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Chapter 1

Introduction

Many processes in Nature can be described by using partial differential equations (PDEs).
For instance, heat transfer is modelled by using the heat equation. In its simplest form, one
denotes by h(x,t) the temperature at a point x and a time ¢. The heat equation h; = hy,
balances the rate of change of h(z,t) with respect to the time ¢ and the change in the rate of
change with respect to the position . This equation is an example of a linear PDE but there
are many phenomena that require nonlinear equations. It was a great discovery around
1967-68 that some classes of nonlinear PDEs can be solved effectively. The Korteweg—
de Vries equation (describing waves in shallow water) provides a well-studied example
of exactly solvable nonlinear PDE. Such equations are very important and the range of
their applicability is exceptionally wide (e.g., they describe waves in a canal, tsunami’s,
propagation of light in nonlinear optics, and much more). For PDEs that encode processes
in Nature, knowledge of physical conservation laws and symmetries is important for study
of their properties. This interrelation between physics and mathematics leads to a beautiful
and exciting area of research, to which this thesis intends to contribute. A crucial idea in
this thesis is the concept of smooth deformation. Via synthesis of old and new geometric
techniques we resolve Mathieu’s problem, which was a long-standing open problem in the
geometry of exactly solvable nonlinear PDEs.

The geometry of PDEs was born in the seminal works by Lie [89, 90], Bécklund [5],
Monge [104], Darboux [27], Bianchi [11], and E. Cartan [20]. Cartan’s ideas were pursued
by Spencer and his school [44, 117] in the 1960’s. In essence, this branch if geometry aims
to put PDEs and their solutions in a geometrical framework. For example, an equation
such as h; = h,, is interpreted as a hypersurface in 6-dimensional space with coordinates
(x,t, h, hy, by, hyy) and some additional structures related to the derivatives. Ehresmann
introduced the definition of jet spaces in [36]. This is an infinite-dimensional analogue of
the above idea, with coordinates corresponding to all higher derivatives 9*h/0x*. This
concept was developed later by Ovsiannikov [107] and others [48, 118]. The discovery
of integrability [102] and Hamiltonian interpretation of integrability [91] (see also [37,
127]) were a great contribution to the geometry of PDEs. Another crucial fact was the
understanding that integrable systems admit infinite series of higher symmetries [12, 79,
106]. A symmetry of a given PDE is a particular type of map sending solutions of the
PDE to solutions. For example, any constant ¢ yields the symmetry h — h + ¢ of the heat
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equation h; = h,,. Zakharov and Shabat constructed a new method for solving nonlinear
PDE in [128] based on the core idea of Gel’'fand, Levitan, and Marchenko. Later Ablowitz,
Kaup, Newell, and Segur generalised this approach [1].

The deformation approach is an important tool in the study of PDE. Gardner’s defor-
mations are an example of such concept. By definition, Gardner’s deformation is a family
of pairs consisting of deformation of equation and Miura’s map which takes solutions of
deformed equation to solutions of original equation. Using Gardner’s deformation, one can
recover recurrence relation between the Hamiltonians of a given PDE.

This thesis is devoted to solution of Mathieu’s deformation problem for the N=2 su-
persymmetric a=4 Korteweg—de Vries equation (SKdV); the problem is to find integrable
deformation for the N=2, a=4-SKdV that would reproduce its conservation laws. This
problem was formulated by Mathieu in 1991 in [84]. Various attempts to solve it were
undertaken since then but progress was limited.

The main results of the thesis are as follows:

1. There is no supersymmetry-invariant scaling-homogeneous polynomial Gardner’s de-
formation for the N=2 supersymmetric a=4 Korteweg—de Vries equation such that
under reduction this deformation would contain the classical Gardner deformation
for the Korteweg—de Vries equation.

2. The super-Hamiltonians of the N=2 supersymmetric a=4 Korteweg—de Vries equa-
tion can be derived from the Hamiltonians of the Kaup—Boussinesq equation, and
there is an explicit procedure for doing that.

3. For the Kaup—Boussinesq equation, there is a non-trivial Gardner’s deformation that
retracts under reduction to the classical Gardner formulas for the Korteweg-de Vries
equation.

Secondly, we track the relations between zero-curvature representation for PDEs and Gard-
ner’s deformations in Zy-graded setup. This allows us to construct the second solution of
Mathieu’s deformation problem for the N=2, a=4-SKdV equation.

4. Marvan’s technique for inspection of nonremovablity of spectral parameter in Lie
algebra-valued zero-curvature representations for partial differential equations is gen-
eralised to the Zs-graded case.

5. The parameter in zero-curvature representation found by Das et al. for the N=2 su-
persymmetric a=4 Korteweg—de Vries equation is nonremovable. This zero-curvature
representaion yields a non-trivial Gardner’s deformation for the N=2, a=4-SKdV
equation.



6. The zero-curvature representation found by Karasu—Kalkanli, Sakovich and Yurdugen
determines a non-trivial Gardner’s deformation for Krasil’shchik—Kersten system.

7. Zero-curvature representations give rise to a natural class of non-Abelian variational
Lie algebroids.

This thesis is devoted to the Korteweg—de Vries equation,

Ur2;t = —U12002 — 6“12”12;907 (11)

and its generalizations [102]. We consider the completely integrable, multi-Hamiltonian
evolutionary N=2 supersymmetric Korteweg—de Vries equation

—1 J d
Uy = Uy + 3(uDi Do) + o (DiDpw?) 4 By, Dy= 0o, (12)

for a scalar, complex bosonic N=2 superfield
’LL(I, t, 01, 92) = Uo(flf, t) + 01 . Ul(ﬂf, t) + 92 . U,Q(I, t) —I— 0192 . Ulg(l‘, t),

where 6, and 0, are Grassmann variables satisfying 62 = 03 = 0,0 + 6560, = 0.

The SKdV equation is most interesting (in particular, bi-Hamiltonian, whence com-
pletely integrable) if a € {—2,1,4}, see [60, 84]. Let us consider the bosonic limit (or
bosonic part),

up = ug =0, (1.3)

of system N=2 SKdV equation in components (3.5): by setting a = —2 we obtain the
triangular system which consists of the modified KdV equation upon ug and the equation
of KdV-type; in the case a = 1 we obtain the Krasil’'shchik—Kersten system; for a = 4, we
obtain a higher symmetry of the Kaup—Boussinesq equation,

Ug,e = (—Um + QU%) Uy2;6 = (U'O;a:z + 4U0U12)x~ (1.4)

x’

Let us briefly list the content of chapters in this thesis.

In Chapter 2 we study Gardner’s deformations for classical (non-graded) equations.
We construct new Gardner’s deformation of the Kaup—Boussinesq equation; the new fam-
ily contains Gardner’s deformation of KdV equation under reduction. Using this new
Gardner’s deformation for the Kaup-Boussinesq equation, we obtain recurrence formulas
for the Hamiltonians of this equation. We prove that this new Gardner’s deformation is
non-trivial, i.e., it generates infinitely many non-trivial Hamiltonians. Indeed, we prove
that every second Hamiltonian obtained by these formulas is non-trivial. We show also
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that Gardner’s deformations can be considered as an initial point for construction of new
integrable systems. In particular, we derive the Kaup—Newell equation from the Gardner
deformation for the Kaup—Boussinesq equation.

In Chapter 3 we consider Gardner’s deformations for supersymmetric equations. We
present our first solution of Gardner deformation problem formulated by Mathieu for the
N=2 supersymmetric a=4 Korteweg—de Vries equation (SKdV). On the one hand, we prove
non-existence of supersymmetry-invariant scaling-homogeneous polynomial Gardner’s de-
formation for the N=2, a=4-SKdV equation in super-fields such that the deformation
would retract to Gardner’s formulas for the KdV equation. On the other hand, we propose
a two-step scheme for recursive production of integrals of motion for the N=2, a=4-SKdV.
New Gardner’s deformation of the Kaup—Boussinesq equation, which is contained in the
bosonic limit of the super-hierarchy, yields the recurrence relation between the Hamilto-
nians of the limit, whence we determine the bosonic super-Hamiltonians of the full N=2,
a=4-SKdV hierarchy.

Chapter 4 is devoted to Lie algebra-valued zero-curvature representations for Z,-graded
partial differential equations (PDE). We generalise to Zs-graded setup Marvan’s technique
for inspection of nonremovability of spectral parameter in zero-curvature representations.
We prove that cohomological interpretation of this result works also in the Zs-graded case.
We prove that the parameter in zero-curvature representation for N=2, a=4-SKdV found
by Das et al. is nonremovable.

In Chapter 5 we consider Gardner’s deformations and zero-curvature representation in
context of differential covering over PDE (known also as systems of nonlocalities). We stress
that Gardner’s deformations, zero-curvature representations, and covering over PDE are
different realisations of one object. We illustrate a link between deformation techniques
of two types, namely, Marvan’s technique for inspection of nonremovability of spectral
parameters in zero-curvature representations and Frolicher—Nijenhuis bracket formalism
developed by Krasil’shchik et al. Using this relation between zero-curvature representations
and Gardner’s deformations, we construct the second solution of deformation problem for
the N=2, a=4-SKdV equation. We prove that the zero-curvature representation found by
Das et al. yields the covering (i.e., a system of nonlocalities) that under reduction contains
Gardner’s deformation for the KdV equation as well as Gardner’s deformation for the
N=1 supersymmetric Korteweg—de Vries equation (sKdV). We study the (non)removability
of parameters under gauge and other types of transformations in matrix zero-curvature
representations, as well as in nonlocal structures which were introduced by Gardner or
Sasaki for the classical Korteweg—de Vries equation and which were constructed by Das et
al. [28] for the N=2, a=4-SKdV equation.

In Chapter 6 we show that zero-curvature representation for PDE give rise to a natural
class of non-Abelian variational Lie algebroids. We realise non-Abelian variational Lie
algebroids via BRST-like homological Hamiltonian vector field on superbundles. This
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relates the research to the geometry of quantum inverse scattering. Let us recall here that
Berezin developed new super-mathematics with an eye towards its applications in quantum
mechanics and statistical physics [10, 86, 87].

The results obtained in this thesis are related to research of the following scientific
schools. Recently, Krasil’shchik et al. developed cohomological deformation theory that
describes infinitesimal behaviour of families of nonlocalites over PDEs. We use this ap-
proach intensively in Chapter 5. Independently from each other, Marvan and Sakovich
developed a method for inspection of (non)removability of parameters in zero-curvature
representations for PDEs. We generalise this method to the Z,-graded case in Chap-
ter 4 and we use this generalisation for solving Gardner’s deformation problem for the
N=2, a=4-SKdV equation. Thirdly, Dubrovin et al. and Ferapontov developed novel ap-
proaches for construction of new integrable systems on the basis of known ones, focusing
also on the global structure of the space of integrable systems. In Chapter 2 we describe
a regular way of obtaining initial data for those approaches and we comment on the adja-
cency relations between integrable systems in the arising moduli spaces. Finally, we recall
that Faddeev and his school contributed fundamentally to the concept of quantum inverse
scattering method; we approach their scheme in Chapter 6. The results of this thesis may
also be interesting to specialists in supersymmetry (e.g. supergravity) and to experts in
superintegrability in the sense of Winternitz.

The chapters of this thesis are based directly on recent peer-review articles and one
preprint.

e Chapter 2 is based on the articles [JMP10, JPCS14].

Chapter 3 is based on the article [JMP10].

Chapter 4 is based on the preprint [1301.7143].

Chapter 5 is based on the article [JMP12] and preprint [1301.7143].

Chapter 6 is based on the article [JNMP14].

[JMP10] Hussin V., Kiselev A. V., Krutov A. O., Wolf T. (2010) N=2 supersymmetric
a=4-KdV hierarchy derived via Gardner’s deformation of Kaup—Boussinesq equation,
J. Math. Phys. 51:8, 083507, 19 p. arXiv:0911.2681 [nlin.ST]

[IMP12] Kiselev A. V., Krutov A. O. (2012) Gardner’s deformations of the graded Korte-
weg—de Vries equations revisited, J. Math. Phys. 53:10, 103511, 18 p. arXiv:1108.2211
[nlin.ST]

[INMP14] Kiselev A. V., Krutov A. O. (2014) Non-Abelian Lie algebroids over jet spaces,
J. Nonlin. Math. Phys. 21:2, 188-213. arXiv:1305.4598 [math.DG]
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[JPCS14] Kiselev A. V., Krutov A. O. (2014) Gardner’s deformations as generators of new
integrable systems, J. Phys. Conf. Ser. 482, Proc. Int. workshop ‘Physics and Mathe-
matics of Nonlinear Phenomena’ (June 22-29, 2013; Gallipoli (LE), Italy), 012021, 6 p.
arXiv:1312.6941 [nlin.SI|

[1301.7143] Kiselev A. V., Krutov A. O. (2014) On the (non)removability of spectral
parameters in Zs-graded zero-curvature representations and its applications. — 22 p.
Preprint arXiv:1301.7143v2 [math.DG]|



Chapter 2
Gardner’s deformations of non-graded
equations

Let us first briefly recall some definitions (see [12, 62, 106] and [94] for detail); this material
is standard so we now fix the notation.

2.1 The geometry of infinite jet space J*(m)

Let M™ be a smooth real n-dimensional orientable manifold. Consider a smooth vector
bundle 7: E"*™ — M™ with m-dimensional fibres and construct the space J* () of infinite
jets of sections for 7. Let pk be a set of local sections s € I'(m) such that s is vanish in
Ty € M" together with its derivatives with order less or equal k:

pho={seT(m)|3Ir el(m): s=(x —x0) 1}.
Consider the equivalence classes of (local) sections at a point xg

o (1) = T (7).

The jet space J*(m) of k-th jets of sections for the vector bundle 7 is the union

Ty = | Ja(m)

xogEM™
The infinite jet space J*°(7) is the projective limit,

J(r) = lim JE(m).

k—+o00

A convenient organization of local coordinates is as follows: let 2 be some coordinate
system on a chart in the base M™ and denote by 1/ the coordinates along a fibre of the
bundle 7 so that the variables v/ play the role of unknowns; one obtains the collection . of
jet variables along fibres of the vector bundle J® () — M™ (here |o| > 0 and ul, = /). (In
particular, we have n = 2, m = 1, 2! = z, 2% = ¢, u! = w5 for the KdV equation (1.1) and
n=2m=2 2" =z, 22 =& u' = ups, u* = up for the Kaup-Boussinesq equation (1.4).)
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Chapter 2. Gardner’s deformations of non-graded equations

We define the ring of smooth function on J*°(w) as inductive limit
C®(J®(m)) = {f: J®(r) = R | Ik € N such that f € C=(J"(r))}.

In this setup, the total derivatives D, are commuting vector fields

0 j _0
Dyi = gz + Zuai oul,
7,0

on J*(m). We also denote total derivatives by %. We will use both notations and will
not make any distinction between them.
Consider a system of partial differential equations

Ez{FZ(xi,uj,... ul,...) =0, le,...,r<oo};

) o

without any loss of generality for applications we assume that the system at hand sat-
isfies mild assumptions which are outlined in [62, 106]. Then the system £ and all its
differential consequences D, (F*) = 0 (thus presumed existing, regular, and not leading to
any contradiction in the course of derivation) generate the infinite prolongation £ of the
system &.

Let us denote by D,: the restrictions of total derivatives D,: to £ C J>®(wr). We recall
that the vector fields D,: span the Cartan distribution C in the tangent space TE>. At
every point 8°° € £°° the tangent space Ty E> splits in a direct sum of two subspaces. The
one which is spanned by the Cartan distribution £% is horizontal and the other is vertical:
Ty E = Cooo @ Vygoo&™. We denote by A'0(£*) = AnnC and A% (E°) = Ann VE™ the
C>°(€>°)-modules of contact and horizontal one-forms which vanish on C and VE>, respec-
tively. Denote further by A"(£°°) the C*°(£°°)-module of r-forms on £>°. There is a natural
decomposition A"(E*) = @, ,_, API(E®), where API(E%) = AP ALO(E%) A ATAMH(E®).
This implies that the de Rham differential d on £°° is subjected to the decomposition d =
dj,+de, where dj,: AP(£%) — AP9+1(£%) is the horizontal differential and d¢: AP9(E%) —
APTL4(£%) is the vertical differential. In local coordinates, the differential d;, acts by the

rule
d, = del A sz

We will use this formula in what follows. By definition, we put A(£*) = @ 0 AI(E)
and we denote by H n() the senior dj-cohomology groups (also called senior horizontal
cohomology) for the infinite jet bundles which are indicated in parentheses, cf. [63].

We denote f(z, [uf]) = f(x!, ... 2™ b, . .u™ul, .. ul) for |o| < k(f).

) x?

A conserved current 7 for the system £ is the continuity equation
n
ZDxi(m) =0on &,
i=1

8



2.2. Gardner’s deformations

where = denotes equality upon a system & and n;(z?, [u’]) are the coefficients of the hori-
zontal (n — 1)-form,

n= Z(_l)i-‘rlni - dat AL A &:;z A.. . Ndz" e j_\n_l(ﬂ')’
i=1

(2

where da® denotes omitted element. The coefficient nt is called conserved density and
coefficients n?, ..., n" are called flur components. The conservation of 7 is the equality

c_lh|5007] =0 on &”.

A conservation law [ € H" () for an equation £ is the equivalence class of conserved
currents 17, modulo the globally defined exact currents d¢ € /0 (i.e. two conservation laws
n and 1 are equivalent if their difference is a exact form n; — 7y = dé).

The vector field
. m a
o =3"Y :Dﬂ(cp)auj

J=1|o|>0

is the evolutionary derivation along the fibre of the infinite jet bundle J*>°(7) — M™ over
the vector bundle 7 with fibre variables u. The m-tuple ¢ = (¢!, ..., ¢™) € I'(T) Qoo (am)
C>(J>(m)) is the generating section of &(p“). By construction, the generating section of
¢ is a section of the induced vector bundle 7% (7): E™™ X ym J®(w) — J(7); here we
implicitly use the fact that 7: E"™ — M™ is a vector bundle and hence the tangent space
at the points of its fibres are the fibres themselves (otherwise, the construction would be
p € I'(w? (Tr)) for a fibre bundle 7). We denote s(m) = I'(7% (7)) for brevity.

oo

The restriction of evolutionary vector field aé,“) on £% is called an infinitesimal symme-
try (see [12, 42, 62]) of the equation & = {F' = 0}/_, if the determining equations

O (FYy=0, 1=1,...m

hold by virtue of equation £.

2.2 Gardner’s deformations

Definition 1 ([59, 82, 101]). Let & = {u; = f(z,[u])} be a system of evolution equations
(in particular, a completely integrable system). Suppose E(¢) = {u; = f.(z,[a],e) | f: €
im d%} is a deformation of £ such that at each point € € Z of an interval Z C R there is
the Miura contraction m. = {u = u([u],e)}: E(¢) — €. Then the pair (£(g), m.) is the
(classical) Gardner deformation for system &.

9



Chapter 2. Gardner’s deformations of non-graded equations

Under the assumption that £(g) be in the form of a (super-)conserved current, the
Taylor coefficients @® of the formal power series @ = Z+°O i®) . eF are termwise conserved
on &(e) and hence on €. Therefore, the contraction m. yields the recurrence relations,
ordered by the powers of ¢, between these densities @), while the equality £(0) = &

specifies its initial condition.

Example 1 ([102]). The contraction
m. = {U12 = 1112 + Eﬂlg;x — 8211%2} (21&)
maps solutions w2(z, t; €) of the extended equation &(¢),

al?;t + (ﬂ12;x7; + 3,&%2 - 252 U?Q) = O, (21b)

to solutions wuja(z,t) of Korteweg—de Vries equation (1.1). Plugging the series w0 =
ZOB ng) - ¢¥ into the expression m. for @, we obtain the chain of equations ordered

by the powers of ¢,

U12—§ U12 e"+a 12x' E U12U12'
k=0

i+j=k
1,520

Let us fix the plus sign in (2.1a) by reversing ¢ — —¢ if necessary. Equating the coefficients
of €¥, we obtain the relations

_ ~0) _ &), ~(0) =¥ 4 gD _
U= Uy, 0=ty + Uy, 0=1upy + 1233 Z U12U12 . k>2
i+j=k—2
4,520

e e .. ~(0 . ..
Hence, from the initial condition u§2) = u19, We recursively generate the densities

~(1) ~(2) 2 ~(3)

U9 = —UI2:z, Uyg = U12;22 — U9, U9 = —U12;z2x + 4“12;ru127

~(4) _ 2 3
Uy = U124z — OUI2 0 U2 — 5U12;x + 2u,,

~(5) _ 2
Uyy = —U12;50 + U122 U12 + 18UI2,02 U112, — 16U 2,7y,

~(6) _ 2 2 2 4
Uy = Ur2,60 — 10U1240U12 — 28Ur9000 U120 — 19UTy 4, + 30UI2 22Uty + HOUTy U2 — DUyy,

~(7) _ 2
Uy = —U12,75 + 12U12;50U12 + 40U12.45 U125 + 68U12:250U12,00 — 48U12:222U7o

— 216U12;me12;IU12 — 6011112;33 + 64U12;mu127 etc.

The conservation 2, = %(-) implies that each coefficient ug? is conserved on (1.1).

The densities ugk) =c(k)-uk,+ ..., c(k) = const, determine the Hamiltonians HE’;) =
S hgg) [u12] dz of the renowned KdV hierarchy. Let us show that all of them are nontrivial.
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2.2. Gardner’s deformations

Consider the zero-order part i}y such that @ ([u2], €) = @557 (w2, €) + ..., where the

dots denote summands containing derivatives of wui5. Taking the zero-order component

151V satisfies the algebraic recurrence

dVl

of (2.1a), we conclude that the generating function

relation uy, = a1V —¢ ( Il<2dv) We choose the root by the initial condition 4}

= U2,
which yields

kv — (1 - m>/(252). (2.2)

: o (k - y
Moreover, the Taylor coefficients @ (u12) in @58V = 3772 4 . £2* equal ¢(k) - uf5?, where

c(k) are positive and grow with k. This is readily seen by induction on k with the base

v (0) VKAV

5 = u12. Expanding both sides of the equality us = XY — &2 (ﬂﬁdv)Z in 2, we notice

that
Sooal al = Y eli)es) - ubdt.
i+j=k—1, i+j=k—1
1,720

Therefore, the next coefficient, c(k) = >, ;i) - ¢(j), is the sum over i,j > 0 of
products of positive numbers, whence ¢(k + 1) > ¢(k) > 0. This proves the claim.

Let us list the densities h%fc)w ~ ugk) mod imd/dz of the first seven Hamiltonians
for (1.1). These will be correlated in section 3.5 with the lowest seven Hamiltonians

for (1.2), see [84] and (3.12) below. We have

1 _ 2 2 _ 5,3 2 3 (3)

hicay = Ui, hay = 2uiy — Uiy, + 2ufy + Ui, hicay = DUy + DUigaglisy + Uiy, -
(4) 5 2 2 2

thV = 14“12 + 7OU12U12;I + 14u12u12;xa:a:u12;x + u12;zzg37

hgv = 42u?2 — 420u§’2u§2;m + 9uf2u12;6$ + 126u§2u§2;m + uf2;4x — 7u:132;m — 35u‘112;m,

&y = 1056ul, — 18480ulyul,., + 7392udu2, ., + 55u2tins, — 1584uyuly .,
+ 66u12UTgy, + 3520U12UTy y, — 6160u12UTy., — 8UTy.s, + 3696UT,,,UTs.,

h( kay = 15444}, — 432432ufyul,, . 4004U7 YUy 265 + 216216U]yUT,, ax T 2145u3 U198,
— A5760U3 Uy, 40, + 3861uiyuly., + 133848udyul,,, — 360360ui,uly,,

— 936u12UTy.5, + 36UTng + 6552UTg 4 U19:00 + T20T2U 000 Uy, — 28314y,

At the same time, the densities ug%ﬂ) = ddx () ~ 0 are trivial (i.e. for all k& € N exists
Gok+1 € C®(E>) such that ul%ﬂ) = L gokt1). Indeed, for wy = o ugk) 2% and
Wy = Z:S ung) 52 such that @ = wg + € - wy, we equate the odd powers of € in (2.1a)

and obtain w; = 52 I log(l — 2¢ wo)

In what follows, using deformation (2.1) of (1.1), we fix the coefficients of differential
monomials in w5 within a bigger deformation problem (see section 2.3) for two-component
system (3.10).
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Chapter 2. Gardner’s deformations of non-graded equations

2.3 New deformation of the Kaup—Boussinesq equa-
tion

In this section we construct a new Gardner’s deformation for the Kaup—Boussinesq equa-
tion (1.4), which is the bosonic limit of the N=2 supersymmetric system (3.8). We will
use known deformation (2.1) to fix several coefficients in the Miura contraction m,, which
ensures the difference of the new solution (2.3)—(2.4) from previously known deformations
of (1.4), see [52]. We prove that the new deformation is maximally nontrivial: It yields
infinitely many nontrivial conserved densities, and none of the Hamiltonians is lost.

Let us summarize well-known properties of the Kaup—Boussinesq equation [54, 56, 105]:

Proposition 1 ([56]). Completely integrable Kaup—Boussinesq system (1.4) is a tri-Ha-
miltonian equation

Uo i12 ((0/6ug / 2 1,2 1,2
=A 2 — SUTy — 5Ug,
<U12>5 1 (5/5U12) < [ UpU12 2U12 Quo,az] dl’)
N ~ [ 0/dug /
=AY — =A — .
! <5/(SU12) ( / ks d$> 2 (5/(5U12 ( 2 dx)
The senior Hamiltonian operator Ay is

d 2 d d 1(d)\3
( Uge + 2Up 3 U122 — AUglUoe — 2uf 3 + 2u12 3 + 3 (@)
_ 9,2 d d 1 (dyd _ d _»yd _ 43 _ (d)3 '
U12;z 2U0 dz + 2U12 dz + 2 (d:c) 4UOU12 dz 4dx O UpU12 U (dx) (da:) © U

The junior Hamiltonian operators 121(1) and A%Z are obtained from A, by the shifts of the
respective fields, c.f. [29, 115]:

d d

A(l) _ @ —2Up;e — 2Up 3, 5| = 1 . i AQ

—2uy f—x —2u1;p — 4o % - (%) 2 dMop luoka
and
. o 4 1 d -
12 dx —

A= (i 0) 2 du = +p

dx p=0 T

The three operators A9, A2, and A, are Poisson compatible (i.e. their linear combination
MAY + X Al2 + \3Ay are Hamiltonian operator).

Kaup—-Boussinesq equation (1.4) admits an infinite sequence of integrals of motion. We
will derive them via the Gardner deformation. Unlike it was in [52], from now on we always
assume that (2.1a) is recovered under @, := 0.

12



2.3. New deformation of the Kaup—Boussinesq equation

The Magri scheme for Kaup—Boussinesq equation is following

3 t3=t Bosonic limit of SKdAV

*go
¥
/
hy = uug —— 3
X
=% 4

oty =¢ Kaup-Boussinesq equation

th==x translation w.r.t. x

/
)

ho = ug (0

We assume that both the extension £(g) of (1.4) and the contraction m.: £(¢) — &£
into (1.4) are homogeneous polynomials in €. From now on, we denote reduction (1.4)
by £.

First, let us estimate the degrees in e for such polynomials £(¢) and m., by balancing
the powers of € in the left- and right-hand sides of (1.4) with uy and uy5 replaced by the
Miura contraction m, = {uo = uo([&o, U2, 5), Uy = ulg([ﬂo, U12), 5) } The time evolution
in the left-hand side, which is of the form u; = 81%) (m.) by the chain rule, sums the degrees
in e: degus = degm. + deg&(e). At the same time, we notice that system (1.4) is only
quadratic-nonlinear. Hence its right-hand side, with m. substituted for uy and uqo, gives

13



Chapter 2. Gardner’s deformations of non-graded equations

the degree 2 x degm,, irrespective of deg £ (). Consequently, we obtain the balance! 1 : 1
for max degm. : maxdeg&(¢). This is in contrast with the balance 1 : 2 for polynomial

deformations of bosonic limit (3.10) for initial SKAV system (1.2), which is cubic-nonlinear?

