of (3.5) is

𝑢12 = 𝜀−1𝑖𝑢0 + 𝑤 − 𝑢20 + 𝜀(−𝑤𝑥 − 2𝑖𝑓𝑢1) + 𝜀2(−𝑤2 + 𝑓𝑓𝑥), (5.33a)

𝑢2 = − 𝑓 − 𝑖𝑢1 + 𝜀(𝑓𝑥 − 𝑖𝑓𝑢0) + 𝜀2𝑤𝑓. (5.33b)

The extension ℰ(𝜀) of (3.5) is

𝑤𝑡 =
d

d𝑥

(︁
−2𝜀−2𝑢20 + 3𝜀−1(−2𝑢0𝑢0;𝑥 − 𝑖𝑓𝑢1)− 3𝑤2 + 6𝑢20𝑤 − 𝑤𝑥𝑥 + 3𝑖𝑢1𝑓𝑥

+ 3𝑓𝑓𝑥 + 9𝑢1𝑢0𝑓 + 3𝜀𝑖(𝑓𝑤𝑢1 − 𝑢0𝑓𝑓𝑥) + 3𝜀2(𝑤2 − 𝑤𝑓𝑓𝑥)
)︁
, (5.34a)

𝑓𝑡 = − 3𝑖𝜀−1(𝑢0𝑓𝑥 + 𝑓𝑢0;𝑥)

− 3𝑤𝑓𝑥 + 15𝑢20𝑓𝑥 + 6𝑖𝑢0𝑓0;𝑥𝑥 − 𝑓0;𝑥𝑥𝑥 + 6𝑖𝑓𝑥𝑢0;𝑥 + 15𝑓𝑢0𝑢0;𝑥 − 3𝑓𝑤𝑥

+ 3𝜀(𝑖𝑓𝑤𝑢0;𝑥 + 3𝑖𝑓𝑢0𝑤𝑥 + 2𝑖𝑓𝑢1𝑓𝑥) + 3𝜀2(𝑤2𝑓𝑥 + 𝑓𝑤𝑤𝑥). (5.34b)
5See Remark 10 on page 74.
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Proof. This Gardner’s deformation is given by covering (5.30)-(5.31). Formulas (5.33) are

obtained by expressing 𝑢12 and 𝑢2 from (5.30). Formulas (5.34) are obtained by plug-

ging (5.33) in (5.31).

Theorem 7. ∙ Gardner’s deformation (5.33)-(5.34) for the 𝑁=2, 𝑎=4-SKdV equation

yields recurrence relations between the conserved densities 𝑤𝑖; relations are defined

by the formulas

𝑤−1 = − 𝑖𝑢0, 𝑤0 = 𝑢12 − 𝑖𝑢0;𝑥,

𝑤1 = − 2𝑖𝑢0𝑤0 +𝐷𝑥𝑤0 + 2𝑖𝑓0𝑢1,

𝑤𝑛 = − 2𝑖𝑢0𝑤𝑛−1 +𝐷𝑥𝑤𝑛−1 + 2𝑖𝑓𝑛−1𝑢1 +
𝑛−2∑︁
𝑘=0

(𝑤𝑘𝑤𝑛−2−𝑘 − 𝑓𝑘𝐷𝑥𝑓𝑛−2−𝑘),

where the auxiliary quantities 𝑓𝑖 are given by

𝑓0 = − 𝑢2 − 𝑖𝑢1,

𝑓1 = 𝐷𝑥𝑓0 − 2𝑖𝑢0𝑓0,

𝑓𝑛 = 𝐷𝑥𝑓𝑛−1 − 2𝑖𝑢0𝑓𝑛−1 +
𝑛−2∑︁
𝑘=0

𝑤𝑘𝑓𝑛−2−𝑘.

∙ The conserved densities 𝑤𝑖 are non-trivial for all integer 𝑘 > −1.

∙ The generating function �̆�(𝑢0, 𝑢1, 𝑢2, 𝑢12, 𝜀) of the zero order component of the series

𝑤([𝑢0, 𝑢1, 𝑢2, 𝑢12], 𝜀) with differential-polynomial coefficients is given by the formula

�̆� =
1

6𝑞1/3
(︀
−16𝑢20 − 12𝑢12 + 8𝜀−1𝑖𝑢0(𝑞

1/3 + 2) + 𝜀−2(𝑞2/3 + 4𝑞1/3 + 4)
)︀
, (5.35)

where

𝑞 = 8𝜀3𝑖(8𝑢30 + 9𝑢0𝑢12 − 27𝑢1𝑢2)− 48𝜀𝑖𝑢0 − 8

+12𝜀2
[︁
8𝑢20+3𝑢12

(︁
24𝜀−1𝑖𝑢1𝑢23(−48𝑢0𝑢1𝑢2−𝑢212)+12𝜀𝑖(−24𝑢20𝑢1𝑢2−𝑢0𝑢212−9𝑢1𝑢12𝑢2)

+ 12𝜀2(16𝑢30𝑢1𝑢2 + 𝑢20𝑢
2
12 + 18𝑢0𝑢1𝑢12𝑢2 + 𝑢312)

)︁1
2
]︁
.

Proof. Let us substitute 𝑤 = �̄� − 𝑖𝜀𝑢0 into (5.33) (i.e., we put 𝑤−1 = −𝑖𝑢0 in expansion

𝑤 =
∑︀+∞

𝑘=−1 𝜀
𝑘𝑤𝑘). We have

𝑢12 = �̄� + 𝑖𝑢0;𝑥 + 𝜀 (−�̄�𝑥 − 2𝑖𝑓𝑢1 + 2𝑖𝑢0�̄�) + 𝜀2
(︀
−�̄�2 + 𝑓𝑓𝑥

)︀
, (5.36a)

𝑢2 = − 𝑓 − 𝑖𝑢1 + 𝜀(𝑓𝑥 − 2𝑖𝑓𝑢0) + 𝜀2�̄�𝑓. (5.36b)
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Now we expand the fields �̄�(𝜀) =
∑︀∞

𝑘=0 𝜀
𝑘𝑤𝑘 and 𝑓(𝜀) =

∑︀∞
𝑘=0 𝜀

𝑘𝑓𝑘 , and plug the formal

power series for �̄� and 𝑓 in previous formulas. Hence, starting from 𝑤0 = 𝑢12 − 𝑖𝑢0;𝑥 and

𝑓0 = −𝑢2 − 𝑖𝑢1, we obtain the recurrence relations between conserved densities 𝑤𝑘 and

auxiliary quantities 𝑓𝑘:

𝑤0 = 𝑢12 − 𝑖𝑢0;𝑥,

𝑓0 = − 𝑢2 − 𝑖𝑢1,

𝑤1 = − 2𝑖𝑢0𝑤0 +𝐷𝑥𝑤0 + 2𝑖𝑓0𝑢1,

𝑓1 = 𝐷𝑥𝑓0 − 2𝑖𝑢0𝑓0,

and also

𝑤𝑛 = − 2𝑖𝑢0𝑤𝑛−1 +𝐷𝑥𝑤𝑛−1 + 2𝑖𝑓𝑛−1𝑢1 +
𝑛−2∑︁
𝑘=0

(𝑤𝑘𝑤𝑛−2−𝑘 − 𝑓𝑘𝐷𝑥𝑓𝑛−2−𝑘),

𝑓𝑛 = 𝐷𝑥𝑓𝑛−1 − 2𝑖𝑢0𝑓𝑛−1 +
𝑛−2∑︁
𝑘=0

𝑤𝑘𝑓𝑛−2−𝑘.

We note that 𝑤𝑡 ∈ im d/d𝑥 and 𝑓𝑡 /∈ im d/d𝑥. This means that only the densities 𝑤𝑘
are conserved and 𝑓𝑘 are just auxiliary quantities (which are not conserved in general).

Now let us prove that all 𝑤𝑘 are non-trivial (i.e., not contained in image of d/d𝑥).

Consider the zero-order component �̆�
(0,12)
𝑘 (𝑢0, 𝑢12) of conserved densities 𝑤𝑘([𝑢0, 𝑢1, 𝑢2, 𝑢12])

such that �̆�
(0,12)
𝑘 (𝑢0, 𝑢12) depends only on 𝑢0 and 𝑢12. We have that

�̆�
(0,12)
0 = 𝑢12,

�̆�
(0,12)
1 = − 2𝑖𝑢0𝑢12,

�̆�(0,12)
𝑛 = − 2𝑖𝑢0�̆�

(0,12)
𝑛−1 +

𝑛−2∑︁
𝑘=0

�̆�
(0,12)
𝑘 �̆�

(0,12)
𝑛−2−𝑘.

It is readily seen that quantities �̆�
(0,12)
𝑛 are in a form of �̆�

(0,12)
𝑛 = 𝑢12 · 𝑔𝑘, where some

functions 𝑔𝑘 ∈ 𝐶∞(ℰ∞) depend only on 𝑢0 and 𝑢12. Let us consider first term of quantities

�̆�
(0,12)
𝑛 which are linear in 𝑢12. Only the term −2𝑖𝑢0�̆�(0,12)

𝑛−1 in �̆�
(0,12)
𝑛 is linear in 𝑢12 because

the term �̆�
(0,12)
𝑘 �̆�

(0,12)
𝑛−2−𝑘 is quadratic in 𝑢12. We obtain that �̆�

(0,12)
𝑛 = (−2𝑖𝑢0)𝑛𝑢12+𝑢212·(. . . ).

This implies that 𝑤𝑛 = (−2𝑖𝑢0)𝑛𝑢12 + . . . and 𝑤𝑛 /∈ im d/d𝑥 because (−2𝑖𝑢0)𝑛𝑢12 /∈
im d/d𝑥. This proves that 𝑤𝑛 is non-trivial for all 𝑘 > −1.

Finally, let us obtain the generating function for the zero differential order component

�̆�(𝑢0, 𝑢1, 𝑢2, 𝑢12, 𝜀) of the series 𝑤([𝑢0, 𝑢1, 𝑢2, 𝑢12], 𝜀). For zero-order terms in (5.36) we have

𝑢12 = �̆� + 𝜀(−2𝑖𝑓𝑢1 + 2𝑖𝑢0�̆�)− 𝜀2�̆�2, (5.37)

𝑢2 = − 𝑓 − 𝑖𝑢1 − 2𝜀𝑖𝑓𝑢0 + 𝜀2�̆�𝑓 . (5.38)
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Solving equation (5.38) with respect to 𝑓 we obtain

𝑓 = − 𝑢2 + 𝑖𝑢1
1 + 2𝜀𝑖𝑢0 − 𝜀2�̆�

. (5.39)

Substituting (5.39) for 𝑓 in (5.37), we get

−𝜀4�̆�3 + 2𝜀2(2𝑖𝜀𝑢0 + 1)�̆�2 + (𝜀2(4𝑢20 − 𝑢12)− 4𝑖𝜀𝑢0 − 1)�̆� + 𝑢12 + 2𝑖𝜀(𝑢0𝑢12 − 𝑢1𝑢2) = 0.

In agreement with lim𝜀→0 �̆� = 𝑢12, we pick the root (5.35) for this third-order algebraic

equation.

We finally remark that the reduction 𝑢0 = 0, 𝑢1 = 0 (and the change of notation 𝑢2 → 𝜉,

𝑢12 → 𝑢) maps Gardner’s deformation (5.33)-(5.34) for the 𝑁=2, 𝑎=4 SKdV equation to

the Gardner’s deformation for 𝑁=1 supersymmetric Korteweg–de Vries equation (5.23)

(see Example 19 on p. 64).

Overall comment

By now the Gardner deformation problem for the 𝑁=2 supersymmetric 𝑎=4 Korteweg–

de Vries equation ([99]) is solved. In this section we have found the solution which is an

alternative to our previous result in Chapter 3. Namely, we introduced the nonlocal bosonic

and fermionic variables in such a way that the rules to differentiate them are consistent

by virtue of the super-equation at hand and second, the entire system retracts to the

standard KdV equation and the classical Gardner deformation for it ([101]) under setting

to zero the fermionic nonlocal variable and the first three components of the 𝑁=2 superfield

in (1.2). At the same time, the structure under study is equivalent to the sl(2 | 1)-valued
zero-curvature representation for this super-equation; the zero-curvature representation

contains the non-removable spectral parameter, which manifests the integrability.

Our second solution of P. Mathieu’s Open problem 2 (see [99]) relies on the interpreta-

tion of both Gardner’s deformations and zero-curvature representations in similar terms,

as a specific type of nonlocal structures over the equation of motion [62]. However, we

emphasize that generally there is no one-to-one correspondence between the two construc-

tions, so that the interpretation of deformations in the Lie-algebraic language is not always

possible. Because this correlation between the two approaches to integrability was not re-

vealed in the canonical formulation of the deformation problem [99], there appeared some

attempts to solve it within the classical scheme but the progress was partial [4, 84]. Still,

the use of zero-curvature representations in this context could have given the sought-for

deformation long ago.

Let us notice also that projective substitution (5.5) correlates the super-dimension of the

Lie algebra in a zero-curvature representation for a differential equation with the numbers

73



Chapter 5. Non-local picture

of bosonic and fermionic nonlocalities over the same system: a subalgebra of gl(𝑝 | 𝑞)
yields at most 𝑝 − 1 bosonic and 𝑞 fermionic variables. This implies that, for a covering

over the 𝑁=2 supersymmetric KdV equation (1.2) to extend Gardner’s deformation (2.1)

in its classical sense m𝜀 : ℰ𝜀 → ℰ (see [59, 84, 101]), the extension ℰ𝜀 must be the system

of evolution equations upon two bosonic and two fermionic fields. Therefore, one may

have to use the sl(3 | 2)-valued zero-curvature representations. This outlines the working

approach to a yet another method of solving the Gardner deformation problem for the 𝑁=2

supersymmetric Korteweg–de Vries systems (1.2), which we leave as a new open problem.

Remark 10. In Theorem 4 on p. 62 we obtained a deformation for Krasil’shchik–Kersten

system with one of the extended equations presented in non-divergent form (which is

different from the classical definition of Gardner’s deformation). In Theorem (6) on p. 70

we have made another deviation from the classical construction of Gardner’s deformations,

namely, the number of extended equations is not equal to the number of original equations.

However, both of these deformations yield recurrence relations between conserved densities,

whence one could call them “semi-classical” Gardner’s deformations.

5.4 Families of coverings and the Frölicher–Nijenhuis

bracket

Consider a (𝑘0|𝑘1)-dimensional covering 𝜏 : ℰ̃ = 𝑊 × ℰ∞ → ℰ∞ with even nonlocal co-

ordinates 𝑤1, . . . , 𝑤𝑘0 and odd nonlocal coordinates 𝑓 1, . . . , 𝑓𝑘1 on a (𝑘0|𝑘1)-dimensional

auxiliary supermanifold 𝑊 . The prolongations �̃�𝑥𝑖 of the total derivatives �̄�𝑥𝑖 to the

covering equation ℰ̃ are given by the formulas [12, 78]

�̃�𝑥𝑖 = �̄�𝑥𝑖 + 𝑤𝑝
𝑥𝑖

𝜕

𝜕𝑤𝑝
+ 𝑓 𝑞

𝑥𝑖
𝜕

𝜕𝑓 𝑞
, 1 6 𝑖 6 𝑛.

These total derivatives �̃�𝑥𝑖 determine the Cartan distribution 𝒞(ℰ̃) on the covering equa-

tion ℰ̃ . In turn, the Cartan distribution 𝒞(ℰ̃) yields the connection 𝒞ℰ̃ : D(𝑀)→ D(ℰ̃); the
corresponding connection form 𝑈ℰ̃ ∈ D(Λ1(ℰ̃))) is the structural element of the covering 𝜏 .

Expressing 𝑈ℰ̃ in coordinates, we obtain

𝑈ℰ̃ = d̄𝒞(𝑢
𝑘
𝜎0̄
)
𝜕

𝜕𝑢𝑘𝜎0̄
+ d̄𝒞(𝜉

𝑎
𝜎1̄
)
𝜕

𝜕𝜉𝑎𝜎1̄
+ (d𝑤𝑝 − 𝑤𝑝

𝑥𝑖
d𝑥𝑖)

𝜕

𝜕𝑤𝑝
+ (d𝑓 𝑞 − 𝑓 𝑞

𝑥𝑖
d𝑥𝑖)

𝜕

𝜕𝑓 𝑞
.

Next, let us recall that the Frölicher–Nijenhuis bracket [·, ·]FN on D(Λ*(ℰ̃)) is defined by

the formula [78]

[Ω,Θ]FN(𝑔) = LΩ(Θ(𝑔))− (−1)𝑟𝑠+p(Ω)p(Θ) LΘ(Ω(𝑔)),
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where Ω ∈ D(Λ𝑟(ℰ̃)), Θ ∈ D(Λ𝑠(ℰ̃)), and 𝑔 ∈ 𝐶∞(ℰ̃); here LΩ = iΩ ∘ d + d ∘ iΩ is the Lie

derivative.

Let 𝜏𝜆 : ℰ̃𝜆 = 𝑊𝜆 ×ℰ∞ → ℰ∞ be a smooth family of coverings over ℰ∞ depending on a

parameter 𝜆 ∈ C and 𝑈𝜆 be the corresponding characteristic element of 𝜏𝜆. Following [50],

we assume that the distributions 𝒞(ℰ̃𝜆) are diffeomorphic to each other at different values

of 𝜆 under a smooth family of diffeomorphims of the manifolds ℰ̃𝜆. The evolution of 𝑈𝜆
with respect to 𝜆 is described by the equation [49, 50]

d

d𝜆
𝑈𝜆 = [𝑋,𝑈𝜆]

FN, (5.40)

where 𝑋 ∈ D(ℰ̃) is some vector field on ℰ̃𝜆.

Example 20. Let us consider the𝑁=2, 𝑎=4 SKdV equation (3.5) and a family of coverings

over it derived from the zero-curvature representation which we addressed in Example 9.

We now solve equation (5.40) in three steps.

We begin with the covering derived from the Gardner deformation [101],

𝑤𝑥 =
1
𝜀
(𝑤 − 𝑢12)− 𝜀𝑤2, (5.8a)

𝑤𝑡 =
1
𝜀
(𝑢12;𝑥𝑥 + 2𝑢212) +

1
𝜀2
𝑢12;𝑥 +

1
𝜀3
𝑢12 +

(︀
−2𝑢12;𝑥 − 2

𝜀
𝑢12 − 1

𝜀3

)︀
𝑤 +

(︀
2𝜀𝑢12 +

1
𝜀

)︀
𝑤2,

(5.8b)

of the Korteweg–de Vries equation

𝑢12;𝑡 = −𝑢12;𝑥𝑥𝑥 − 6𝑢12𝑢12;𝑥. (1.1)

The solution of equation (5.40) for Gardner’s deformation (5.45) of KdV equation (1.1) is

𝑋1 = 𝜀−2(−𝑥 𝜕/𝜕𝑥− 3𝑡 𝜕/𝜕𝑡+ 2𝑢12 𝜕/𝜕𝑢12 + . . .+ 2𝑤 𝜕/𝜕𝑤),

𝑋2 = −2𝜀(6𝑡 𝜕/𝜕𝑥+ 𝜕/𝜕𝑢12 + . . . )− 𝜕/𝜕𝑤.

We recall from [114] that Sasaki used the scaling symmetry (encoded by the local part of the

vector field 𝑋1, i.e., without 2𝜀
−2𝑤 𝜕/𝜕𝑤) for eliminating the parameter 𝜀 (see Section 5.5;

we refer to diagram (5.50) on p. 82 in particular).

Second, let us consider the Kaup–Boussinesq equation [18, 54],

𝑢0;𝑠 = (−𝑢12 + 2𝑢20)𝑥, 𝑢12;𝑠 = (𝑢0;𝑥𝑥 + 4𝑢0𝑢12)𝑥,

and take its higher symmetry

𝑢0;𝑡 = −𝑢0;𝑥𝑥𝑥 +
(︀
4𝑢30 − 6𝑢0𝑢12

)︀
𝑥
, (5.42a)

𝑢12;𝑡 = −𝑢12;𝑥𝑥𝑥 − 6𝑢12𝑢12;𝑥 + 12𝑢0;𝑥𝑢0;𝑥𝑥 + 6𝑢0𝑢0;𝑥𝑥𝑥 + 12
(︀
𝑢20𝑢12

)︀
𝑥
. (5.42b)
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We recall that system (5.42) is the bosonic limit of (3.5) with 𝑎 = 4 under setting 𝑢1 =

𝑢2 = 0.

A family of coverings over equation (5.42) is determined by the formulas6

𝑤𝑥 = −𝜀𝑤2 + 𝜀−1(𝑤 − 𝑢12 − 𝑢20) + 𝑖𝜀−2𝑢0,

𝑤𝑡 = 2𝜀𝑤2(−2𝑢20 + 𝑢12) + 2𝑤(−𝑖𝑤𝑢0 + 4𝑢0𝑢0;𝑥−𝑢12;𝑥) + 𝜀−1(𝑤2 − 2𝑤𝑢12 + 2𝑢212

+𝑢12;𝑥𝑥 + 2𝑖𝑤𝑢0;𝑥 − 4𝑢40 − 2𝑢20𝑢12 − 4𝑢0𝑢0;𝑥𝑥 + 4𝑤𝑢20 − 4𝑢20;𝑥) + 𝜀−2(2𝑖𝑤𝑢0

+ 2𝑖𝑢30 − 4𝑖𝑢0𝑢12 − 4𝑢0𝑢0;𝑥 − 𝑖𝑢0;𝑥𝑥 + 𝑢12;𝑥) + 𝜀−3(𝑢12 − 𝑤 − 𝑢20 − 𝑖𝑢0;𝑥)− 𝑖𝜀−4𝑢0.

At every 𝜀, such coverings are obtained by the standard change of Lie algebra’s realization

in a zero-curvature representation for (5.42); in turn, that representation can be derived

by using the reduction 𝑢1 = 𝑢2 = 0 in the zero-curvature representation for the 𝑁=2,

𝑎=4 SKdV equation (3.5) (see [28] and Example 9). Remarkably, this zero-curvature

representation for (5.42) was re-discovered in [14] not in the context of super-system (3.5).

For this family of coverings over system (5.42), the solution of equation (5.40) is given

by the vector field

𝑋 = 𝜀−1(−𝑥 𝜕/𝜕𝑥− 3𝑡 𝜕/𝜕𝑡+ 𝑢0 𝜕/𝜕𝑢0 + 2𝑢12 𝜕/𝜕𝑢12 + . . .+ 2𝑤 𝜕/𝜕𝑤)

We note that, the same as it is in the case of KdV equation (1.1), we obtain the vector

field corresponding to the scaling symmetry.

Finally, let us consider the full𝑁=2, 𝑎=4 SKdV equation (3.5) and the (1|1)-dimensional

covering (5.30)-(5.31) over it . We find that the solution of equation (5.40) for this covering

is the vector field

𝑋 = 𝜀−1(−𝑥 𝜕/𝜕𝑥− 3𝑡 𝜕/𝜕𝑡+ 𝑢0 𝜕/𝜕𝑢0 +
3
2
𝑢1 𝜕/𝜕𝑢1 +

3
2
𝑢2 𝜕/𝜕𝑢2

+ 2𝑢12 𝜕/𝜕𝑢12 + · · ·+ 2𝑤 𝜕/𝜕𝑤 + 3
2
𝑓 𝜕/𝜕𝑓).

It has been obtained by solving equation (5.40) explicitly using the analytic software [73].

We note again that – as we had it in the above two reductions of the 𝑁=2, 𝑎=4-

SKdV– we obtain the vector filed corresponding to the scaling symmetry of the underlying

equation.7

6Here and in what follows we underline the covering that encodes Gardner’s deformation (5.41) for the

classical KdV equation (1.1).
7For scaling-invariant families of coverings depending on a parameter of non-zero homogeneity weight,

one could always try to find a solution of equation (5.40) by taking the scaling symmetry of the underlying

PDE.
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Let us consider two representation of g:

1. 𝜌 : g→ Mat(𝑘0 + 1, 𝑘1), that is, a matrix representation;

2. 𝜚 : g → Vect(𝑊 ; poly), which is the representation in the space of vector fields with

polynomial coefficients on the (𝑘0|𝑘1)-dimensional supermanifold𝑊 with local parity-

even coordinates 𝑤1, . . . , 𝑤𝑘0 and 𝑓 1, . . . , 𝑓𝑘1 of odd parity.

Let 𝛼 = 𝑎𝑖𝜌(𝑒𝑖) d𝑥 + 𝑏𝑗𝜌(𝑒𝑗) d𝑡 be a g-valued zero-curvature representations for the

system ℰ . Construct a one-dimensional covering with nonlocal variable 𝑤 over ℰ∞ such

that

𝑤𝑥 = −𝑎𝑖𝜚(𝑒𝑖) d𝑤, (5.43a)

𝑤𝑡 = −𝑏𝑗𝜚(𝑒𝑗) d𝑤. (5.43b)

Consider two mappings, 𝜕𝛼 = d̄ℎ − [𝛼, ·] : g ⊗ Λ0(ℰ∞) → g ⊗ Λ1(ℰ∞) (see [94])and 𝜕𝑈 =

[·, 𝑈𝜆]FN : D(Λ0(ℰ̃)) → D(Λ1(ℰ̃)) (see [50]). We recall that the mappings 𝜕𝛼 and 𝜕𝑈 yield

the horizontal [94] and Cartan [50] cohomologies, respectively. However, we claim that in

the geometry at hand one of these two differentials is a particular instance of the other by

virtue of the switch 𝜌� 𝜚 between the Lie superalgebra’s representations.

Lemma 2. The following diagram is commutative:

g⊗ Λ0(ℰ∞) 𝜌−−−→ Mat(𝑘0 + 1|𝑘1)⊗ Λ0(ℰ∞) 𝜕𝛼−−−→ Mat(𝑘0 + 1|𝑘1)⊗ Λ1(ℰ∞)⃦⃦⃦ ⎮⎮⌄∇ ⎮⎮⌄∇
g⊗ Λ0(ℰ∞) 𝜚−−−→ D(Λ0(ℰ̃)) 𝜕𝑈−−−→ D(Λ1(ℰ̃)),

where ∇ = 𝜚 ∘ 𝜌−1 is a switch from the representation 𝜌 to the representation 𝜚 for the Lie

superalgebra g.

Proof. Consider 𝛾 = 𝑞𝑘 · 𝑒𝑘 ∈ g⊗ Λ0(ℰ∞) and put 𝜚(𝛾) = 𝑋 ∈ D(Λ0(ℰ̃)) and 𝜌(𝛾) = 𝑄 ∈
Mat(𝑘0 + 1|𝑘1)⊗ Λ0(ℰ∞). A direct calculation shows that

(∇ ∘ 𝜕𝛼 ∘ 𝜌)(𝛾) = (∇ ∘ 𝜕𝛼)(𝑄) = ∇(d̄ℎ𝑄− [𝛼,𝑄])

= ∇
(︁
d𝑥 (�̄�𝑥(𝑞

𝑘)𝜌(𝑒𝑘)− [𝑎𝑖𝜌(𝑒𝑖), 𝑞
𝑘𝜌(𝑒𝑘)]) + d𝑡 (�̄�𝑡(𝑞

𝑘)𝜌(𝑒𝑘)− [𝑏𝑗𝜌(𝑒𝑗), 𝑞
𝑘𝜌(𝑒𝑘)]

)︁
= d𝑥

(︀
�̄�𝑥(𝑞

𝑘)𝜚(𝑒𝑘) + [−𝑎𝑖𝜚(𝑒𝑖), 𝑞𝑘𝜚(𝑒𝑘)]
)︀
+ d𝑡 (�̄�𝑡(𝑞

𝑘)𝜚(𝑒𝑘) + [−𝑏𝑖𝜚(𝑒𝑖), 𝑞𝑘𝜚(𝑒𝑘)]).

On the other hand, we have that

(𝜕𝑈 ∘ 𝜚)(𝛾) = 𝜕𝑈𝑋 = [𝑋,𝑈𝜆]
FN

=

[︂
d𝑥

(︂
�̃�𝑥(𝑋 d𝑤)− (𝑋 d𝑤)

𝜕𝑤𝑥
𝜕𝑤

)︂
+ d𝑡

(︂
�̃�𝑡(𝑋 d𝑤)− (𝑋 d𝑤)

𝜕𝑤𝑡
𝜕𝑤

)︂]︂
⊗ 𝜕

𝜕𝑤
.
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By using the formula �̃�𝑥(𝑋 d𝑤) = �̄�𝑥(𝑋 d𝑤) + 𝑤𝑥
𝜕
𝜕𝑤

(𝑋 d𝑤), we continue the

equality and obtain that

=
[︁
d𝑥

(︂
�̄�𝑥(𝑋 d𝑤) + 𝑤𝑥

𝜕

𝜕𝑤
(𝑋 d𝑤)− (𝑋 d𝑤)

𝜕𝑤𝑥
𝜕𝑤

)︂
+ d𝑡

(︂
�̄�𝑡(𝑋 d𝑤) + 𝑤𝑡

𝜕

𝜕𝑤
(𝑋 d𝑤)− (𝑋 d𝑤)

𝜕𝑤𝑡
𝜕𝑤

)︂]︁
⊗ 𝜕

𝜕𝑤[︁
d𝑥

(︂
�̄�𝑥(𝑋) d𝑤 + [𝑤𝑥

𝜕

𝜕𝑤
,𝑋] d𝑤

)︂
+ d𝑡

(︂
�̄�𝑡(𝑋) d𝑤 + [𝑤𝑡

𝜕

𝜕𝑤
,𝑋] d𝑤

)︂]︁
⊗ 𝜕

𝜕𝑤
.

From formulas (5.43) we infer that

=
[︁
d𝑥(�̄�𝑥(𝑞

𝑘)𝜚(𝑒𝑘) + [−𝑎𝑖𝜚(𝑒𝑖), 𝑞𝑘𝜚(𝑒𝑘)]) d𝑤

+ d𝑡(�̄�𝑡(𝑞
𝑘)𝜚(𝑒𝑘) + [−𝑏𝑖𝜚(𝑒𝑖), 𝑞𝑘𝜚(𝑒𝑘)]) d𝑤)

]︁
⊗ 𝜕

𝜕𝑤

= d𝑥
(︀
�̄�𝑥(𝑞

𝑘)𝜚(𝑒𝑘) + [−𝑎𝑖𝜚(𝑒𝑖), 𝑞𝑘𝜚(𝑒𝑘)]
)︀
+ d𝑡(�̄�𝑡(𝑞

𝑘)𝜚(𝑒𝑘) + [−𝑏𝑖𝜚(𝑒𝑖), 𝑞𝑘𝜚(𝑒𝑘)]).

We finally obtain that (∇ ∘ 𝜕𝛼 ∘ 𝜌)(𝛾) = (𝜕𝑈 ∘ 𝜚)(𝛾), which proves our claim.

Now let us study in more detail the case of removable parameters. Let 𝛼(𝜆) =

𝑎𝑖𝜌(𝑒𝑖) d𝑥 + 𝑏𝑗𝜌(𝑒𝑗) d𝑡 be a smooth family of g-valued zero-curvature representations for

the system ℰ but let the parameter 𝜆 ∈ C be removable. By Proposition 5, there is a

g-matrix 𝑄 = 𝑞𝑘𝜌(𝑒𝑘) such that

d

d𝜆
𝛼 = d̄ℎ𝑄− [𝛼,𝑄].