(c.f. [84]).

Obviously, a lower degree polynomial extension £(¢) contains fewer undetermined coef-
ficients. This is the first profit we gain from passing to (3.8) instead of (1.2). By the same
argument, we conclude that m.: £(¢) — &, viewed as the algebraic system upon these
coefficients, is only quadratic-nonlinear w.r.t. the coefficients in m. (and, obviously, linear
w.r.t. the coefficients in £(¢); this is valid for any balance degm. : deg&(e)). Hence the
size of this overdetermined algebraic system is further decreased.

Second, we use the unique admissible homogeneity weights for Kaup-Boussinesq sys-
tem (1.4),

]uo\ = 1, ”LL12| = 2, |d/d§‘ = 2,

here |d/dz| = 1 is the normalization. The Miura contraction m. = {ug = @ig+¢- (...),
Uiy = @1p + € - (...)}, which we assume regular at the origin, implies that |io| = 1 and
|tiza] = 2 as well. We let || = —1 be the difference of weights for every two successive
Hamiltonians for the N=2, a=4-SKdV hierarchy, see [84] and (3.12) below. In this setup,
all functional coefficients of the powers £* both in £(g) and m. are homogeneous differential
polynomials in wug, w12, and their derivatives w.r.t. x. It is again important that the
time ¢ of weight |d/d¢| = 2 in (3.8) precedes the time ¢ with |d/d¢| = 3 in the hierarchy
of (1.2), where |6;] = —1 and |u| = 1. As before, we have further decreased the number of
undetermined coefficients.

The polynomial ansatz for Gardner’s deformation of (1.4) is generated by the procedure
GenSSPoly with SSTooOLs [73, 126]. We thus obtain the determining system m.: E(g) — .
Using SsTooLs and CRACK, we split it to the overdetermined system of algebraic equa-
tions, which are linear w.r.t. £(¢) and quadratic-nonlinear w.r.t. m.. Moreover, we claim
that this system is triangular. Indeed, it is ordered by the powers of ¢, since the determin-
ing system is identically satisfied at zeroth order and because equations at lower orders
of ¢ involve only the coefficients of its lower powers from m. and &(¢).

Thirdly, we use the deformation (2.1) of the Korteweg—de Vries equation [102]. We
recall that

e Miura’s contraction m. is common for all two-component systems of the Kaup—
Boussinesq hierarchy;

IThis estimate is rough and can be improved by operating separately with the components of m.
and &(¢) since, in particular, Kaup—Boussinesq system (1.4) is linear in uqs.

2Reductions other than (1.3) can produce quadratic-nonlinear subsystems of cubic-nonlinear sys-
tem (1.2), e.g., if one sets ug = 0 and us = 0, see (3.13) on p. 38.

14



2.3. New deformation of the Kaup—Boussinesq equation

e for any a, the bosonic limit of (1.2), see (3.5) and (3.10), incorporates Korteweg—de
Vries equation (1.1).

Using (2.1a), we fix those coefficients in m. which depend only on w5 and its derivatives,
but not on wug or its derivatives. Apparently, we discard the knowledge of such coefficients
in the extension of bosonic limit (3.10), since for us now it is not the object to be deformed.
But the minimization of the algebraic system, which we have achieved by passing to (3.8),
is so significant that this temporary loss in inessential. Furthermore, the above reasoning
shows that the recovery of the coefficients in the extension £(e) amounts to solution of
linear equations, while finding the coefficients in m. would cost us the necessity to solve
nonlinear algebraic systems. We managed to fix some of those constants for granted.

We finally remark that the normalization of at least one coefficient in the deformation
problem cancels the redundant dilation of the parameter €, which, otherwise, would remain
until the end. This is our fourth simplification.?

We let the degrees deg m. = deg £(g) be equal to four (c.f. [84]). Under this assumption,
the two-component homogeneous polynomial extension £(g) of system (1.4) contains 160
undetermined coefficients. At the same time, the two components of the Miura contrac-
tion m. depend on 94 coefficients. However, we decrease this number by nine, setting the
coefficient of 9., equal to +1 and, similarly, to —1 for @3, (see (2.1a), where the + sign
is absorbed by ¢ — —¢). Likewise, we set equal to zero the seven coefficients of 19,4,
U12U1 20, U2izaa, Uy, Uloys U12U12:00, AN U12igaes N M,

The resulting algebraic system with the shortened list of unknowns and with the auxil-
iary list of nine substitutions is handled by SSTOOLS and then solved by using CRACK [125].

Theorem 1 ([47]). Under the above assumptions, the Gardner deformation problem for
Kaup—Boussinesq equation (1.4) has a unique real solution of degree 4. The Miura con-
traction m. is given by

Uy = ﬂ/(] + gao;m - 282’&12’27,0, (23&)
U2 = Tz + € (g — 20l ) + &7 (4lin2Ug — Uy — gy, ) + 4 U2l lio, — 46U, T,
(2.3b)
The extension E(¢) of (1.4) is
lgye = — e + dulion + 26 (Totio,)  — 4% (Gfur2) (2.4a)
Ui = Uoigae + 4(Totinz) | — 26 (oo ) , — 4% (T0UTy) - (2.4b)

System (2.4) preserves the first Hamiltonian operator AS = ( q /(:m d/(;i x) from A2 for (1.4).

3There is one more possibility to reduce the size of the algebraic system: this can be achieved by a
thorough balance of the differential orders of m. and & ().
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Chapter 2. Gardner’s deformations of non-graded equations

The Miura contraction m. is shared by all equations in the Kaup—Boussinesq hierarchy.
Solving the linear algebraic system, we find the extension (limp E§iiy ) () for the bosonic
limit (3.10) of (1.2) with a=4:

o = —ogee — 6(@otiz), + 120310, + 126 (@3tio,) , + 6% (ligtdy — 42T + Tolid,))
+ &% ((—24) oty ) | + € (2403,7) (2.5a)
7112;15 - _ﬂ12;xxz - 6ﬂ12ﬂ12;$ + 12(120@12):5 + 6u0u0;x:cz + 12&0;zxa0;x

~ ~ ~9 ~
+ 6¢ (U(] zzU0;z — 2U0'Ll,12 z)

2
+ 262 (u12 — 18u12u0 6U12Uo U0 — 3u12u0$ — 6UyU12.5Uo; x)

+ 2463 (ulgugum;x) + 24¢* (u12u0) (2.5b)
~ _ Nt ~(k) Lk _ Nt ~( ) Lok
Now we expand the fields tg(e) = > ;20 4y - €" and Ua(e) = > ;20 Uyy - €7, and plug

. N " 0 ~(0
the formal power series for uy and 12 in m.. Hence we start from u(()) = ug and ug; =

u12, which is standard, and proceed with the recurrence relations between the conserved

densities u(()k) and u§'§),

ﬂ(()l) = —Upyz, ﬂ(()n) = — n Rt Z 2u1§)u§f . Vn > 2;
jt+k=n—2

~(1) ~(2) 2 2 2
Uy = 2UgUoy — Ur2e, Ujy = Uy + Ur2e — 412Uy — g, — 4UgUous,

~(3 ~(7) d ~(k) ~(2 k) ~(J ~(k
a®) = ZQ(] (—di()JrZ(Ufz)u(u d_uéj))(dxé))>

j+k=2 ]—i—k 1
Z 4u12 Uo Uo — dur2up Uz,
jHk+=1
~(n ~(j ~(k
52) = di Uy G Z 2u (] Uo = Z 12“12 d%(u(()]))%(u(())))
Jj+k=n—1 j+k=n—2
LY il - Y el
j+k+Hl=n—2 J+k+l=n—-3

+ Z 49 a® g alm. Vn > 4.
tk++m=n—4

Example 2. Following this recurrence, let us generate the eight lowest weight nontriv-
ial conserved densities, which start the tower of Hamiltonians for the Kaup—Boussinesq
hierarchy.

We begin with 11(()0) = ug and ﬁgg) = u12. Next, we obtain the densities

~(2)

~(2) _ _ 2 2 2
Uy~ = Upszx + 2uOul% Uy = _4u0;acacu0 - 3uo;x + U122 — 4U0U,12 + U9,

which contribute to the tri-Hamiltonian representation of (1.4), see Proposition 1. Now
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2.3. New deformation of the Kaup—Boussinesq equation

we proceed with

_(4) 2 2 3 2
Uy = Updz — 12Ugzaty + OUgzzttrz — 18uguo + 10ug U122 + 6222 U0 — Suguaz + Guguyy,

11%) = —8uUguztio — 20Ug.zrpUor — 13U, AT ooy — A8Ug.ppUoUz + 72u0 Jus — 38u§;xu12 —
— 80U U12,0U0 + Ur24z — 24U12,00UG + BUI2aa 12 + BUTg,, + 16ugurs — 24uguty + 2uf,,
ﬂ(()G) = U6, — 40Ug,4,uf + 10Ug.ar 12 — 200U, ppp oo + 28Ug.gartiing — 130U, 2z U0 —
— 198wy muo o T 38U0z2U12:22 + 80U, muo 240uy. muoulg + 30uy. mu12 + 24Ou0 mug
— 380u0wu0u12 + 28U0.0 U12:000 — 400u0;xu12;mu0 + 100ug. 5 u12.0u12 + 10U 24510 —
— 80u12.mu3 + 60U 2,02 UoU12 + 5Ouf2.xu0 + 32u(5)u12 — SOugu%Q + 20u0ui{’2,
a@ = —12up,6,u0 — 42U0;5,U0,2 — 80UG,uz U0z + 160U, 4$u0 120u0,45uou12 — 49u0 g T
+ 120000, 502 U0:2 U — 312U0 200 U012 — 336U0.mre U120 + 780u0;mu0 — 206u0;mu12 +
+ 2376u0;mu(2);xu0 — T16U0.32U0;2U12;5 — 496U0.07U12:22U0 — 192u0;mu8 + 960u0;mu3u12 —
— 360ug;au0tiy + 297U, — 366Ug., U120 — T20ud ug + 2280uf  uguis — 290ug, uty —
— 336U0.0U12:000 U0 + 1600Ug4 U192y — 1200004 U12.2U0U12 + Ut60 — 60UI242U75 +
+ 10U12 4xU12 + 28U12 A 19U12 az T 240Ulz ol — 360“12 muoulz + 30U12,50 U7y —

We will use these formulas in the next section, where, as an illustration, we re-derive the
seven super-Hamiltonians of [84].

Theorem 2 ([47]). In the above notation, the following statements hold:

e The conserved densities 12(()%) and ﬂ%k) of weights 2k + 1 and 2k + 2, respectively, are

nontrivial for all integers k£ > 0.

e Consider the zero-order components g (ug, u12,€) and uy2(ug, uia,€) of the series
&0([uo,ulg],e) and &12([u0,u12],5) with differential-polynomial coefficients. Then
these generating functions are given by the formulas

1 -
(ﬁo(UO,Ulg, 52))2 = @ . 452(U3 + Ulg) -1+ \/1 + 852(1,6% — Ulg) + 1654(11% + U12>2:| ,
(2.6a)
ﬂlg(UO, U12,€2) = 2_62 - 11— \/% — 282(U12 + U%) + %\/1 + 862(’&(2) — ulg) + 1654(U% + u12)2

(2.6b)

e The generating functions for the odd-index conserved densities u(()2 ) and @ ~(2k+1)

are expressed via the even-index densities, see (2.8) and (2.9), respectively. We clalm
that all the odd-index densities are trivial.
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Chapter 2. Gardner’s deformations of non-graded equations

Proof. The densities ﬁék) and ag’;), which are conserved for the bosonic limit (3.10) of the
N=2, a=4-SKdV system (3.5), retract to the conserved densities for Korteweg—de Vries
equation (1.1) under ug = 0, see Example 1. The corresponding reduction of 9 (ug, u12, €)
is generating function (2.2). This implies that ;9 = 3,75 c(k)uf, - €2 + ..., whence the

(2K)

densities 1y, = are nontrivial.

Following the line of reasonings on p. 11, we consider the zero-order terms in Miura’s
contraction (2.3), which yields

Uy = 7\10 . (1 - 2€2ﬂ12), (27&)

) 2 v w2 422
Uy = o + &7 (4 tn — UFy) — A UG, (2.7b)
Therefore,

do E Up - 26 U12
1-— 2521,612

Since the coefficients c(k) of uf, - €% in 15 are positive, so are the coefficients of uguf, - £

in ug for all £ > 0. This proves that the conserved densities 71[()%) are nontrivial as well.

Second, squaring (2.7a) and adding it to (2.7b), we obtain the equality u3 + ujs =
U3 + U1y — €2U3y. In agreement with ﬁg‘azo = uy and 1742!8:0 = 19, we choose the root

Uy = [1 - \/1 —4e? - (u12 + ud — 3)]/(2€?) of this quadratic equation. Hence (2.7a)
yields the bi-quadratic equation upon 1,

1—482(u12+u§ )—uo/uo

As above, the proper choice of its root gives (2.6a), whence we return to @ and finally
obtain (2.6b).

Finally, let us substitute the expansions @y = vg(?)+e-v;(2) and U1y = wp(e?)+e - wy (%)
in (2.3) for 4o and 9, see Example 1. By balancing the odd powers of ¢ in (2.3a), it is
then easy to deduce the equality

+oo
1 d
= Zﬂé%H) g = = G log(l — 4e?. vg), where vy = Zu (20 g2t (2.8)

The balance of odd powers of ¢ in (2.3b) yields the algebraic equation upon wy, whence,
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2.4. Gardner’s deformations as generators of new integrable systems

in agreement with the initial condition w;(0) = 11512), we choose its root

Wy = [1 — 262w + 4521)8 + 4¢* (U% — Qwovg + VU1 + ’Ul’Ug;z) — 856Ufw0
2(0, 2 4(, 2 2 2 4
— (1 +4e (21}0 - wo) + 4e (wo + 209U1;, — 8wy + 20100, + 207 + 41;0)
16£° (2wivg — 20 wy — - —2u] 2
+ 16be WoUg V1 Wo WoUoU1;e Wol1V0;z Vg U1V0;z + V1UVoWo;
2.2 4 3
+ 20v3ug — 4wty + 205U1,)
4 2.2 2 4 2 2 2
+ 16® (v + 2wgv} + dwjug — 207 UgU1, — dwoUgry, + 8UTwWoUE + 205U,

2,2 2,2 2
+ Vgl + ViU, + 4woUgU1vor — 2U0U1;$U1U0;z)

1/2
+ 642" (Vv VT wo — 2wiUgU; — Vivowo — Viwg) + 648121)11&)3) ]/(16561)1@0).
(2.9)
We claim that, using the balance of the even powers of ¢ in (2.3), the representation
Zj) ﬂgkﬂ) -e?F € im % can be deduced, whence ﬂ%kﬂ) ~ 0. [

2.4 Gardner’s deformations as generators of new in-

tegrable systems

The aim of this section is to further and illustrate a practical concept which was outlined
earlier by Kiselev in [59]. Namely, we revisit the problem of integrable deformation of
a given infinite-dimensional system; the seminal paper was [102]. Much work towards
description of the arising moduli spaces has been performed by Dubrovin et al. [32], cf. [34,
33]. (It must be recalled that cohomological theories in this context and organization of the
moduli spaces are sensitive to the choice of admissible classes of differential functions —e. g.,
polynomial, rational, or analytic — in which such structures are sought for.) In the world
of integrable systems there is a closely related aspect of integrability-preserving transition
between (solutions to) systems of PDEs (e.g., via Backlund transformations, see [50]; a
different approach was developed in [15]). Here one could employ the ‘heavy artillery’ [49,
50] of jet-bundle techniques for deformation of the Cartan structure elements in coverings
over PDEs by using the Frolicher—Nijenhuis bracket, see Chapter 5 for illustration.
Having its roots in topological QFT and yet possessing numerous applications else-
where, a task of extending low-order hierarchies with higher-order symbols remains a topic
of particular interest in the field ([32], also [39, 40]). For instance, such is the approach
to hydrodynamic-type systems viewed as the weak dispersion limits of larger, initially
concealed models. Not limited to the above-mentioned class of evolution equations, this
concept suits well for PDE systems of order > 2 whenever those are taken as drafts for
the (re)construction of larger models; certain restrictions could be imposed by hand at
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exactly this moment in order to narrow, e. g., the classes of solutions of the draft systems,
cf. [39, 40]. At the same time, there co-exist many schemes for extension of the symbol for
a given system (e. g., one follows the perturbative approach of [32] or applies the Lax-pair
based techniques from [82]).

From a broader perspective, there arise two natural questions: which systems are pro-
claimed ‘interesting’, thus delimiting the sets of start- and endpoints in the proliferation
schemes, and where one could take those ‘interesting’ systems from — or pick the drafts
of new interesting PDEs. Leaving now aside the ever-growing supply from Physics or a
straightforward idea of ploughing the available lists of already known integrable systems,
let us focus on a self-starting, regular algorithm which exploits the classical ideas from
geometry of differential equations ([12, 62, 106]).

Specifically, we take the existence of infinitely many integrals of motion as a selection
rule for nonlinear evolutionary systems; by default, we shall always assume that the collec-
tion of conversed quantities at hand is maximal, that is, it can not be extended within a
class of conservation laws with local densities (otherwise, a count of infinities could become
risky). As a rule, such systems tend to be bi-Hamiltonian at least in the case when the
spatial dimension n is equal to 1, with 2! = x, see [91] and also [115]. Let us note also that
a requirement of existence of conserved quantities is, generally speaking, stronger than a
‘symmetry integrability’ assumption [100]. (However in applications it is often convenient
to weaken the former requirement in favour of the latter; we shall profit from the use of
both approaches, see Example 4 and Proposition 2 in what follows.)

As soon as we agree to study only those evolutionary systems which admit infinite
towers of integrals of motion, it is natural to first ex- and then inspect the existence of
a (much better if polynomial) recurrence relation between the integrals’ conserved densi-
ties [52, 59, 82, 102]. This yields a regular procedure for consecutive calculation of the
integrals of motion on the basis of all previously known data by starting from the ‘seed’
constants. Let us emphasize that such relations between the densities are much more valu-
able and informative than ordinary recursion operators R: ¢; — ;11 for symmetries or
say, RT: 1); — 1,41 for the ‘cosymmetries’ of evolutionary PDE; in a sense, every algorithm
which explicitly produces the densities contains the built-in homotopy formula for rever-
sion of the variational derivative that takes densities to the respective generating functions
¥, cf. [62, § 4.2] and [106].

The classical notion of Gardner’s deformation m.: £(e) — £ for a completely integrable
system £ was designed for serving exactly this purpose [102]; in the course of years, it
has become the parent structure for a plethora of concepts ranging from the Lax pair
to formal 7-function, etc. (for a more general approach to the geometry of Gardner’s
deformations see [59]). Quite remarkably, this good old construction (see Definition 1) also
answers the second question which we posed so far: for a system £ which undergoes the
deformation, this procedure yields “promising” drafts £ of “interesting” new systems £”.
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Kiselev sketched this line of reasoning in [59] and we now discuss it in more detail. Our
surprising conclusion is that the world of completely integrable systems could be much
more ‘tense’ and regularly organized than it may first seem; for the adjacency relations
E — &” spin a web across that set, with topology still to be explored; to the best of our
knowledge, a study of the physical sense for a property of two models & and £” to be
adjacent has not yet begun.

Let us repeat the classical definition of Gardner’s deformation for evolutionary PDE.
Let €& = {u; = f(x,[u])} be a system of evolution equations (in particular, a completely
integrable system). Suppose E(e) = {u; = f.(z,[u],e) | f- € im L} is a deformation
of £ such that at each point ¢ € Z of an interval Z C R there is the Miura contraction
m. = {u = u([u],e)}: E(e) — &. Then the pair (E(¢), m.) is the (classical) Gardner
deformation for system &.

We say that the coefficient ¢(i, @, . . . ) of the highest power of € in the right-hand side of
a polynomial (in €) Gardner’s extension £(¢) determines the adjoint system £ = {u;, = ¢}.

Example 3. The evolution equation
iy, = —60°0,  (t3 =tin (1.1)) (2.10)

is adjoint to Korteweg—de Vries equation (1.1) with respect to its Gardner’s deforma-
tion (2.1).

We notice that the adjoint systems are often dispersionless, although this is not always
the case (cf. [59] and [52]). Let us now address the natural problem of extension of the new,
adjoint equation —and its hierarchy which appears by construction of Gardner’s deforma-
tion— by adding terms with higher-order derivatives (in particular, by switching on the
dispersion in £’). There are many techniques for solving this problem: a straightforward
computational algorithm, which does not require that the adjoint system be hydrodynamic
type, is illustrated in what follows by using the ‘symmetry integrability’ approach (2.10)
and software [73]; we then report on the second iteration of such proliferation scheme
and discuss the third and other steps to follow. We use capital letters for unknowns in
extensions of adjoint system.

Example 4. It is readily seen that equation (2.10) is the second element in the infinite
hierarchy of adjoint systems (corresponding to Gardner’s extensions of higher KdV flows,
with the Miura contraction m. common for all of them), which is

/ o~ 4~ _ 4~
Kdvy, — {24, = UjoTlne }, 5 = UoU12;7,
/ ~ ~9 -~ ~9 ~
Kdv, — {u12;t3 = —6u12u12;$}, w3 = —6UTyU12,,
/ ~ ~ ~

ngVo = {U12;t1 = U12;x}, P1 = U12:-

21



Chapter 2. Gardner’s deformations of non-graded equations

Clearly, the scaling weights are not uniquely determined for the dependent variables in the
adjoint hierarchy; for definition, set [U] = 1, [d/dz] = 1, and [d/dt;] = (k—1)[U]+[d/dz] =
k, which is consistent with the dynamics. For all £ € N, let us now list all scaling-
homogeneous differential polynomials fi of weights [fx] = [U] + [d/dt;] = k + 1 with
undetermined coefficients, excluding at once those terms which are already contained in
the respective right-hand sides of the adjoint hierarchy &gy, . For instance, we let

fs = 5U° + @sU Uz + 47U Uaw + 48U (U)* + qoU U + 10U Uso Uz + q11Use + 12UsaaUs
+ 013(Uza)” + qua(Us)?,

fs = qU* + UUss + 3Use + qu(Us)?,

fi=0.

The Ansatz for the full hierarchy is thus

Utk = Sok—i_fk?

U, = 05+ f5 = U'Us + ¢5U° + ¢6U°Upa + G7UUpa + U (Us)* + qoU Uiz + 10U U2 Us
+ (11Use + 12UsaaUs + ¢13(Uza)” + qua(Us)?,

Uy, = 03+ fs = 60U, + iU + UUss + @3Usez + 0a(Us)?,

Up, =01+ fLi=U,.

By solving the determining system of algebraic equations (Uy,);, = (Uy,);, upon the un-

determined coefficients ¢, and then taking its nontrivial solution (if any), we obtain a

new, dispersionful hierarchy (which is symmetry integrable by construction). Specifically,
for (1.1) and its adjoint (2.10) the solution is

Uy, = 35 (Usz + 6U° + 100Uy, + 10U (U,)?)
Ut3 = - Uxmc - 6U2Uaza
Ut1 = U:L’a
which is none other than the hierarchy of modified Korteweg—de Vries equation.

Consider the second term in one of the two towers of Kaup—Boussinesq hierarchy (1.4).
Its Gardner deformation (2.3) is known from Section 2.3; let us recall that the extended
equations are (here £ = t3)

(2.4a)

U2ty = Uospae + 4(Tola2)  — 26 (ol ), — 467 (lol,) - (2.4b)

Upsey, = —Ui2;p + duglloy, + 26 (ﬂoﬂo;x)x —4e° (ﬂgum)

z)
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2.4. Gardner’s deformations as generators of new integrable systems

By definition, the adjoint system is

o, = (UgUy o Tz, = (U5 U)o (2.12)
Proposition 2 ([67]). Let us require that the dispersionful extension of (2.12) itself is an
infinite-dimensional integrable system and that it is scaling-invariant with respect to the
weights [Up] = [U1o] = 5 and [d/dtx] = k for k € N. Then there is a unique solution to the
extension problem:

Uoits = (Upza + 6UgUp. U + 6U3U122)x7 Uro.ty = (Ur2,00 — 6UUr2Us2, + 6U§Ufg)x,
UO;t2 = UO;aca: + 2(U§U12)J?7 U12't2 = _UIZ;m + 2(U0U122)a:7
UO;tl = UO;:E7 U12't1 = U12;2-

This is the Kaup—Newell hierarchy [55].

It would be quite logical to iterate the reasoning by first constructing a Gardner’s
deformation —or several such deformations— for the Kaup—Newell system, and then by
extending the available adjoint system(s). However, this algorithmically simple problem
appears unexpectedly complex as far as computations are concerned. Specifically, by using
the analytic software [73] we obtain a ‘no-go’ result: there is no Gardner’s deformation for
the Kaup—Newell equation under the following set of assumptions:

e we supposed that the deformation (€(¢), m.) is polynomial in ¢ and differential poly-
nomial in Uy and Uss;

e we let such deformations be scaling homogeneous with respect to the weights [UO] =
[U1a] = 5 and [¢] = —3;

e the polynomial Ansétze for Gardner’s deformations were bounded by using deg,_(m.) <
5 and deg_(E(g)) < 10 (here we note that max(deg,. m.) = 2 x max(deg_(E(¢g))) for

the Kaup—Newell system).

Let as also note that the extended equation &£(¢) for the Kaup—Newell system can depend
on derivatives of Uy and Uy, with respect to = of orders up to but not exceeding two.* We
expect that the Kaup—Newell system can be Gardner deformed strictly outside the class
of differential polynomials (but can not be deformed within such class of functions).

4The proof is as follows: Consider the determining equation (m.); = f(m.) for Gardner’s deformation
and calculate the differential orders of both sides; by the chain rule, this yields that ord, (m.) +ord,(f:) =
ord,(f) + ord,(m.), which implies a rough estimate ord,(f.) = ord.(f).
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Chapter 2. Gardner’s deformations of non-graded equations

It therefore remains an open problem to find Gardner’s deformation(s) for the Kaup-
Newell system and extend the arising adjoint equation(s) so that new, higher-order com-
pletely integrable hierarchies are attained.

We conclude that Gardner’s deformations of infinite-dimensional completely integrable
systems can be effectively used not only through their ‘m.-parts,” which encode the recur-
rence relations between conserved densities, but —viewed via their ‘E(g)-parts’ — as a source
of new completely integrable systems, or draft approximations to larger systems for which
the integrability is retained.

The reproduction process is self-starting. Moreover, whenever there is a Gardner defor-
mation for the new hierarchy, one could attempt another iteration. This scheme yields the
oriented graph whose vertices are integrable systems and whose edges associate new such
systems to the ones at their starting points. We emphasize that the degree of a vertex can
be greater than two, meaning that a given system admits several deformations (cf. [52, 59]),
and that, in principle, multiple edges may occur. A study of topology of such graph and
its correlation with the structure of moduli spaces for higher perturbations of low-order
models is a challenging open problem.

24



Chapter 3

Gardner’s deformations of Zs,-graded
equations

3.1 Preliminaries: the Z,-graded infinite jet bundles

In this section we recall necessary definitions from supergeometry (we refer to [10, 30, 87]
and [12, 42, 62, 78, 106] for further detail); this material is standard.