In components, we have that

d

d𝜆
(𝑎𝑖)𝜌(𝑒𝑖) = �̄�𝑥(𝑞

𝑘)𝜌(𝑒𝑘)− 𝑎𝑖𝑞𝑘𝜌([𝑒𝑖, 𝑒𝑘]),

d

d𝜆
(𝑏𝑗)𝜌(𝑒𝑖) = �̄�𝑡(𝑞

𝑘)𝜌(𝑒𝑘)− 𝑏𝑗𝑞𝑘𝜌([𝑒𝑗, 𝑒𝑘]).

By virtue of the representation 𝜚, at every 𝜆 the g-matrix 𝑄 = 𝑞𝑘𝜌(𝑒𝑘) determines the

vector field 𝑋 = 𝑞𝑘𝜚(𝑒𝑘) on ℰ̃ .
The following proposition is a regular generator of solutions for equation (5.40) in the

case of coverings derived from zero-curvature representations with removable parameters.8

Proposition 7. The vector field 𝑋 = 𝑞𝑘𝜚(𝑒𝑘) satisfies structure equation (5.40).

8It was remarked in [49] that the formalism of zero-curvature representations and their parametric

families can be viewed as a special case of the Frölicher–Nijenhuis bracket formalism for deformations of

coverings of unspecified nature; we thus substantiate that claim from loc. cit. by giving an explicit proof.
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Proof. From Lemma 2 we infer that

[𝑋,𝑈𝜆]
FN =

[︁
d𝑥
(︀
�̄�𝑥(𝑞

𝑘)𝜚(𝑒𝑘) + [−𝑎𝑖𝜚(𝑒𝑖), 𝑞𝑘𝜚(𝑒𝑘)]
)︀

d𝑤

+ d𝑡(�̄�𝑡

(︀
𝑞𝑘)𝜚(𝑒𝑘) + [−𝑏𝑖𝜚(𝑒𝑖), 𝑞𝑘𝜚(𝑒𝑘)]

)︀
d𝑤
]︁
⊗ 𝜕

𝜕𝑤
.

Using (5.44), we obtain that

=
[︁
d𝑥

d

d𝜆
(𝑎𝑖)(𝜚(𝑒𝑖) d𝑤) + d𝑡

d

d𝜆
(𝑏𝑖)(𝜚(𝑒𝑖) d𝑤)

]︁
⊗ 𝜕

𝜕𝑤

=

[︂
− d

d𝜆
(𝑤𝑥) d𝑥−

d

d𝜆
(𝑤𝑡) d𝑡

]︂
⊗ 𝜕

𝜕𝑤
=

d

d𝜆
𝑈𝜆.

This proves that the vector field 𝑋 is a solution of equation (5.40).

Remark 11. This proof can be easily extended to the case of any finite 𝑛 and 𝑘0, 𝑘1 <∞.

Example 21. Let us illustrate the claim of Proposition 7. Namely, let us construct a

(1|1)-dimensional covering over the 𝑁=2, 𝑎=4 SKdV equation (3.5) by taking the sl(2|1)-
valued zero-curvature representation 𝛽 from Example 10 on p. 48. Using representation 𝜚

from Example 14, we obtain

𝑤𝑥 = 𝜆2 + 2𝜆𝑤 + 𝑤2 + 𝑢20 + 𝑢12 − 𝑓2𝑢2 + 𝑖𝑓2𝑢1,

𝑓𝑥 = 𝜆𝑓2 + 𝑓2𝑤 + 𝑖𝑓2𝑢0 + 𝑢2 + 𝑖𝑢1,

𝑤𝑡 = 2𝜆2(2𝑢20 − 𝑢12) + 𝜆(8𝑤𝑢20 − 4𝑤𝑢12 + 8𝑢0𝑢0;𝑥 − 2𝑢12;𝑥 + 𝑓𝑢2;𝑥 − 𝑖𝑓𝑢1;𝑥

+ 4𝑖𝑓𝑢2𝑢0 + 4𝑓𝑢1𝑢0) + 4𝑤2𝑢20 − 2𝑤2𝑢12 + 8𝑤𝑢0𝑢0;𝑥 − 2𝑤𝑢12;𝑥 + 4𝑢40 + 2𝑢20𝑢12

+ 4𝑢0𝑢0;𝑥𝑥 − 2𝑢212 + 4𝑢20;𝑥 − 𝑢12;𝑥𝑥 + 𝑓𝑤𝑢2;𝑥 − 𝑖𝑓𝑤𝑢1;𝑥 + 5𝑖𝑓𝑢0𝑢2;𝑥 + 5𝑓𝑢0𝑢1;𝑥

+ 𝑓𝑢2;𝑥𝑥 − 𝑖𝑓𝑢1;𝑥𝑥 + 4𝑖𝑓𝑢2𝑤𝑢0 − 8𝑓𝑢2𝑢
2
0 + 2𝑓𝑢2𝑢12 + 4𝑖𝑓𝑢2𝑢0;𝑥 + 4𝑓𝑢1𝑤𝑢0

+ 8𝑖𝑓𝑢1𝑢
2
0 − 2𝑖𝑓𝑢1𝑢12 + 4𝑓𝑢1𝑢0;𝑥 + 𝑢2𝑢2;𝑥 + 8𝑢2𝑢1𝑢0 + 𝑢1𝑢1;𝑥,

𝑓𝑡 = 𝜆(−𝑢2;𝑥 − 𝑖𝑢1;𝑥 + 4𝑓𝑢20 − 2𝑓𝑢12 + 4𝑖𝑢2𝑢0 − 4𝑢1𝑢0)− 𝑤𝑢2;𝑥 − 𝑖𝑤𝑢1;𝑥 + 5𝑖𝑢0𝑢2;𝑥

− 5𝑢0𝑢1;𝑥 − 𝑢2;𝑥𝑥 − 𝑖𝑢1;𝑥𝑥 + 4𝑓𝑤𝑢20 − 2𝑓𝑤𝑢12 + 4𝑖𝑓𝑢30 − 6𝑖𝑓𝑢0𝑢12 + 4𝑓𝑢0𝑢0;𝑥

− 𝑓𝑢0;𝑥𝑥𝑖− 𝑓𝑢12;𝑥 − 4𝑓𝑢2𝑢1𝑖+ 4𝑢2𝑤𝑢0𝑖+ 8𝑢2𝑢
2
0 − 2𝑢2𝑢12 + 4𝑖𝑢2𝑢0;𝑥 − 4𝑢1𝑤𝑢0

+ 8𝑖𝑢1𝑢
2
0 − 2𝑖𝑢1𝑢12 − 4𝑢1𝑢0;𝑥.

In agreement with Proposition 7, we find the solution𝑋 = 𝜕/𝜕𝑤 of equation (5.40): indeed,

this field is obtained from the sl(2|1)-matrix 𝑄 which we introduced in Example 10.

We confirmed that a switch between the representations of Lie (super)algebras estab-

lishes a link between the two classes of nonlocal geometries and also between the arising
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differentials. In particular, by analyzing this relation in the case of zero-curvature repre-

sentations with removable parameters 𝜆, we explicitly described the equivalence classes of

𝜏𝜆-shadows that determine, by virtue of structure equation (5.40), the evolution of Cartan’s

structural elements in families of coverings 𝜏𝜆.

5.5 Two descriptions of one elimination procedure:

an example

We now analyze the following tautological construction: by re-addressing Sasaki,9 see [114],

we first track how the scaling symmetry of KdV equation (1.1) acts on its standard matrix

Lax pair; on the other hand, we reveal how these objects are phrased in the language of

coverings.

Recall that the Korteweg–de Vries equation is

ℰ = {𝑢𝑡 = −𝑢𝑥𝑥𝑥 − 6𝑢𝑢𝑥} . (1.1)

Consider the family of coverings 𝜏𝜂 : ℰ̃𝜂 → ℰ over it,

𝑣𝑥 = 2𝑣𝜂 − (𝑣2 + 𝑢), (5.45a)

𝑣𝑡 = −8𝜂3𝑣 + 4𝜂2(𝑣2 + 𝑢) + 2𝜂(−2𝑣𝑢+ 𝑢𝑥) + 2𝑣2𝑢− 2𝑣𝑢𝑥 + 2𝑢2 + 𝑢𝑥𝑥; (5.45b)

these formulas are obtained from the following sl2-valued zero-curvature representation

(see [114]),

𝛼𝜂 =

(︂
𝜂 𝑢

−1 −𝜂

)︂
d𝑥+

(︂
−(4𝜂3 + 2𝜂𝑢+ 𝑢𝑥) −(𝑢𝑥𝑥 + 2𝜂𝑢𝑥 + 4𝜂2𝑢+ 2𝑢2)

4𝜂2 + 2𝑢 4𝜂3 + 2𝜂𝑢+ 𝑢𝑥

)︂
d𝑡.

Let us recall that the parameter 𝜂 can not be removed from the zero-curvature representa-

tions 𝛼𝜂 by using gauge transformations. However, it can be eliminated by using a wider

class of transformations. Namely, consider the scaling symmetry of equation (1.1),

𝑥 ↦→ 𝜂𝑥, 𝑡 ↦→ 𝜂3𝑡, 𝑢 ↦→ 𝜂−2𝑢, 𝜂 ∈ R.

Using it, one transforms the zero-curvature representation 𝛼𝜂 into

𝛼′𝜂 =

(︂
1 𝜂𝑢

−𝜂−1 −1

)︂
d𝑥+

(︂
−(4 + 2𝑢+ 𝑢𝑥) −𝜂(𝑢𝑥𝑥 + 2𝑢𝑥 + 4𝑢+ 2𝑢2)

𝜂−1(4 + 2𝑢) 4 + 2𝑢+ 𝑢𝑥

)︂
d𝑡.

9A parameter-dependent zero-curvature representation for Burgers’ equation was considered in [23] in

the same context of pseudospherical surfaces as in Sasaki’s paper [114]. We refer to [94] for analysis of

removability of the parameter in that zero-curvature representation for Burgers’ equation [23].
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The parameter 𝜂 in 𝛼′𝜂 is removable under the gauge transformation

𝑔 =

(︂
𝜂−1/2 0

0 𝜂1/2

)︂
∈ 𝐶∞(ℰ∞, 𝐺𝐿2(C)),

that is, we have that (𝛼′𝜂)
𝑔 = 𝛼′𝜂

⃒⃒
𝜂=1

= 𝛼𝜂
⃒⃒
𝜂=1

.

Let us now address the removability of parameter 𝜂 in coverings (5.45) in terms of the

formalism of Cartan’s structural element.

For a vector field

𝑋 = 𝑎⊗ 𝜕

𝜕𝑥
+ 𝑏⊗ 𝜕

𝜕𝑡
+ 𝜔𝜎 ⊗

𝜕

𝜕𝑢𝜎
+ 𝜙⊗ 𝜕

𝜕𝑣
,

the equation for evolution of Cartan’s structural element,

d

d𝜂
𝑈𝜂 = [𝑋,𝑈𝜂]

FN, (5.40)

splits into the system

− d

d𝜂
𝑣𝑥 = �̃�𝑥𝜙− 𝜙

𝜕𝑣𝑥
𝜕𝑣
− 𝜔𝜎

𝜕𝑣𝑥
𝜕𝑢𝜎

+ 𝑏

(︂
𝜕𝑣𝑥
𝜕𝑢𝜎

𝑢𝜎𝑡 +
𝜕𝑣𝑥
𝜕𝑣

𝑣𝑡 − �̃�𝑥𝑣𝑡

)︂
− 𝑣𝑡

𝜕𝑏

𝑥

+ 𝑎

(︂
−�̃�𝑥𝑣𝑥 +

𝜕𝑣𝑥
𝜕𝑢𝜎

𝑢𝜎𝑥 +
𝜕𝑣𝑥
𝜕𝑣

𝑣𝑥

)︂
− 𝑣𝑥

𝜕𝑎

𝜕𝑥
, (5.46a)

− d

d𝜂
𝑣𝑡 = �̃�𝑡𝜙− 𝜙

𝜕𝑣𝑡
𝜕𝑣
− 𝜔𝜎

𝜕𝑣𝑡
𝜕𝑢𝜎

+ 𝑏

(︂
𝜕𝑣𝑡
𝜕𝑢𝜎

𝑢𝜎𝑡 +
𝜕𝑣𝑡
𝜕𝑣

𝑣𝑡 − �̃�𝑡𝑣𝑡

)︂
− 𝑣𝑡

𝜕𝑏

𝜕𝑡

+ 𝑎

(︂
−�̃�𝑡𝑣𝑥 +

𝜕𝑣𝑡
𝜕𝑢𝜎

𝑢𝜎𝑥 +
𝜕𝑣𝑡
𝜕𝑣

𝑣𝑥

)︂
− 𝑣𝑥

𝜕𝑎

𝜕𝑡
, (5.46b)

𝜔𝜎𝑥 = �̃�𝑥𝜔𝜎 − 𝑢𝜎𝑡
𝜕𝑏

𝜕𝑥
− 𝑢𝜎𝑥

𝜕𝑎

𝜕𝑥
, (5.46c)

𝜔𝜎𝑡 = �̃�𝑡𝜔𝜎 − 𝑢𝜎𝑡
𝜕𝑏

𝜕𝑡
− 𝑢𝜎𝑥

𝜕𝑎

𝜕𝑡
. (5.46d)

Suppose now that the vector field is vertical: 𝑋v = 𝜔v
𝜎⊗𝜕/𝜕𝑢𝜎+𝜙v⊗𝜕/𝜕𝑣. This simplifies

equation (5.46); it then becomes

− d

d𝜂
𝑣𝑥 = �̃�𝑥𝜙

v − 𝜙v𝜕𝑣𝑥
𝜕𝑣
− 𝜔v

𝜎

𝜕𝑣𝑥
𝜕𝑢𝜎

, (5.47a)

− d

d𝜂
𝑣𝑡 = �̃�𝑡𝜙

v − 𝜙v𝜕𝑣𝑡
𝜕𝑣
− 𝜔v

𝜎

𝜕𝑣𝑡
𝜕𝑢𝜎

, (5.47b)

𝜔v
𝜎𝑥 = �̃�𝑥𝜔

v
𝜎, (5.47c)

𝜔v
𝜎𝑡 = �̃�𝑡𝜔

v
𝜎. (5.47d)
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Let us use the Ansatz

𝜔v = 𝜔 − 𝑎𝑢𝑥 − 𝑏𝑢𝑡, 𝜙v = 𝜙− 𝑎𝑣𝑥 − 𝑏𝑢𝑡,

assuming that 𝑎 = 𝑎(𝑥, 𝑡, 𝜂), 𝑏 = 𝑏(𝑥, 𝑡, 𝜂), 𝜙 = 𝜙(𝜂, 𝑢, 𝑣), and 𝜔 = 𝜔(𝜂, 𝑢, 𝑣, 𝑢𝑥, 𝑢𝑥𝑥). By

construction, the unknowns 𝜔v and 𝜙v satisfy system (5.47). Using the analytic software

Jets [96] and Crack [73], we find the solution

𝑎 = 24𝑐4𝑡𝜂
3 + 2𝑐4𝑥𝜂 +

1
𝜂
(𝑐6 + 𝑥),

𝑏 = 6𝑐4𝑡𝜂 +
1
𝜂
(−𝑐7 + 3𝑡),

𝜔 = 4𝑐4𝜂
3 − 4𝑐4𝑢𝜂 + 𝑢𝑥𝑐4 +

1
𝜂
(−1

2
𝑢𝑥𝑐3 − 2𝑢) + 1

2𝜂2
𝑢𝑥,

𝜙 = 2𝑐4𝜂
2 − 𝑐4𝑣2 − 𝑐3𝑣 − 𝑐4𝑢+ 𝑐3

2𝜂
(𝑣2 + 𝑢)− 1

2𝜂2
(𝑣2 + 𝑢),

which contains four arbitrary constants 𝑐3, 𝑐4, 𝑐6, and 𝑐7.

Let us set 𝑐3 = 0, 𝑐4 = −1/(2𝜂2) at 𝜂 ̸= 0, 𝑐6 = 0, and 𝑐7 = 0. This determines the

solution which corresponds to the lift of Galilean symmetry of (1.1):

𝑋2 = −2𝜂(6𝑡 𝜕/𝜕𝑥+ 𝜕/𝜕𝑢+ . . . )− 𝜕/𝜕𝑣.

On the other hand, set 𝑐3 = 1/𝜂 if 𝜂 ̸= 0 and let 𝑐4 = 0, 𝑐6 = 0, and 𝑐7 = 0. This yields the

solution which corresponds to the lift of scaling symmetry of (1.1); namely, we have that

𝑋1 = 𝜂−2(−𝑥 𝜕/𝜕𝑥− 3𝑡 𝜕/𝜕𝑡+ 2𝑢 𝜕/𝜕𝑢+ . . .+ 𝑣 𝜕/𝜕𝑣). (5.48)

The exponent of vector field (5.48) induces the transformation

𝑥 ↦→ 𝜂𝑥, 𝑡 ↦→ 𝜂3𝑡, 𝑢 ↦→ 𝜂−2𝑢, 𝑣 ↦→ 𝜂−1𝑣. (5.49)

Its action on the covering 𝜏𝜂 in (5.45) results in the covering 𝜏 ′ = 𝜏𝜂
⃒⃒
𝜂=1

, which is described

by the formulas

𝑣𝑥 = 2𝑣 − (𝑣2 + 𝑢),

𝑣𝑡 = −8𝑣 + 4𝑣2 + 4𝑢− 4𝑣𝑢+ 2𝑢𝑥 + 2𝑣2𝑢− 2𝑣𝑢𝑥 + 2𝑢2 + 𝑢𝑥𝑥.

We claim that the covering 𝜏 ′ is the image of zero-curvature representation (𝛼′𝜂)
𝑔 under a

swapping of representations for the Lie algebra at hand. This is shown in the following

diagram:

𝛼𝜂
scaling−−−−→ 𝛼′𝜂

𝑔−−−→ 𝛼′𝜂
⃒⃒
𝜂=1⃦⃦⃦ ⎮⎮⌄∇

𝛼𝜂
∇−−−→ 𝜏

(5.49)−−−→ 𝜏 ′.

(5.50)
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We conclude that the problem of finding transformations (which are possibly not gauge)

that eliminate the parameter in a given family of zero-curvature representations can be

approached via a solution of equation (5.40) in the family of coverings which are the

(𝜌� 𝜚)-avatars of those zero-curvature representations.

Depending on their elimination scenario, “removable” parameters in zero-curvature

representations are classified as follows:

1. First, there are parameters which are removable under gauge transformations (see [94,

97] by Marvan and [112, 113] by Sakovich).

2. There are parameters which can not be removed by using gauge transformations but

which indicate the presence of conserved currents in zero-curvature representations

and the reducibility of such representations,10 (see [95] and [62, S 12]).

3. Thirdly, there are parameters which vanish under the action of those symmetries of

the underlying differential equation which can not be lifted to the covering Maurer–

Cartan equation (see [88, 114]).

4. Finally, there are parameters which can be eliminated by the same procedure as

in the previous case but by using shadows of nonlocal symmetries in some auxiliary

covering over the equation at hand (namely, not in the covering which grasps the ZCR

geometry but in an extension of the equation’s geometry by a set of “nonlocalities”),

see [24, 25, 26].

10For example, consider a “fake” sl2-valued zero-curvature representation 𝛼 =

(︂
0 𝑋1 + 𝜆𝑋2

0 0

)︂
d𝑥 +(︂

0 𝑇1 + 𝜆𝑇2

0 0

)︂
d𝑡 for an equation ℰ possessing two conserved currents 𝐷𝑡𝑋𝑖 = 𝐷𝑥𝑇𝑖, here 𝑖 = 1, 2.
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Chapter 6

Non-Abelian variational Lie algebroids

In this chapter we show that zero-curvature representations for PDE give rise to a nat-

ural class of non-Abelian variational Lie algebroids. We list all the components of such

structures (cf. [70]); in particular, we show that Marvan’s operator 𝜕𝛼 is the anchor. In sec-

tion 6.1, non-Abelian variational Lie algebroids are realized via BRST-like homological evo-

lutionary vector fields 𝑄 on superbundles à la [9]. Having enlarged the BRST-type setup to

a geometry which goes in a complete parallel with the standard BV-zoo ([7, 8], see also [3]),

in section 6.2 we extend the vector field 𝑄 to the evolutionary derivation ̂︀𝑄(·) ∼= [[̂︀𝑆, ·]]
whose Hamiltonian functional ̂︀𝑆 satisfies the classical master-equation [[̂︀𝑆, ̂︀𝑆]] = 0.

In the earlier work [70] by Kiselev and van de Leur, classical notion of Lie alge-

broids [120] was upgraded from ordinary manifolds to jet bundles, which are endowed

with their own, restrictive geometric structures such as the Cartan connection ∇𝒞 and

which harbour systems of PDE. We prove now that the geometry of Lie algebra-valued

connection g-forms 𝛼 satisfying zero-curvature equation (6.3) gives rise to the geometry of

solutions ̂︀𝑆 for the classical master-equation

ℰCME =
{︀
𝑖~Δ̂︀𝑆 ⃒⃒~=0

= 1
2
[[̂︀𝑆, ̂︀𝑆]]}︀, (6.1)

see Theorem 9 on p. 94 below. It is readily seen that realization (6.1) of the gauge-

invariant setup is the classical limit of the full quantum picture as ~→ 0; the objective of

quantization ̂︀𝑆 ↦−→ 𝑆~ is a solution of the quantum master-equation

ℰQME =
{︀
𝑖~Δ𝑆~ = 1

2
[[𝑆~, 𝑆~]]

}︀
(6.2)

for the true action functional 𝑆~ at ~ ̸= 0. Its construction involves quantum, noncom-

mutative objects such as the deformations g~ of Lie algebras together with deformations

of their duals (cf. [31]). (In fact, we express the notion of non-Abelian variational Lie

algebroids in terms of the homological evolutionary vector field ̂︀𝑄 and classical master-

equation (6.1) viewing this construction as an intermediate step towards quantization.)

A transition from the semiclassical to quantum picture results in g~-valued connections,

quantum gauge groups, quantum vector spaces for values of the wave functions in auxiliary

linear problems (6.4), and quantum extensions of physical fields.1

1Lie algebra-valued connection one-forms are the main objects in classical gauge field theories. Such
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Remark 12. The geometry which we analyse in this chapter is produced and arranged by

using the pull-backs 𝑓 *(𝜚) of fibre bundles 𝜚 under some mappings 𝑓 . Typically, the fibres

of 𝜚 are Lie algebra-valued horizontal differential forms coming from Λ*(𝑀𝑛), or similar

objects2 ; in turn, the mappings 𝑓 are projections to the base 𝑀𝑛 of some infinite jet

bundles. We employ the standard notion of horizontal infinite jet bundles such as 𝐽∞𝜉 (𝜒)

or 𝐽∞𝜒 (𝜉) over infinite jet bundles 𝐽∞(𝜉) and 𝐽∞(𝜒), respectively ; these spaces are present

in Fig. 6.1 on p. 88 and they occur in (the proof of) Theorems 8 and 9 below. A proof of the

convenient isomorphism 𝐽∞𝜉 (𝜒) ∼= 𝐽∞(𝜉×𝑀𝑛 𝜒) = 𝐽∞(𝜉)×𝑀𝑛 𝐽∞(𝜒) is written in [71], see

also references therein. However, we recall further that, strictly speaking, the entire picture

– with fibres which are inhabited by form-valued parity-even or parity-odd (duals of the)

Lie algebra g – itself is the image of a pull-back under the projection 𝜋∞ : 𝐽∞(𝜋)→𝑀𝑛 in

the infinite jet bundle over the bundle 𝜋 of physical fields. In other words, sections of those

induced bundles are elements of Lie algebra etc., but all coefficients are differential functions

in configurations of physical fields (which is obvious, e. g., from (6.3) in Definition 2 on the

next page). Fortunately, it is the composite geometry of a fibre but not its location over

the composite-structure base manifold which plays the main rôle in proofs of Theorems 8

and 9.

It is clear now that an attempt to indicate not only the bundles 𝜉 or 𝜒, Π𝜒*, Π𝜉, and

𝜉* which determine the intrinsic properties of objects but also to display the bundles that

generate the pull-backs would make all proofs sound like the well-known poem about the

house that Jack built.

Therefore, we denote the objects such as 𝑝𝑖 or 𝛼 and their mappings (see p. 91 or p. 95)

as if they were just sections, 𝑝𝑖 ∈ Γ(𝜉) and 𝛼 ∈ Γ(𝜒), of the bundles 𝜉 and 𝜒 over the base

𝑀𝑛.

The Maurer–Cartan equation

Let us recall the definition of zero-curvature representation [94]. A horizontal one-form

𝛼 ∈ g⊗ Λ0,1(ℰ∞) is called a g-valued zero-curvature representation for ℰ if 𝛼 satisfies the

Maurer–Cartan equation

ℰMC =
{︀
d̄ℎ𝛼− 1

2
[𝛼, 𝛼]

.
= 0
}︀

(6.3)

by virtue of equation ℰ and its differential consequences.

physical models are called Abelian – e.g., Maxwell’s electrodynamics – or non-Abelian – here, consider the

Yang–Mills theories with structure Lie groups 𝑆𝑈(2) or 𝑆𝑈(3) – according to the commutation table for

the underlying Lie algebra. This is why we say that variational Lie algebroids are (non-)Abelian— refer-

ring to the Lie algebra-valued connection one-forms 𝛼 in the geometry of gauge-invariant zero-curvature

representations for PDE.
2Let us specify at once that the geometries of prototype fibres in the bundles under study are described

by g-, g*-, Πg-, or Πg*-valued (−1)-, zero-, one-, two-, and three-forms ; the degree −1 corresponds to the

module 𝐷1(𝑀
𝑛) of vector fields.
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Given a zero-curvature representation 𝛼 = 𝐴𝑖 d𝑥
𝑖, the Maurer–Cartan equation ℰMC

can be interpreted as the compatibility condition for the linear system

Ψ𝑥𝑖 = 𝐴𝑖Ψ, (6.4)

where 𝐴𝑖 ∈ g ⊗ 𝐶∞(ℰ∞) and Ψ is the wave function, that is, Ψ is a (local) section of the

principal fibre bundle 𝑃 (ℰ∞, 𝐺) with action of the gauge Lie group 𝐺 on fibres; the Lie

algebra of 𝐺 is g. Then the system of equations

𝐷𝑥𝑖𝐴𝑗 −𝐷𝑥𝑗𝐴𝑖 + [𝐴𝑖, 𝐴𝑗] = 0, 1 6 𝑖 < 𝑗 6 𝑛,

is equivalent to Maurer–Cartan’s equation (6.3).

Let g be the Lie algebra of the Lie group 𝐺 and 𝛼 be a g-valued zero-curvature repre-

sentation for a given PDE system ℰ . A gauge transformation Ψ ↦→ 𝑔Ψ of the wave function

by an element 𝑔 ∈ 𝐶∞(ℰ∞, 𝐺) induces the change

𝛼 ↦→ 𝛼𝑔 = 𝑔 · 𝛼 · 𝑔−1 + d̄ℎ𝑔 · 𝑔−1.

The zero-curvature representation 𝛼𝑔 is called gauge equivalent to the initially given 𝛼; the

𝐺-valued function 𝑔 on ℰ∞ determines the gauge transformation of 𝛼. For convenience, we

make no distinction between the gauge transformations 𝛼 ↦→ 𝛼𝑔 and 𝐺-valued functions 𝑔

which generate them.

It is readily seen that a composition of two gauge transformations, by using 𝑔1 first

and then by 𝑔2, itself is a gauge transformation generated by the 𝐺-valued function 𝑔2 ∘ 𝑔1.
Indeed, we have that

(𝛼𝑔1)𝑔2 = (d̄ℎ𝑔1 · 𝑔−11 + 𝑔1 · 𝛼 · 𝑔−11 )𝑔2 = d̄ℎ𝑔2 · 𝑔−12 + 𝑔2 · (d̄ℎ𝑔1 · 𝑔−11 + 𝑔1 · 𝛼 · 𝑔−11 ) · 𝑔−12

= (d̄ℎ𝑔2 · 𝑔1 + 𝑔2 · d̄ℎ𝑔1) · 𝑔−11 · 𝑔−12 + 𝑔2 · 𝑔1 · 𝛼 · 𝑔−11 · 𝑔−12

= d̄ℎ(𝑔2 · 𝑔1) · (𝑔2 · 𝑔1)−1 + (𝑔2 · 𝑔1) · 𝛼 · (𝑔2 · 𝑔1)−1.

We now consider infinitesimal gauge transformations generated by elements of the Lie

group 𝐺 which are close to its unit element 1. Suppose that 𝑔1 = exp(𝜆𝑝1) = 1 + 𝜆𝑝1 +
1
2
𝜆2𝑝21+𝑜(𝜆

2) and 𝑔2 = exp(𝜇𝑝2) = 1+𝜇𝑝2+
1
2
𝜇2𝑝22+𝑜(𝜇

2) for some 𝑝1, 𝑝2 ∈ g and 𝜇, 𝜆 ∈ R.
The following lemma, an elementary proof of which refers to the definition of Lie algebra,

is the key to a construction of the anchors in non-Abelian variational Lie algebroids.

Lemma 3. Let 𝛼 be a g-valued zero-curvature representation for a system ℰ . Then

the commutant 𝑔1 ∘ 𝑔2 ∘ 𝑔−11 ∘ 𝑔−12 of infinitesimal gauge transformations 𝑔1 and 𝑔2 is an

infinitesimal gauge transformation again.

Proof. By definition, put 𝑔 = 𝑔1 ∘ 𝑔2 ∘ 𝑔−11 ∘ 𝑔−12 . Taking into account that 𝑔−11 = 1− 𝜆𝑝1 +
1
2
𝜆2𝑝21 + 𝑜(𝜆2) and 𝑔−12 = 1− 𝜇𝑝2 + 1

2
𝜇2𝑝22 + 𝑜(𝜇2), we obtain that

𝑔 = 𝑔1𝑔2𝑔
−1
1 𝑔−22 = 1+ 𝜆𝜇 · (𝑝1𝑝2 − 𝑝2𝑝1) + 𝑜(𝜆2 + 𝜇2).

We finally recall that [𝑝1, 𝑝2] ∈ g, whence follows the assertion.
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Figure 6.1: Non-Abelian variational Lie algebroid.

An infinitesimal gauge transformation 𝑔 = 1 + 𝜆𝑝 + 𝑜(𝜆) acts on a given g-valued

zero-curvature representation 𝛼 for an equation ℰ∞ by the formula

𝛼𝑔 = d̄ℎ(1+ 𝜆𝑝+ 𝑜(𝜆)) · (1− 𝜆𝑝+ 𝑜(𝜆)) + (1+ 𝜆𝑝+ 𝑜(𝜆)) · 𝛼 · (1− 𝜆𝑝+ 𝑜(𝜆))

= 𝜆d̄ℎ𝑝+ 𝛼 + 𝜆(𝑝𝛼− 𝛼𝑝) + 𝑜(𝜆) = 𝛼 + 𝜆(d̄ℎ𝑝+ [𝑝, 𝛼]) + 𝑜(𝜆).

From the coefficient of 𝜆 we obtain the operator �̄�𝛼 = d̄ℎ+[·, 𝛼]. Lemma 3 implies that the

image of this operator is closed under commutation in g, that is, [im �̄�𝛼, im �̄�𝛼] ⊆ im �̄�𝛼.