Let M™ be an n-dimensional smooth manifold. Let us consider two vector bundles
over the same base M", 7%: EI"°"™ — M™ and 7*: EJ"*™" — M™ with fibre dimensions
mo and mq, respectively.! Let 7! = IIx! be the odd neighbour of the vector bundle 7.
By definition, this neighbour is the vector bundle 7! l_IE’fJ“m1 — M™ over the same base
and with the same vector space R™ take as prototype for the fibers. The coordinates
€',...,€™ along the fibers (7')~!(z) ~ R™ are proclaimed Zy-parity odd, i.e., we in-
troduce the Z,-grading p: ' + 0, ¥ + 1 for the ring of smooth R-valued functions
on the total space HE%’”JF” of the superbundle; the grading then acts by multiplicative
(semi)group homomorphism p: C*(IIEM™") — Z, = ({1,—1}, x) ~ ({0,1},+). We
have that C*°(ILET" ") ~ T'(A*(ET*™)*), where (E7""")* denotes the space of fibrewise-
linear functions on Y™ ", By construction, the new space of graded coordinate functions
on IIET" 1+ is an R-algebra and a C*°(M")-module. Finally, let us construct the Whitney

sum 7 = 70 X 7w of the bundles 7° = 7° and 7! over the base M".

Consider the jet space J*°(7) of sections of the superbundle w. Namely, for the su-
perbundle m we define the infinite jet superbundle 7 : J>®(w) — M™ as follows: we let
(T60)? = (1900, (Too)! = TI((7")so) (see [56] for details). The set of variables describing
J®(m) is composed by

e even coordinates ' on M™,

e cven coordinates u/ and parity-odd coordinates ¢* along the fibres of 7; these objects
themselves are elements of the set of

I = z and 2% = t; we have that

'In particular, we let n = 2 so that the independent variables are z
mg = 1, m; = 0 for the Korteweg—de Vries equation, mg = 2, m; = 0 for the hierarchy of the Kaup—

Boussinesq equation, and mg = 2, m; = 2 for the N=2 supersymmetric KdV equation, see [10, 84, 99].
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Chapter 3. Gardner’s deformations of Zy-graded equations

e even variables uJ and parity-odd variables &* for the fibres of the infinite jet bundle
Too: J(m) = M™.
In the above notation we let o be the multi-index that labels partial derivatives of the
unknowns u/ and &* w.r.t. even variables z%; by convention, u} = v’/ and & = ¢*. The
parity function p on homogeneous elements of C'*°(J* (7)) by its acting on generators

p(z') =0, p(u’) =0, p(£ )
0

1,
1,

©

—~

M

\_/
I

o] >0,

and satisfying following rules
p(a-b) = p(a) + p(b),
p(a+b) = p(a) = p(b), iff p(a) = p(b),

where a,b € C*(J>(r)).
The left total derivatives on J*(7) are expressed by the formula

sz = 8xl+zzu00+l’8 j +ZZ£01+1 8§’“ .

Jj=1 o5 Uag k=1 o3

These vector fields commute (in a usual sense, even though the objects D,: contain the
directed derivations). By definition, we put D; = D7} o--- 0 D,

Let us recall the definition of a system of partial differential equations and its prolon-
gation in context of Zs-graded setup. Consider a system of partial differential equations

é’:{Fé(xi,uj,... u? §k,...,§§i):0, le,...,r};

? 7og?
without any loss of generality for applications we assume that the system at hand satisfies
some mild assumptions which are outlined in [12, 62, 106]. Then the system &£ and all its
differential consequences D,(F*) = 0 (thus presumed existing, regular, and not leading to
any contradiction in the course of derivation) generate the infinite prolongation £ of the
system &.

Like in non-graded case for the Z,-graded setup we have that the de Rham differential d
on £% is subjected to the decomposition d = dj, + d¢, where dj,: AP9(E%) — APIHL(£)
is the horizontal differential and d¢: AP¢(£%) — APTL9(£%) is the vertical differential.

The differential dj, can be expressed in coordinates by inspection of its action on ele-
ments of C®(E>) = A%?(£%), whence for any ¢ we have that

dpo = idxi A D (), (3.1a)
=1

de = ZZM /\8 - +ZZC§1 (3.1b)
j=1 o5 Uorg k=1 o1 1
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3.1. Preliminaries: the Zs-graded infinite jet bundles

where we put
n n
J — Jj § J i J — dei E J i
wa’g - dua’g ucr()-i-li dx 9 oy d o1 fa'j—l-li dx .
j=1 i=1

We note further that da?, duf;ﬁ, and dﬁfji satisfy the following commutation relations:

de' Ada? = —da? Ada?, e’ Adul = —du) Ada?,  dat AdE) = —dgl A da,
duf, A duf = —duf Adul A€l Adul = —dul AdEE, dgh AdEL = +dEl AdE);

we refer to [63] for the geometric theory of variations in the frames of which one discovers
why differential one-forms should anticommute in the Z,-graded sense.

The substitution of a Zs-graded vector field X into a Zs-graded differential form w is
defined by the formula iy (w) = (—1)PX)P@(X). We have that

ip (wgﬁ) =ip,((5) =0 for all 7, j, k and |o| > 0.

These equalities mean that the Cartan distribution can be described equivalently in terms
of the Cartan forms w/_ and ¢f..

The restriction of Cartan’s distribution from J*°(7) onto £% is horizontal with re-
spect to the projection Woo‘gooi E> — M. This determines the connection Cge: D(M) —
D(E%°), where D(M) and D(E*) are the C*°(M)- and C*°(E°°)-modules of vector fields
on M and £%, respectively. We denote by D(A'(E%)) the C*°(£°°)-module of derivations
C>(E%) — AY(E™) taking values in the C*(E>°)-module of one-forms on £*. The con-
nection form Ugs € D(AY(E%)) of Cew is called the structural element of the equation £*.

Let ¢ be a natural number. Consider a superbundle 7 with fibre dimensions mg = 2971
and m; = 2971, Let &, be a Grassmann algebra with ¢ odd generators 6y, ...,6,. The
tensor product my—, = &,&r of the Grassmann algebra &, and superbundle 7 is called the
N=q superbundle. The N=q superfield w is a section s € I'(my—,) of the N=¢ superbundle
Tn—q. We extend the definition of parity function p to C°(J>(1n=,)) = &,®@c C®(J>*())
by the formula p(u) = p(q; ® f*) = p(q) + p(f*), where g, € &, and f* € C°°(J>(m)).
Let us consider only parity-homogeneous superfields. The superfield u is called bosonic if
p(u) = 0. The superfield u is called fermionic if p(u) = 1. The function f* is called a
bosonic component of the superfield u if p(f?) = 0 and f* is called a fermionic component
of the superfield w if p(f*) = 1. For example, for an N=2 superfield u we have that

u=1uy+ 01 ® u; + 0y @ us + 6105 @ uqs, (3.2)

where 6; and 0y are Grassmann variables satisfying 62 = 03 = 60,0, + 0,0, = 0; and
Ug, U1, Us, U2 are the fibre coordinates in 7. In what follows we will omit the tensor product
sign.
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Chapter 3. Gardner’s deformations of Zy-graded equations

3.2 N=2supersymmetric Korteweg—de Vries equations

Let us consider the N=2 supersymmetric Korteweg—de Vries equation [84, 85],

) d
3 6 (12)

Uy = —Ugyy + 3(uD1D2u)x + aT—l (D1D2u2)$ + 3au2ux, D; =

upon a scalar, complex bosonic N=2 superfield u. For a=4, this super-equation possesses
an infinite hierarchy of bosonic Hamiltonian super-functionals H*) whose densities R
are integrals of motion. We study whether these super-Hamiltonians can be produced
recursively by using those which are already obtained. In particular, this can be done
via Gardner’s deformations [99, 102], which suggests finding a parametric family of super-
equations &(¢) upon the generating super-function a(s) = 32,2 h*¥) . ¥ for the integrals
of motion such that initial super-equation (1.2) is £(0). It is further supposed that, at
each ¢, the evolutionary equation £(¢) is given in the form of a (super-)conserved current,
and there is the Gardner-Miura substitution m.: £(e) — £(0). Hence, expanding m. in
and using the initial condition %(0) = w at € = 0, one obtains the differential recurrence
relation between the Taylor coefficients h*) of the generating function @ (see [102] or [4,
52, 59, 82, 84] and references therein for details and examples).

Let us summarize our main result. Under some natural assumptions, we prove the
absence of N=2 supersymmetry-invariant Gardner’s deformations for the bi-Hamiltonian
N=2, a=4-SKdV. Still, we show that the deformation problem must be addressed in
a different way, and then we solve it in two steps. First, in section 3.3 we recall that
the tri-Hamiltonian hierarchy for the bosonic limit of (1.2) with a=4 contains the Kaup—
Boussinesq equation, see [18, 54, 105] and [19, 83, 108]. In section 2.3 we construct new
deformations for the Kaup—Boussinesq equation such that the Miura contraction m, in-
corporates Gardner’s map for the KdV equation ([102], c.f. [52, 82]). Second, extending
the Hamiltonians H® for the Kaup-Boussinesq hierarchy to the super-functionals H® in
section 3.5, we reproduce the bosonic conservation laws for (1.2) with a=4. Finally, we de-
scribe necessary conditions upon a class of Gardner’s deformations for (1.2) that reproduce
its fermionic local conserved densities (c.f. [99]).

Remark 1. The recurrence relations between the (super-)Hamiltonians of the hierarchy are
much more informative than the usual recursion operators that propagate symmetries. In
particular, the symmetries can be used to produce new explicit solutions from known ones,
but the integrals of motion help to find those primary solutions.

Let us also note that, within the Lax framework of super-pseudodifferential operators,
calculation of the (n+ 1)-th residue does not take into account the n residues which are al-
ready known at smaller indices. This is why the method of Gardner’s deformations becomes
highly preferrable. Indeed, there is no need to multiply any pseudodifferential operators by
applying the Leibniz rule an increasing number of times, and all the previously obtained
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3.3. N=2 a=4-SKdV as bi-Hamiltonian super-extension of Kaup—Boussinesq system

quantities are used at each inductive step. By this argument, we understand Gardner’s
deformations as the transformation in the space of the integrals of motion that maps the
residues to Taylor coefficients of the generating functions w(e) and which, therefore, en-
dows this space with additional structure (that is, with the recurrence relations between
the integrals).

Still there is a deep intrinsic relation between the Lax (or, more generally, zero-
curvature) representations for integrable systems and Gardner’s deformations for them.
Namely, both approaches manifest the matrix and vector field representations of Lie alge-
bras related to such systems, and the deformation parameter ¢ is inverse proportional to
the eigenvalue in the linear spectral problem [123] (see Chapter 5 for details).

3.3 N=2a=4-SKdV as bi-Hamiltonian super-extension
of Kaup—Boussinesq system

Let us begin with the Korteweg—de Vries equation (1.1). Its second Hamiltonian opera-
tor, AKXV = d3/da® + 4wy, d/dz + 2uya.,, which relates (1.1) to the functional H%V =
—3 Ju},dz, can be extended? in the (2 | 2)-graded field setup to the parity-preserving
Hamiltonian operator [85],

d d
- —U2 (51 ZUQa + 2u0;x
d 2 d d
. —Ug (a) +up  —2upy; — Uow Jur g + 2ui,
Py = d d 2 d (3.3)
w eg; Fuee () o Buzgy + 2uze

d d d d )3 d
2“0@ —3U1& — Ul;a} —3U2£ — U,2;x (a) + 4u12£ + 2u12;x

Here the fields ug and w15 are bosonic, u; and us are fermionic together with their derivatives
w.r.t. x. Likewise, the components ¢y ~ dH/dug and ¢1o ~ H/duix of the columns
U = t(z/zo,wl,wg,z/}lg) are even-graded and 1, ¥y are odd-graded. The operator (3.3) is
unique in the class of Hamiltonian total differential operators that merge to scalar N=2
super-operators which are local in D; and whose coefficients depend on the super-field uw
and its super-derivatives, see (3.7) below. Operator (3.3) determines the N=2 classical
super-conformal algebra [22]. Conversely, the Poisson bracket given by (3.3) reduces to the
second Poisson bracket for (1.1), whenever one sets equal to zero the fields wug, u, and us
Ag{dv

both in the coefficients of (3.3) and in all Hamiltonians; the operator is underlined

in (3.3).

2Likewise, we extend Gardner’s deformation (2.1) of (1.1) to the deformation of two-component bosonic
limit (3.10) for (1.2) with a=4. Hence we reproduce the conservation laws for (3.10) and, again, extend
them to the bosonic super-Hamiltonians of full system (1.2).
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Chapter 3. Gardner’s deformations of Zy-graded equations

By construction, Mathieu’s extensions of Korteweg—de Vries equation (1.1) are deter-
mined by operator (3.3) and the bosonic Hamiltonian functional,

HP) = /[uouo;m—u%2 + Uty + Uy + @ (ugulg — 2u0u1u2)} dz, (3.4)

which incorporates HI@V as the underlined term; similar to (3.7), Hamiltonian (3.4) will

be realized by (3.6) as the bosonic N=2 super-Hamiltonian. Now we have that
Ut = (PZ)U (57'[(2)/5%')7 i,] € {O’ 1,2, 12}'

This yields the system

Uoyt = —Uospzs + (aug — (a4 2)uguis + (@ — 1)u1u2)x, (3.5a)
Ul = —Utgge + ( (a4 2)upua,, + (a — 1)ugus — 3urugs + Saugul)x, (3.5b)
Ut = —U2gzx + (—(a + 2)uguy, — (@ — 1)uguy — 3ugtgs + 3au3u2)z, (3.5¢)
Ur2t = —U12.000 — BUI2UI2, + 30U U0:zx + (@ + 2)UoU0zas

+ 3u U1 g + SUU s + 30 (ugulg — 2u0u1u2)x. (3.5d)

Obviously, it retracts to (1.1), which we underline in (3.5), under the reduction uy =
0, u;y = ugy = 0.
At all a € R, Hamiltonian (3.4) equals

HP = / (uD1Ds(u) + u?)dOdz,  where d@ = d6:db,. (3.6)

Likewise, the structure (3.3), which is independent of a, produces the N=2 super-operator
Py, =DD, L +2ul — Di(u)D; — Dy(u)Ds + 2u,. (3.7)

Thus we recover Mathieu’s super-equations (1.2) [84], which are Hamiltonian with re-
spect to (3.7) and functional (3.6): u; = 152(%(7-[2)). In component notation, super-
equations (1.2) are (3.5).

The assumption that, for a given a, super-system (1.2) admits infinitely many integrals
of motion yields the triplet a € {—2,1,4}, see [84]. The same values of a are exhibited by
the Painlevé analysis for N=2 super-equations (1.2), see [17].

The three systems (1.2) have the common second Poisson structure, which is given
by (3.7), but the three ‘junior’ first Hamiltonian operators P, for them do not coincide [85,
84, 58]. Moreover, system (1.2) with a=4 is radically different from the other two, both
from the Hamiltonian and Lax viewpoints.
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3.3. N=2 a=4-SKdV as bi-Hamiltonian super-extension of Kaup—Boussinesq system

Proposition 3. The N=2 supersymmetric hierarchy of Mathieu’s a=4 Korteweg—de Vries
equation is bi-Hamiltonian with respect to local super-operator (3.7) and the junior Hamil-
tonian operator? 15?:4 = d/dx, which is obtained from 15;:4 by the shift w — w + X of
the super-field u, see [29, 115]:

~aeq d 1 d

P = T D
The two operators are Poisson compatible and generate the tower of nonlocal higher struc-
tures Ppyo = (152 o P;l)k o Py, k > 1, for the N=2, a=4-SKdV hierarchy, see [45, 76].
Although Pj is nonlocal (c.f. [108]), its bosonic limits under (1.3) yield the local third
Hamiltonian structure A, for the Kaup—Boussinesq equation, which determines the evolu-
tion along the second time t5 = £ in the bosonic limit of the N=2, a=4-SKdV hierarchy
(see Proposition 1 on p. 12).

rya=4
P ( .
u+A

Remark 2. The Kaup—Boussinesq system [18, 54] arising here is equivalent to the Kaup—
Broer system (the difference amounts to notation). A bi-Hamiltonian N=2 super-extension
of the latter is known from [83]. A tri-Hamiltonian two-fermion N=1 super-extension of
the Kaup-Broer system was constructed in [19] such that in the bosonic limit the three
known Hamiltonian structures for the initial system are recovered. At the same time, a
boson-fermion N=1 super-extension of the Kaup—Broer equation with two local and the
nonlocal third Hamiltonian structures was derived in [108]; seemingly, the latter equaled
the composition Ps o 15;1 o P,, but it remained to prove that the suggested nonlocal
super-operator is skew-adjoint, that the bracket induced on the space of bosonic super-
Hamiltonians does satisfy the Jacobi identity, and that the hierarchy flows produced by
the nonlocal operator remain local.

There is a deep reason for the geometry of the a=4-SKdV to be exceptionally rich.
All the three integrable N=2 supersymmetric KdV equations (1.2) admit the Lax rep-
resentations L;, = [A®) L], see [13, 85, 99, 110]. For a=4, the four roots of the Lax
operator L,y = —(D1D; + u)?, which are £y .+ = +i(D1D; + u), i* = —1, and the super-
pseudodifferential operators Lo = £L +3_ (--)- (&)™, generate the odd-index flows
of the SKAV hierarchy via L, ,, = [(£3*™)s0, L]. In particular, we have A®, = (L*?)_,
mod (D;D; + u)?. However, the entire a=4 hierarchy is reproduced in the Lax form via
(LYLs)y, = [(£€£2)>0,£]1€£2} for all £ € N, c.f. [81]. Hence the super-residues® of the
operators L¥L, are conserved.

Consequently, unlike the other two, super-equation (1.2) with a=4 admits twice as
many constants of motion as there are for the super-equations with a=—2 or a=1. For

~ a=4
3The nonzero entries of the (4 x 4)-matrix representation P; for the Hamiltonian super-operator PLll
are (P1)0,12 = (P1)2,1 = (P1)12,0 = _(P1)1,2 =d/dz.
4We recall that the N =2 super-residue Sres M of a super-pseudodifferential operator M is the coefficient
of DDy 0 (d%)_l in M.
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Chapter 3. Gardner’s deformations of Zy-graded equations

convenience, let us recall that super-equations (1.2) are homogeneous with respect to the
weights |d/dz| = 1, |u| = 1, |d/dt| = 3. Hence we conclude that, for each nonnegative
integer k, there appears the nontrivial conserved density Sres LY L,, see above, of weight k+
1. The even weights also enter the play. Consequently, there are twice as many commuting
super-flows assigned to the twice as many Hamiltonians.

Example 5. The additional super-Hamiltonian H" = 1 [u?d@dx for (1.2) with a=4,

and the second structure (3.7), — or, equivalently, the first operator P; = d/dz and
the Hamiltonian H®?, or P35 and H© = Jud@dz, see above, — generate the N=2

supersymmetric equation

~

) (0 L [0
Ue = Dngux+4uux = P3 (@(H(O))> = P2 (%(H(l))) = P1 <£(H(2))> s 5 = tg.
(3.8)

Super-equation (3.8) was referred to as the N=2 ‘Burgers’ equation in [60, 72] due to the
recovery of ug = u,, + 4uu, on the diagonal ¢, = 6s.
In components, the N=2 super-equation (3.8) reads

Up;e = (—U12 + 2“(2)) Ure = (u2;w + 4u0u1)

z’ xz’

Uge = <_u1,x + 4UOU2) U12;¢ = (Uo;xw + 4UOU12 — 4U1U2)

x’ z’

Clearly, it admits reduction (1.3); moreover, Kaup—Boussinesq system (1.4) (see [18, 54]
or [52, 82, 105] and references therein) is the only possible limit for (3.8),

Ug;e = (—Uu + 2U(2)) Ui2;¢ = (Uo;m + 4U0U12)$- (1.4)

x’

System (1.4) is equivalent to the Kaup—Broer equation via an invertible substitution. In
these terms, super-equation (3.8) is a super-extension of the Kaup—Boussinesq system [19,
83, 108]. In their turn, the first three Poisson structures for (1.2) with a=4 are reduced
under (1.3) to the respective local structures for (1.4), see Proposition 1 on p. 12.

Our interest in the recursive production of the integrals of motion for (1.2) grew after
the discovery, see [60], of new n-soliton solutions,

w = Ala) - DDy log<1 +3 avexp(kie — k-t £ik - 0102)>, Ala) = { ’ Zi (3.9)
i=1 !

N =

)

for super-equations (1.2) with a=1 or a=4 (but not a=— 2 or any other a € R\ {1,4}). In
formula (3.9), the wave numbers k; € R are arbitrary, and the phases a; can be rescaled to
+1 for non-singular n-soliton solutions by appropriate shifts of n higher times in the SKdV
hierarchy. A spontaneous decay of fast solitons and their transition into the virtual states,
on the emerging background of previously invisible, slow solitons, look paradoxical for such
KdV-type systems (a=1 or a=4), since they possess an infinity of integrals of motion.
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3.4. Deformation problem for N=2, a=4-SKdV equation

New solutions (3.9) of (1.2) with a=1 or a=4 are subject to condition (1.3) and there-
fore they satisfy the bosonic limits of these N=2 super-systems. In the same way, bosonic
limit (1.4) of (3.8) admits multi-soliton solutions in Hirota’s form (3.9), now with the expo-
nents 1; = k;x +1k?¢ +1k;0,05, see [60]. This makes the role of such two-component bosonic
reductions particularly important. We recall that reduction (1.3) of (1.2) with a=1 yields
the Kersten—Krasil’shchik equation, see [57] or [60] and references therein. In Chapter 2
we considered the bosonic limit of the N=2, a=4 SKdV equation,

(3.10a)
(3.10b)

2
Ug;t = —Uo;zax + 12“0“0;1 - 6(“0“12)

x)

2
U1y = —U12z00 — OUI2U12;2 + 12005 U0 0e + OUQUOzax + 12(u0u12)

x?

which succeeds Kaup—Boussinesq equation (1.4) in its tri-Hamiltonian hierarchy. We shall
construct a new Gardner deformation for it (c.f. [52]) in section 2.3.

In general, system (3.5) with a=4 admits three one-component reductions (except uy #
0) and three two-component reductions, which are indicated by the edges that connect the
remaining components in the diagram

Uo

U12

(75} Ua.

System (3.5) with a=4 has no three-component reductions obtained by setting to zero only
one of the four fields in (3.2). We conclude this entire Chapter 3 by presenting a Gardner
deformation for the two-component boson-fermion reduction uy = 0, uy = 0 of the N=2,
a=4-SKdV system, see (3.14) on p. 39.

3.4 Deformation problem for N=2, a=4-SKdV equa-
tion

In this section we formulate the two-step algorithm for a recursive production of the
bosonic super-Hamiltonians H*)[u] for the N=2 supersymmetric a=4-SKdV hierarchy.
Essentially, we convert the geometric problem to an explicit computational procedure.
Our scheme can be applied to other KdV-type super-systems (in particular, to (1.2) with
a=— 2 or a=1).

We split the Gardner deformation problem for the N=2 supersymmetric hierarchy
of (1.2) with a=4 in two main and several auxiliary steps.

First, we note that Miura’s contraction m.: £(¢) — &, which encodes the recurrence
relation between the conserved densities, is common for all equations of the hierarchy.
Indeed, the densities (and hence any differential relations between them) are shared by all
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Chapter 3. Gardner’s deformations of Zy-graded equations

the equations. Therefore, we pass to the deformation problem for the N=2 super-Burgers
equation (3.8). This makes the first simplification of the Gardner deformation problem for
the N=2, a=4 super-KdV hierarchy.
Second, let B be an N=2 super-conserved density for an evolutionary super-equation &,
, ARW = Dy(...) + Dy(...), is a total di-
vergence on £. By definition of D;, see (1.2), the 6,6>-component hg) of such h®) =
h(()k) + 6, - hgk) + 0, - hgk) + 016, - h%) is conserved in the classical sense, %hg’? =40

on &£. Let us consider the correlation between the conservation laws for the full N=2

meaning that its velocity w.r.t. a time 7

super-system & and for its reductions that are obtained by setting certain component(s)
of uw to zero. In what follows, we study bosonic reduction (1.3). Other reductions of
super-equation (1.2) are discussed in section 3.5, see (3.13) on p. 38.

We suppose that the bosonic limit limpg £ of the super-equation £ exists, which is the
case for (1.2) and (3.8). By the above, each conserved super-density h*)[u] determines
the conserved density hg’;) [tg, u12], which may become trivial. As in [13], we assume that
the super-system &£ does not admit any conserved super-densities that vanish under reduc-
tion (1.3). Then, for such h§’§> that originates from A by construction, the equivalence
class {h(k) mod im D;} is uniquely determined by

/ W8 [uo, usa) dae = / AP, .~ dodzr,  here N=2 and df = d6,df,.

Berezin'’s definition of a super-integration, [df; = 0 and [ 6;df; = 1, implies that the
problem of recursive generation of the N=2 super-Hamiltonians H®* = / h®) d6dz for
the SKAV hierarchy amounts to the generation of the equivalence classes [ hﬁ’? dzx for the
respective 6160,-component. We conclude that a solution of Gardner’s deformation problem
for supersymmetric system (3.8) may not be subject to the supersymmetry invariance. This
is a key point to reasonings.

We stress that the equivalence class of such functions hgg) 1o, u12] that originate from H®
by (1.3) is, generally, much more narrow than the equivalence class {hg’;) mod imd/dz}

of all conserved densities for the bosonic limit limg £. Obviously, there are differential

d

functions of the form a( f [Ug,ulg]) that can not be obtained® as the ;0,-component of

any [Di(-) + Ds(-)] |u1:u2:
recursively given sequence of integrals of motion for limp £ (e.g., suppose that they are the
densities of the Hamiltonians H*) for the hierarchy of limp ), and let it be known that
each H® = [ h§’;) dz does correspond to the super-analogue H® = / h®) d@dz. Then the
reconstruction of A®) requires an intermediate step, which is the elimination of excessive,

o» Which is trivial in the super-sense. Therefore, let hgg) be any

homologically trivial terms under d/dz that preclude a given hg? to be extended to the
full super-density in terms of the N=2 super-field w. This is illustrated in section 3.5.

SUnder the assumption of weight homogeneity, the freedom in the choice of such f|ug, u12] is decreased,
but the gap still remains.
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3.5. Super-Hamiltonians for N=2, a=4-SKdV hierarchy

Thirdly, the gap between the two types of equivalence for the integrals of motion man-
ifests the distinction between the deformations (limB & )(5) of bosonic limits and, on the
other hand, the bosonic limits limp £(e) of N=2 super-deformations. The two operations,
Gardner’s extension of £ to £(¢) and taking the bosonic limit limg F of an equation F, are
not permutable. The resulting systems can be different. Namely, according to the classical
scheme ([102], [59]), each equation in the evolutionary system (limpE)(e) represents a
conserved current, whence each Taylor coefficient of the respective field is conserved, see
Example 1. At the same time, for limp £(e), the conservation is required only for the
field @12(g), which is the 86;-component of the extended super-field @w(e). Other equations
in limp £(g) can have any form.®

In this notation, we strengthen the problem of recursive generation of the super-
Hamiltonians for the N=2 super-equation (3.8). Namely, in section 2.3 we constructed
true Gardner’s deformations for its two-component bosonic limit (1.4). The solution to
the Gardner deformation problem generates the recurrence relation between the nontrivial
conserved densities h§’;> which, in the meantime, depend on uy and u;5. By correlating
them with the 6;0,-components of the super-densities h*) that depend on w, we derive
the Hamiltonians H®, k > 0, for the N=2 supersymmetric a=4-KdV hierarchy, see
section 3.5.

3.5 Super-Hamiltonians for N=2, a=4-SKdV hierar-
chy

In this section we assign the bosonic super-Hamiltonians H®* = J h® [u] d@dzx of (1.2)
with a=4 to the Hamiltonians H® = [ hg) [tg, u12] dz of its bosonic limit (3.10). Also, we
establish the no-go result on the super-field, N=2 supersymmetry invariant deformations of
a=4-SKdV that would retract to (2.1) under the respective reduction in super-field (3.2).
At the same time, we initiate the study of Gardner’s deformations for reductions of (3.5)
other than (1.3), and here we find the deformations of two-component fermion-boson limit
in it. However, we observe that the new solutions can not be merged with the deforma-
tion (2.5) for the bosonic limit of (3.5).