Such operators and their properties were studied in [70, 69]. We now claim that the

operator �̄�𝛼 yields the anchor in a non-Abelian variational Lie algebroid, see Fig. 6.1;

this construction is elementary (see Remark 12 on p. 86). Namely, the non-Abelian Lie

algebroid (𝜋*∞ ∘ 𝜒*∞(𝜉),𝜕𝛼, [ , ]g) consists of

∙ the pull-back of the bundle 𝜉 for g-valued gauge parameters 𝑝 ; the pull-back is

obtained by using the bundle 𝜒 for g-forms 𝛼 and (again by using the infinite jet

bundle 𝜋∞ over) the bundle 𝜋 of physical fields,

∙ the (restriction �̄�𝛼 to ℰ∞ ⊆ 𝐽∞(𝜋) of the) anchor 𝜕𝛼 that generates infinitesimal

gauge transformations �̇� = 𝜕𝛼(𝑝) in the bundle 𝜒 of g-valued connection one-forms,

and

∙ the Lie algebra structure [ , ]g on the anchor’s domain of definition.

We refer to [68] for more detail and for discussion on that object’s structural complexity.

Noether identities for the Maurer–Cartan equation

In the meantime, let us discuss Noether identities [12, 62, 106] for Maurer–Cartan equa-

tion (6.3). Depending on the dimension 𝑛 of the base manifold 𝑀𝑛, we consider the cases
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𝑛 = 2, 𝑛 = 3, and 𝑛 > 3. We suppose that the Lie algebra g is equipped3 with a nonde-

generate ad-invariant metric 𝑡𝑖𝑗. The paring ⟨ , ⟩ is defined for elements of g ⊗ Λ(𝑀𝑛) as

follows,

⟨𝐴𝜇,𝐵𝜈⟩ = ⟨𝐴,𝐵⟩𝜇 ∧ 𝜈,

where the coupling ⟨𝐴,𝐵⟩ is given by the metric 𝑡𝑖𝑗 for g. From the ad-invariance ⟨[𝐴,𝐵], 𝐶⟩ =
⟨𝐴, [𝐵,𝐶]⟩ of the metric 𝑡𝑖𝑗 we deduce that

⟨[𝐴𝜇,𝐵𝜈], 𝐶𝜌⟩ = ⟨[𝐴,𝐵]𝜇 ∧ 𝜈, 𝐶𝜌⟩ = ⟨[𝐴,𝐵], 𝐶⟩𝜇 ∧ 𝜈 ∧ 𝜌 = ⟨𝐴, [𝐵,𝐶]⟩𝜇 ∧ 𝜈 ∧ 𝜌
= ⟨𝐴𝜇, [𝐵,𝐶] 𝜈 ∧ 𝜌⟩ = ⟨𝐴𝜇, [𝐵𝜈,𝐶𝜌]⟩.

Let us denote by ℱ = −dℎ𝛼+ 1
2
[𝛼, 𝛼] the left-hand side of Maurer–Cartan equation (6.3).

We recall from that �̇� = 𝜕𝛼(𝑝) is a gauge symmetry of Maurer–Cartan equation (6.3).

Moreover, for all 𝑛 > 1 the operator 𝜕†𝛼 produces a Noether identity for (6.3), which is

readily seen from the following statement.

Proposition 8. The left-hand sides ℱ = −dℎ𝛼 + 1
2
[𝛼, 𝛼] of Maurer–Cartan’s equation

satisfy the Noether identity (or Bianchi identity for the curvature two-form)

𝜕†𝛼(ℱ) = −dℎℱ − [ℱ , 𝛼] ≡ 0. (6.5)

Proof. Applying the operator 𝜕†𝛼 to the left-hand sides of Maurer–Cartan’s equation, we

obtain

𝜕†𝛼(ℱ) = 𝜕†𝛼
(︀
−dℎ𝛼 + 1

2
[𝛼, 𝛼]

)︀
= (−dℎ − [·, 𝛼])

(︀
−dℎ𝛼 + 1

2
[𝛼, 𝛼]

)︀
=

= (dℎ ∘ dℎ)𝛼− 1
2
dℎ
(︀
[𝛼, 𝛼]

)︀
+ [dℎ𝛼, 𝛼]− 1

2
[𝛼, [𝛼, 𝛼]] =

= −[dℎ𝛼, 𝛼] + [dℎ𝛼, 𝛼]− 1
2
[𝛼, [𝛼, 𝛼]] = 0.

The third term in the last line is zero due to the Jacobi identity, whereas the first two

cancel out.

Let 𝑛 = 2. The Maurer–Cartan equation’s left-hand sides ℱ are top-degree forms,

hence every operator which increases the form degree vanishes at ℱ .
Consider the case 𝑛 = 3; we recall that Maurer–Cartan equation (6.3) is Euler–Lagrange

in this setup (cf. [2, 3, 124]).

Proposition 9. If the base manifold𝑀3 is 3-dimensional, then Maurer–Cartan’s equation

is Euler–Lagrange with respect to the action functional

𝑆MC =

∫︁
ℒ =

∫︁ {︀
−1

2
⟨𝛼, dℎ𝛼⟩+ 1

6
⟨𝛼, [𝛼, 𝛼]⟩

}︀
. (6.6)

Note that its Lagrangian density ℒ is a well-defined top-degree form on the base three-

fold 𝑀3.
3Notice that the Lie algebra g is canonically identified with its dual g* via nondegenerate metric 𝑡𝑖𝑗 .
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Proof. Let us construct the Euler–Lagrange equation:

𝛿

∫︁ {︀
−1

2
⟨𝛼, dℎ𝛼⟩+ 1

6
⟨𝛼, [𝛼, 𝛼]⟩

}︀
= ⟨𝛿𝛼,−dℎ𝛼⟩+ 1

6
(⟨𝛿𝛼, [𝛼, 𝛼]⟩+ ⟨𝛼, [𝛿𝛼, 𝛼]⟩+ ⟨𝛼, [𝛼, 𝛿𝛼]⟩

= ⟨𝛿𝛼,−dℎ𝛼 + 1
2
[𝛼, 𝛼]⟩.

This proves our claim.

Proposition 10. For each 𝑝 ∈ g⊗ Λ0(𝑀3), the evolutionary vector field 𝜕
(𝛼)
𝐴(𝑝) with gene-

rating section 𝐴(𝑝) = 𝜕𝛼(𝑝) = dℎ𝑝+ [𝑝, 𝛼] is a Noether symmetry of the action 𝑆MC,
4

𝜕
(𝛼)
𝐴(𝑝)(𝑆MC) ∼= 0 ∈ 𝐻𝑛

(𝜒).

The operator 𝐴 = 𝜕𝛼 = dℎ + [·, 𝛼] determines linear Noether’s identity (6.5),

Φ(𝑥, 𝛼,ℱ) = 𝐴†(ℱ) ≡ 0,

for left-hand sides of the system of Maurer–Cartan’s equations (6.3).

Proof. We have

𝜕
(𝛼)
𝐴(𝑝)𝑆MC

∼= ⟨𝐴(𝑝), 𝛿
𝛿𝛼
𝑆MC⟩ ∼=

⟨(︀
ℓ
(ℱ)
Φ

)︀†
(𝑝),ℱ

⟩
∼= ⟨𝑝, ℓ(ℱ)Φ (ℱ)⟩ = ⟨𝑝,Φ(ℱ)⟩ = ⟨𝑝,𝐴†(ℱ)⟩.

In Proposition 8 we prove that 𝐴†(ℱ) ≡ 0. So for all 𝑝 we have that ⟨𝑝,𝐴†(ℱ)⟩ ∼= 0, which

concludes the proof.

Finally, we let 𝑛 > 3. In this case of higher dimension, the Lagrangian ℒ = ⟨𝛼, 1
6
[𝛼, 𝛼]−

1
2
dℎ𝛼⟩ ∈ Λ3(𝑀𝑛) does not belong to the space of top-degree forms and Proposition 9

does not hold. However, Noether’s identity 𝜕†𝛼(ℱ) ≡ 0 still holds if 𝑛 > 3 according to

Proposition 8.

6.1 Non-Abelian variational Lie algebroids

Let �⃗�1, . . ., �⃗�𝑑 be a basis in the Lie algebra g. Every g-valued zero-curvature representation

for a given PDE system ℰ∞ is then 𝛼 = 𝛼𝑘𝑖 �⃗�𝑘 d𝑥
𝑖 for some coefficient functions 𝛼𝑘𝑖 ∈

𝐶∞(ℰ∞). Construct the vector bundle 𝜒 : Λ1(𝑀𝑛) ⊗ g → 𝑀𝑛 and the trivial bundle

𝜉 : 𝑀𝑛 × g→𝑀𝑛 with the Lie algebra g taken for fibre. Next, introduce the superbundle

Π𝜉 : 𝑀𝑛×Πg→𝑀𝑛 the total space of which is the same as that of 𝜉 but such that the parity

of fibre coordinates is reversed5 ). Finally, consider the Whitney sum 𝐽∞(𝜒)×𝑀𝑛 𝐽∞(Π𝜉)

of infinite jet bundles over the parity-even vector bundle 𝜒 and parity-odd Π𝜉.

4Here ∼= denotes the equality up to integration by parts and we assume the absence of boundary terms.
5The odd neighbour Πg of the Lie algebra is introduced in order to handle poly-linear, totally skew-

symmetric maps of elements of g so that the parity-odd space Πg carries the information about the Lie

algebra’s structure constants 𝑐𝑘𝑖𝑗 still not itself becoming a Lie superalgebra.
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6.1. Non-Abelian variational Lie algebroids

With the geometry of every g-valued zero-curvature representation we associate a non-

Abelian variational Lie algebroid [70]. Its realization by a homological evolutionary vector

field is the differential in the arising gauge cohomology theory (cf. [120] and [3, 49, 70, 74,

94]).

Theorem 8 ([68]). The parity-odd evolutionary vector field which encodes the non-

Abelian variational Lie algebroid structure on the infinite jet superbundle 𝐽∞(𝜒×𝑀𝑛Π𝜉) ∼=
𝐽∞(𝜒)×𝑀𝑛 𝐽∞(Π𝜉) is

𝑄 = 𝜕
(𝛼)
[𝑏,𝛼]+dℎ𝑏

+ 1
2
𝜕

(𝑏)
[𝑏,𝑏], [𝑄,𝑄] = 0 ⇐⇒ 𝑄2 = 0, (6.7)

where for each choice of respective indexes,

∙ 𝛼𝑘𝜇 is a parity-even coordinate along fibres in the bundle 𝜒 of g-valued one-forms,

∙ 𝑏𝑘 is a parity-odd fibre coordinate in the bundle Π𝜉,

∙ 𝑐𝑘𝑖𝑗 is a structure constant in the Lie algebra g so that [𝑏𝑖, 𝑏𝑗]𝑘 = 𝑏𝑖𝑐𝑘𝑖𝑗𝑏
𝑗 and [𝑏𝑖, 𝛼𝑗]𝑘 =

𝑏𝑖𝑐𝑘𝑖𝑗𝛼
𝑗,

∙ dℎ is the horizontal differential on the Whitney sum of infinite jet bundles,

∙ the operator 𝜕𝛼 = dℎ + [·, 𝛼] : 𝐽∞𝜒 (Π𝜉) ∼= 𝐽∞(𝜒×𝑀𝑛 Π𝜉)→ 𝐽∞Π𝜉(𝜒)
∼= 𝐽∞(𝜒×𝑀𝑛 Π𝜉)

is the anchor.

Proof. The anticommutator [𝑄,𝑄] = 2𝑄2 of the parity-odd vector field 𝑄 with itself is

again an evolutionary vector field. Therefore it suffices to prove that the coefficients of

𝜕/𝜕𝛼 and 𝜕/𝜕𝑏 are equal to zero in the vector field

𝑄2 =
(︁
𝜕

(𝛼)
[𝑏,𝛼]+dℎ𝑏

+ 1
2
𝜕

(𝑏)
[𝑏,𝑏]

)︁(︁
𝜕

(𝛼)
[𝑏,𝛼]+dℎ𝑏

+ 1
2
𝜕

(𝑏)
[𝑏,𝑏]

)︁
.

We have [𝑏, 𝑏]𝑘 = 𝑏𝑖𝑐𝑘𝑖𝑗𝑏
𝑗 by definition. Hence it is readily seen that (1

2
𝜕

(𝑏)

𝑏𝑖𝑐𝑘𝑖𝑗𝑏
𝑗)

2 = 0 because

g is a Lie algebra [122] so that the Jacobi identity is satisfied by the structure constants.

Since the bracket [𝑏, 𝑏] does not depend on 𝛼, we deduce that (𝜕
(𝛼)
[𝑏,𝛼]+dℎ𝑏

)(1
2
𝜕

(𝑏)
[𝑏,𝑏]) = 0.

Therefore,

𝑄2 =
(︁
𝜕

(𝛼)
[𝑏,𝛼]+dℎ𝑏

+ 1
2
𝜕

(𝑏)
[𝑏,𝑏]

)︁(︁
𝜕

(𝛼)
[𝑏,𝛼]+dℎ𝑏

)︁
= −𝜕 (𝛼)

[𝑏,[𝑏,𝛼]+dℎ𝑏]
+ 1

2
𝜕

(𝛼)
[[𝑏,𝑏],𝛼]+dℎ([𝑏,𝑏])

= 𝜕
(𝛼)

−[𝑏,[𝑏,𝛼]+dℎ𝑏]+
1
2
[[𝑏,𝑏],𝛼]+ 1

2
dℎ([𝑏,𝑏])

.

Now consider the expression −[𝑏, [𝑏, 𝛼] + dℎ𝑏] +
1
2
[[𝑏, 𝑏], 𝛼] + 1

2
dℎ([𝑏, 𝑏]), viewing it as a bi-

linear skew-symmetric map Γ(𝜉)×Γ(𝜉)→ Γ(𝜒). First, we claim that the value
(︀
1
2
[[𝑏, 𝑏], 𝛼]−
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[𝑏, [𝑏, 𝛼]]
)︀
(𝑝1, 𝑝2) at any two sections 𝑝1, 𝑝2 ∈ Γ(𝜉) vanishes identically. Indeed, by taking

an alternating sum over the permutation group of two elements we have that

1
2
[[𝑝1, 𝑝2], 𝛼]− 1

2
[[𝑝2, 𝑝1], 𝛼]−[𝑝1, [𝑝2, 𝛼]]+[𝑝2, [𝑝1, 𝛼]] = [[𝑝1, 𝑝2], 𝛼]−[𝑝1, [𝑝2, 𝛼]]−[𝑝2, [𝛼, 𝑝1]]

= −[𝛼, [𝑝1, 𝑝2]]− [𝑝1, [𝑝2, 𝛼]]− [𝑝2, [𝛼, 𝑝1] = 0.

At the same time, the value of bi-linear skew-symmetric mapping 1
2
dℎ([𝑏, 𝑏]) − [𝑏, dℎ𝑏] at

sections 𝑝1 and 𝑝2 also vanishes,

1
2
dℎ([𝑝1, 𝑝2])− 1

2
dℎ([𝑝2, 𝑝1])− [𝑝1, dℎ𝑝2]+ [𝑝2, dℎ𝑝1] = dℎ([𝑝1, 𝑝2])− [𝑝1, dℎ𝑝2]− [dℎ𝑝1, 𝑝2] = 0.

We conclude that

𝑄2
⃒⃒⃒
(𝑝1,𝑝2)

= 𝜕
(𝛼)

{−[𝑏,[𝑏,𝛼]+dℎ𝑏]+
1
2
[[𝑏,𝑏],𝛼]+ 1

2
dℎ([𝑏,𝑏])}(𝑝1,𝑝2) = 𝜕

(𝛼)
0 = 0,

which proves the theorem.

Finally, let us derive a reparametrization formula for the homological vector field 𝑄 in

the course of gauge transformations of zero-curvature representations. We begin with some

trivial facts [16, 35].

Lemma 4. Let 𝛼 be a g-valued zero-curvature representation for a PDE system. Consider

two infinitesimal gauge transformations given by 𝑔1 = 1+𝜀𝑝1+𝑜(𝜀) and 𝑔2 = 1+𝜀𝑝2+𝑜(𝜀).

Let 𝑔 ∈ 𝐶∞(ℰ∞, 𝐺) also determine a gauge transformation. Then the following diagram is

commutative,

𝛼𝑔
𝑔2−−−→ 𝛽⌃⎮⎮𝑔 ⌃⎮⎮𝑔

𝛼
𝑔1−−−→ 𝛼𝑔1 ,

if the relation 𝑝2 = 𝑔 · 𝑝1 · 𝑔−1 is valid.

Proof. By the lemma’s assumption we have that (𝛼𝑔1)𝑔 = (𝛼𝑔)𝑔2 . Hence we deduce that

𝑔 · (1+ 𝜀𝑝1) = (1+ 𝜀𝑝2) · 𝑔 ⇐⇒ 𝑔 · 𝑝1 = 𝑝2 · 𝑔,

which yields the transformation rule 𝑝2 = 𝑔 · 𝑝1 · 𝑔−1 for the g-valued function 𝑝1 on ℰ∞ in

the course of gauge transformation 𝑔 : 𝛼 ↦→ 𝛼𝑔.

Using the above lemma we describe the behaviour of homological vector field 𝑄 in the

non-Abelian variational setup of Theorem 8.

Corollary 1. Under a coordinate change

𝛼 ↦→ 𝛼′ = 𝑔 · 𝛼 · 𝑔−1 + 𝑑ℎ𝑔 · 𝑔−1, 𝑏 ↦→ 𝑏′ = 𝑔 · 𝑏 · 𝑔−1,

where 𝑔 ∈ 𝐶∞(𝑀𝑛, 𝐺), the variational Lie algebroid’s differential 𝑄 is transformed accord-

ingly:

𝑄 ↦−→ 𝑄′ = 𝜕
(𝛼′)
[𝑏′,𝛼′]+dℎ𝑏′

+ 1
2
𝜕

(𝑏′)
[𝑏′,𝑏′].
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6.2. The master-functional for zero-curvature representations

6.2 The master-functional for zero-curvature repre-

sentations

The correspondence between zero-curvature representations, i.e., classes of gauge-equiva-

lent solutions 𝛼 to the Maurer–Cartan equation, and non-Abelian variational Lie algebroids

goes in parallel with the BRST-technique, in the frames of which ghost variables appear

and gauge algebroids arise (see [6, 61]). Let us therefore extend the BRST-setup of fields 𝛼

and ghosts 𝑏 to the full BV-zoo of (anti)fields 𝛼 and 𝛼* and (anti)ghosts 𝑏 and 𝑏* (cf. [7,

8, 9, 46, 119]). We note that a finite-dimensional ‘forefather’ of what follows is discussed

in detail in [3], which is devoted to 𝑄- and 𝑄𝑃 -structures on (super)manifolds. Those

concepts are standard; our message is that not only the approach of [3] to 𝑄𝑃 -structures

on 𝐺-manifolds 𝑋 and Π𝑇 *
(︀
𝑋 × Π𝑇𝐺/𝐺

)︀
≃ Π𝑇 *𝑋 × g* × Πg remains applicable in the

variational setup of jet bundles (i.e., whenever integrations by parts are allowed, whence

many Leibniz rule structures are lost), but even the explicit formulas for the BRST-field 𝑄

and the action functional ̂︀𝑆 for the extended field ̂︀𝑄 are valid literally. In fact, we recover

the third and fourth equivalent formulations of the definition for a variational Lie algebroid

(cf. [3, 120] or a review [75]).

Let us recall from section 6.1 that 𝛼 is a tuple of even-parity fibre coordinates in the

bundle 𝜒 : Λ1(𝑀𝑛) ⊗ g → 𝑀𝑛 and 𝑏 are the odd-parity coordinates along fibres in the

trivial vector bundle Π𝜉 : 𝑀𝑛 × Πg → 𝑀𝑛. We now let all the four neighbours of the Lie

algebra g appear on the stage: they are g (in 𝜒), g*, Πg (in Π𝜉), and Πg* (see [122] and

reference therein). Let us consider the bundle Π𝜒* : D1(𝑀
𝑛) ⊗ Πg* → 𝑀𝑛 whose fibres

are dual to those in 𝜒 and also have the parity reversed.6 We denote by 𝛼* the collection

of odd fibre coordinates in Π𝜒*.

Remark 13. In what follows we do not write the (indexes for) bases of vectors in the fibres

of D1(𝑀
𝑛) or of covectors in Λ1(𝑀𝑛); to make the notation short, their couplings are

implicit. Nevertheless, a summation over such “invisible” indexes in 𝜕/𝜕𝑥𝜇 and d𝑥𝜈 is

present in all formulas containing the couplings of 𝛼 and 𝛼*. We also note that (𝛼*)
←−
dℎ is

a very interesting object because 𝛼* parametrizes fibres in D1(𝑀
𝑛) ⊗ Πg*; the horizontal

differential dℎ produces the forms d𝑥𝑖 which are initially not coupled with their duals from

D1(𝑀
𝑛). (However, such objects cancel out in the identity ̂︀𝑄2 = 0, see (6.11) on p. 95.)

Secondly, we consider the even-parity dual 𝜉* : 𝑀𝑛 × g* → 𝑀𝑛 of the odd bundle Π𝜉;

let us denote by 𝑏* the coordinates along g* in the fibres of 𝜉*.

Finally, we fix the ordering

𝛿𝛼 ∧ 𝛿𝛼* + 𝛿𝑏* ∧ 𝛿𝑏 (6.8)

6In terms of [3], the Whitney sum 𝐽∞(𝜒)×𝑀𝑛 𝐽∞(Π𝜒*) plays the rôle of Π𝑇 *𝑋 for a 𝐺-manifold 𝑋;

here g is the Lie algebra of a Lie group 𝐺 so that Πg ≃ Π𝑇𝐺/𝐺.
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of the canonically conjugate pairs of coordinates. By picking a volume form dvol(𝑀𝑛) on

the base𝑀𝑛 we then construct the odd Poisson bracket (variational Schouten bracket [[ , ]])

on the senior dℎ-cohomology (or horizontal cohomology) space 𝐻
𝑛
(𝜒×𝑀𝑛Π𝜒*×𝑀𝑛Π𝜉×𝑀𝑛

𝜉*); we refer to [63, 64] for a geometric theory of variations.

Theorem 9 ([68]). The structure of non-Abelian variational Lie algebroid from Theorem 8

is encoded on the Whitney sum 𝐽∞(𝜒×𝑀𝑛Π𝜒*×𝑀𝑛Π𝜉×𝑀𝑛𝜉*) of infinite jet (super)bundles

by the action functional

̂︀𝑆 =

∫︁
dvol(𝑀𝑛)

{︀
⟨𝛼*, [𝑏, 𝛼] + dℎ(𝑏)⟩+ 1

2
⟨𝑏*, [𝑏, 𝑏]⟩

}︀
∈ 𝐻𝑛

(𝜒×𝑀𝑛 Π𝜒* ×𝑀𝑛 Π𝜉 ×𝑀𝑛 𝜉*)

which satisfies the classical master-equation

[[̂︀𝑆, ̂︀𝑆]] = 0.

The functional ̂︀𝑆 is the Hamiltonian of odd-parity evolutionary vector field ̂︀𝑄 which is

defined on 𝐽∞(𝜒)×𝑀𝑛 𝐽∞(Π𝜒*)×𝑀𝑛 𝐽∞(Π𝜉)×𝑀𝑛 𝐽∞(𝜉*) by the equality

̂︀𝑄(ℋ) ∼= [[̂︀𝑆,ℋ]] (6.9)

for any ℋ ∈ 𝐻𝑛
(𝜒×𝑀𝑛 Π𝜒* ×𝑀𝑛 Π𝜉 ×𝑀𝑛 𝜉*). The odd-parity field is7

̂︀𝑄 = 𝜕
(𝛼)
[𝑏,𝛼]+dℎ(𝑏)

+ 𝜕
(𝛼*)

(𝛼*)
←−
ad*𝑏

+ 1
2
𝜕

(𝑏)
[𝑏,𝑏] + 𝜕

(𝑏*)

− ad*𝛼(𝛼
*)+(𝛼*)

←−
dℎ+ad*𝑏 (𝑏

*)
, (6.10)

where ⟨(𝛼*)
←−
ad*𝑏 , 𝛼⟩

def
= ⟨𝛼*, [𝑏, 𝛼]⟩ and ⟨ad*𝑏(𝑏*), 𝑝⟩ = ⟨𝑏*, [𝑏, 𝑝]⟩ for any 𝛼 ∈ Γ(𝜒) and 𝑝 ∈

Γ(𝜉). This evolutionary vector field is homological,

̂︀𝑄2 = 0.

Proof. In coordinates, the master-action ̂︀𝑆 =
∫︀ ̂︀ℒ dvol(𝑀𝑛) is equal to

̂︀𝑆 =

∫︁
dvol(𝑀𝑛)

{︀
𝛼*𝑎(𝑏

𝜇𝑐𝑎𝜇𝜈𝛼
𝜈 + dℎ(𝑏

𝑎)) + 1
2
𝑏*𝜇𝑏

𝛽𝑐𝜇𝛽𝛾𝑏
𝛾
}︀
;

here the summation over spatial degrees of freedom from the base 𝑀𝑛 in implicit in the

horizontal differential dℎ and the respective contractions with 𝛼*. By the Jacobi identity

for the variational Schouten bracket [[ , ]] (see [64]), the classical master equation [[̂︀𝑆, ̂︀𝑆]] = 0

7The referee points out that the evolutionary vector field ̂︀𝑄 is the jet-bundle upgrade of the cotangent

lift of the field 𝑄, which is revealed by the explicit formula for the Hamiltonian ̂︀𝑆. Let us recall that the

cotangent lift of a vector field 𝒬 = 𝒬𝑖 𝜕/𝜕𝑞𝑖 on a (super)manifold 𝑁𝑚 is the Hamiltonian vector field

on 𝑇 *𝑁𝑚 given by ̂︀𝒬 = 𝒬𝑖(𝑞) 𝜕/𝜕𝑞𝑖− 𝑝𝑗 · 𝜕𝒬𝑗(𝑞)/𝜕𝑞𝑖 𝜕/𝜕𝑝𝑖; its Hamiltonian is 𝒮 = 𝑝𝑖𝒬𝑖(𝑞). An example

of this classical construction is contained in the seminal paper [3].
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is equivalent to the homological condition ̂︀𝑄2 = 0 for the odd-parity vector field defined

by (6.9). The conventional choice of signs (6.8) yields a formula for this graded derivation,

̂︀𝑄 = 𝜕
(𝛼)

−�⃗� ̂︀ℒ/𝛿𝛼* + 𝜕
(𝛼*)

�⃗� ̂︀ℒ/𝛿𝛼 + 𝜕
(𝑏)

�⃗� ̂︀ℒ/𝛿𝑏* + 𝜕
(𝑏*)

−�⃗� ̂︀ℒ/𝛿𝑏,
where the arrows over 𝜕 and �⃗� indicate the direction along which the graded derivations

act and graded variations are transported (that is, from left to right and rightmost, re-

spectively). We explicitly obtain that8

̂︀𝑄 = 𝜕
(𝛼𝑎)
𝑏𝜇𝑐𝑎𝜇𝜈𝛼

𝜈+dℎ(𝑏𝑎)
+ 𝜕

(𝛼*
𝜈)

𝛼*
𝑎𝑏

𝜇𝑐𝑎𝜇𝜈
+ 𝜕

(𝑏𝜇)
1
2
𝑏𝛽𝑐𝜇𝛽𝛾𝑏

𝛾 + 𝜕
(𝑏*𝜇)

{−𝛼*
𝑎𝑐

𝑎
𝜇𝜈𝛼

𝜈+(𝛼*
𝜇)
←−
dℎ+𝑏*𝑎𝑐

𝑎
𝜇𝜈𝑏

𝜈}.

Actually, the proof of Theorem 8 contains the first half of a reasoning which shows whŷ︀𝑄2 = 0. (It is clear that the field ̂︀𝑄 consists of (6.7) not depending on 𝛼* and 𝑏* and of

the two new terms.) Again, the anticommutator [ ̂︀𝑄, ̂︀𝑄] = 2 ̂︀𝑄2 is an evolutionary vector

field. We claim that the coefficients of 𝜕/𝜕𝛼*𝜈 and 𝜕/𝜕𝑏*𝜇 in it are equal to zero.

Let us consider first the coefficient of 𝜕/𝜕𝛼* at the bottom of the evolutionary derivation

𝜕
(𝛼*)
{...} in ̂︀𝑄2; by contracting this coefficient with 𝛼 = (𝛼𝜈) we obtain

⟨𝛼*𝑎, 𝑏𝜆𝑐𝑎𝜆𝜇𝑏𝑞𝑐𝜇𝑞𝜈𝛼𝜈 − 1
2
𝑏𝛽𝑐𝜇𝛽𝛾𝑏

𝛾𝑐𝑎𝜇𝜈𝛼
𝜈⟩.

It is readily seen that 𝛼* is here coupled with the bi-linear skew-symmetric operator Γ(𝜉)×
Γ(𝜉)→ Γ(𝜒) for any fixed 𝛼 ∈ Γ(𝜒), and we show that this operator is zero on its domain

of definition. Indeed, the comultiple | ⟩ of ⟨𝛼*| is [𝑏, [𝑏, 𝛼]] − 1
2
[[𝑏, 𝑏], 𝛼] so that its value at

any arguments 𝑝1, 𝑝2 ∈ Γ(𝜉) equals

[𝑝1, [𝑝2, 𝛼]]− [𝑝2, [𝑝1, 𝛼]]− [1
2
[𝑝1, 𝑝2]− 1

2
[𝑝2, 𝑝1], 𝛼] = 0

by the Jacobi identity.

Let us now consider the coefficient of 𝜕/𝜕𝑏*𝜇 in the vector field ̂︀𝑄2,

−
[︀
𝛼*̃︀𝑎𝑏̃︀𝜇𝑐̃︀𝑎̃︀𝜇𝑎]︀ 𝑐𝑎𝜇𝜈𝛼𝜈 + 𝛼*𝑎𝑐

𝑎
𝜇𝜈

[︀
𝑏̃︀𝜇𝑐𝜈̃︀𝜇̃︀𝜈𝛼̃︀𝜈 + dℎ(𝑏

𝜈)
]︀
+
(︀[︀
𝛼*̃︀𝑎𝑏̃︀𝜇𝑐̃︀𝑎̃︀𝜇𝜇]︀)︀←−dℎ

+
[︁
−𝛼*̃︀𝑎𝑐̃︀𝑎𝑎̃︀𝜈𝛼̃︀𝜈 + (𝛼*𝑎)

←−
dℎ + 𝑏*̃︀𝑎𝑐̃︀𝑎𝑎̃︀𝜈𝑏̃︀𝜈

]︁
𝑐𝑎𝜇𝜈𝑏

𝜈 + 𝑏*𝑎𝑐
𝑎
𝜇𝜈 ·
[︁
1
2
𝑏
̃︀𝛽𝑐𝜈̃︀𝛽̃︀𝛾𝑏̃︀𝛾

]︁
;

here we mark with a tilde sign those summation indexes which come from the first copy

of ̂︀𝑄 acting from the left on 𝜕
(𝑏*𝜇)

{...} in ̂︀𝑄 ∘ ̂︀𝑄. Two pairs of cancellations occur in the terms

which contain the horizontal differential dℎ. First, let us consider the terms in which the

differential acts on 𝛼*. By contracting the index 𝜇 with an extra copy 𝑏 = (𝑏𝜇), we obtain

(𝛼*𝑎)
←−
dℎ 𝑏

𝜆𝑐𝑎𝜆𝜇𝑏
𝜇 + (𝛼*𝑎)

←−
dℎ 𝑐

𝑎
𝜇𝜆𝑏

𝜆𝑏𝜇. (6.11)

8Note that
⟨︀
𝛼*,
−→
dℎ (𝑏)

⟩︀ ∼= −⟨︀(𝛼*)
←−
dℎ , 𝑏

⟩︀
in the course of integration by parts, whence the term (𝛼*

𝜇)
←−
dℎ

that comes from −�⃗� ̂︀ℒ/𝛿𝑏𝜇 does stand with a plus sign in the velocity of 𝑏*𝜇.
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Due to the skew-symmetry of structure constants 𝑐𝑘𝑖𝑗 in g, at any sections 𝑝1, 𝑝2 ∈ Γ(𝜉) we

have that

(𝛼*𝑎)
←−
dℎ ·

(︀
𝑝𝜆1𝑐

𝑎
𝜆𝜇𝑝

𝜇
2 − 𝑝𝜆2𝑐𝑎𝜆𝜇𝑝

𝜇
1 + 𝑐𝑎𝜇𝜆𝑝

𝜆
1𝑝

𝜇
2 − 𝑐𝑎𝜇𝜆𝑝𝜆2𝑝

𝜇
1

)︀
= 0.