From Section 2.3 we know the procedure for recursive production of the Hamiltonians
H® = [ h®) dz for bosonic limit (3.10) of the N=2, a=4-SKdV equation, here (2 = g{*
and RZFH1) = 11522]“) In section 3.4, we explained why the reconstruction of the densities Rk
for the bosonic super-Hamiltonians H® from h*) [uo, U12:| requires an intermediate step.

)

Namely, it amounts to the proper choice of the representatives hgg within the equivalence

6Still, the four components of the original N=2 supersymmetric equations within the hierarchy of (1.2)
are written in the form of conserved currents. A helpful counter-example, Gardner’s extension of the
N =1 super-KdV equation, is discussed in [84, 98].
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Chapter 3. Gardner’s deformations of Zy-graded equations

class {h(’“) mod im %} such that hg? can be realized under (1.3) as the 6;0y-component
of the super-density R, This allows us to restore the dependence on the components uy
and us of (3.2) and to recover the supersymmetry invariance. The former means that each
h™ is conserved on (3.5) and the latter implies that h*) becomes a differential function
in u.

The correlation between unknown bosonic super-differential polynomials h® [u] and
the densities h®*) [uo,um}, which are produced by the recurrence relation, is established
as follows. First, we generate the homogeneous super-differential polynomial ansatz for
the bosonic A using GenSSPoly. Second, we split the super-field v using the right-hand
side of (3.2) and obtain the 6;65-component hﬁ? [uo,ul,ug,ulg} of the differential func-
tion A" [u]. This is done by the procedure ToCoo. which is also available in SSTOOLS [73,
126]. Thirdly, we set to zero the components u; and us of the super-field w. This gives the
ansatz h§’§’ [uo, Ulg} for the representative of the conserved density in the vast equivalence
class. By the above, the gap between hg’;) and the known A®) amounts to %( f (k)), where
f) [uo, Ulg} is a homogeneous differential polynomial. We remark that the choice of f is
not unique due to the freedom in the choice of A® mod Dy(...)+Dy(...). We thus arrive
at the linear algebraic equation

k
B g0 = ), (3.11)

which implies the equality of the respective coefficients in the polynomials. The homoge-
neous polynomial ansatz for f*) is again generated by GenSSPoly. Then equation (3.11) is
split to the algebraic system by SSTOOLS and solved by CRACK [125]. Hence we obtain the
coefficients in hg’;) and f*). A posteriori, the freedom in the choice of f* is redundant, and
it is convenient to set the surviving unassigned coefficients to zero. Indeed, they originate
from the choice of a representative from the equivalence class for the super-density h® [u].
This concludes the algorithm for the recursive production of homogeneous bosonic N=2
supersymmetry-invariant super-Hamiltonians H* for the N=2, a=4-SKdV hierarchy.

Example 6. Let us reproduce the first seven super-Hamiltonians for (1.2), which were
found in [84]. In contrast with Example 2, we now list the properly chosen representa-
tives hgg) [uo, Ulz] for the equivalence classes of conserved densities 1](()%) and ﬁgk), here k <
3. Then we expose the conserved super-densities h*) such that the respective expressions
h(l’;) are obtained from the 6,6,-components [ h*) d@ by reduction (1.3).

hg%) = g ~ a(()ﬂ)’ h® = —D,Dy(u) ~ 0, (3.12a)
WY Z oy~ d®, RO — (3.12b)
h(122) = —2Uj9ug ~ ﬂgf), h? =u? (3.12¢)
T e C e
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3.5. Super-Hamiltonians for N=2, a=4-SKdV hierarchy

h%) = 3u§2u0 — 4u12u3 — %uguo;m — Up2.5U0sg ~ '&(()4),
B =4t — %uum — §u2Dng(u) (3.12e¢)
h@ = —gu% + %U%QUO 5u12u0 + DSuUaUUg: xx + ulgug 2t 15 ugu% 2t %u%er
+ By ug) h® =’ — Bulu,, + 2(D1Dyu)’u — 3uDiDou, (3.12f)
hﬁ? = 145u:f2u0 + 15u%2ug 185 uéuo oz 6u12u8 - %uuuoug;z - gulguo;mm +
15 ~(6)

15
+ 5u0u12 T 15”0“0 i + U0U12 T + ] U’OuO wx uO )

h(®) = b — 185u3um + 16uu4x g(Dﬂ)Qu) - %u‘lDngu + 18—511,111)11)211, —
+ 2Dy Dy(u) Dy (u) Dy (u,), (3.12g)
hg’;) 2—81U0.4IU0’LL12 + 6_74u(2) zzx T 11%5u(2) x:ru() + ggug W12 — 1(8)5 u0;$$u0u%2 1&5“3 dr
— B W20 + 1PuGug — Z2ug uduiz — 2uduly + Gty + Ruiagaug +

105, 2 35,2 105, 4, 2 105,,2, 3 35,4 ~(6)
+ 6 Ul2; LU — 35U, U12 — Tuguys + T UgUiy — “g UgUys + F1Us ~ Uy,

" = u,7 — 13025u3um + 32u2u4$ — Bu(D,D, u)® + %ug’(Dngu) — 6—4(D1D2u)2um —
Zu’D Dou + Buu,, D Dou + 2uulDiDou + 2u(DyDyu)(Diu)(Diu,) —
64u4zD1D2u — —u(Dlum)(Dlux) (312h)

Of course, our super-densities h¥) are equivalent to those in [84] up to adding trivial
terms Dy(...) + Da(...).

Remark 3. Until now, we have not yet reported any attempt of construction of Gardner’s
super-field deformation for (1.2), which means that the ansatz for m. and £(¢) is written in
super-functions of u (c.f. [84]). This would yield the super-Hamiltonians H*) at once, and
the intermediate deformation (2.5) of a reduction (1.3) for (1.2) would not be necessary.
At the same time, the knowledge of Gardner’s deformations for the reductions allows to
inherit a part of the coefficients in the super-field ansatz by fixing them in the component
expansions (e.g., see (2.1), (2.3), and (2.5)).

Unfortunately, this cut-through does not work for the N=2, a=4-SKdV equation.

Theorem 3 (N=2, a=4 ‘no go’ [47]). Under the assumptions that N=2 supersymmetry-
invariant Gardner’s deformation m.: £(e) — &£ of (1.2) with a=4 is regular at ¢ = 0, is
scaling-homogeneous, and retracts to (2.1) under the reduction uy = 0, u; = ug = 0 in
super-field (3.2), there is no such deformation.

This rigidity statement, although under a principally different set of initial hypotheses,
is contained in [84]. In particular, there it was supposed that degm. = deg £(¢) = 2, which
turns to be on the obstruction threshold, see below. We reveal the general nature of this
‘no go’ result.
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Proof. Suppose there is the super-field Miura contraction m,,

u=u-+ 5(?3722 — p1D1Dyu + Pzﬁx) +&? (plsﬁg + pi3utt, + pioDa(w)Dy(w)

- p12D1D2(&)'&1 - pn'Dl'Dg('&x) + pl4ﬂ/mz) I

To recover deformation (2.1) upon uj2 in u, we split m. in components and fix the coeffi-
cients of €ti19.,, and £2u3,, see (2.1a). By this argument, the expansion of u, yields py = 1,
while the equality —p1oD1Dy(@)w + p1oD2(@)Di(w) = (pi1a — pio)fi62uis + ... implies
that p1o = pip — 1. Next, we generate the homogeneous ansatz for £(¢), which contains
=+ L(g7(Dyu)(Diu)u+ ... ) + ... in the right-hand side (the coefficient gi7
will appear in the obstruction). We stress that now both m. and £(¢) can be formal power
series in € without any finite-degree polynomial truncation.

Now we split the determining equation m.: £(¢) — £ to the sequence of super-differential
polynomial equalities ordered by the powers of €. By the regularity assumption, the co-
efficients of higher powers of € never contribute to the equations that arise at its lower
degrees. Consequently, every contradiction obtained at a finite order in the algebraic sys-
tem is universal and precludes the existence of a solution. (Of course, we assume that the
contradiction is not created artificially by an excessively low order polynomial truncation
of the expansions in €.)

This is the case for the N=2, a=4-SKdV. Using CRACK [125], we solve all but two
algebraic equations in the quadratic approximation. The remaining system is

qi7 = —Pio; pio+q7+1=0.
This contradiction concludes the proof. O

Remark 4. In Theorem 3 for (1.2) with a=4, we state the non-existence of the Gardner
deformation in a class of differential super-polynomials in w, that is, of N=2 supersymme-
try-invariant solutions that incorporate (2.1). Still, we do not claim the non-existence of
local regular Gardner’s deformations for the four-component system (3.5) in the class of
differential functions of ug, uy, us, and uqs.

Consequently, it is worthy to deform the reductions of (3.5) other than (1.3). Clearly,
if there is a deformation for the entire system, then such partial solutions contribute to it
by fixing the parts of the coefficients.

Example 7. Let us consider the reduction ug = 0, us = 0 in (3.5) with a=4. This is the
two-component boson-fermion system

Uyt = —Uliper — 3(U1U12)$, U2t = — U120z — 6U12U12;;p + 3u1u1;m- (3-13)
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3.5. Super-Hamiltonians for N=2, a=4-SKdV hierarchy

Notice that system (3.13) is quadratic-nonlinear in both fields, hence the balance degm, :
deg £(e) for its polynomial Gardner’s deformations remains 1 : 1.

We found a unique Gardner’s deformation of degree < 4 for (3.13): the Miura contrac-
tion m, is cubic in €,

1.3

up = uy, Urp = U2 — 5€ UIUL g, (3.14a)

and the extension &(¢) is given by the formulas

Ut = —Ulgze — 3(”1“12>x7
Ut2 = —Ui2per — OUIRUI2, + SUI UL ze +
Le3 3 3.14b
+ 587 | WUz UI2 — OUI UL L U2, + Ul Ulipgs | - (3.14Db)
X

However, we observe, first, that contraction (2.1a) is not recovered” by (3.14a) under u; =
0. Hence deformation (3.14) and its mirror copy under u; < —us can not be merged
with (2.3) and (2.5) to become parts of the deformation for (3.5).

Second, we recall that the fields w; and wy are, seemingly, the only local fermionic
conserved densities for (3.5) with a=4. Consequently, either the velocities u,, and gy
in Gardner’s extensions £(e) of (3.5) are not expressed in the form of conserved currents
(although this is indeed so at € = 0) or the components u; = ui([ﬂo, Uy, U, 1112] , 6) of the

Miura contractions m. are the identity mappings u; = w;, here ¢+ = 1,2, whence either
(

the Taylor coefficients ﬂik) of 4; are not termwise conserved on (3.5) or there appear no

recurrence relations at all.

We obtained the no-go statement for regular, scaling-homogeneous polynomial Gardner’s
deformations of the N=2, a=4-SKdV equation under the assumption that the solutions
retract to original formulas (2.1) by Gardner [102].

We exposed the two-step procedure for recursive production of the bosonic super-
Hamiltonians H*. We formulated the entire algorithm in full detail such that, with
elementary modifications, it is applicable to other supersymmetric KdV-type systems.

"Surprisingly, quadratic approximation (2.1a) in the deformation problem for (3.5) is very restrictive
and leads to a unique solution (2.3)—(2.5) for (3.10). Relaxing this constraint and thus permitting the
coefficient of €242, in m. be arbitrary, we obtain two other real and two pairs of complex conjugate
solutions for the deformations problem. They constitute the real and the complex orbit, respectively,
under the action of the discrete symmetry ug — —ug, § — —§ of (1.4).
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Chapter 4
Zero-curvature representations: Zs,-graded
case

Let us recall first the definition of Lie super-algebra [10, 86, 92]. Let A be an algebra over
the field C and Z, = Z/2Z = {0,1} be the group of residues modulo 2. The algebra A is
called a super-algebra if A can be decomposed as the direct sum A = Ay @ Aj such that

.A()-A()C.A(), A()-AiCAi, A1~A1C.A().

A nonzero element of Ag or Aj is called homogeneous (respectively, even or odd). Let
p(a) =k if a € Ay, for k € Zy. The number p(a) is the parity of a.

The super-algebra g is a Lie super-algebra if it is endowed with the linear multiplication
[, -] that satisfies the equalities

[z,y] = —(=1)P" p(y)[y :v] (4.1)
[z, [y, 21) = [[z, 9], 2] + (= 1)PPWy, [, 2]). (4.2)

here x, y, and z are arbitrary elements of A and z, y are presumed homogeneous.
Let us introduce the super-matrix space Mat(p | ¢;.A). Consider a square (p + q)-
dimensional matrix X = (£5) € Mat(p | ¢; A) and set

p(X) =0 if p(Ry) =p(Uy) =0, p(Ty) =
p(X) =1 ifp(Ry) =p(Uy) =1

Taking into account the graded skew-symmetry (4.1) of the bracket [-, ], we define the Lie
super-algebra structure on the space Mat(p | ¢;.A) by the formula

[X,Y] = XY — (-1)PPPOIY X XY € Mat(p | g; A). (4.3)

The Lie super-algebras gl(m | n) ~ Mat(m | n,C) and sl(m | n) = {X € gl(m | n)|str X =
0}, where str(25) = tr R — trU, are called the general linear and special linear Lie
super-algebras, respectively.

To calculate the super-commutator [X, Y] of two nonhomogeneous elements X and Y,
we first split X = X5+ X and Y = Yj + Y; so that p(X5) = p(Y;) = 0 and p(X;) =
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p(Y7) = 1. Using (4.3), we obtain
[X,Y] = [Xo + X5, Y5 + Yi] = [Xo, Xo] + [Xo, V1] + [X3, Vo] + [ X5, Y3] =
= (XoYp — Yo Xp) + (XoY1 — Y1Xo) + (X1¥p — Yo X1) + (X1Y1 + Y1X7). (4.4)

The super-determinant, or the Berezinian of an invertible matrix X = (£ 5) € gl(m | n)
is given by the formula [10]

R S\ det(R—SU'T)
sdet (T U) - detU

Example 8. In what follows, we shall use the Lie super-algebra sl(1 | 2) ~ sl(2 | 1),
see [41]. Its representation in the space Mat(2 | 1;C) is given by the eight basic vectors,
four even: Et, E~, H, and Z, and four odd: F*, F~, Ft, and F~, where

010 000 1/2 0 0 1/2 0 0
Eft=1000| EE=[100 H=|0 -1/2 0 Z=10 1/2 0
000 000 0 0 0 0 0 1
000 000 001 000
Fft=1l000| F=[000] Fr=1[(000 F-=1001
010 100 000 000
The elements of this basis satisfy the following commutation relations:
[H, E*] = +E* [H, F*] = +5F* [H, F*] = +5F*
[Z,H]=[2,E*] =0 [Z,F*] = 3F* [Z,FF] = —4F*
[EX, F*] = [E*, F*] =0 [E* FT] = —F* [E*, FT] = F*
[F*, F*] = [F* FF] =0 [F* FF]=[F* FT]=0 [F*, F*] = B*
[EY,E7]=2H [F* FT]=ZTFH.

The Lie super-algebra s[(2 | 1) contains the Lie algebra sl(2,C) as a subalgebra. The
vectors £+ and H form a basis in sl(2, C).

The Lie super-group SL(2 | 1), which corresponds to the Lie super-algebra s[(2 | 1),
consist of the matrices with unit Berezinian: SL(2 | 1) ={S € GL(2|1) | sdet S = 1}.

Remark 5. Consider the following three subgroups of the Lie super-group SL(2 | 1):

O (O R O B ()

Each matrix S € SL(2 | 1) can be represented [87] as a product S = 5,5,5_, where
S, € Gy, Sy € Gy, S_ € G_. Due to the multiplicativity of the Berezinian, sdet .S =
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sdet S - sdet Sy - sdet S_ = 1, and in view of the obvious property sdet S, = sdet S_ =1
for all elements of the groups G, and G_, we conclude that sdet Sp = 1 for all Sy € Gy.

For the Lie super-group SL(2 | 1), the dimension of the matrix D is equal to 1 x 1 and
the dimension of the matrix A is equal to 2 x 2. Let us show that Gy ~ GL(2 | 0). The
condition sdet Sy = 1 for the matrix Sy € SL(2 | 1) implies the equality det A = det D of
the usual determinants of A and D. Therefore, to each matrix A € GL(2 | 0) we can put
into correspondence the matrix Sy € Gy by setting Sy = (4 42 4) and conversely, to each
matrix S = (4 9) € Gy we associate the matrix A from GL(2 | 0).

Consider the tensor product g ®@g A(E) of a finite-dimensional matrix complex Lie
superalgebra g and the exterior algebra A(£%) = @), A%(£>). The product is endowed
with the bracket

[A® p, B@v] = (=1)PPPWIA Bl @ uAv

for i, € A(£®) and A, B € g. Define the operator d, that acts on elements of g ® A(E>)
by the rule
dp(A®p) = A®duu,

where the horizontal differential d, in the right-hand side is (3.1a). The tensor product
g ® A(E%) is a differential graded associative algebra with respect to the multiplication
(A®p)-(Bov) = (—1)PBPW(A. BY® uAv induced by the ordinary matrix multiplication
so that

_[pa U]_ =p-0—= (_1)7”5(_1)p(p)p(0)0_ P,
du(p-0) =dwp-o+ (=1)"p-dpo

for p € g® A"(E®) and 0 € g ® A*(E®). Elements of g ® C®(E>®) are called g-
(super)matrices [94].

Definition 2 ([92, 94, 97]). A horizontal 1-form o € g ® AY(E®) is called a g-valued
zero-curvature representation for the equation £ if the Maurer—Cartan condition

dpa = sla, al. (4.5)
holds by virtue of £ and its differential consequences.

Let G be the Lie supergroup of the (matrix) Lie superalgebra g. Let a and o’ be g-
valued zero-curvature representations. Then o and o are called guage-equivalent if there
exists S € C°(£%, () such that

o =a=dpS- ST+ S-a-S7 . (4.6)
Elements of C*(£%, G), i.e., G-valued functions on £, are called G-matrices.
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Chapter 4. Zero-curvature representations: Zs-graded case

Definition 3. Let o, be a family of zero-curvature representations depending on a complex
parameter A € Z C C. The parameter X is removable if the forms « are gauge-equivalent
at different values of A € Z, and X is non-removable otherwise.

Remark 6. There are other approaches to the idea of parameters’ (non)removability, e.g.,
under transformations which not necessarily are gauge (this is in contrast to the above
definition). It turns out that a given parameter in a family of zero-curvature representations
can be nonremovable with respect to a narrow class of gauge transformations but, at the
same time, it can be eliminated by using transformations from a wider group. For example,
Sasaki showed in [114] that the parameter in the standard Lax pair for the Korteweg—de
Vries equation can be eliminated by using the scaling symmetry of KdV (see Section 5.5).
We stress that this transformation is not gauge and therefore it acts across the gauge
group’s orbits. However, that parameter is non-removable in the sense of Definition 3
because there is no gauge transformation which would remove it.

We now recall classical Marvan’s result and its proof [94, 97] for non-graded PDE and
zero-curvature representations (c.f. Proposition 5 below).

Proposition 4 ([94]). Let a) be a family of g-valued zero-curvature representations
smoothly depending on a complex parameter A € Z C C. The parameter \ is remov-
able if and only if for each A € 7 there is a g-matrix @), depending smoothly on A, such
that

9 _
IR = dp@Qx — [ar, @x].

Proof. Suppose that A is removable. This means that for any fixed Ay there exists a G-
matrix S such that aig — ayand Sy, =1 € G — C®(E>,G). The matrix S, =
0/0A|x=x,Sx belongs to the tangent space at unit of G, i.e., to the Lie algebra g. We have
that

0= o\ A=\ “o o\ A=)\ " oA A=Xo (dh(S)\ )S)‘_‘_SA Oz)\S)\)
0 . .
G2 . (=S5 dnSx + Sy 'anSy) =
a B . .
= =53 (5 d(Sa) = S/ d8, = 55,1508, xS,

+ Sxold)‘ﬂSAO + S)Tola)\os)\o = _d_hS)\o - SAOOO\O + OéAOS)\O + O'é)\o.

This implies that ¢y, = dpSx, — [@rg, S|, Where S € g @ A%(£%).

Conversely, suppose now that ¢y = d,Qx — [, Q] for some Q) € g ® C®(£>). Let
Sy € C*(E*,G) be a solution of the matrix equation 0S/0A = @Q,S) with initial data
Sy, = 1. Consider the expression Zy = d,Sy + Sxay, — @Sy = (af; — a,)Sy. We have

44



that

%ZA aa)\(th,\ + Shay, —anS)y)
= dp(Sh) + Sraa, — Sy — xSy
= dn(@rS)) + QrSxan, — @rSx — \QrSx =
= dp@QaSx + QudpSy + QaSxan, — Sy — axQaSx + (@rarSx — QraxS))
= (daQx — nQx + Qray —dn) Sy + Qa(dpSx + Saan, — axSh)
%\
= @Qr2x.
It is obvious that Z,, = 0, whence afg — ay = 0. Therefore, the parameter A is removable.

]

The following proposition and its proof are proper Zs-generalizations of Marvan’s
Proposition 4 for classical, non-graded systems of partial differential equations [94, 97].

Proposition 5 ([66]). Let a) be a family of g-valued zero-curvature representations
smoothly depending on a complex parameter A € Z C C. The parameter \ is remov-
able if and only if for each A € Z there is a g-matrix @), depending smoothly on A, such

that p(Qy) = 0 and
(%Oéx dn@x — [ax, Qi)

Proof. The first half of the proof (i.e., the necessity) coincides literaly with the proof of
Proposition 4; note that party of SA will be the same as parity S, i.e. (SAO) =
This means that for any fixed )y there exists a G-matrix S, such that ozfo = ) and
Sy =1 € G — C®(E®,G). The matrix Sy, = 0/0A|x=x,5\ belongs to the tangent space
at unit of G, i.e., to the super Lie superalgebra g.

The converse s true by the same argument as above; we note that solutions S exists

only for even g-matrices @)). ]

Remark 7. We conclude that Marvan’s computational techniques [94, 97] work also in the
Zs-graded setup — with just one modification: the commutator [-,-] in a Lie algebra is
replaced by the graded commutator [-,-] in the Lie superalgebra. However, let us say a
word of caution. o

Lemma 1 ([66]). Let o = a® + o' be a g-valued zero-curvature representation of a given
Zsy-graded equation & such that p(a®) = 0 and p(a') = 1. Then Marvan’s operator
0, =dj, — [ev, *], see [94], not necessarily is a differential.

We note that we have not seen any example of a ZCR with nonzero odd part (i.e., such
that o' # 0). It would be interesting to either find such example or prove that it can not
exist.
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Chapter 4. Zero-curvature representations: Zs-graded case

Proof. Let 8 € g® AO(SOO) so that 3 = % 4+ B! and consider @ = a® + !, where
p(a®) = p(B°) = 0 and p(a!) = p(B') = 1. Then we have that

Do 0 0u(B) = Ba(dnB — [, B]) = dp 0 dp8 — di([ev, B]) — [ev, dif3 — [, B]]
= —_[(_1h04,6]_ —|—_[a, c_ihﬁl — _[a, c_ihﬁl + Loz [a, ﬁ]] [a [a, B]] — %H ] ]
:_[oz,ocoﬁo—ﬁoao—l—aoﬁl—ﬁlao—irozB ﬁoal—l—alﬁl—irﬁl ]_ _[aa +a%a! + ala? , 6]
— 090289 + 098900 — 003000 — 4040 +a 0098 + 0500 — o

+ a8 + ozlﬁoa —a%8%" — Balal 4+ afal Bt + ozlﬁlozo +ala®8% + a°8%!

— aiﬁﬁa — 5004 ol —i— oz_ozﬁﬁi — a8l — aiﬂioz — Bloz ol —i— al 166 —a'pl%t

Bia() BICKGOJO

= —a'Blal — ﬁloz ol +a'alp? — 2a18% " + falal + alal sl +aiﬂia

|
=,
Qn—\
Q
il
N
)

This argument shows that for parity-even zero-curvature representations (which are con-
strained by a! = 0) the operator 8, is a differential, and Marvan’s cohomology tech-
nique [94] works also in the Zj-graded setup. O

Example 9. Let us consider the four-component generalization of the KdV equation,
namely, the N=2 supersymmetric Korteweg—de Vries equation (SKdV) [84]:

—1 0 -
Uy = —Ugpy + S(U,Dngu)w + aT(DIDQUQ)z + 3au’u,, D; = 20 e (1.2)
where
’U,(ZL‘, t, 01, 62) = U()(l’, t) + 01 . U1($7 t) + 02 . UQ(ZL‘, t) + 9102 . U12(ZL‘, t) (32)

is the complex bosonic super-field, 0,6, are Grassmann variables such that 62 = 62 =
0105+020, = 0, ug, uio are bosonic fields (p(up) = p(u12) = 0), and uy, us are fermionic fields
(p(u1) = p(ug) = 1). Expansion (3.2) converts (1.2) to the four-component system' (3.5)

Upit = —U0:pzz + (auo (a + 2)upuiz + (a — 1)“1“2):0,

Uiy = —Uigee + ( (a+ 2)ugtin, + (@ — 1)uous — 3ugus + 3aU8U1)$,

Ut = —U2.gzz + (—(a + 2)upury — (@ — Dugpuy — 3ugugs + 3au3u2)m,
Ur2t = —U12.000 — BUI2UI2, + 30U U0zx + (@ + 2)UoU0zas

2
+ 3u1u1;m + SU/QUQ;mm + 3a (u0u12 — 2u0u1u2)$.

!The Korteweg—de Vries equation upon w2, see (1.1), is underlined.
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The N=2 supersymmetric a=4-KdV equation (3.5) admits [28] the s[(2|1)-valued zero-
curvature representation a’¥=2? = Adx + B dt, where?

—tug e N(ud 4+ u2) — e 2ugt  —eH(ug + tuy)
A=| —¢ —dug — ! 0 :

0 UL — Us —2’1/&0 — et

The elements of the s[(2|1)-matrix

bll b12 b13
B = b21 b22 b23 )

b31 b32 b33

are as follows,

bll = 41168 — 6iUOU12 -+ 4u0u0;x — ’IZUO;M — U122 — 4’I:UQU1 + 571(2'&3 — U112 — ’IZUO;I) — ’1:572U0,

bio = e (dug + 2ugurs + dugliome — 2uis + 4u§;$ — Ui2zp + Uploy + SUgliug + Uty g) +
+ 572(22.11,8 — 4iUOU12 + 4UOU0;m — in;zm — U122 — 2iu2u1) + 573(U8 — U2 — in;x) —
— detuy,

b13 = E-:_l(—E—)’I:UOUQ;$ - 5U0U,1;x — U2z + iul;m + 8UQU(2) — QUQUH - 4’1:U,QUO;$ - 8’LU,1U(2) +
+ 28urt1g — 4urtio,) + €2 (—Ugy + B, — Stugtg — Sujug) + &2 (—ug + duy),

621 = 25(—2u3 + ulg) —+ QZUQ + 5_1,

bgg = 4’Lug - 6iu0u12 - 4U0U0;I - ’I:UO;JCI + U12:2 — 4’1:U2U1 + 8_1(—2’&(2) + Uyg + in;:c) +
+de g + 73,

623 = U2z — iul;x -+ 4’iU2U0 + 4U1U0 + 5_1<U2 — iul),

by1 = e(—ugy — U1, + dBusug — dugug) + ug + tug,

632 = 5’iU0U2;I — 5UOU1;x — U2ipa — iul;rw -+ SUQU% — 2u2u12 -+ 4iu2u0;x + SZUIUg — 2iU1U12 —
— dugugy + e M ug(iug — uy),

b33 = 2(4’&718 - 6’1:UOU12 - in;xac - 4’1:U2’IL1) + 6_3.

2This zero-curvature representation is not equal identically but it is gauge-equivalent to the respec-
tive formula in Das et al. [28]. The transformation between these objects contains the imaginary unit 2.
Our choice of normalization is due to the following argument: all structures under study contain Gard-
ner’s deformation (5.41) of Korteweg—de Vries equation (1.1) (so that the structures retract to Gardner’s
deformation under suitable reductions).

We note further that the zero-curvature representation «
which is an alternative to the first solution reported in Chapter 3, of Gardner’s deformation problem [84, 99]
for the N=2, a=4 SKdV equation (we refer to Chapter 5 for detail). The parameter £ which we use here
is the parameter in the classical Gardner deformation of the KdV equation [101]. Therefore, we denote
this parameter by ¢ instead of .

N=2 can be used for construction of a solution,
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Chapter 4. Zero-curvature representations: Zs-graded case

We claim that there is no sl(2|1)-matrix @ satisfying the equalities

0 0

—A=D,Q)-[A Q] —B = Dy(Q) — [B, Q).
SA=DQ-[4Q,  +B=D(Q)-[5.Q]
Consequently, the parameter ¢ in oV=2 is non-removable under gauge transformations.

Example 10. Consider another sl(2]2)-valued zero-curvature representation f = Adz +
Bdt for the N=2, a=4-SKdV equation: we let

A — ’I:U,() —>\2 — (U(Z) + Ulg) —z'ul — U2
A= 1 —\ — tug 0 ;
Ug — iu1 _Q’LUO

The elements of the s[(2|1)-matrix

bll b12 b13
B=1ban by by,
b31 632 b33

are given by the formulas

bii = 2\ (2u2 — upa) — 4dud + 6iugurs + Aty + TUo.zy — Ur2,5 + 48Uy,

b12 = 2)\2(—2u3 + Ulg) + 2)\(—4U0U0;I + U12;x) - 4Ué — 2U(2)U12 — 4“0“0;3@3@ + 2u§2
— AU, + Ugir — Ul — SUgliylti — Uglysg,

bis = MUap + U1, — 42Usuo + dusug) — DTuglay + DUy + Ugipe + TULey
— 8U2U(2) + 2usuqg — 4’1:7,L2U0;m — 8’LU1U3 + 27:U1U12 + 4U1U0;I,

by = 2(2103 - U12)7

bgz = 2)\(—2’&(2) + Ulg) — 4’&Ug + 6iU0U12 — 4UOU0;x + ’L"LL();M; + U12;¢ + 4’1:U2’LL1,

bag = gy + Ty, — dtugug + 4uiug,

b31 = U2y — ’I:’Ull;x -+ 4’I:’U/2'LLO + 4U1UO,

bz = AN(—uzy + U1, — 4TUsug — dusty) — BlUGUy — DUGULy — Uzgy + TUT 4y + Sugud
— 2U2U12 — 4’I:U2U0;Z — 8ZU1U(2) + 2’1:U1U12 - 4U1U0;x7

b33 = 27,(—4u3 + 6UOU12 + UQ:za + 4u2u1).

The sl(2]1)-matrix

satisfies the equations

0 0

A= Del@) - [4.Q, 7B =Di(Q)~[B,q)



Solving the Cauchy problem

0
55 = st S’)\ZO = 17
we obtain the SL(2|1)-matrix
1 A0
S=10 10
0 01

This matrix S defines the gauge transformation that removes the parameter A from the
zero-curvature representation 3, i.e., (8)5 = B|x—o. Consequently, the parameter A in 3
is removable.

We extended — to the Zy-graded case — Marvan’s method for inspecting the (non)removability
of a parameter in a given family of zero-curvature representations; specifically, we accom-
plished the task of balancing the signs in a nonselfcontradictory way. Let us note that
this generalization of the standard technique can be used further in solving Gardner’s
deformation problems for the N=2-supersymmetric KdV equations and other Z,-graded
completely integrable systems (see Chapter 5).
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Chapter 5

Non-local picture

The classical problem of construction of the Gardner deformation [101] for an infinite-
dimensional completely integrable system of evolutionary partial differential equations es-
sentially amounts to finding a recurrence relation between the integrals of motion. For
the N=2 supersymmetric generalizations of the Korteweg—de Vries equation [84, 99], the
deformation problem was posed when the integrable triplet of such super-systems was
discovered. In Chapter 3 we proved the 'mo-go’ theorem stating that a classical polyno-
mial Gardner deformation for the N=2 supersymmetric a=4 KdV equation does not exist
within the superfield formalism (but that in principle, the deformation may exist whenever
the superfields are split in components), c.f. [84]. This is in contrast with the N=1 sKdV
case when the two approaches yield the supersymmetry-invariant deformation [99].

In this chapter we re-address, from a basically different viewpoint, the Gardner de-
formation problem for a vast class of (not necessarily supersymmetric) KdV-like systems.
Namely, in Chapter 3 we emphasized the geometric similarity of the Gardner deformations
and zero-curvature representations, each of them manifesting the integrability of nonlinear
systems (c.f. [43, 123]). Indeed, both constructions generate infinite sequences of nontrivial
integrals of motion. However, the standard Lax approach relies on the calculus of pseu-
dodifferential operators whereas the Gardner technique is more geometric and favourable
from a computational viewpoint.

Developing further the approach of [111], we reformulate the Gardner deformation prob-
lem for the graded extensions of the KdV equation in terms of constructing parameter-
dependent families of new bosonic and fermionic variables. We require that the ‘nonlocali-
ties’ possess two defining properties ([59, 78]): on the one hand, they should reproduce the
classical Gardner deformation from [101] under the shrinking of the N=2 super-equation
back to the KAV equation. On the other hand, we consider the nonlocalities that encode
the parameter-dependent zero-curvature representations for the super-systems at hand. In
this reformulation, we solve Mathieu’s Open problem 2 of [99] for the N=2 supersym-
metric a=4-KdV equation. However, our approach is applicable to a much wider class of
completely integrable (super-)systems.

In the recent paper [59] Kiselev understood Gardner’s deformations in the extended
sense, namely, in terms of coverings over PDE and diagrams of coverings. Zero-curvature
representations and Gardner’s deformations can be considered as such geometric struc-
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Chapter 5. Non-local picture

tures! that obey some extra conditions.

5.1 Differential coverings and zero-curvature repre-
sentations

Definition 4 ([12, 80]). Let &€ be a differential equation that admits the nonempty infinite
prolongation £%. A covering (or differential covering) over the equation £ is another
(usually, larger) system of partial differential equations & endowed with the n-dimensional
Cartan distribution C and such that there is a mapping 7: £ — £ for which, at each
point 6 € £ the tangent map 7. is an isomorphism of the plane Cp to the Cartan plane
Cr(9) at the point 7(f) in £°°.

The construction of a covering over £ means the introduction of new variables such
that their compatibility conditions lie inside the initial system £>°. In practice (see [62]),
it is the rules to differentiate the new variable which are specified in a consistent way; this
implies that those new variables acquire the nature of nonlocalities if their derivatives are
local but the variables themselves are not (e.g., consider the potential b = [ u dz satisfying
v, = u and b, = —u,, — 3u? for the KAV equation u; + gy, + 6uu, = 0). Whenever the
covering is indeed realized as the fibre bundle 7: & — &, the forgetful map 7 discards the
nonlocalities.

In these terms, zero-curvature representations and Gardner’s deformations are coverings
of special kinds (see Examples 12 and 15 below). We use the geometric similarity of
the two notions and construct new Gardner’s deformations from known zero-curvature
representations (but this is not always possible?).

Example 11 (A zero-curvature representation for the KdV equation). Consider the Kor-
teweg—de Vries (KdV) equation (1.1) and its Lax representation [37, 101, 103]

'Ct - [E, A],

where
3

The linear auxiliary problem [128] is

wzx + u12¢ = )\%
_4wmmm - 6U?/1x - 3“’12;331/) = 1/}“

!Bicklund (auto)transformations between PDE appear in the same context. In [59] Kiselev argued that
the former, when regarded as the diagrams, are dual to the diagram description of Gardner’s deformations.

2For example, Gardner’s deformation (2.3)—(2.4) does not correspond to any zero-curvature represen-
tation with values in a finite-dimensional Lie algebra.
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5.1. Differential coverings and zero-curvature representations

By definition, put ¥y = ¥ and ¥ = 1,. We obtain

Yo = Y1,

@/Jl;a: = (>\ - U12)¢07

Yo = =45 (A — u12)ho) — Burathy — Buratho = traatho + (—4X — 2u)1hy,
Y1y = (—4)\2 + 2uip\ + 2”%2 + U12.5)100 + (—U12:2) 1.

We finally rewrite this system as two matrix equations [128],

)= G o) ()
?/)m: A—upp 0 (0

—— N——— N

Ya A P
Yoy _ U120 —4XN —2u12\ (o
(o —4N? 4 2upp )\ + QU%Q + U120 —U12;2 )
—— ~~ 7 N——
L B P

This yields an sly(C)-valued zero-curvature representation a4V = A dz+ B dt for the KdV

dv

equation (1.1). The representation o4V was rediscovered in [93].

Example 12 (Zero-curvature representations as coverings). Let g := sly(C) as above. We
introduce the standard basis e, h, f in g such that

[eah]:_2€7 [eaf]:h7 [f7h]:2f
We consider, simultaneously, the matrix representation
p: sl(C) = {M e Mat(2,2)| tr M=0}

of g and its representation g in the space of vector fields with polynomial coefficients on
the complex line with the coordinate w:

ey = (5 o) o = (5 %) w0 = (1)
o) = 1-0fdw, olh) = ~2w-0/ow. olf) = —u?-0/ow

Let us decompose the matrices A; € C*(£*) ® g (which occur in the zero-curvature
representation v = Y, A;da’) with respect to the basis in the space p(g),

Ai =) ® p(e) + af @ p(h) + a} @ p(f), (5.2)
for a\’ € C(£).
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Chapter 5. Non-local picture

To construct the covering € over £ with a new fiber variable w over £ (the ‘nonlo-
cality’), we switch from the representation p to p. We thus obtain the vector fields

Vi, = al) @ o(e) + a) @ o(h) +a}  o(f) (5.2)
such that the prolongations of the total derivatives D, to € are defined by the formula
Dyi = Dyi — Vy,. (5.3)
The extended derivatives act on the nonlocal variable w as follows,
Dyiw = dw i (=Vy,).

Remark 8. The commutativity of the prolonged total derivatives, |:sz7 Dﬂ} = 0 with ¢ # 7,
is equivalent to the Maurer—Cartan equation (4.5): Indeed, we have that

0= [sz, Dﬂ] = [sz - VAH D, — VA].] = [sz', Dggj] - [sz‘, VAj] - [VA]., ij] + [VAZ., VAJ.] =
= —Vpa, + Vb a + Viaua) = Vb 4D a;41414;) & DypiAi — DAy + [Ai, Aj] = 0.
This motivates the choice of the minus sign in (5.3).

Example 13 (A one-dimensional covering over the KdV equation). One obtains the cov-
ering over the KdV equation from the zero-curvature representation « (see Example 11)
by using representation (5.2’) in the space of vector fields. Applying (5.2") to the matrices
A, B € s5l5(C), we construct the following vector fields with the nonlocal variable w:

Va=(1—(\—up)w?) - 0/ow,
Vg = [(—4)\ — 2u19) — 2w — (—4X% 4 2upo\ + 2ul, + ulg;m)wﬂ -0/0w.

The prolongations of the total derivatives act on w by the rules

wy = —1 4+ (A — up)w?, (5.4a)
Wy = — ((—4)\ — 2U12) - 2%12;1’11) — (-4)\2 —+ 2u12)\ —+ 2’111%2 -+ ulg;m)wQ) . (54b)
We thus obtain the one-dimensional covering over the KdV equation (1.1). In what fol-

lows we show that this covering is equivalent to the covering (5.8) which is derived from
Gardner’s deformation (2.1) of the KdV equation (1.1).

Example 14 (The projective substitution and nonlinear realizations of Lie algebras in the
spaces of vector fields [111]). Let N be a (ko + 1|k;)-dimensional supermanifold with local
coordinates

v= (0" 0% 0T L) €N, and put 9, = (01,02, ..., Oyror1, Op1, ., Opi )"
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5.1. Differential coverings and zero-curvature representations

For any g € g C gl(ko + 1|ky), its image V, under the representation of g in the space of
vector fields on N is given by the formula

Vy = vg0,.

We note that Vj is linear in v* and f7. By construction, the representation preserves all
commutation relations in the initial Lie algebra g:

_[‘/;p Vh]_ = _['Uga'v; 'Uhav]_ = ’U_[g, h]av = Vv[g,h]j ha geg.

Locally, at all points of N where v; # 0 we consider the projection
p: vi = wi_l = Mvi/vl7 p: fgld = rZew = /J“fgld/vl7 IS R, (55)

and its differential dp: 0, — 3. The transformation p yields new coordinates on the open
subset of N where v! # 0 and determines a basis in the fibres of TN over that subset:

w:(M?w:l""7wk07f17"‘7fk1)7

Ow = (—i(iwi wi + ifjafj),awz,...,awko,afl, o ,8fk1>t.
i=1 j=1

Consider the vector field X, = dp(V}). In coordinates, we have
X, = wgde. (5.6)

We note that generally, X, is nonlinear with respect to w' and f/. The commutation
relations between vector fields of such type are inherited from the relations in Lie algebra g:

[Xy, X5] = [dp(Vy), dp(V})] = dp([Vy, Vi]) = dp(Vig.s1) = Xp.11-

We now take X, for the representation o(g) of elements g of Lie superalgebra g; see [109]
for other examples of representations of Lie algebras by using vector fields.

For the sake of definition we now set n = 2, ' =z, 22 =t and we take kg = 1, k; = 0
so that w! = w.
Using the representation ¢ we construct the prolongations of total derivatives,

0 ~ _ 0
D, = Dy + wy——,

D:c:D:c T
tw ow ow

by inspecting the way in which they act on the nonlocal variable w along W':

w, = D, i dw, w, = Dy dw.
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Chapter 5. Non-local picture

We thus obtain® a one-dimensional covering 7: & = W x £ — £ with nonlocal vari-
able w.

Using representation (5.6) for the matrices A and B that determine the zero-curvature
representation oV = Adx + Bdt for the KdV equation, we obtain their realizations in
terms of the vector fields:

1
Wy = p(—)\w2 + p? + uppw?) 8/0w,

1
Wp = —(—U12.00W® — 2Upoppiw + 4N2w? — AN — 20 urpw? — 20Uy — 2ui,w?) 0/0w.

i
Therefore, the prolongations of the total derivatives act on the nonlocality w as follows:

1
W, = —;(—)\wQ + 1% 4 uppw?), (5.7a)

1
Wy = ——(—U1220W* — 2uyppiw + AN*W? — ANp? — 2 upw? — 2purg — 2ui,w?).  (5.7D)
L

The parameter p is removable by the transformation w — pw, which rescales it to unit.
Applying this transformation to (5.7), we reproduce the covering (5.4).

Example 15 (A covering which is based on Gardner’s deformation). Consider the Gardner
deformation [101] of the KdV equation (1.1),
m. = {wy = iy — Eling, — €703, } : € — &, (2.1a)
E ={liay = —(Wnoe + 305, — 28703y, } (2.1b)
Expressing s, from (2.1a) and substituting it in (2.1b), we obtain the one-dimensional

covering over the KdV equation,

N 1 . N
Uy = g(’ulg — U12> — 611,%2, (58&)

1 ,. 1 1 2 1\ . 1N
Uy = E(Uu;m + 2upy) + o2z + 3t + | —2ui2z — Zth2 = =3 |t + | 2eurr + - ) Uz
(5.8b)

3Each zero-curvature representation with coefficients belonging to a matrix Lie algebra determines a
(linear) covering, whereas each covering with fibre W can be regarded as a zero-curvature representation
the coefficients of which take values in the Lie algebra of vector fields on W.

Indeed, let 2%, ..., 2" be the independent variables in a given PDE and D,: be the corresponding
total derivative operators. Then zero-curvature representations and coverings are described by the same
equation (4.5),

[Dyi + Aiy, Dyi + Aj] =0, ihj=1,...,n.
In the case of zero-curvature representations, the coefficients A; and A; are functions with values in a Lie
algebra. In the case of coverings, the objects A; and A; are vertical vector fields on the covering manifold.
This correspondence between zero-curvature representations and coverings very often allows one to transfer
results on ZCRs to results on coverings and wice versa. Lemma 2 and Proposition 7 in section 5.4 illustrate
this general principle; similar results were considered in [49].
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5.2. Gauge transformations and coverings

We claim that covering (5.8) is equivalent to the covering that was obtained in [12,
p. 277] for the KdV equation. To prove this, we first put ;o = —0/c. We have

0 1.1 1.,

T = T QU DU — U,
3 3 € 3

in other words

v + v+ L 2 L
Uy = U v+ =] ——.
12 2e 4e2

Next, we put p = 0 + 1/(2¢), whence we obtain

1
_ 2
Pz = Uiz +P° — 12 (5.9a)
1 1 1
Pt = —U12:00 — 2u2 — 2—62U12 + 4_84 - 2U12;1«p — (21/42 + 6—2)]92. (59b)

Dividing (5.4) by w?, we conclude that

Wy
w2 w?

On the other hand, we put p = 1/w, whence p, = —w,/w?, and set A = 1/(4¢?). This
brings (5.4) to the same notation as in formulas (5.9),

Pe =tz +p° — A,

Pt = —U12.00 — 2u?, — 2\upp + 4% — 2u12.5p — (2u12 + 40)p?.

The corresponding one-form of the zero-curvature representation for the KdV equation is
equal to

KV — 0 A—wup de + —U12;z —4N? + 20 ugg + 2uiy + U2
1 0 —4)\ — 2U12 U12;¢

) dt.  (5.10)

Below we show that this zero curvature representation is also equivalent to o®V from
Example 11.

5.2 Gauge transformations and coverings

Let g be the Lie algebra of the Lie group G (so that G = SLy(C) in the previous example).
Let us recall that for any-zero curvature representation « of a given equation £ there exists
the zero-curvature representation o® such that

0¥ =dS-S'+S-a-S7Y, SeCFEX,QG). (4.6)
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Chapter 5. Non-local picture

S

The zero-curvature representation «” is called gauge-equivalent to o and S is the gauge

transformation. Suppose o = A; dz’. The gauge transformation S acts on the components
A; of «v as follows

AS —

7 dx?

()5~ + SA; S (4.6')

Example 16 (The relation between the coverings which stem from gauge equivalent zero
curvature representations). Let g = sl3(C) and G = SLy(C). Suppose S € C®(E>, SLy(C)),

so that
sz<“5ﬁ,<mszy
S3 54

Let a = Y, A;dz’ be a zero-curvature representation for an equation £. Using decomposi-
tion (5.2) for A; € C*°(E>) ® sl(C), we inspect how the gauge transformation S acts on
the components of a:

Af i (9)S71 + 50l @ p(e) + 0; @ p(h)al’ @ p(£))S™ =
= 5 ()5 +al @ (S ple) 5T + ) @ (S p(h) - ST +all @(S - pl(f) - 57).

We have that

d (S)Sfl — 51,454 — 52,483 52:451 — 51,52 _ 81:484 — $2:i53 89481 — 81,52 _
" 83554 7 545053 S4381 T 53552 83:4S4 — S4.iS3 —S1,iS4 + S2,;S3
= (5281 — s1;52)p(€) + (s15354 — 52,483)p(h) + (s3;84 — S4;i53)p(f),
—8183 S
> - ( 31;3> = (s1)p(e) + (=s1s3)p(h) + (=s3)p(f),
S (8154 + 8253 —25159 = (—2s159)p(e) + (s154 + s253)p(h) + (2s354)p(f)
B 25384 —8184 — S983) 152)p 154 283)p 354)p(J),
S954 —3
$ept)-57 = (750 73 ) = e+ sl (00,

We finally obtain

A,'S = (82,81 — 515382 + Sia( - 23132“2) - 52&5‘)) ® ple) +
+ (81,184 — S2.83 — 5153a§) + (5184 + 5283)0151) + 8254a§f)) ® p(h) +
+ (83,154 — 8483 — 5500 + 25384 aé) + 34a§f)) ® p(f).
Passing to the vector field representation of A? by using formula (5.2'), we have

VA;S = (59,151 — S1.iS2 + ST a(l) — 25 52a§z) — 52a§c)) ® o(e) +

+ (81,184 — 2,83 — 3133ag> + (s184 + 3233)a2) + 8254a;)) ® o(h) +

+ (83484 — S4.483 — s%a(z) + 2$3s4a§z) + siaﬁf)) ®o(f). (5.11)
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5.2. Gauge transformations and coverings

In other words, whenever we start from the covering of £ associated with a zero-curvature
representation «, such that the differentiation rules for the nonlocality w are

d_(w) = —ag) + Qa?w + a?)wQ,

T
we obtain the covering which is associated with o

d‘ii (wg) = —(82.i51 — S1.152 + sfa((f) — 23152(1,(;) — sgagf)) +

+ 2(s1454 — S2,83 — s153al”) + (s184 + 5283)CL§;) + 3254a§f))w5 +

+ (83,084 — 54,83 — s2a) + 23354a§f) + siagf))w?q. (5.12)

We shall use this relation between the two coverings in the search of gauge transformations
between known zero-curvature representations for the KdV equation.

Example 17 (Gauge transformations between zero-curvature representations for the KdV
equation). Let us find the gauge transformations that bring coverings (5.4) and (5.8) to
the form (5.9).

For the transformation (5.4)—(5.9) we have

Pr = +p°— A= — (82,451 — S1,052 + 3% — Sg()\ — Uup2) +
— 2(31;9[;84 — S2.453 — 5183 + S954(A — u12))p —

— (Sg;w84 — S4;$83 — Sg + SZ()\ — U12>>p2).

Solving this equation for s;, we find a unique solution s; = s3 =1, 51 = s4 = 0:

S = (Z é) , STt= (_Oz _Oz) . (5.13)

The matrices of the zero curvature representations corresponding to the coverings (5.4)
and (5.9) are related as follows:

i 0/ \A=up 0)\—=i 0/) \1 0 )
On the other hand, for the transformation (5.8)—(5.9) we have

_ 2 L 2 U12 1 2
Pr = Utz +p° — —5 = —(S2,251 — S1,252 — S7— + S182— — S +
4e € €
U12 1
— 2(81,284 — S2,053 + 183~ — (s154 + 8283)£ + 59848)p —

U 1
2 Y12 2 2
= (s084 — su053 + 85— — sysuz + 53E)p”).

29



Chapter 5. Non-local picture

Solving this equation for s;, we find a solution s; = i/1/c, so = 4/(2e1/€), s3 =0, s4 = i\/c.

Therefore,
0 —i\/e 0 i/\/e
The matrices of the zero-curvature representations corresponding to coverings (5.8) and (5.9)
satisfy the relation
i/VE i/(2eVE)) (0 45—\ (—ivE —i/(2sVE)) _ (£ =
0 —1i\/e 1 0 0 i/ —2% '

Let us remember that in Example 11 we derived the zero-curvature representation for
the KdV equation from its Lax pair. Having done that, we also revised the transition from
this zero-curvature representation to the Gardner deformation of the KdV equation. In
what follows we extend this approach and find the generalizations of Gardner’s deforma-
tion (2.1) for Krasil’shchik—Kersten system and for graded systems, in particular, for the
N=1 and N=2 supersymmetric Korteweg-de Vries equations.

Example 18 (Gardner’s deformation of Krasil’shchik—Kersten system). Let us consider
the Krasil’shchik—Kersten’s system, which is the bosonic limit of (3.5) for a=1:

2
Uty = — Ui2ipze T OUILUI2; — BUoUOzze — U0z U0ws + SU12:2UG + OUIRUGUG,, (5.15&)
2
Ut = — Uo;zzx + BUOUO;x + 32L12U();gC + 3U12;I’LL0. (515b)

Krasil’shchik—Kersten system (5.15) admits [53] an sl3(C)-valued zero-curvature represen-
tation af'f = AFK dz + BF¥ dt such that

N up —ud+ 9% wg

ARE = |1 n 0 ],
0 6110 —2n
b1 bi2 —18n%uy — 3N,z — Uoipa + U(SJ + 2uguro
B = | =361 + w2 4+ 2uy —byy — 7207 — 6nu —6nug — U
—36m%ug + 6nug., b3s 720 — 6nud
where the elements by, 12, and by of the matrix BRK are as follows:
by, = — 367]3 + 3nu§ + Up:p U + Ur2:2,
bio = — 3240t + * (ug — 2u19) — U0ty — ug;x — Upgy — ug — uduig + 2uly,
bgo = — 108n3u0 + 18n2u0;$ + 61)(—up.zz + ug + 2ugu2).

Let us construct the matrix S¥K € SL3(C) — C°°(£>, SL3(C)) for gauge transforma-
tion (5.14). We set e = n? in expression for (5.14) and obtain

in™' iin® 0
SEE— 0  —in 0
0 0 1
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5.2. Gauge transformations and coverings

By applying the gauge transformation S¥X to the zero-curvature representation of¥, we
obtain the gauge-equivalent zero-curvature representation oX¥ for Krasil’shchik—Kersten
system (5.15):

ol = (KK = AKK 4 4 BEK gy,

such that
%77_2 ug —urp i tug
ARKE = | —1 —%7772 0 ,
0 dntug —3n7
b1t b12 bi3
B§<K = | —ud—2u+n?t —ugsuo — wing — N 2urs + %7776 i tug + 0Py |
—in g + 02Uy (= iU + BUd + 24upus) —n"%ud 4 3n7°

where the elements by, b1z, and b3 of the matrix BXK are these:

2/ 2 2. -6
b1 = Ul + Uty + 1 " (ug + Ur2) — 3N
2 4 2 2 —2 —4
bia = Uoyeato + Upy, + Ur2ae + Uy + Utz — 2uTy + 1~ (Uoelo + Urae) + 17 Un2,
1 . . 3 . . _3 . _5
bis =10 (—tUge + Tuy + 28Uguiz) — TN “Uge — TN Up.