Likewise, a contraction with 𝑏 = (𝑏𝜇) for the other pair of terms with dℎ, now acting on 𝑏,

yields

𝛼*𝑎 𝑐
𝑎
𝜇𝜆 dℎ(𝑏

𝜆)𝑏𝜇 + 𝛼*𝑎 dℎ(𝑏
𝜆) 𝑐𝑎𝜆𝜇𝑏

𝜇. (6.12)

At the moment of evaluation at 𝑝1 and 𝑝2, expression (6.12) cancels out due to the same

mechanism as above.

The remaining part of the coefficient of 𝜕/𝜕𝑏*𝜇 in ̂︀𝑄2 is

− 𝛼*𝑧𝑏𝜆𝑐𝑧𝜆𝑎𝑐𝑎𝜇𝜈𝛼𝜈 + 𝛼*𝑧𝑐
𝑧
𝜇𝜈𝑏

𝑖𝑐𝜈𝑖𝑗𝛼
𝑗 − 𝛼*𝑧𝑐𝑧𝑎𝜈𝛼𝜈𝑐𝑎𝜇𝑗𝑏𝑗

+ 𝑏*𝜆𝑐
𝜆
𝑎𝛾𝑏

𝛾𝑐𝑎𝜇𝑗𝑏
𝑗 + 𝑏*𝜆𝑐

𝜆
𝜇𝛾 · 12𝑏

𝛽𝑐𝛾𝛽𝛿𝑏
𝛿. (6.13)

It is obvious that the mechanisms of vanishing are different for the first and second lines

in (6.13) whenever each of the two is regarded as mapping which takes 𝑏 = (𝑏𝜇) to a number

from the field k. Therefore, let us consider these two lines separately.

By contracting the upper line of (6.13) with 𝑏 = (𝑏𝜇), we rewrite it as follows,

⟨−𝛼*𝑧, 𝑏𝜆𝑐𝑧𝜆𝑎𝑐𝑎𝜇𝜈𝛼𝜈𝑏𝜇 − 𝑐𝑧𝜇𝜈𝑏𝑖𝑐𝜈𝑖𝑗𝛼𝑗𝑏𝜇 + 𝑐𝑧𝑎𝜈𝛼
𝜈𝑐𝑎𝜇𝑗𝑏

𝑗𝑏𝜇⟩.

Viewing the content of the co-multiple | ⟩ of ⟨−𝛼*| as bi-linear skew-symmetric mapping

Γ(𝜉)× Γ(𝜉)→ Γ(𝜒), we conclude that its value at any pair of section 𝑝1, 𝑝2 ∈ Γ(𝜉) is

[𝑝2, [𝑝1, 𝛼]]− [𝑝1, [𝑝2, 𝛼]] + [[𝑝1, 𝑝2], 𝛼]

− [𝑝1, [𝑝2, 𝛼]] + [𝑝2, [𝑝1, 𝛼]]− [[𝑝2, 𝑝1], 𝛼] = 0− 0 = 0,

because each line itself amounts to the Jacobi identity.

At the same time, the contraction of lower line in (6.13) with 𝑏 = (𝑏𝜇) gives

⟨𝑏*𝜆, 𝑐𝜆𝑎𝛾𝑏𝛾𝑐𝑎𝜇𝑗𝑏𝑗𝑏𝜇 + 𝑐𝜆𝜇𝛾 · 12𝑏
𝛽𝑐𝛾𝛽𝛿𝑏

𝛿𝑏𝜇⟩.

The term | ⟩ near ⟨𝑏*| determines the tri-linear skew-symmetric mapping Γ(𝜉) × Γ(𝜉) ×
Γ(𝜉)→ Γ(𝜉) whose value at any 𝑝1, 𝑝2, 𝑝3 ∈ Γ(𝜉) is defined by the formula∑︁

𝜎∈𝑆3

(−)𝜎
{︁[︀

[𝑝𝜎(1), 𝑝𝜎(2)], 𝑝𝜎(3)
]︀
+
[︀
𝑝𝜎(1),

1
2
[𝑝𝜎(2), 𝑝𝜎(3)]

]︀}︁
.

This amounts to four copies of the Jacobi identity (indeed, let us take separate sums over

even and odd permutations). Consequently, the tri-linear operator at hand, hence the

entire coefficient of 𝜕/𝜕𝑏*, is equal to zero so that ̂︀𝑄2 = 0.
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6.2. The master-functional for zero-curvature representations

Let us sum up the geometries we are dealing with. We started with a partial differential

equation ℰ for physical fields; it is possible that ℰ itself was Euler–Lagrange9 and it could

be gauge-invariant with respect to some Lie group. We then recalled the notion of g-valued

zero-curvature representations 𝛼 for ℰ ; here g is the Lie algebra of a given Lie group 𝐺

and 𝛼 is a flat connection’s 1-form in a principal 𝐺-bundle over ℰ∞. By construction, this

g-valued horizontal form satisfies the Maurer–Cartan equation

ℰMC =
{︀
dℎ𝛼

.
= 1

2
[𝛼, 𝛼]

}︀
(6.3)

by virtue of ℰ and its differential consequences which constitute ℰ∞. System (6.3) is always

gauge-invariant so that there are linear Noether’s identities (6.5) between the equations;

if the base manifold 𝑀𝑛 is three-dimensional, then the Maurer–Cartan equation ℰMC is

Euler–Lagrange with respect to action functional (6.6). The main result of this chapter (see

Theorem 9 on p. 94) is that –whenever one takes not just the bundle 𝜒 for g-valued 1-forms

but the Whitney sum of four (infinite jet bundles over) vector bundles with prototype fibers

built from g, Πg, g*, and Πg* – the gauge invariance in (6.3) is captured by evolutionary

vector field (6.10) with Hamiltonian ̂︀𝑆 that satisfies the classical master-equation [3, 38],

ℰCME =
{︀
𝑖~Δ̂︀𝑆 ⃒⃒~=0

= 1
2
[[̂︀𝑆, ̂︀𝑆]]}︀. (6.1)

We notice that, by starting with the geometry of solutions to Maurer–Cartan’s equa-

tion (6.3), we have constructed another object in the category of differential graded Lie

algebras [74]; namely, we arrive at a setup with zero differential 𝑖~Δ
⃒⃒
~=0

and Lie (super-

)algebra structure defined by the variational Schouten bracket [[ , ]]. That geometry’s gen-

uine differential at ~ ̸= 0 is given by the Batalin–Vilkovisky Laplacian Δ (see [7, 8] and [63]

for its definition). Let us now examine whether the standard BV-technique ([7, 8, 46],

cf. [21]) can be directly applied to the case of zero-curvature representations, hence to

quantum inverse scattering ([116] and [77], also [31, 37]).

It is obvious that the equations of motion ℰ upon physical fields 𝑢 = 𝜑(𝑥) co-exist

with the Maurer-Cartan equations satisfied by zero-curvature representations 𝛼. The ge-

ometries of non-Abelian variational Lie algebroids and gauge algebroids [6, 61] are two

manifestations of the same construction; let us stress that the respective gauge groups can

be unrelated: there is the Lie group 𝐺 for g-valued zero-curvature representations 𝛼 and,

on the other hand, there is a gauge group (if any, see footnote 9) for physical fields and

their equations of motion ℰ = {𝛿𝑆0/𝛿𝑢 = 0}.
9The class of admissible models is much wider than it may first seem; for example, the Korteweg–

de Vries equation 𝑤𝑡 = − 1
2𝑤𝑥𝑥𝑥 + 3𝑤𝑤𝑥 is Euler–Lagrange with respect to the action functional 𝑆0 =∫︀ {︀

1
2𝑣𝑥𝑣𝑡 −

1
4𝑣

2
𝑥𝑥 − 1

2𝑣
3
𝑥

}︀
d𝑥 ∧ d𝑡 if one sets 𝑤 = 𝑣𝑥. In absence of the model’s own gauge group, its

BV-realization shrinks but there remains gauge invariance in the Maurer–Cartan equation.
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Chapter 6. Non-Abelian variational Lie algebroids

We recalled in section 6 that the Maurer–Cartan equation ℰMC itself is Euler–Lagrange

with respect to functional (6.6) in the class of bundles over threefolds, cf. [2, 3, 124].

One obtains the Batalin–Vilkovisky action by extending the geometry of zero-curvature

representations in order to capture Noether’s identities (6.5). It is readily seen that the

required set of Darboux variables consists of

∙ the coordinates ℱ along fibres in the bundle g* ⊗ Λ2(𝑀3) for the equations ℰMC,

∙ the antifields ℱ † for the bundle Πg⊗Λ1(𝑀3) which is dual to the former and which

has the opposite Z2-valued ghost parity,10 and also

∙ the antighosts 𝑏† along fibres of g* ⊗Λ3(𝑀3) which reproduce syzygies (6.5), as well

as

∙ the ghosts 𝑏 from the dual bundle Πg×𝑀3 →𝑀3.

The standard Koszul–Tate term in the Batalin–Vilkovisky action is then ⟨𝑏,𝜕†𝛼(𝛼†)⟩: the

classical master-action for the entire model is then11

(𝑆0 + ⟨BV-terms⟩) + (𝑆MC + ⟨Koszul-Tate⟩);

the respective BV-differentials anticommute in the Whitney sum of the two geometries for

physical fields and flat connection g-forms.

The point is that Maurer–Cartan’s equation (6.3) is Euler–Lagrange only if 𝑛 = 3; how-

ever, the system ℰMC remains gauge invariant at all 𝑛 > 2 but the attribution of (anti)fields

and (anti)ghosts to the bundles as above becomes ad hoc if 𝑛 ̸= 3. We therefore propose

to switch from the BV-approach to a picture which employs the four neighbours g, Πg, g*,

and Πg* within the master-action ̂︀𝑆. This argument is supported by the following fact [51]:

let 𝑛 > 3 for 𝑀𝑛, suppose ℰ is nonoverdetermined, and take a finite-dimensional Lie al-

gebra g, then every g-valued zero-curvature representation 𝛼 for ℰ is gauge equivalent to

zero (i.e., there exists 𝑔 ∈ 𝐶∞(ℰ∞, 𝐺) such that 𝛼 = dℎ𝑔 · 𝑔−1). It is remarkable that Mar-

van’s homological technique, which contributed with the anchor 𝜕𝛼 to our construction of

non-Abelian variational Lie algebroids, was designed for effective inspection of the spectral

10The co-multiple |ℱ⟩ of a g-valued test shift ⟨𝛿𝛼| with respect to the Λ3(𝑀3)-valued coupling ⟨ , ⟩ refers
to g* at the level of Lie algebras (i.e., regardless of the ghost parity and regardless of any tensor products

with spaces of differential forms). This attributes the left-hand sides of Euler–Lagrange equations ℰMC

with g* ⊗ Λ2(𝑀3). However, we note that the pair of canonically conjugate variables would be 𝛼 for

g⊗Λ1(𝑀3) and 𝛼† for Πg*⊗Λ2(𝑀3) whenever the Maurer–Cartan equations ℰMC are brute-force labelled

by using the respective unknowns, that is, if the metric tensor 𝑡𝑖𝑗 is not taken into account in the coupling

⟨𝛿𝛼,ℱ⟩.
11We recall that the Koszul–Tate component of the full BV-differential 𝐷BV is addressed in [121] by

using the language of infinite jet bundles — whereas it is the BRST-component of 𝐷BV which we focus

on in this chapter.
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6.2. The master-functional for zero-curvature representations

parameters’ (non)removability at 𝑛 = 2 but not in the case of higher dimensions 𝑛 > 3 of

the base 𝑀𝑛.

We conclude that the approach to quantisation of kinematically integrable systems is

not restricted by the BV-technique only; for one can choose between the former and, e.g.,

flat deformation of (structures in) equation (6.1) to the quantum setup of (6.2). It would

be interesting to pursue this alternative in detail towards the construction of quantum

groups [31] and approach of [77, 116] to quantum inverse scattering and quantum integrable

systems. This will be the subject of another research.
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Summary

This thesis is devoted to the construction of deformations of equations and structures in

nonlinear problem mathematical physics. We consider such objects as Gardner’s defor-

mations, families of nonlocalities, and families of zero-curvature representation (ZCR) for

partial differential equations (PDE). Their properties and applications are analysed in de-

tail. A general motivation to study deformation problems in the context of nonlinear PDE

is as follows. First, such deformations yield recurrence relations between the Hamiltonians

of PDE hierarchies. Second, we use the deformations as starting points for construction of

new integrable systems and hierarchies.

We present two solutions of Mathieu’s problem of constructing Gardner’s deformations

for the 𝑁=2 supersymmetric 𝑎=4-Korteweg–de Vries equation (SKdV). Our first solution

is this: On the one hand, we prove the nonexistence of supersymmetry-invariant polyno-

mial Gardner’s deformations that retract to Gardner’s formulas for the Korteweg-de Vries

equation (KdV) under the component reduction. On the other hand, we propose a two-step

scheme for the recursive production of integrals of motion for the 𝑁=2, 𝑎=4-SKdV. First,

we find a new Gardner’s deformation of the Kaup–Boussinesq equation, which is contained

in the bosonic limit of the super-hierarchy. This yields the recurrence relation between

the Hamiltonians of the limit, whence we determine the bosonic super-Hamiltonians of the

full 𝑁=2, 𝑎=4-SKdV hierarchy. Our method is applicable towards the solution of Gard-

ner’s deformation problems for other supersymmetric KdV-type systems. This solution is

presented in Chapters 2 and 3 and our paper [JMP10].

To construct the alternative solution, we study the relation between Gardner’s deforma-

tions and zero-curvature representations. We generalise Marvan’s method for inspecting the

(non)removability of spectral parameters under gauge transformations in zero-curvature

representations to the case of Z2-graded PDE. Using this technique, we prove that the

parameter in ZCR constructed by Das et al. for 𝑁= 2, 𝑎=4-SKdV is nonremovable. By

tracking the relations between zero-curvature representations and Gardner’s deformations,
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we construct the second solution of the deformation problem for the 𝑁=2 supersymmetric

𝑎=4 Korteweg–de Vries equation. Namely, we show that the zero-curvature representation

found by Das et al. yields a system of new nonlocal variables such that their derivatives

contain the Gardner deformation for the classical KdV equation. In turn, from this system

of nonlocalities we derive the Gardner’s deformation for 𝑁=2 supersymmetric 𝑎=4 Korte-

weg–de Vries equation. This solution and generalisations of Marvan’s method are described

in Chapters 4 and 5 and in [JPM12] and [1301.7143]. Likewise we obtain the Gardner’s de-

formation for the Krasil’shchik–Kersten system from a zero-curvature representation found

for it by Karasu–Kalkanli et al..

We consider in detail a link between deformation techniques for two types of flat struc-

tures over Z2-graded equations, namely, their matrix zero-curvature representations and

the construction of their parametric families by using the Frölicher–Nijenhuis bracket for-

malism developed by Krasil’shchik et al. In particular, in Chapter 5 and [1301.7143] we

illustrate the generation and elimination of parameters in such structures.