Let us recall that formula (5.6) yields the representation of matrices AKX and BXX in terms
of vector fields. By this argument, from the zero-curvature representation of¥ we obtain
the two-dimensional covering over Krasil’shchik-Kersten system (5.15); denoting the new

nonlocal variables by g and w15, we have that their derivatives are equal to

o = — Uoling — 4 ‘g + 1 o, (5.16a)
U = — ljy — uf + 1y — a9 'lotip + 1 *liaa, (5.16b)
and

~ ~ 2 ~ 1y . ~9 . ~ . 3 .
Toy = Uo(UozUo + U2 — UraUy — 2U12U12) + 1 (oize — Toa Uy — B lie — Uy — 28Ugl12)

+ 0" %o (2ug + ur2) + 1> (B + FUgue — Llnaug) + 1 otz + i ug — n o,

(5.16¢)
a12;t = — UQ;zzUo — Ug;x + 2U0;mﬂ12UQ — U240 T 2u12;zﬂ12 — f@ug — 2@%211,12 — Ué — ugulg
-+ QU%Q -+ nilﬁo(in;xI — ’I:UO;x’&lg — zug — 2’I:UOU12)
+ n_Q(—uO;xu@ — U192,z + ﬁ12u(2) + 20y0u19)
+ 4 Uolagug + 1 (U — wr2) — 1 Ol (5.16d)

We note that under reduction uy = 0 this covering retracts to Gardner’s deformation (5.8)
for KdV equation (1.1).
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Chapter 5. Non-local picture

Theorem 4. There is a “semi-classical” Gardner’s deformation® for Krasil’shchik—Kersten
equation (5.15). Under reduction ug = 0, this deformation contains classical Gardner’s
formulas (2.1). The Miura contraction from (5.18) to (5.15) is

Uy = Tig — Elio.e + £ TU12to, (5.17a)

U = Ting — €tz + Uowllo) + €7 (U, + UTy + Uraliy) — 28%ugu gty + £ fyig  (5.17h)
The extension &(¢) of (5.15) is

- 42~ (o~ ~ . 3~ 4 o~ o~ 9 o
Uoy = 3& Uyli2(20o; Uz + Ui22U0) + 3 Uo (—Uoyee Uolinz — 3lp,, U1 — o li2,eUo)

2~~~ ~3 ~  ~9. N N -
+ 3 (Uo,g0Uo;e o + Uy, + 3l Upliz + Uty + Ut ln + 12, UoT2)

~ ~ ~ ~9 ~ ~ ~9 ~ ~ ~ ~
+ 3etip(—Tospelo — 21Up,,) — Uoswer + Slosly + Sty Uiz + 3ti2 o, (5.18a)
d
~ 4~2~3 3~ ~ ~ ~ ~ ~ 2(9~ ~ o~ ~ ~ ~ ~3
Ulg;t = a (-38 U0U12 + 36 Uoulg(UO;xulg — UIQ;Z‘UO) + € (SUO;MUOUM + 3U0;xulg;$U0 — 2U12
6u2u’ 3 UQ: g0 U Q. UoU 19 U2 3UQ. 40U U 3u21 3u?
- U0U12) + 5(_u0;xmu0;x + uO;xuOuH - ulZ;xuo) + U0z U0 + ul?;a:a: — OUgU12 — IUqg |-

(5.18b)

Proof. Let us express uy and wujp from (5.16a)-(5.16b) and substitute them in (5.16¢)-
(5.16d). We get

up = i(Uow + Tolnz) — a0~ o,
Uy = N7 (=g, — 2oy liolinz — Uglty) + Uowlio + Ui + Uglina + Uy — 1 a2,
Up;t = 3n2(_ﬂ0;$$ﬂ0;$a0 - aO;zaxa(z)ﬂH - ﬂg,m - 3ﬂg;xa0ﬂ12 - aO;:calQ;.tﬂg - 2710@71(2)@?2
— U, U n2) — Uospas + Slosally + 6’&8;1;% + Qi g lins + 3o UTy + 3120y
+ 3T9.410The — 30 (To. g + To.pling + Ur2.0lo),
U124 = 3772<a0;w:v:ca0;:v + ﬂO;w:v:caOalQ + 718@1 + ﬂ0;$$ﬂ0;$a12 + 2a0;zza12;a§a0 - ﬂO;.tzﬂOﬂ?Q
+ U3, Mg — gy Uy + Uogligrlio — 200 loly + Ur2aellng + Uls, U5 — 312 UglT,)
- 3a0;xzxﬁ'0 - 3a0;xxa0;x + 3’&0;:01;’&01212 + 3’(1(2);35&12 - 317'0;1’&12;90&'0 + 12,&0;13,&0&%2
— U12;000 — 3ﬂ12;zxﬁ(2) + 12@12;xﬂ8ﬂ12 + 67112@@%2

—92 -~ o~ ~ ~92 ~ ~
+ 3107 (—200,, Tolya — Ur2.0Uy — 2U12,4U12)

Setting now Up.new = 1NUo.old aNd Ui2mew = 7721212;01(1 and denoting = /¢, we obtain (5.17)-
(5.18). O

Theorem 5. Gardner’s deformation (5.17)-(5.18) for Krasil’shchik—Kersten system (5.15)
yields recurrence relations the between conserved densities w,,; the relations are defined by

4See Remark 10 on page 74.
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5.2. Gauge transformations and coverings

the formulas

Wy = U12, Wy = U12;z + Up;zUo,

wy = Dywy + 2D, (vovr) + uh, + uly + ur2ug,
2
_ 2 2 2
wg = Dywy + E D, (vgva—k) + 2D, (vov1) + 2wiwp + wyivg + 2wev1v9 + U UG,

k=0
n—1 n—2
Wy = D:Ewn—l + E Dm<vkvn—1—k> + (Dx(vk)Dm(Un—Q—k) + wkwn—Q—k)
k=0 k=0
+ E wrvv; + E wiv Dyv; + E WEWV;V;,
k+l+j=n—2 ktl+j=n—3 k+l+7;
where v; are given by
n—2
Vo = Uo, U1 = Uo;z, Up = Dwvn—l + E WEVp—2—k-

k=0

The generating function w(ug, u12, ) of the zero differential order component of the series
w([ug, u12], €) is given by the formula

L 1283 (—ud +upg) + ¢ —4q + 4
W = ,

5.19
6c2q ( )

where

q=2%3 <952(2u8 + up) + 2

1/3
+ 3\/35\/454@8 — Buguiz + 3udui, — uly) + 2(8uf + 20uduiy — udy) + 4ug> :

Proof. Plugging the series @iy = >, o e*vy, and @2 = >, 25 eFwy, into (5.18), we obtain the
recurrence relations between v, and wy. The series coefficients wj, are conserved because
U2+ is in divergent form (i.e., the image of d/dz). The series coefficients v, are auxiliary
quantities which are not conserved in the general case.

Consider the zero order components of (5.17). The following system of equations hold
for v(ug, w12, €) and w(ug, uis, €):



Chapter 5. Non-local picture

Substituting of this expression for ¢ in (5.21), we obtain a third order algebraic equation
in 0,
ehid 4 2e%0® + (52u(2) — 2u19 4+ 1) — uyy = 0.

In agreement with the limit behaviour of its solution lim. oW = w12, we take root (5.19)
of this equation. O

5.3 Zero-curvature representations of graded exten-
sions of the KdV equation

The graded extension of Maurer—Cartan’s equation (4.5) has the form

dAZ‘— dAj+_[Ai7Aj]_:07 \Vll,']:L,mZ?éj (522)

dzi da?

Let us study in more detail the geometry of N=1 and N=2 supersymmetry-invariant
generalizations of the Korteweg—de Vries equation [84, 98].

N =1 supersymmetric Korteweg—de Vries equation

The N = 1 supersymmetric generalization of the KdV equation (1.1) is the sKdV equa-
tion [98]
d

0

where ¢(x,t,0) = £ 4 Ou is a complex fermionic super-field, € is the Grassmann (or anti-
commuting) variable such that #* = 0, the unknown u is the bosonic field, and ¢ is the
fermionic field. By using the expansion ¢(x,t,6) = £ 4+ u in (5.23), we obtain

U = Uy — 6UUy + 3E&ea (5.24a)

The KdV equation (1.1) is underlined in (5.24a).

Example 19 (Zero-curvature representation and Gardner’s deformation of the sKdV equa-
tion). The N=1 sKdV equation (5.24) admits the s[(2 | 1)-valued zero-curvature represen-

tation
o=t = AN=ldy 4+ BN=dt,
where
- —ut+gr ¢
AVt =11 —a 0|,
0 —£ ~1
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5.3. Zero-curvature representations of graded extensions of the KdV equation

€3 —uy P g, — & e tu— gt —& —26u— 37 — 37X
BNt = | —2u—¢? e84y, —& — &t

_ga: + 55_1 ésr:a: + 25“ - %5_151 + %5_25 6_3
This zero-curvature can be obtained by reduction in zero-curvature representation (5.27)
which we will consider below for N=2, a = 4-SKdV (1.2). Simultaneously, this zero-
curvature representation is a generalisation of zero-curvature representation (5.10) for
Korteweg-de Vires equation (1.1).

Let us construct the generalisation S¥=1 € SL(2 | 1) — C°°(£%,SL(2 | 1)) of gauge
transformation (5.14) where we had S € SLy(C) ~ SL(2 | 0). Taking into account
Remark 5, we consider the ansatz SV=' = SV=ISNV=1SN=1 where S, € G,, v € {+,0,—}.
Bearing in mind that SLy(C) ~ SL(2 | 0) € GL(2]0), we construct S by using the
following scheme:

1. we obtain an element S)=! by the multiplication of S from right and left by some
matrices from GL(2|0);

2. we specify the matrices SY=! and S¥=!.

We construct the matrix S™V=! as follows

-1 —2et 0
SN=t=10 € 0]=
0 0 —€
2
1 00 2\/€ 13\/5/52 0 z/\/E z/(25\/5) 0 1 et 0 1 00
=101 0 0 i\/E 0 0 —i\/E 0 0 1 010
0 0 1 0 0 —€ 1 0 1 0O 0 1 0 01
Sjlgfrzl S(J)?f;l ngr:l
(5.25)

By applying the gauge transformation SV=! to the zero-curvature representation a™¥=1,

we obtain the gauge-equivalent zero-curvature representation /5 for sKdV equation (5.24):

where
0 etu e
AVF = —¢ — 1 0 ,
0 £ —e !
By~ = | 2ue + ¢! Ug +uet +e72 &+ Ee7!
—f;xé‘ + g _ézm - 2€U 8_3
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Chapter 5. Non-local picture

Let us recall that formula (5.6) yields the representation of the matrices AY=! and
BY=! in terms of vector fields. By this argument, from the zero-curvature representation
BN=1 we obtain the two-dimensional covering over sKdV equation (5.24); one of the two
new nonlocal variables is bosonic (let us denote it by @) and the other, € is fermionic:

ly = — % + (4 —u)e ! — &€,
€= —&ue+ (£~
Up = $(2ﬂ2u54 + @2e? — 20ue® — 2iu,e® — T+ 202 + U+ Ugpe? + uge — Eul et +
+ E€uoe” + E€0E" + 2E8ue® — E6uc”),
& = 8—13(—&{9653 + En€? + Epe + 26Tue® + Elie? — Eue® — Euye® — £ — Ele? + 26ue® + £).

We now express the local variables u and ¢ from @, and &, and substitute them in @, and
&. We thus obtain the Gardner deformation [99] of sKdV equation (5.24):

£ = {it = 08P0,e® = 60ty — s, — 30 ge” + 3¢€wr — 38 Te”,
€, = 3026,6% — 3k, — Eppy + 3E00i1pe? — 35@},

me = {Q_L =0 — eliy + e2(E6,6%—12), € =E — ek, — 52512}: E. = Exav-

This deformation can also be obtained by using super-field formalism [99]. The original
Gardner deformation (2.1) of the KdV equation (1.1) is underlined in the above formulas.
N = 2 supersymmetric Korteweg—de Vries equation

Let us consider the four-component generalization of the KdV equation (1.1), namely, the
N=2 supersymmetric Korteweg—de Vries equation (SKdV) [84]:

B a—1 9 9 0 d
U = —Ugypy + 3(uD1D2u)w + 5 (DlDQu )x + 3au“u,, D, = ) + 0; o (1.2)
where
w(x,t;01,60) = ug(w,t) + 01 - ug(x,t) + 09 - ug(x, t) + 0105 - ura(x,t) (3.2)

is the complex bosonic super-field, 0;,6, are Grassmann variables such that 62 = 632 =

0105 + 620, = 0, ug, w1z are bosonic fields, and wuy, ug are fermionic fields. Expansion (3.2)
converts (1.2) to the four-component system (3.5).

The Gardner deformation problem for the N = 2 supersymmetric a = 4 KdV equation
was formulated in [84]. In Chapter 3 it was shown that one can not construct such a
deformation under the assumptions that, first, the deformation is polynomial in £, second,
it involves only the super-fields but not their components, and third, it contains known
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5.3. Zero-curvature representations of graded extensions of the KdV equation

deformation (2.1) under the reduction uy = 0, u; = us = 0. Therefore, we shall find a
graded generalization of Gardner’s deformation (2.1) for the system of four equations (3.5)
treating it in components but not as a single equation (1.2) upon the super-field.

The SKdV equation (3.5) admits [28] the s[(2 | 1)-valued zero-curvature representation
V=2 = Adz + Bdt such that

n—tug 17— 28Uy — UE — Uy —Uy — Uy

A= 1 n — tug 0 , (5.27a)
Uy — UL 2n — 21y
bir b1z bis
B =10y by by, (5.27b)

b31 b32 b33

where the elements of B are as follows:

b= — 4773 — 2inug,, — 4iug + 62uguie + 4ugloy + TUoze — U2, + 42U2Uy,
bis = — 4774 + 4in3u0 + 2772u12 — 4inug + 8tnugtiz + 28NUoz — 4ué — 2u3u12 —
— dupug,zp + 21@2 — 4u§;x + Ut2.50 — UoUo.p + 42Usu 1) — SUU Uy — UL UL,
biz = — Ny — 1NUL, — DBUYU, + DUGUL g + Uizy + LU 3y + 2u2772 + 28usnug —
— 8u2u(2) + 2uguig — 4ugtp,,t + 2u1n2i — 2uinug — 8u1ugi + 2uqu19t + 4ugug,
bor = — 4n° — dinug + dug — 2uya,
bog = — 4773 + 2inug,, — 4iug + 62uguie — 4uglog + TUoge + Ui, + 42U2Uy,
bog = Ugyz + TU1,; — 2ugn) — 42U — 22u1n + duyuy,
b31 = Ugy — TU 5 + 2u9n) + 42usug — 22u1n + 4uguy,
bsg = — Ny + AU, — DEUGU2E — DUGULe — Uiy + TU1ze — 2Uan)® — 24ugnug +
+ 8uQu3 — 2uguiy — 41U, + 2’iu1n2 — 2uinug — 8iu1u3 + 22U U190 — 4ugupy,

bys = — 87;3 — 8iu8 + 122upui2 + 28upy + StUU;.

In Example 9 we prove that the parameter n € C is non-removable from A and B under
gauge transformation.

Remark 9. Let us recall that the vectors Z, H and E* that belong to sl(2 | 1) generate
a basis in gl(2,C) (see the respective formulas on p. 42 in Example 8 on page 42). We
notice that the vector Z commutes with any other vector from gl(2, C).

The reduction ug = u; = uy = 0 converts zero-curvature representation (5.27) to the
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Chapter 5. Non-local picture

gl(2, C)-valued zero-curvature representation of the KdV equation (1.1),

n n—uyg 0
Agav = | 1 n 01,
0 0 2n
—4n® — e, —A0 4+ 20%uig + 2udy + U190 O
BKdV = 2(—2772 — U12) —4773 + U122 0
0 0 &8

Taking into account Remark 9, we obtain the s[(2, C)-valued zero-curvature representa-
tion (5.10) for the KdV equation (1.1) by omitting the summands 7 ® Zdz and —4n3 @ Zdt
in Agqv and Bygyv and by denoting n? = \.

Proposition 6 ([65]). The N=2 supersymmetric a=4 Korteweg—de Vries equation (3.5)
admits the (1 | 1)-dimensional Zy-graded covering, which is given in formulas (5.30-5.31)
and which is such that, under the reduction wy = u; = us = 0 of (3.5) to the KAV
equation (1.1) and the consistent trivialization f := 0 in (5.30a-5.31a), see also (5.32),
covering (5.30-5.31) reduces to the known Gardner deformation of (1.1) in the form of (5.8).

Proof. Let us extend the gauge transformation (5.14), which was determined by the element
S of the Lie group SL(2,C). We let

-1 —3t 0
SN=2=10 £ 0 |. (5.28)
0 0 —€

Acting by gauge transformation (5.28) on zero-curvature representation (5.27), we obtain
the graded zero-curvature representation that contains the “small” zero-curvature repre-
sentation which, in turn, originates from (5.8) and is gauge-equivalent to (5.10) for the
KdV equation (1.1). Specifically, we have that

2

U 5*1(u3 + Ulg) — e U 571(UQ — Z’ul)

A= —¢ tug — e 0 : (5.29a)
0 Us + tuy 2iug — e !
bir bz b3
B=1|by by by|, (5.29b)

b31 b32 b33
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5.3. Zero-curvature representations of graded extensions of the KdV equation

where the elements of the matrix B are as follows,

bll = 4’Lug — 6iUOU12 + 4UOU0;x — ’I:UO;UM; — U12:2 — 47:UQU1 + 8_1(211,(2) — U192 — ’IZUO;I) — 7:8_2U0,

bio = e (dug + 2ufurs + duoliome — 2uis + 4u§;w — Uiizq + Ul + SugUrtg + Uyty,) +
+ 572(21'71,3 — 4iUOU12 + 4UOU0;x — in;xz — U12;2 — 2’1:U2U1) + 873(’&3 — U1 — ’L‘Uo;x) —
— ’i€_4U0,

b13 = 5_1(—5’1:’&01,62;1 - 5u0u1;x — U2z + iul;m + 8U2U(2) — QUQUH - 4'iUQUO;$ — 8’LU1U8 +
+ 28urt1g — 4urto,) + €2 (—Ugy + B, — Stugtg — Sujug) + €2 (—ug + duy),

bgl = 28(—2’&3 + U12) + QZUQ + 5_1,

b22 = 47/&3 - 6’1:UOU12 - 4UOU0;z - ’I:U();mz + U12;2 — 4iu2u1 + 8_1(—2163 + U2 + ’IZUO;:C) +
+de g 4+ 72,

bgg = U2z — iul;x + 4’iU2U0 + 4U1U0 + 8_1(U2 — iul),

b31 = 6(—’&2;33 - iul;m -+ 4’1:U2U0 - 4U1U0) + uo + iul,

632 = SiUOUQ;x — 5UOU1;x — U2:gx — iul;m + 8Ung — 2“2’&12 + 41:UQU0;36 + 8’LU1'U,(2J — 2'L"LL1U12 —
— 4U1U0;z + 8_1U0(iU2 — Ul),

b33 = 2(4211% — 61:UOU12 — in;xm — 4’1:U2U1) + 6_3.

The projective substitution (5.5) yields the two-dimensional covering over the N=2,
a=4 SKdV equation. Under the reduction ug = u; = us = 0 the covering contains (5.8),
which is equivalent to Gardner’s deformation (2.1) of the KdV equation (1.1). The z-
components of the derivation rules for the nonlocalites w and f are

w, = —ew? + e Hw — up) — fuy — ifu; — e ud — e %du, (5.30a)

fo= —ewf —duof + e (f — ug + iwy); (5.30Db)

here and in what follows we underline covering (5.8) that encodes the “small” Gardner

deformation for the KdV equation. The t-components of the “large” covering over the
N=2, a=4 SKdV are

wy = e(—4wul + 2wugy — fwug, — i fwug, + 42 fuswug — 4 fugwug) + 2iw3ugy +
+ 8wugtio,e — 2Wi9.e — 58 fUgUas + D fUuotit.e + fUome + 3 fUtee + fugw — 8fusud +
+ 2 fuguis — 4t fusug, + tfuw — Sifulug + 28 fugune + 4 fugug, + 5’1(w_2 + 4wu§ -
— 2wWuy9 — 28WUg; — 4ué — 2u(2)u12 — 4u0u0;miu?2 — 4“3;95 + Ui2,00 — Tfuguo +
+ furug — ugg, — Suguyup — ULl ) + 5_2(—2iwu0 — 2iu8 + dsupurr — duguo, +

+ TUoe + Ungiw + 28usuy) + 22— w — ud + wyg + tug) + € iug, (5.31a)

69
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fi = 2ew(=2fuf + fura) + (—wugy + 4wy, + 28 fwug — 4 fuy + 64 fugurs + 4 fuguo +
+ 4 fUoze — [Ur2e + 48 fusuy — dduswug — dugwug) + £~ (5ugtia,, + Suotiy e + Uspy —
— WUy + fw+ 2fug — fuia — T fup, — usw — 8u2u(2) + 2ugue + 4tusup,, + tugw +
+ Siugug — 2duityy + duitos) + €2 (Ugg — U1 — B U + Stugug + 3uyug) +
+ e 3 (—f 4+ up — duy). (5.31b)
It is noteworthy that the reduction ug = u; = us = 0 in (3.5) eliminates the presence of

the fermionic variables f in (5.30a) and (5.31a) so that there remains only (5.8) in the
bosonic sector:

w, = —ew? + e Hw — up), (5.32a)
w; = 26w Uy — 2wy, + € (W — 2wy + 2uly + Urnies), (5.32b)
fo= —cwf+e'f, (5.32¢)
fi = 2ewfurs — furay + e f(up —w) — e f. (5.32d)

This proves our claim.

In contrast with Gardner’s deformation of the N=1 sKdV equation (see Example 19 on
p. 64), covering (5.30-5.31), which we obtain for N=2 supersymmetric a=2 KdV equation,
can not be expressed in terms of the super-field. The reduction uy = 0, u; = 0 (and
the change of notation us — &, u12 — ) maps this covering over the N=2, a=4 SKdV
equation to the covering which was constructed in Example 19 for the N=1 supersymmetric
Korteweg—de Vries equation (5.23).

Theorem 6. There is a “semi-classical” Gardner’s deformation® for the N=2, a = 4-SKdV
equation (e.g., in component form (3.5)). Under reduction uy = u; = ug and trivialisation
f := 0, this deformation contains classical Gardner’s formulas (2.1). The Miura contraction
taking solutions of (5.34) to solutions of (3.5) is

Uy = tiug +w — uf + e(—w, — 2ifuy) + X (—w? + ff.), (5.33a)
uy = — f—duy +e(fo — ifug) + ’wf. (5.33b)
The extension &(¢) of (3.5) is
d
we = (—2672% + 37N (—2ugup., — 1 fur) — 3w? + bugw — Wy, + 3duy f,
+ 3f fo + Yurugf + 3ei(fwuy — uof fo) + 33 (w? — wffx)), (5.34a)

fr= = 3ic (uofu + fuos)
—3wf, + 15“3]2: + 62U fo.oe — fowaa + 62 fatlon + 15 fuguo,e — 3fw,
+ 3e(i fwug + 3ifuows + 2ifuy fo) + 32 (W fr + fww,). (5.34b)
®See Remark 10 on page 74.
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5.3. Zero-curvature representations of graded extensions of the KdV equation

Proof. This Gardner’s deformation is given by covering (5.30)-(5.31). Formulas (5.33) are
obtained by expressing w2 and wug from (5.30). Formulas (5.34) are obtained by plug-
ging (5.33) in (5.31). O

Theorem 7. e Gardner’s deformation (5.33)-(5.34) for the N=2, a=4-SKdV equation
yields recurrence relations between the conserved densities w;; relations are defined
by the formulas

w_1 = — Uy, Wy = U12 — iuo;a:,
wy, = — 2iu0w0 + wao + 2if0u1,
n—2
Wy, = — 28UgWp—1 + Dywy—1 + 20 f5_quy + E (WiWn—2—k — fkDafrn—2-k),
k=0

where the auxiliary quantities f; are given by

Jfo= —us —tuy,
fi = Dy fo — 2iug fo,

n—2
fn = Dxfn—l - 2infn—l + Zwkfn—Q—k-

k=0
e The conserved densities w; are non-trivial for all integer k > —1.

e The generating function w(ug, u, Uz, w12, €) of the zero order component of the series
w([uo, U1, ug, uis], €) with differential-polynomial coefficients is given by the formula

W = (—16ug — 12u1p + 8= 'dug(q"? +2) + e 2(¢** + 4¢'* +4)),  (5.35)

6q1/3
where

q = 853’1,(8Ug + 9u0u12 — 27U1U2) — 48€'I:U0 -8

+12¢2 [8u3+3u12 (245’1iu1u23(—48u0u1u2 —uly) 1263 (—24udur us—uguTy— U UypUs )

+ 12*(16uguius + uguiy + 18uguiuiaus + Ui’z)) 2} :

Proof. Let us substitute w = w — iy into (5.33) (i.e., we put w_; = —iug in expansion
w =7 ekwy). We have

Uiy = W + tugy, + € (W, — 26fug + 26uw) + &° (—0” + ffa) (5.36a)
Uy = — f —iuy +e(fy — 2ifug) +*wf. (5.36b)
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Now we expand the fields w(e) = > 7o, e"wy and f(e) = Y ;=" fi , and plug the formal
power series for w and f in previous formulas. Hence, starting from wy = w12 — 2w, and
fo = —us — tuy, we obtain the recurrence relations between conserved densities w;, and
auxiliary quantities fj:

Wy = U2 — Loy,

Jo= —uy —duy,

wp = — 2'I:’LLOU)0 + DI’U)O + 2’I:f0U17
J1 = Dqfo — 2tug fo,

and also

n—2

wy = — 28wy + Dywy_1 + 28 fu_ytis + Y (wiwn_z—t — feDafuo k),
k=0

n—2
fn - Dmfn—l - 2iu0fn—1 + Z wkfn—2—k-
k=0

We note that w; € imd/dx and f; ¢ imd/dz. This means that only the densities wy
are conserved and f; are just auxiliary quantities (which are not conserved in general).

Now let us prove that all wj, are non-trivial (i.e., not contained in image of d/dz).
Consider the zero-order component @“Uko’u) (uo, u12) of conserved densities wy([ug, w1, ug, u12])
such that w “(0 12 )(uo, u12) depends only on ug and uj5. We have that

< (0,12)
0

= U12,
(0,12 .
wg ) = — 2’&U0U12,
-2
2(0,12) _ 2 (0,12) (0,12)
w,, — 21uy w k W, 5 k-
k=0
. . e J(0,12) . = (0,12)
It is readily seen that quantities wy, are in a form of Wy = Uyg - g, where some

functions gy € C*°(€*°) depend only on ug and uy2. Let us consider first term of quantities

- (0,12) 0,12 0,12
w,g which are linear in u;5. Only the term QZqufl 1 ) in wé ) is linear in 12 because

the term w,(co 12)11“1(0 12)k is quadratic in uys. We obtain that w0 = (—2éug) w12 +u2,- (.. .).
This implies that w, = (—2iug)"uiz + ... and w, ¢ imd/dz because (—2iug)"u12 ¢
imd/dx. This proves that w, is non-trivial for all &k > —1.

Finally, let us obtain the generating function for the zero differential order component

w(ug, uy, Uz, Ur2, €) of the series w([ug, u1, ug, ui2), €). For zero-order terms in (5.36) we have

Uy = W + 5(—2ifu1 + 2iugw) — %W, (5.37)
Uy = — f —duy — 2eifug + 20 f. (5.38)
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5.3. Zero-curvature representations of graded extensions of the KdV equation

Solving equation (5.38) with respect to f we obtain

us + 2y
1+ 2etug — 2w

f=- (5.39)

Substituting (5.39) for fin (5.37), we get
—et® + 26%(2icug + 1)? + (£ (4ul — u1a) — dicug — 1) + upp + 2ie(ugta — uyuy) = 0.

In agreement with lim. ,ow = w2, we pick the root (5.35) for this third-order algebraic
equation. O

We finally remark that the reduction ug = 0, u; = 0 (and the change of notation uy — &,
w12 — u) maps Gardner’s deformation (5.33)-(5.34) for the N=2, a=4 SKdV equation to
the Gardner’s deformation for N=1 supersymmetric Korteweg—de Vries equation (5.23)
(see Example 19 on p. 64).

Overall comment

By now the Gardner deformation problem for the N=2 supersymmetric a=4 Korteweg—
de Vries equation ([99]) is solved. In this section we have found the solution which is an
alternative to our previous result in Chapter 3. Namely, we introduced the nonlocal bosonic
and fermionic variables in such a way that the rules to differentiate them are consistent
by virtue of the super-equation at hand and second, the entire system retracts to the
standard KdV equation and the classical Gardner deformation for it ([101]) under setting
to zero the fermionic nonlocal variable and the first three components of the N=2 superfield
n (1.2). At the same time, the structure under study is equivalent to the sl(2 | 1)-valued
zero-curvature representation for this super-equation; the zero-curvature representation
contains the non-removable spectral parameter, which manifests the integrability.

Our second solution of P. Mathieu’s Open problem 2 (see [99]) relies on the interpreta-
tion of both Gardner’s deformations and zero-curvature representations in similar terms,
as a specific type of nonlocal structures over the equation of motion [62]. However, we
emphasize that generally there is no one-to-one correspondence between the two construc-
tions, so that the interpretation of deformations in the Lie-algebraic language is not always
possible. Because this correlation between the two approaches to integrability was not re-
vealed in the canonical formulation of the deformation problem [99], there appeared some
attempts to solve it within the classical scheme but the progress was partial [4, 84]. Still,
the use of zero-curvature representations in this context could have given the sought-for
deformation long ago.

Let us notice also that projective substitution (5.5) correlates the super-dimension of the
Lie algebra in a zero-curvature representation for a differential equation with the numbers
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Chapter 5. Non-local picture

of bosonic and fermionic nonlocalities over the same system: a subalgebra of gl(p | q)
yields at most p — 1 bosonic and ¢ fermionic variables. This implies that, for a covering
over the N=2 supersymmetric KdV equation (1.2) to extend Gardner’s deformation (2.1)
in its classical sense m.: & — & (see [59, 84, 101]), the extension &£ must be the system
of evolution equations upon two bosonic and two fermionic fields. Therefore, one may
have to use the sl(3 | 2)-valued zero-curvature representations. This outlines the working
approach to a yet another method of solving the Gardner deformation problem for the N=2
supersymmetric Korteweg—de Vries systems (1.2), which we leave as a new open problem.

Remark 10. In Theorem 4 on p. 62 we obtained a deformation for Krasil’shchik—Kersten
system with one of the extended equations presented in non-divergent form (which is
different from the classical definition of Gardner’s deformation). In Theorem (6) on p. 70
we have made another deviation from the classical construction of Gardner’s deformations,
namely, the number of extended equations is not equal to the number of original equations.
However, both of these deformations yield recurrence relations between conserved densities,
whence one could call them “semi-classical” Gardner’s deformations.

5.4 Families of coverings and the Frolicher—Nijenhuis
bracket

Consider a (ko|k1)-dimensional covering 7: &€ = W x £%° — £ with even nonlocal co-
ordinates w',...,w" and odd nonlocal coordinates f1,..., f* on a (ko|k;)-dimensional

auxiliary supermanifold . The prolongations D,: of the total derivatives D,: to the
covering equation &£ are given by the formulas [12, 78]

. ) ]
P ) p_- q9_- )
Du = Dutuliz o+ fligm  1<i<n

These total derivatives D,: determine the Cartan distribution C(€) on the covering equa-
tion £. In turn, the Cartan distribution C(€) yields the connection Cs: D(M) — D(E); the
corresponding connection form Uz € D(AY(£))) is the structural element of the covering .
Expressing Ug in coordinates, we obtain

—

Ol

U"’:

9 5 0 0 5
C(uié)auk, + dc( gi)@ + (dwp — wgi dx’)% + (df‘l _ f;fz d‘rl)a_fq

Next, let us recall that the Frolicher-Nijenhuis bracket [-,-]*™ on D(A*(£)) is defined by
the formula [78]

(2,01 (g) = La(©(g)) — (=1)" PO Lg(Q(g)),
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where Q € D(A”(E)), © € D(A*(E)), and g € C=(&); here L = ig od + d oigq is the Lie
derivative.

Let 7y: & = Wy x £ — £ be a smooth family of coverings over £ depending on a
parameter A € C and U, be the corresponding characteristic element of 7. Following [50],
we assume that the distributions C(&,) are diffeomorphic to each other at different values
of XA under a smooth family of diffeomorphims of the manifolds S}. The evolution of U,
with respect to A is described by the equation [49, 50]

d

o =X U,JFY, (5.40)

where X € D(£) is some vector field on &,.

Example 20. Let us consider the N=2, a=4 SKdV equation (3.5) and a family of coverings
over it derived from the zero-curvature representation which we addressed in Example 9.
We now solve equation (5.40) in three steps.

We begin with the covering derived from the Gardner deformation [101],

e = (0 —uig) - ew (5.80)
We = 3 (U + 2uT) + Btz + Ftaz + (~2uize — Zury = &) w+ (2eun + 1) w?,
(5.8b)

of the Korteweg—-de Vries equation
U2 = —U12:z02 — 6U12U12;x- (1-1)
The solution of equation (5.40) for Gardner’s deformation (5.45) of KAV equation (1.1) is

X =& ?(—20/0x — 3t D)0t + 2u10/Ourg + . .. + 2w D /Ow),
Xy = —2¢(6t0/0x + 9/0ura + ...) — 0/0w.

We recall from [114] that Sasaki used the scaling symmetry (encoded by the local part of the
vector field X7, i.e., without 262w d/dw) for eliminating the parameter ¢ (see Section 5.5;
we refer to diagram (5.50) on p. 82 in particular).

Second, let us consider the Kaup—-Boussinesq equation [18, 54],

Ug;s = (_UIQ + 2“3%» Ui2;s = (Uo;m + 4“0“12)357
and take its higher symmetry

(5.42a)

U2t = — U222z — OUI2U122 + 120, U020 + OUOUO L2z + 12(U(2)U12)z- (5.42b)

3
Uyt = —Uozzz T+ (4u0 - 6“0“12)

x)
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We recall that system (5.42) is the bosonic limit of (3.5) with a = 4 under setting u; =
Uy = 0.

A family of coverings over equation (5.42) is determined by the formulas®

w, = —ew’ + & Hw — uip — ug) + i o,

wy = 2ew?(—2ud + U12) + 2w(—twug + dugUoe—ti12;2) + e N (w? — 2wuyy + 2ud,

+Ui9.00 + 28w, — 4ug — 2udugg — 4UgUg 2 + 40U — 4ug;x) + 72 (24wug

+ QZUS — 4iUOU12 — 4UOU0;x — iU();xx + Ulg;x) + 5_3(U12 —w — U% — ’L'U();x) — ’i€_4U0.
At every €, such coverings are obtained by the standard change of Lie algebra’s realization
in a zero-curvature representation for (5.42); in turn, that representation can be derived
by using the reduction u; = us = 0 in the zero-curvature representation for the N=2,
a=4 SKdV equation (3.5) (see [28] and Example 9). Remarkably, this zero-curvature
representation for (5.42) was re-discovered in [14] not in the context of super-system (3.5).

For this family of coverings over system (5.42), the solution of equation (5.40) is given

by the vector field

X = H=20/0x — 3t0/0t + uy0/Oug + 2u120/0ury + ... + 2w d/Ow)

We note that, the same as it is in the case of KAV equation (1.1), we obtain the vector
field corresponding to the scaling symmetry.

Finally, let us consider the full N=2, a=4 SKdV equation (3.5) and the (1|1)-dimensional
covering (5.30)-(5.31) over it . We find that the solution of equation (5.40) for this covering
is the vector field

X =eY—20/0x —3t0/0t +ugd/Ouy + %ul 0/0uy + %uz 0/0us

It has been obtained by solving equation (5.40) explicitly using the analytic software [73].

We note again that —as we had it in the above two reductions of the N=2, a=4-
SKdV — we obtain the vector filed corresponding to the scaling symmetry of the underlying
equation.”

6Here and in what follows we underline the covering that encodes Gardner’s deformation (5.41) for the
classical KdV equation (1.1).

"For scaling-invariant families of coverings depending on a parameter of non-zero homogeneity weight,
one could always try to find a solution of equation (5.40) by taking the scaling symmetry of the underlying
PDE.
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Let us consider two representation of g:

1. p: g — Mat(ko + 1, ky), that is, a matrix representation;

2. p: g — Vect(W;poly), which is the representation in the space of vector fields with
polynomial coefficients on the (ko|k;)-dimensional supermanifold W with local parity-
even coordinates w', ..., w* and f!, ..., f* of odd parity.

Let o = a'p(e;)dz + b p(e;) dt be a g-valued zero-curvature representations for the
system £. Construct a one-dimensional covering with nonlocal variable w over £ such
that

w, = —a‘o(e;) L dw, (5.43a)
w; = —b o(e;)  dw. (5.43b)
Consider two mappings, 8, = dj, — [, ]: g @ A°(E®) — g @ A'(E™) (see [94])and Jy =
[, UA\FN: D(AY(E)) — D(AY(E)) (see [50]). We recall that the mappings 8, and dy yield
the horizontal [94] and Cartan [50] cohomologies, respectively. However, we claim that in

the geometry at hand one of these two differentials is a particular instance of the other by
virtue of the switch p & p between the Lie superalgebra’s representations.

Lemma 2. The following diagram is commutative:

g®AY(E®) —2 Mat(ko + k1) ® A(E°) =22 Mat(ko + 1]k1) ® AL(EX)

| [ N
gRA(E®) —2 D(A°(E)) R D(AN(E)),

where V = po p~! is a switch from the representation p to the representation o for the Lie
superalgebra g.

Proof. Consider v = ¢* - e, € g @ A°(£®) and put o(7) = X € D(A%(E)) and p(y) = Q €
Mat (ko + 1]k1) @ A°(E%). A direct calculation shows that

(Vo daop)(3) = (V0 82)(Q) = V(dQ — [0, Q))
=V (de (Dalq")p(er) = [a'ples), d*plen)]) + dt (Dela")plew) = [Uple,). dplen)])
= dz (D.(¢")o(ex) + [—a'o(es), ¢" o(er)]) + dt (Di(q*)o(exr) + [=b'0(es), ¢ o(ex)]).
On the other hand, we have that

(Ou 0 0)(7) = BuX = [X, U™

- [dx (DI(XJ dw) — (X _ dw)%lZf) +dt (Dt(XJ dw) — (X _ dw)%ﬂ ® %.
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Chapter 5. Non-local picture

By using the formula D, (X _ dw) = D,(X _ dw) + w, 2 (X = dw), we continue the
equality and obtain that

- [d:c (DI(XA dw) + w2 (X s dw) — (X dw)aw””>

ow ow
_ 0 Owy 0
+ dt (Dt(Xq dw) + wta—w(Xq dw) — (X dw)a—w>] & B

_ 0 _ 0 0
[dx (D:C(X) i dw —i—waa—w,X]_A dw) +dt (Dt(X)A dw +_[wta—w,X]_4 dw> ]®8_w

From formulas (5.43) we infer that

= [a2(Da(")eler) + [~a'oles), " oler)]) — du
+ D oler) + [Holer) dolen)]) o dw)] @ o
= da (Da(q")o(ex) + [—a'oles), ¢ o(er)]) + dt(Di(q")olex) + [~V o(e:), ¢ olex)])-

We finally obtain that (V o 8, 0 p)(v) = (Ou © 0)(7y), which proves our claim. O

Now let us study in more detail the case of removable parameters. Let a(\) =
a'p(e;) dz + Vp(e;) dt be a smooth family of g-valued zero-curvature representations for
the system & but let the parameter A € C be removable. By Proposition 5, there is a
g-matrix Q = ¢*p(e;) such that

Sa=3Q - [0.ql

In components, we have that
d A (A i k
a(a Jp(ei) = Dalq)pler) — a'q"p([ei, ex]),

%(bj)P(ei) = Di(q")plex) — V' plle;, ex)-

By virtue of the representation g, at every A the g-matrix Q = ¢*p(ex) determines the
vector field X = ¢*p(ex) on £.
The following proposition is a regular generator of solutions for equation (5.40) in the

case of coverings derived from zero-curvature representations with removable parameters.®

Proposition 7. The vector field X = ¢*p(ey) satisfies structure equation (5.40).

8Tt was remarked in [49] that the formalism of zero-curvature representations and their parametric
families can be viewed as a special case of the Frolicher—Nijenhuis bracket formalism for deformations of
coverings of unspecified nature; we thus substantiate that claim from loc. cit. by giving an explicit proof.
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5.4. Families of coverings and the Frélicher—Nijenhuis bracket

Proof. From Lemma 2 we infer that
U™ = [dr (Dalg")eler) + [a'e(e). deler)]) = duw
+dt(Dy (¢")oler) + [=b'olei), ¢ o(er)]) - dw} ® a%'
Using (5.44), we obtain that

= [dx %(ai)(g(ei) _dw) +dt %(bi)(g(ei) _ dw)] ® 8%

d d 0 d

This proves that the vector field X is a solution of equation (5.40). [
Remark 11. This proof can be easily extended to the case of any finite n and ko, k; < oo.

Example 21. Let us illustrate the claim of Proposition 7. Namely, let us construct a
(1|/1)-dimensional covering over the N=2, a=4 SKdV equation (3.5) by taking the sl(2|1)-
valued zero-curvature representation 8 from Example 10 on p. 48. Using representation o
from Example 14, we obtain

Wy = A2+ 2w + w? + ud + ug — fouy + i fous,

fo = Mo+ fow + 1 foug + ug + tuy,

wy = 20%(2uf — upp) + A(Swud — dwugg + Suglp, — 29, + fUse — 1 f U1
+ 44 fugug + 4fuiug) + dwuf — 2wy + Swuglo, — 2Wi2., + 4ugy + 2udug
+ dugUoge — 2ufy + AU, — Urgee + fWlse — T fwl, + 58 fugtisg + 5 fUgu,
+ fuoge — 4 fUrge + 48 fuswug — 8 fugug + 2 fusurs + 44 fusug, + 4furwug
+ 8ifu1u(2) — 28 fuuge + 4 furug, + uglo, + Sustyup + Ui Uy,

fr = M=o — tu1.p + 4fuy — 2furg + 4dugug — duity) — Wikay — WUy, + HiUgUs.,
— BUgUiy — Ungy — Wiy + AW — 2 fwuss 4+ 4ifuf — 64 fugurs + 4 fugtio
— fuoze® — fuaae — 4fusurt + duswupt + 8uzu§ — 2uouyg + 4rugug., — duwiyyg

+ 8iu1ug — 28U 12 — 4ui g,

In agreement with Proposition 7, we find the solution X = 0/0w of equation (5.40): indeed,
this field is obtained from the s[(2|1)-matrix @ which we introduced in Example 10.

We confirmed that a switch between the representations of Lie (super)algebras estab-
lishes a link between the two classes of nonlocal geometries and also between the arising
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Chapter 5. Non-local picture

differentials. In particular, by analyzing this relation in the case of zero-curvature repre-
sentations with removable parameters A\, we explicitly described the equivalence classes of
Tyx-shadows that determine, by virtue of structure equation (5.40), the evolution of Cartan’s
structural elements in families of coverings 7).

5.5 Two descriptions of one elimination procedure:
an example

We now analyze the following tautological construction: by re-addressing Sasaki,” see [114],
we first track how the scaling symmetry of KdV equation (1.1) acts on its standard matrix
Lax pair; on the other hand, we reveal how these objects are phrased in the language of
coverings.

Recall that the Korteweg-de Vries equation is

E ={u = —upyy — buu,}. (1.1)

Consider the family of coverings 7,,: £, — & over it,

v, = 2un — (V¥ + u), (5.45a)
vy = —8n°v + 4 (v? + u) + 2n(—2vu + uy) + 207U — 20U, + 2u® 4 Uy, (5.45b)

these formulas are obtained from the following sl,-valued zero-curvature representation
(see [114]),

—(4n3 4+ 2 o) — Uy + 20Uy + 402 2u?
o noou dz + (4n —1; nu+u,) —(u —|—3nu + 4n*u + 2u”) it
-1 —n an® + 2u 4n° + 2nu + uy,

Let us recall that the parameter 7 can not be removed from the zero-curvature representa-
tions a, by using gauge transformations. However, it can be eliminated by using a wider
class of transformations. Namely, consider the scaling symmetry of equation (1.1),

T nr, et uesn R, n € R.

Using it, one transforms the zero-curvature representation c, into

;L 1 nu d —(4+2u+uy) —n(uge + 2uy + 4u + 2u?) gt
7 -t -1 n (4 + 2u) 4+ 2u + u, '

9A parameter-dependent zero-curvature representation for Burgers’ equation was considered in [23] in
the same context of pseudospherical surfaces as in Sasaki’s paper [114]. We refer to [94] for analysis of
removability of the parameter in that zero-curvature representation for Burgers’ equation [23].
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5.5. Two descriptions of one elimination procedure: an example

The parameter 7 in «;, is removable under the gauge transformation

77—1/2 0
g ( . nl/Z) € C™(E%,GLy(T)),
that is, we have that (a;)? = Oz;]‘nzl = &"|n=1'

Let us now address the removability of parameter 1 in coverings (5.45) in terms of the
formalism of Cartan’s structural element.

For a vector field

x=aoZ b8l w02 1ol
Y s ot v Ou, PN

the equation for evolution of Cartan’s structural element,

d
d_ﬂUn = [X7 UW]FN7 (540)

splits into the system

d - ov, v, ov, v, - ob
—d—nvx =D,p — Yoy waﬁ_ug +b (G_%UUt + 5y Dmvt) U
+a (—Dzvx + S—Zum + %Ux) — vx%, (5.46a)
_dinvt = Dy — gp% — wag—;]: +b (g—?zugt + %vt — [?tvt) — vt%
+a <—Dtvx + g—;}:rum + %vz) — vx%, (5.46b)
Woy = Dy, — um% - um%, (5.46¢)
Wor = Dywy — uot% - um%. (5.46d)

Suppose now that the vector field is vertical: XV = wY®39/0u, +¢*®@0/Jv. This simplifies
equation (5.46); it then becomes

d - 0v, v,
—— v, = Dy’ — " —w , 5.47
" A (5.47a)
d ~ 31}25 (9vt
——v =Dy’ — ' — —w) 5.47b
d77 (% tP ¥ v We aug ) ( )
WY, = D,w?, (5.47c)
w¥, = Dywy. (5.47d)
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Chapter 5. Non-local picture

Let us use the Ansatz
W' =w—au, —buy, ¢ =¢—av, — buy,

assuming that a = a(z,t,n), b = b(x,t,n), ¢ = p(n,u,v), and w = wW(N, U, vV, Uy, Uzy). By
construction, the unknowns w" and ¢V satisfy system (5.47). Using the analytic software
Jets [96] and Crack [73], we find the solution

a = 24cqtn® + 2cqam + %(06 + ),

b = 6egtn + %(—07 + 3t),

w = 404773 — 4dequn + ugcy + %(_%uaccl% —2u) + #U:g,
1

© = 2c4m° — e — 30 — cqu + g—%(vﬂ +u) — W(vz + u),

which contains four arbitrary constants cs, ¢4, cg, and cz.
Let us set c3 = 0, ¢y = —1/(2n?) at n # 0, ¢ = 0, and ¢; = 0. This determines the
solution which corresponds to the lift of Galilean symmetry of (1.1):

Xy = —2(6t0/0x + 8/ou+...) — 0/0wv.

On the other hand, set ¢3 = 1/nif n # 0 and let ¢4, = 0, ¢g = 0, and ¢; = 0. This yields the
solution which corresponds to the lift of scaling symmetry of (1.1); namely, we have that

X, =n"%~20/0x —3t0/0t +2ud/Ou+ ... +v03/0v). (5.48)
The exponent of vector field (5.48) induces the transformation
T nr, et uen T tu, v n e (5.49)

Its action on the covering 7, in (5.45) results in the covering 7’ = T’7|n:1’ which is described
by the formulas

Ve = 20 — (V® 4 u),
v = —8v + 4v? + du — dvu + 2uy + 20%u — 20Uy + 2u? + Ugy.

We claim that the covering 7' is the image of zero-curvature representation («;)? under a
swapping of representations for the Lie algebra at hand. This is shown in the following

diagram:
scahng\ O{/ g ’

lv (5.50)
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5.5. Two descriptions of one elimination procedure: an example

We conclude that the problem of finding transformations (which are possibly not gauge)
that eliminate the parameter in a given family of zero-curvature representations can be
approached via a solution of equation (5.40) in the family of coverings which are the
(p &= p)-avatars of those zero-curvature representations.

Depending on their elimination scenario, “removable” parameters in zero-curvature
representations are classified as follows:

1. First, there are parameters which are removable under gauge transformations (see [94,
97] by Marvan and [112, 113] by Sakovich).

2. There are parameters which can not be removed by using gauge transformations but
which indicate the presence of conserved currents in zero-curvature representations
and the reducibility of such representations,'? (see [95] and [62, §12]).

3. Thirdly, there are parameters which vanish under the action of those symmetries of
the underlying differential equation which can not be lifted to the covering Maurer—
Cartan equation (see [88, 114]).

4. Finally, there are parameters which can be eliminated by the same procedure as
in the previous case but by using shadows of nonlocal symmetries in some auxiliary
covering over the equation at hand (namely, not in the covering which grasps the ZCR
geometry but in an extension of the equation’s geometry by a set of “nonlocalities”),
see [24, 25, 26].

. . 0 X;+ XX
10For example, consider a “fake” sly-valued zero-curvature representation o = ( 1t 2) dz +

0 0
(0 T + NI

0 0 ) dt for an equation £ possessing two conserved currents D, X; = D,T;, here 1 = 1, 2.
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Chapter 6
Non-Abelian variational Lie algebroids

In this chapter we show that zero-curvature representations for PDE give rise to a nat-
ural class of non-Abelian variational Lie algebroids. We list all the components of such
structures (cf. [70]); in particular, we show that Marvan’s operator 9, is the anchor. In sec-
tion 6.1, non-Abelian variational Lie algebroids are realized via BRST-like homological evo-
lutionary vector fields () on superbundles a la [9]. Having enlarged the BRST-type setup to
a geometry which goes in a complete parallel with the standard BV-zoo ([7, 8], see also [3]),
in section 6.2 we extend the vector field () to the evolutionary derivation Q( ) = [[§ |
whose Hamiltonian functional S satisfies the classical master-equation [[S S]] = 0.

In the earlier work [70] by Kiselev and van de Leur, classical notion of Lie alge-
broids [120] was upgraded from ordinary manifolds to jet bundles, which are endowed
with their own, restrictive geometric structures such as the Cartan connection V¢ and
which harbour systems of PDE. We prove now that the geometry of Lie algebra-valued
connection g-forms « satisfying zero-curvature equation (6.3) gives rise to the geometry of
solutions S for the classical master-equation

Eome = {ihAS|,_, = 1[5, 5]}, (6.1)

see Theorem 9 on p. 94 below. It is readily seen that realization (6.1) of the gauge-
invariant setup is the classical limit of the full quantum picture as A — 0; the objective of
quantization S — S” is a solution of the quantum master-equation

(C:QME = {’Lh ASh = %[[Sh, Sh]]} (62)

for the true action functional S" at h # 0. Its construction involves quantum, noncom-
mutative objects such as the deformations g, of Lie algebras together with deformations
of their duals (cf. [31]). (In fact, we express the notion of non-Abelian variational Lie
algebroids in terms of the homological evolutionary vector field @ and classical master-
equation (6.1) viewing this construction as an intermediate step towards quantization.)
A transition from the semiclassical to quantum picture results in gj-valued connections,
quantum gauge groups, quantum vector spaces for values of the wave functions in auxiliary
linear problems (6.4), and quantum extensions of physical fields.!

!Lie algebra-valued connection one-forms are the main objects in classical gauge field theories. Such
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Chapter 6. Non-Abelian variational Lie algebroids

Remark 12. The geometry which we analyse in this chapter is produced and arranged by
using the pull-backs f*(p) of fibre bundles p under some mappings f. Typically, the fibres
of o are Lie algebra-valued horizontal differential forms coming from A*(M™), or similar
objects?; in turn, the mappings f are projections to the base M" of some infinite jet
bundles. We employ the standard notion of horizontal infinite jet bundles such as ?(X)
or J(§) over infinite jet bundles J>°(§) and J>(x), respectively ; these spaces are present
in Fig. 6.1 on p. 88 and they occur in (the proof of) Theorems 8 and 9 below. A proof of the
convenient isomorphism ?(X} = Jo(E Xpym x) = J®(E) Xpm J(x) is written in [71], see
also references therein. However, we recall further that, strictly speaking, the entire picture
— with fibres which are inhabited by form-valued parity-even or parity-odd (duals of the)
Lie algebra g — itself is the image of a pull-back under the projection 7, : J*(w) — M" in
the infinite jet bundle over the bundle 7 of physical fields. In other words, sections of those
induced bundles are elements of Lie algebra etc., but all coefficients are differential functions
in configurations of physical fields (which is obvious, e. g., from (6.3) in Definition 2 on the
next page). Fortunately, it is the composite geometry of a fibre but not its location over
the composite-structure base manifold which plays the main role in proofs of Theorems 8
and 9.

It is clear now that an attempt to indicate not only the bundles & or y, IIx*, II¢, and
&* which determine the intrinsic properties of objects but also to display the bundles that
generate the pull-backs would make all proofs sound like the well-known poem about the
house that Jack built.

Therefore, we denote the objects such as p; or a and their mappings (see p. 91 or p. 95)
as if they were just sections, p; € I'(€) and a € I'(), of the bundles ¢ and x over the base
M™.

The Maurer—Cartan equation

Let us recall the definition of zero-curvature representation [94]. A horizontal one-form
a € g®@ A (E%) is called a g-valued zero-curvature representation for & if o satisfies the
Maurer—Cartan equation

Enc = {dpa — o, a] =0} (6.3)

by virtue of equation £ and its differential consequences.

physical models are called Abelian —e.g., Maxwell’s electrodynamics— or non-Abelian —here, consider the
Yang—Mills theories with structure Lie groups SU(2) or SU(3)— according to the commutation table for
the underlying Lie algebra. This is why we say that variational Lie algebroids are (non-)Abelian— refer-
ring to the Lie algebra-valued connection one-forms « in the geometry of gauge-invariant zero-curvature

representations for PDE.
2Let us specify at once that the geometries of prototype fibres in the bundles under study are described

by g-, g*-, Ilg-, or IIg*-valued (—1)-, zero-, one-, two-, and three-forms; the degree —1 corresponds to the
module D (M™) of vector fields.
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Given a zero-curvature representation o = A; dz?, the Maurer-Cartan equation Eyc
can be interpreted as the compatibility condition for the linear system

U, = AU, (6.4)

where A; € g®@ C>°(E>) and V is the wave function, that is, ¥ is a (local) section of the
principal fibre bundle P(£%°,G) with action of the gauge Lie group G on fibres; the Lie
algebra of G is g. Then the system of equations

DxiAj - DCEJAz + [A“Aj] =0, 1<i1< 7 <n,

is equivalent to Maurer-Cartan’s equation (6.3).

Let g be the Lie algebra of the Lie group G and « be a g-valued zero-curvature repre-
sentation for a given PDE system £. A gauge transformation ¥ — ¢gW of the wave function
by an element g € C*°(£*°, ) induces the change

aral=g-a-g+dyg-g .

The zero-curvature representation of is called gauge equivalent to the initially given «; the
G-valued function g on £%° determines the gauge transformation of a. For convenience, we
make no distinction between the gauge transformations o — ¢ and G-valued functions g
which generate them.

It is readily seen that a composition of two gauge transformations, by using ¢; first
and then by g, itself is a gauge transformation generated by the G-valued function g, o g;.
Indeed, we have that

(@) = (dpgr g7 +g1-a-gr)? =dnga - g5t + g2 (drngr - 97 +g1-a-g7t) g5t
=(dpg2- g1+ 92 -dpg1) 97 95 g gagrt gyt
=du(g2-91)  (g2-91) "+ (g2-91) - (g2- 1)

We now consider infinitesimal gauge transformations generated by elements of the Lie
group G which are close to its unit element 1. Suppose that g; = exp(Ap;) = 1+ Ap; +
3N +0(A?) and gy = exp(ups) = 14 pps+ 54°p3+o(p?) for some py, po € gand p, A € R.
The following lemma, an elementary proof of which refers to the definition of Lie algebra,

is the key to a construction of the anchors in non-Abelian variational Lie algebroids.

Lemma 3. Let a be a g-valued zero-curvature representation for a system &£. Then
the commutant g, o0 go 0 g; " 0 g, ' of infinitesimal gauge transformations g; and g, is an
infinitesimal gauge transformation again.