Gardner’s deformations have other important applications. We re-address the problem

of construction of new infinite-dimensional completely integrable systems on the basis

of known ones, and we reveal a working mechanism for such transitions. By splitting

the problem’s solution in two steps, we explain how the classical technique of Gardner’s

deformations facilitates – in a regular way – making the first, nontrivial move, in the course

of which the drafts of new systems are created (often, of hydrodynamic type). The other

step then amounts to higher differential order extensions of symbols in the intermediate

hierarchies (e.g., by using the techniques of Dubrovin et al. and Ferapontov et al.). In

particular we show that Gardner’s deformation from the Kaup–Boussinesq equation yields

the Kaup–Newell system. This technique is described in Chapter 2 and our paper [JPCS14].

In the context of kinematic integrability, which we address first through realisations

of Gardner’s deformations in terms of Lie algebra-valued flat connections, we associate

Hamiltonian homological evolutionary vector fields –which are the non-Abelian variational

Lie algebroids’ differentials– with zero-curvature representations for PDE. This result is

described in Chapter 6 and our paper [JNMP14]. It relates the line of this research to

the geometry of quantum inverse scattering (well know for the seminal works by Drinfel’d,

Manin, and Faddeev’s school including Reshetiknin et al.)
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Samenvatting

Deformaties van vergelijkingen en structuren in niet-lineaire pro-

blemen uit de mathematische fysica

Dit proefschrift behandelt de constructie van deformaties van niet-lineaire partiële diffe-

rentiaalvergelijkingen (PDVs) en structuren in de mathematische fysica. We beschouwen

objecten zoals Gardner’s deformaties, “nonlocalities”, en families van kromming nul re-

presentaties bij PDVs. Een gedetailleerde analyse van hun eigenschappen en toepassingen

wordt daarbij gegeven. Een algemene motivatie om deformatieproblemen in de context

van niet-lineaire PDVs te bestuderen, ziet er als volgt uit. Ten eerste geven zulke defor-

maties aanleiding tot recurrentierelaties tussen de Hamiltonianen van PDV hierarchieën.

Ten tweede gebruiken we de deformaties als startpunt bij de constructie van nieuwe inte-

greerbare systemen en hierarchieën.

We presenteren twee oplossingen voor het probleem van Mathieu: dit vraagt naar het

construeren van Gardner’s deformaties voor de 𝑁=2 supersymmetrische 𝑎=4-Korteweg–

De Vries vergelijking (SKdV). Onze eerste oplossing werkt als volgt. Enerzijds bewijzen

we dat een supersymmetrie-invariante polynomiale Gardner’s deformatie, die bovendien

onder reductie van componenten aanleiding geeft tot de standaard Gardner formules voor

de Korteweg–De Vries vergelijking, niet bestaat. Anderzijds geven we een uit twee stap-

pen bestaande methode waarmee recursief bewegingsintegralen voor de 𝑁=2, 𝑎=4-SKdV

worden geproduceerd. Hiermee vinden we een nieuwe Gardner’s deformatie van de Kaup–

Boussinesq vergelijking, die bevat is in de bosonische limiet van de super-hierarchie. Dit

geeft aanleiding tot de recurrente betrekking tussen de Hamiltonianen van de limiet, waar-

uit we dan de bosonische super-Hamiltonianen van de volledige 𝑁=2, 𝑎=4-SKdV hierarchie

bepalen. Onze methode is ook toepasbaar bij het mogelijk oplossen van Gardner’s defor-

matieproblemen voor andere supersymmetrische KdV-achtige systemen. Deze oplossing

wordt beschreven in de hoofdstukken 2 en 3 en eveneens in het artikel [JMP10].
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Voor de constructe van een alternatieve oplossing bestuderenen we de relatie tussen

Gardner’s deformaties en representaties met kromming nul. We generaliseren de methode

van Marvan waarmee bepaald wordt of spectrale parameters met behulp van ijktransfor-

maties al of niet kunnen worden geëlimineerd, naar het geval van Z2-gegradeerde PDVs.

Gebruikmakend van deze techniek bewijzen we dat de door Das et al. geconstrueerde para-

meter in representaties met kromming nul voor de 𝑁=2, 𝑎=4-SKdV niet geëlimineerd kan

worden. Door de verbanden tussen representaties met kromming nul, en Gardner’s defor-

maties langs te lopen, construeren we nu de tweede oplossing voor het deformatieprobleem

bij de 𝑁=2 supersymmetrische 𝑎=4 Korteweg–De Vries vergelijking. Namelijk, eerst to-

nen we aan dat de kromming nul representatie gevonden door Das et al. aanleiding geeft

tot een nieuw systeem van niet-locale variabelen met de eigenschap, dat hun afgeleiden de

Gardner deformatie voor de klassieke KdV vergelijking bevatten. Vervolgens leiden we uit

dit systeem van ‘non-localities’ de Gardner’s deformatie af voor de 𝑁=2 supersymmetri-

sche 𝑎=4 Korteweg–De Vries vergelijking. Deze oplossing en generalisaties van Marvan’s

methode staan beschreven in de hoofdstukken 4 en 5 en ook in [JPM12] en [1301.7143]. Op

een zelfde manier krijgen we de Gardner’s deformatie bij het Krasil’shchik-Kersten systeem

vanuit een kromming nul representatie die hierbij gevonden was door Karasu-Kalkanli et

al.

We geven een gedetailleerde beschouwing van een verband tussen deformatietechnieken

voor twee types platte structuren over Z2-gegradeerde vergelijkingen, namelijk hun matrix

kromming nul representaties en de constructie van hun parametrische families met behulp

van het formalisme van het Frölicher-Nijenhuis haakje zoals ontwikkeld door Krasil’shchik

et al. In het illustreren we het toevoegen en elimineren van parameters in dergelijke

structuren, dit gebeurt in Hoofdstuk 5 en in [1301.7143].

Gardner’s deformaties hebben nog andere belangrijke toepassingen. We beschouwen

opnieuw het probleem van het construeren van nieuwe oneindig dimensionale volledig in-

tegreerbare systemen gebaseerd op reeds bekende, en we geven een werkend mechanisme

hiervoor. Door de oplossing van het probleem op te delen in tweeën leggen we uit, hoe de

klassieke techniek van Gardner’s deformaties het mogelijk maakt om – op een reguliere ma-

nier – de eerste niet-triviale stap te zetten op weg naar de ontwikkeling van nieuwe systemen

(in veel gevallen van een hydrodynamisch type). De resterende stap komt dan neer op het

uitbreiden tot hogere differentiale ordes van symbolen in de tussenliggende hierarchieën

(bijvoorbeeld gebruikmakend van technieken van Dubrovin et al. en van Ferapontov et

al.). In het bijzonder tonen we aan dat Gardner’s deformatie vanuit de Kaup-Boussinesq

vergelijking resulteert in het Kaup–Newell systeem. Deze techniek wordt beschreven in

Hoofdstuk 2 en in ons artikel [JPCS14].

In de context van kinematische integreerbaarheid, waarop we eerst ingaan vanuit het

realiseren van Gardner’s deformaties in termen van platte connecties met waarden in een

Lie-algebra, associëren we Hamiltoniaanse homologische evolutionaire vectorvelden –dit
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zijn de niet-Abelse variationele differrentialen van een Lie-algebroid– met representaties van

kromming nul voor PDVs. Dit wordt gedaan in Hoofdstuk 6 en in het artikel [JNMP14].

Het geeft een verband tussen het onderzoek in dit proefschrift en de meetkunde van quan-

tum inverse scattering (bekend door het baanbrekende werk van Drinfel’d, Manin, en de

school van Faddeev waaronder Reshetiknin et al.)
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Краткое содержание

Деформации уравнений и структур в нелинейных задачах ма-
тематической физики

Диссертация посвящена задаче построения деформаций уравнений и структур в нели-
нейных задачах математической физики. В работе рассмотрены такие объекты, как
деформации по Гарднеру и параметрические семейства нелокальностей или представ-
лений нулевой кривизны дифференциальных уравнений в частных производных. В
данной работе детально рассмотрены их свойства и приложения. Причины для изу-
чения таких деформаций состоят в следующем. Во-первых, с их помощью можно по-
лучить рекуррентные соотношения на сохраняющиеся гамильтонианы иерархии диф-
ференциальных уравнений в частных производных. Во-вторых, деформации можно
использовать как отправную точку для построения новых интегрируемых систем и
иерархий.

В диссертации найдены два решение задачи П. Матье о построении деформа-
ции по Гарднеру для 𝑁=2 суперсимметричного 𝑎=4 уравнения Кортевега–де Фриза
(СКдФ). Первое решение таково. Во-первых, доказано, что не существует полино-
миальной суперсимметрично-инвариантной деформации по Гарднеру для уравнения
𝑁=2, 𝑎=4-СКдФ такой, что она содержала бы в редукции деформацию по Гард-
неру для классического уравнения Кортевега–де Фриза (КдФ). Но в то же время,
построена новая деформация по Гарднеру для уравнения Каупа–Буссинеска. Урав-
нение Каупа–Буссинеска содержится в иерархии бозоного предела уравнения 𝑁=2,
𝑎=4-СКдФ. Деформация по Гарднеру уравения Каупа–Буссинеска задаёт рекуррент-
ные соотношения между гамильтонианами бозонного предела, которые, в свою оче-
редь, определяют супергамильтонианы уравнения 𝑁=2, 𝑎=4-СКдФ. Рассмотренный
метод также применим к решению задачи деформации других суперсимметричных
уравнений КдФ-типа. Первому решению задачи П. Матье посвящены главы 2 и 3 и
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работа [JMP10].
Построению альтернативного решения предшествует детальное изучение связи

между деформациями по Гарднеру и представлениями нулевой кривизны. В рабо-
те обобщен на Z2-градуированный случай разработанный М. Марваном метод про-
верки (не)устранимости параметра относительно калибровочных преобразований в
представлениях нулевой кривизны дифференциальных уравнений в частных произ-
водных. Используя этот метод, мы доказали, что параметр в построенном А. Дасом
и др. представлении нулевой кривизны для уравнения 𝑁=2, 𝑎=4-СКдФ неустраним
калибровочными преобразованиями. Прослеживая связь между представлениями ну-
левой кривизны и деформациями по Гарднеру, мы строим второе решение задачи
П. Матье. Показано, что представление нулевой кривизны, найденное А. Дасом и
др., задает систему новых нелокальных переменных — такую, что она содержит в
редукции деформацию по Гарднеру уравнения КдФ. На основе этой системы нело-
кальных переменных построена деформация по Гарднеру для уравнения 𝑁=2, 𝑎=4-
СКдФ. Это решение и обобщение метода М. Марвана описано в главах 4 и 5 данной
диссертации, статье [JMP12] и препринте [1301.7143]. Использую аналогичную техни-
ку, нам также удалось построить деформацию по Гарднеру для системы уравнений
Красильщика–Керстена на основе его представления нулевой кривизны, найденного
Карасу–Калканлы и др.

В главе 5 и препринте [1301.7143] рассмотрены соотношения между техниками
деформации двух типов плоских структур над Z2-градуированными дифференциаль-
ными уравнениями в частных производных: их матричными представлениями нуле-
вой кривизны и параметрическими семействами накрытий, деформируемых скобкой
Фрёлихера–Нийенхейнса (как описано И. С. Красильщиком и др.). В частности, в гла-
ве 5 и препринте [1301.7143] мы иллюстрируем процедуру порождения и ликвидации
параметров в подобных структурах.

Деформации по Гарднеру имеют также и другие важные применения: например,
при решении задачи построения новых интегрируемых систем. Разбивая решение дан-
ной проблемы на два этапа, мы указываем, как классические деформации по Гарднеру
помогают в её решении. На первом шаге деформации по Гарднеру могут служить ис-
точником “заготовок” новых систем (обычно — гидродинамического типа). На этапе
расширения символов промежуточных иерархий могут быть использованы подходы,
разработанные Дубровиным, Ферапонтовым и др. В частности, используя описанный
метод, из деформации по Гарднеру уравнения Каупа–Буссинеска можно получить
систему уравнений Каупа–Ньюэлла. Эти результаты приведены в главе 2 данной дис-
сертации и работе [JPCS14].

В главе 6 установлено соответствие между гамильтоновыми гомологическими эво-
люционными векторными полями, реализующими структуру неабелевых вариацион-
ных алгеброидов Ли (и соответствующих дифференциалов) на пространствах беско-
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нечных струй суперрасслоений, — и, с другой стороны, представлениями нулевой кри-
визны с коэффициентами в заданной алгебре Ли для дифференциальных уравнений
в частных производных. Эти результаты приведены в статье [JNMP14]; они связыва-
ют проведённое выше исследование с геометрией квантового метода обратной задачи
рассеяния (в том виде, в котором он известен из основополагающих работ В. Г. Дрин-
фельда, Ю. И. Манина и школы Л. Д. Фаддеева, в частности, Н. Ю. Решетихина).

Главы данной диссертации основаны на следующих статьях в международных ре-
цензируемых журналах и одном препринте.

[JMP10] Hussin V., Kiselev A. V., Krutov A. O., Wolf T. (2010) 𝑁=2 supersymmetric

𝑎=4-KdV hierarchy derived via Gardner’s deformation of Kaup–Boussinesq equation,

J. Math. Phys. 51:8, 083507, 19 c. arXiv:0911.2681 [nlin.SI]

[JMP12] Kiselev A. V., Krutov A. O. (2012) Gardner’s deformations of the graded Korte-

weg–de Vries equations revisited, J. Math. Phys. 53:10, 103511, 18 c. arXiv:1108.2211

[nlin.SI]

[JNMP14] Kiselev A. V., Krutov A. O. (2014) Non-Abelian Lie algebroids over jet spaces,

J. Nonlin. Math. Phys. 21:2, 188-213. arXiv:1305.4598 [math.DG]

[JPCS14] Kiselev A. V., Krutov A. O. (2014) Gardner’s deformations as generators of new

integrable systems, J. Phys. Conf. Ser. 482, Proc. Int. workshop ‘Physics and Math-

ematics of Nonlinear Phenomena’ (June 22–29, 2013; Gallipoli (LE), Italy), 012021. –

6 c. arXiv:1312.6941 [nlin.SI]

[1301.7143] Kiselev A. V., Krutov A. O. (2014) On the (non)removability of spectral

parameters in Z2-graded zero-curvature representations and its applications. – 22 c.

Preprint arXiv:1301.7143v2 [math.DG]

Полученные результаты были доложены диссертантом на следующих конферен-
циях:

∙ Третья международная конференция ‘Nonlinear Waves — Theory and Applications’,
Пекин, КНР (12–15 июня 2013 г.).

∙ Международная конференция ‘Supersymmetries & Quantum Symmetries’ – SQS’2013,
ОИЯИ, Дубна, РФ (29 июля – 3 августа 2013 г.).

∙ Международная конференция ‘Geometric Structures in Integrable Systems’, МГУ
им. Ломоносова, Москва, РФ (30 октября – 2 ноября 2012 г.) (постер).

125



∙ Международная научная конференция студентов, аспирантов и молодых учёных
“Ломоносов-2014” МГУ им. Ломоносова, Москва, РФ (8–12 апреля 2013 г.) (семи-
нар “Алгебраическая топология и её приложения“, рук. чл.-корр. проф. д.ф.-м.н.
В. М. Бухштабер).

∙ Международная конференция ‘Computer-analytical methods in control theory and
mathematics physics’, Сочи, РФ ( 3–10 мая 2013 г.).

∙ Юбилейная конференция ‘Nonlinear Mathematical Physics: 20 Years of JNMP’,
Sophus Lie Centre, Nordfjørdeid, Норвегия ( 4–14 июня 2013 г.) (постер).

Часть данного исследование выполнена во время стажировки диссертанта в матема-
тическом институте университета г. Утрехта (Нидерланды) в 2009 г.
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