Proof. By definition, put g = g1 0g209; ' 0 g, ". Taking into account that g;' = 1 — Ap; +
AT +0(N?) and g5 ' =1 — pps + Sp°p3 + o(p?), we obtain that

9= 919207 937 = 1+ A~ (pip2 — papr) + o(N* + %),
We finally recall that [p;, p2] € g, whence follows the assertion. ]
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T8 JEM)
[ 1o [\ ]
Il
0o =dp + [,
|
Xoo © X0 (§) §oo 0 &5 (%)
MY M|

Figure 6.1: Non-Abelian variational Lie algebroid.

An infinitesimal gauge transformation ¢ = 1 + Ap + o(\) acts on a given g-valued
zero-curvature representation « for an equation £ by the formula

a? =dp(1+Ap+0oN)- (1 —=Ap+oN)+ (1+Ap+oN)-a-(1—Ip+o(N)
= Adpp+ a+ Apa — ap) +o(\) = a + Mdwp + [p, a]) + o(N).

From the coefficient of A we obtain the operator 8, = dj, + [, a]. Lemma 3 implies that the
image of this operator is closed under commutation in g, that is, [im 8,,im 8,] C im 8,.
Such operators and their properties were studied in [70, 69]. We now claim that the
operator 9, yields the anchor in a non-Abelian variational Lie algebroid, see Fig. 6.1;
this construction is elementary (see Remark 12 on p. 86). Namely, the non-Abelian Lie
algebroid (7

*
o

o Xtoo(f% 6047 [a ]E) COHSiStS Of

e the pull-back of the bundle ¢ for g-valued gauge parameters p; the pull-back is
obtained by using the bundle y for g-forms « and (again by using the infinite jet
bundle 74, over) the bundle 7 of physical fields,

e the (restriction 8, to £ C J*(x) of the) anchor 8, that generates infinitesimal
gauge transformations & = 8,(p) in the bundle x of g-valued connection one-forms,
and

e the Lie algebra structure [, |; on the anchor’s domain of definition.

We refer to [68] for more detail and for discussion on that object’s structural complexity.

Noether identities for the Maurer—Cartan equation

In the meantime, let us discuss Noether identities [12, 62, 106] for Maurer—Cartan equa-
tion (6.3). Depending on the dimension n of the base manifold M", we consider the cases
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n=2,n =3, and n > 3. We suppose that the Lie algebra g is equipped® with a nonde-
generate ad-invariant metric ¢;;. The paring (, ) is defined for elements of g @ A(M™) as
follows,

(Ap, Br) = (A, B) p A v,

where the coupling (A, B) is given by the metric ¢;; for g. From the ad-invariance ([A, B],C) =
(A, [B,C]) of the metric ¢;; we deduce that

([Ap, Bv), Cp) = ([A, Blu A v, Cp) = ([A, B, Cy p Av A p = (A, [B,Cly p Av A p
= (A, [B,Clv A p) = (Ap, [Br, Cp)).

Let us denote by F = —d,a + 3o, a the left-hand side of Maurer—Cartan equation (6.3).
We recall from that & = 0,(p) is a gauge symmetry of Maurer—Cartan equation (6.3).
Moreover, for all n > 1 the operator 8L produces a Noether identity for (6.3), which is
readily seen from the following statement.

Proposition 8. The left-hand sides F = —d,a + %[a, a] of Maurer—Cartan’s equation
satisfy the Noether identity (or Bianchi identity for the curvature two-form)

9! (F) = —dpF — [F,a] = 0. (6.5)

Proof. Applying the operator BL to the left-hand sides of Maurer-Cartan’s equation, we
obtain

9l (F) = 8! (—dra + i[a,a]) = (=dj, = [, a]) (=dpa + 3[a,a]) =
= (dj odp)a — %dh([a,a]) + [dpa, ] — %[oz, [, o] =

= —[dpa, o] + [dpa, ] — %[a, [a, ] = 0.

The third term in the last line is zero due to the Jacobi identity, whereas the first two
cancel out. O

Let n = 2. The Maurer-Cartan equation’s left-hand sides F are top-degree forms,
hence every operator which increases the form degree vanishes at F.

Consider the case n = 3; we recall that Maurer—Cartan equation (6.3) is Euler-Lagrange
in this setup (cf. [2, 3, 124]).

Proposition 9. If the base manifold M3 is 3-dimensional, then Maurer—Cartan’s equation
is Euler—Lagrange with respect to the action functional

SMC:/Ez/{—%@,dha)—l—%(a, [a,a])} (6.6)

Note that its Lagrangian density £ is a well-defined top-degree form on the base three-
fold M3,

3Notice that the Lie algebra g is canonically identified with its dual g* via nondegenerate metric tij.
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Chapter 6. Non-Abelian variational Lie algebroids

Proof. Let us construct the Euler-Lagrange equation:

6/ {—5{, dna) + §{a, [a,a]) } = (0o, =dna) + ({0, [a, a]) + (@, [0, a]) + {a, [a, da])
= (0o, —dpor + 5[, ).
This proves our claim. O

Proposition 10. For each p € g ® A°(M?), the evolutionary vector field 5;1?;) with gene-
rating section A(p) = 8,(p) = dpp + [p, @] is a Noether symmetry of the action Syc,*

Fson(Sue) =0 € H'(x).

The operator A = 8, = dj, + [, @] determines linear Noether’s identity (6.5),
®(z,a,F) = AY(F) =0,

for left-hand sides of the system of Maurer-Cartan’s equations (6.3).

Proof. We have

Gl Suie = (AW, f5ue) = (((7) (0).F) = (p. (7 (F) = (. 9(F)) = (p. A'(F)).

In Proposition 8 we prove that AT(F) = 0. So for all p we have that (p, AT(F)) = 0, which
concludes the proof. O

Finally, we let n > 3. In this case of higher dimension, the Lagrangian £ = («, %[a, al—
%dh&) € A3(M™) does not belong to the space of top-degree forms and Proposition 9
does not hold. However, Noether’s identity 8 (F) = 0 still holds if n > 3 according to
Proposition 8.

6.1 Non-Abelian variational Lie algebroids

Let €1, ..., €; be a basis in the Lie algebra g. Every g-valued zero-curvature representation
for a given PDE system €% is then a = afé), dz’ for some coefficient functions of €
C>(£%). Construct the vector bundle x: A'(M") ® g — M™ and the trivial bundle
&: M™ x g — M" with the Lie algebra g taken for fibre. Next, introduce the superbundle
I1¢: M™xIlg — M™ the total space of which is the same as that of & but such that the parity
of fibre coordinates is reversed® ). Finally, consider the Whitney sum J*(x) X prn J*°(I1€)
of infinite jet bundles over the parity-even vector bundle x and parity-odd II€.

4Here = denotes the equality up to integration by parts and we assume the absence of boundary terms.

5The odd neighbour IIg of the Lie algebra is introduced in order to handle poly-linear, totally skew-
symmetric maps of elements of g so that the parity-odd space IlIg carries the information about the Lie
algebra’s structure constants cfj still not itself becoming a Lie superalgebra.

90



6.1. Non-Abelian variational Lie algebroids

With the geometry of every g-valued zero-curvature representation we associate a non-
Abelian variational Lie algebroid [70]. Its realization by a homological evolutionary vector
field is the differential in the arising gauge cohomology theory (cf. [120] and [3, 49, 70, 74,
94]).

Theorem 8 ([68]). The parity-odd evolutionary vector field which encodes the non-
Abelian variational Lie algebroid structure on the infinite jet superbundle J*(x X psn [1€) =
J®(x) X pn J(TIE) is

Q=034 a+ 30y, 1QQ=0 — @=0 (6.7)

where for each choice of respective indexes,

° ozﬁ is a parity-even coordinate along fibres in the bundle y of g-valued one-forms,

e b' is a parity-odd fibre coordinate in the bundle TI¢,

cf; is a structure constant in the Lie algebra g so that [b%, 5]F = b'cf;b7 and [b', od]" =

ik i
b'ezad,

dy is the horizontal differential on the Whitney sum of infinite jet bundles,

the operator 9, = dj, + [-, o] : JX(IIE) 22 J®(x X pqn 11E) — J_ﬁ%(X) &= J®(x X 1IE)
is the anchor.

Proof. The anticommutator [@Q, Q] = 2Q? of the parity-odd vector field Q with itself is
again an evolutionary vector field. Therefore it suffices to prove that the coefficients of
0/0a and 0/0b are equal to zero in the vector field

5 (a) 5 (b) 5 (a) ~(b)
Q% = (T + 304) (Fhan + 3340 -

We have [b, b]* = b'c};b7 by definition. Hence it is readily seen that (3 abE )k ¥

g is a Lie algebra [122] so that the Jacobi identity is satisfied by the structure constants.
Since the bracket [b,b] does not depend on «, we deduce that (8[&) n dhb)(%a[s’g]) = 0.
Therefore,

)2 = 0 because

2 () ~(b) (a (@) ()
Q" = (8[b,a]+dhb + %%,b}) (8[ba+dhb> = = g T %8[ b,b],0] +dn ([b,8])
b,[b,a]+dpbl+ 5 [[b,b],0]+ 5 dp ([b,0])°

Now consider the expression —[b, [b,&] + dpb] + 3[[b, ], a] + 3d,([b, ]), viewing it as a bi-
linear skew-symmetric map I'(§) xI'(§) — I'(x). First, we claim that the value ([[b,b], o] —
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Chapter 6. Non-Abelian variational Lie algebroids

b, [b, a]])(pl, p2) at any two sections py, py € I'(§) vanishes identically. Indeed, by taking
an alternating sum over the permutation group of two elements we have that

%[[plvaL Oé] _%[[p%pl]? Oé] - [ph [p27 a“ + [p27 [ph Oé]] = [[pl,pQ]v Oé] - [plv [p27 a]] - [p27 [aapl]]
= _[a> [p17p2]] - [pb [p2704]] - [p2v [CV,pl] = 0.

At the same time, the value of bi-linear skew-symmetric mapping 1d,([b,b]) — [b, dxb] at
sections p; and p, also vanishes,

1du([p1, p2]) — 3dn([p2, 1)) — [p1, dupa] + [p2, dupr] = di([p1, p2]) — [p1, dpp2] — [dip1, po] = 0.
We conclude that

2 _ Al _ gl _
Q (phpg) o 8{_[bv[bﬂa}"_dhb}""%[[bvb}va]""%dh([bvb})}(p17p2) o 80 o O’

which proves the theorem. O
Finally, let us derive a reparametrization formula for the homological vector field () in

the course of gauge transformations of zero-curvature representations. We begin with some
trivial facts [16, 35].

Lemma 4. Let o be a g-valued zero-curvature representation for a PDE system. Consider
two infinitesimal gauge transformations given by g1 = 1+ep;+o(e) and go = 1+epa+o(e).
Let g € C*°(E°°, @) also determine a gauge transformation. Then the following diagram is
commutative,

o L5 8

[
a —2 a9,
if the relation py = g - p; - g~ is valid.

Proof. By the lemma’s assumption we have that (a9')? = (a?)%. Hence we deduce that
g-At+ep)=0Q+ep)-g = g-p=pg

which yields the transformation rule py = g - p; - g~ ! for the g-valued function p; on £% in
the course of gauge transformation g: a +— a¥. [

Using the above lemma we describe the behaviour of homological vector field ) in the
non-Abelian variational setup of Theorem 8.

Corollary 1. Under a coordinate change
a—ad =g-a-gt4+dg g, bV =g-b-g ',
where g € C*°(M"™, ), the variational Lie algebroid’s differential () is transformed accord-

ingly:
s _ Al 150
Q Q' = 8[b’,a’]+dhb’ + 58[6’,12’]'
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6.2. The master-functional for zero-curvature representations

6.2 The master-functional for zero-curvature repre-

sentations

The correspondence between zero-curvature representations, i.e., classes of gauge-equiva-
lent solutions a to the Maurer—Cartan equation, and non-Abelian variational Lie algebroids
goes in parallel with the BRST-technique, in the frames of which ghost variables appear
and gauge algebroids arise (see [6, 61]). Let us therefore extend the BRST-setup of fields «
and ghosts b to the full BV-zoo of (anti)fields o and o* and (anti)ghosts b and b* (cf. [7,
8,9, 46, 119]). We note that a finite-dimensional ‘forefather’ of what follows is discussed
in detail in [3], which is devoted to Q- and @ P-structures on (super)manifolds. Those
concepts are standard; our message is that not only the approach of [3] to QP-structures
on G-manifolds X and II7™ (X x [ITG/ G) ~ [IT*X x g* x IIg remains applicable in the
variational setup of jet bundles (i.e., whenever integrations by parts are allowed, whence
many Leibniz rule structures are lost), but even the explicit formulas for the BRST-field @
and the action functional S for the extended field @ are valid literally. In fact, we recover
the third and fourth equivalent formulations of the definition for a variational Lie algebroid
(cf. [3, 120] or a review [75]).

Let us recall from section 6.1 that « is a tuple of even-parity fibre coordinates in the
bundle x: A'(M™) ® g — M"™ and b are the odd-parity coordinates along fibres in the
trivial vector bundle I1¢: M™ x IIg — M™. We now let all the four neighbours of the Lie
algebra g appear on the stage: they are g (in x), g%, IIg (in I1), and IIg* (see [122] and
reference therein). Let us consider the bundle IIy*: D;(M™) ® Ilg* — M™ whose fibres
are dual to those in y and also have the parity reversed.® We denote by a* the collection
of odd fibre coordinates in ITx*.

Remark 13. In what follows we do not write the (indexes for) bases of vectors in the fibres
of Dy(M™) or of covectors in A'(M™); to make the notation short, their couplings are
implicit. Nevertheless, a summation over such “invisible” indexes in 9/dz* and dx" is
present in all formulas containing the couplings of a and o*. We also note that (a*) dj is
a very interesting object because a* parametrizes fibres in D;(M") @ [Ig*; the horizontal
differential d;, produces the forms dz* which are initially not coupled with their duals from
D;(M™). (However, such objects cancel out in the identity Q% = 0, see (6.11) on p. 95.)

Secondly, we consider the even-parity dual £*: M™ x g* — M™ of the odd bundle II¢;
let us denote by b* the coordinates along g* in the fibres of £*.
Finally, we fix the ordering

da A da™ + 6b™ A 6b (6.8)

6In terms of [3], the Whitney sum J>(x) x = J(IIx*) plays the role of IIT* X for a G-manifold X;
here g is the Lie algebra of a Lie group G so that IIg ~ IITG/G.
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of the canonically conjugate pairs of coordinates. By picking a volume form dvol(M™) on
the base M™ we then construct the odd Poisson bracket (variational Schouten bracket [, ])
on the senior d,-cohomology (or horizontal cohomology) space H' (x X pm IIx* X apn IIE X pgn
€*); we refer to [63, 64] for a geometric theory of variations.

Theorem 9 ([68]). The structure of non-Abelian variational Lie algebroid from Theorem 8
is encoded on the Whitney sum J°(x X pn IIx* X 30 1€ X 3n £%) of infinite jet (super)bundles
by the action functional

§:i/dwﬂkﬂ)ﬂaﬂ%xﬂ+dﬂ@)+%@ﬂwﬁb}GEWQQQMquanﬂganﬁ)

which satisfies the classical master-equation

~

[S, 5] = o.

The functional S is the Hamiltonian of odd-parity evolutionary vector field @ which is
defined on J>(x) Xam JO(IIx*) X pm JO(IIE) X ppn J®(€¥) by the equality

QH) =[5, ] (6.9)

for any H € H' (x Xpm Hx* Xam € X ppn €). The odd-parity field is”

2 ) 5 (a®) 150) , )

Q =0 (b) +d <a_dl’; + Qa[bvb] T af ad;(a*)Jr(oz*)(Eh +ad; (b*)’ (610)
<~ e
where ((a*)ad;, a) o (o, [b,a) and (ad;(b*),p) = (b*,[b,p]) for any a € T'(x) and p €

['(¢). This evolutionary vector field is homological,
Q> =0.
Proof. In coordinates, the master-action S = Ik L dvol(M™) is equal to
S = /dvol(]\/[") {og(0'ch 0" + dp (b)) + %b;bﬁc’gvbv} ;

here the summation over spatial degrees of freedom from the base M™ in implicit in the
horizontal differential d; and the respective contractions with a*. By the Jacobi identity
for the variational Schouten bracket [, ] (see [64]), the classical master equation [S,S] =0

"The referee points out that the evolutionary vector field @ is the jet-bundle upgrade of the cotangent
lift of the field @, which is revealed by the explicit formula for the Hamiltonian S. Let us recall that the
cotangent lift of a vector field @ = Q'9/dq" on a (super)manifold N™ is the Hamiltonian vector field
on T*N™ given by 0= Q'(q)9/0q" — p; - 0Q7(q)/dq" 8/Dp;; its Hamiltonian is S = p; Q%(¢). An example
of this classical construction is contained in the seminal paper [3].
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6.2. The master-functional for zero-curvature representations

is equivalent to the homological condition @2 = 0 for the odd-parity vector field defined
by (6.9). The conventional choice of signs (6.8) yields a formula for this graded derivation,
A _ ;@) 3 (e*) 5 (%)
Q= —5C /50 - 852/5a - a(SL/(Sb* + 8—52/51;’
where the arrows over d and 4 indicate the direction along which the graded derivations

act and graded variations are transported (that is, from left to right and rightmost, re-
spectively). We explicitly obtain that®

= 50)
Q b#ca a?+dy (b*) + 8 *b“Ca + ale ,u ~a + a{ Qg ch, o+ o‘*)dh +b20?wb”}

Actually, the proof of Theorem 8 contains the first half of a reasoning which shows why
Q% = 0. (It is clear that the field Q consists of (6.7) not depending on o* and b* and of
the two new terms.) Again, the anticommutator [@, @] = 2@2 is an evolutionary vector
field. We claim that the coefficients of d /0a’ and d /0b in it are equal to zero.

Let us consider first the coefficient of d /Oa* at the bottom of the evolutionary derivation
5{(.?? in @2; by contracting this coefficient with o = (o) we obtain

x X a g v 138 13y a v
(ag, b*c}, bl o — 3b7c bicy,a”).

It is readily seen that a* is here coupled with the bi-linear skew-symmetric operator I'(§) x
['(¢) — [(x) for any fixed o € T'(x), and we show that this operator is zero on its domain
of definition. Indeed, the comultiple |) of (a*| is [b, [b, a]] — 3[[b, ], a] so that its value at
any arguments py, ps € I'(§) equals

[p1, [p2, &]] = [p2, [p1, ] — [5[p1, p2] — 3[p2, p1], 0] =0

by the Jacobi identity.
Let us now consider the coefficient of 9/0b7, in the vector field Q?,

" [bﬁcz~a; + dh(b”)} + ([e fbﬁ& ) Eh
+ [—aza” + (o ) +b;;cgybﬂ b e, - [Wes ]

— [azb* & ] ¢ o + a'c®
[ a} v a

here we mark with a tilde sign those summation indexes which come from the first copy
of @ acting from the left on 5{(_1?‘}) in @ o @ Two pairs of cancellations occur in the terms
which contain the horizontal differential d,. First, let us consider the terms in which the
differential acts on a*. By contracting the index p with an extra copy b = (b*), we obtain

— i
(ap) dp Db + () iy b 0 (6.11)

a

— — —
®Note that (a*, dj, (b)) = —((a*) dj, ,b) in the course of integration by parts, whence the term (a;) dj,
that comes from —5:5/ bt does stand with a plus sign in the velocity of b};.
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Due to the skew-symmetry of structure constants cfj in g, at any sections py, py € I'(§) we
have that

o ST
() dp - (PYcS,ph — pocs, ok + capiph — cipaph) = 0.
Likewise, a contraction with b = (b*) for the other pair of terms with dj, now acting on b,

yields
aj ¢y (D)0 + o dp (bY) ¢, 0" (6.12)

At the moment of evaluation at p; and p,, expression (6.12) cancels out due to the same
mechanism as above.

The remaining part of the coefficient of 9/0b% in Q* is
b'ej,al — ajeq, arcl b

*1\ z a v * 2z
—agh CaC” +azc,

+ biea bl b+ bien, - 307k’ (6.13)

It is obvious that the mechanisms of vanishing are different for the first and second lines
in (6.13) whenever each of the two is regarded as mapping which takes b = (") to a number
from the field k. Therefore, let us consider these two lines separately.

By contracting the upper line of (6.13) with b = (b"), we rewrite it as follows,

I P R IR R 7 NV RS2 X I Zay § N1} z V.4 1LJhU
(—az,b%c3,c, b — ¢ b elal b + ¢ ol b))

Viewing the content of the co-multiple |) of (—a*| as bi-linear skew-symmetric mapping
') x I'(¢) — I'(x), we conclude that its value at any pair of section py, ps € I'(€) is

[p2> [pla a]] - [pb [p2’ a]] + [[pbp?]’ a]
- [ph [pQ’ Oé]] + [p27 [pl,(){“ - [[p%pl]va] =0-0=0,

because each line itself amounts to the Jacobi identity.
At the same time, the contraction of lower line in (6.13) with b = (b*) gives

(B, o b7 0V + ), - 3000,

The term |) near (b*| determines the tri-linear skew-symmetric mapping I'(§) x I'(§) x
I'(€) — T'(§) whose value at any py, pa, p3 € I'(€) is defined by the formula

Z(—)"{ [[Po1), Po@)s Po@)] + [Po1), 3[Po(2): Poe3)]] }

oc€S3

This amounts to four copies of the Jacobi identity (indeed, let us take separate sums over
even and odd permutations). Consequently, the tri-linear operator at hand, hence the
entire coefficient of 9/9b*, is equal to zero so that Q? = 0. ]
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6.2. The master-functional for zero-curvature representations

Let us sum up the geometries we are dealing with. We started with a partial differential
equation & for physical fields; it is possible that £ itself was Euler-Lagrange® and it could
be gauge-invariant with respect to some Lie group. We then recalled the notion of g-valued
zero-curvature representations « for &; here g is the Lie algebra of a given Lie group G
and « is a flat connection’s 1-form in a principal G-bundle over £%°. By construction, this
g-valued horizontal form satisfies the Maurer-Cartan equation

Envic = {dha = %[a, a]} (6.3)

by virtue of £ and its differential consequences which constitute £%°. System (6.3) is always
gauge-invariant so that there are linear Noether’s identities (6.5) between the equations;
if the base manifold M" is three-dimensional, then the Maurer-Cartan equation &y ¢ is
Euler-Lagrange with respect to action functional (6.6). The main result of this chapter (see
Theorem 9 on p. 94) is that —whenever one takes not just the bundle y for g-valued 1-forms
but the Whitney sum of four (infinite jet bundles over) vector bundles with prototype fibers
built from g, Ilg, g*, and IIg*— the gauge invariance in (6.3) is captured by evolutionary
vector field (6.10) with Hamiltonian S that satisfies the classical master-equation [3, 38|,

~

Eour = {ih AS|,_, = 3[S,S]}. (6.1)

We notice that, by starting with the geometry of solutions to Maurer—Cartan’s equa-
tion (6.3), we have constructed another object in the category of differential graded Lie
algebras [74]; namely, we arrive at a setup with zero differential ihA‘ﬁzo and Lie (super-
)algebra structure defined by the variational Schouten bracket [, ]. That geometry’s gen-
uine differential at i # 0 is given by the Batalin—Vilkovisky Laplacian A (see [7, 8] and [63]
for its definition). Let us now examine whether the standard BV-technique ([7, 8, 46],
cf. [21]) can be directly applied to the case of zero-curvature representations, hence to
quantum inverse scattering ([116] and [77], also [31, 37]).

It is obvious that the equations of motion £ upon physical fields u = ¢(x) co-exist
with the Maurer-Cartan equations satisfied by zero-curvature representations a. The ge-
ometries of non-Abelian variational Lie algebroids and gauge algebroids [6, 61] are two
manifestations of the same construction; let us stress that the respective gauge groups can
be unrelated: there is the Lie group G for g-valued zero-curvature representations a and,
on the other hand, there is a gauge group (if any, see footnote 9) for physical fields and
their equations of motion & = {§.5y/du = 0}.

9The class of admissible models is much wider than it may first seem; for example, the Korteweg—

de Vries equation w; = f%wmm + 3ww, is Euler-Lagrange with respect to the action functional Sy =
J {%vzvt — ivgm — %vg}dx A dt if one sets w = v,. In absence of the model’s own gauge group, its

BV-realization shrinks but there remains gauge invariance in the Maurer—Cartan equation.
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We recalled in section 6 that the Maurer—Cartan equation &y¢ itself is Euler-Lagrange
with respect to functional (6.6) in the class of bundles over threefolds, cf. [2, 3, 124].
One obtains the Batalin—Vilkovisky action by extending the geometry of zero-curvature
representations in order to capture Noether’s identities (6.5). It is readily seen that the
required set of Darboux variables consists of

e the coordinates F along fibres in the bundle g* ® A?(M?3) for the equations Eyc,

e the antifields F' for the bundle Ilg @ A'(M?) which is dual to the former and which
has the opposite Zs-valued ghost parity,!’ and also

e the antighosts b' along fibres of g* ® A3(M?) which reproduce syzygies (6.5), as well
as

e the ghosts b from the dual bundle IIg x M? — M3,

The standard Koszul-Tate term in the Batalin-Vilkovisky action is then (b, 8 (af)): the
classical master-action for the entire model is then!!

(So + (BV-terms)) + (Swmc + (Koszul-Tate) );

the respective BV-differentials anticommute in the Whitney sum of the two geometries for
physical fields and flat connection g-forms.

The point is that Maurer—Cartan’s equation (6.3) is Euler—Lagrange only if n = 3; how-
ever, the system Eyc remains gauge invariant at all n > 2 but the attribution of (anti)fields
and (anti)ghosts to the bundles as above becomes ad hoc if n # 3. We therefore propose
to switch from the BV-approach to a picture which employs the four neighbours g, Ilg, g*,
and IIg* within the master-action S. This argument is supported by the following fact [51]:
let n > 3 for M", suppose £ is nonoverdetermined, and take a finite-dimensional Lie al-
gebra g, then every g-valued zero-curvature representation « for £ is gauge equivalent to
zero (i.e., there exists g € C®°(£, G) such that a = d,g- g !). It is remarkable that Mar-
van’s homological technique, which contributed with the anchor 8, to our construction of
non-Abelian variational Lie algebroids, was designed for effective inspection of the spectral

10The co-multiple |F) of a g-valued test shift (5| with respect to the A%(M?3)-valued coupling (, ) refers
to g* at the level of Lie algebras (i.e., regardless of the ghost parity and regardless of any tensor products
with spaces of differential forms). This attributes the left-hand sides of Euler-Lagrange equations Evic
with g* ® A%2(M3). However, we note that the pair of canonically conjugate variables would be « for
g®@AL(M3) and af for Hg* ® A2(M3) whenever the Maurer-Cartan equations Eyc are brute-force labelled
by using the respective unknowns, that is, if the metric tensor ¢;; is not taken into account in the coupling
(dar, F).

HWe recall that the Koszul-Tate component of the full BV-differential Dy is addressed in [121] by
using the language of infinite jet bundles — whereas it is the BRST-component of Dgy which we focus
on in this chapter.
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6.2. The master-functional for zero-curvature representations

parameters’ (non)removability at n = 2 but not in the case of higher dimensions n > 3 of
the base M™.

We conclude that the approach to quantisation of kinematically integrable systems is
not restricted by the BV-technique only; for one can choose between the former and, e.g.,
flat deformation of (structures in) equation (6.1) to the quantum setup of (6.2). It would
be interesting to pursue this alternative in detail towards the construction of quantum
groups [31] and approach of [77, 116] to quantum inverse scattering and quantum integrable
systems. This will be the subject of another research.

99






1]

Bibliography

M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur (1973) Method
for solving the sine-Gordon equation.  Phys. Rev. Lett., 30, pp. 1262-1264.
doi:10.1103/PhysRevLett.30.1262.

A. Achicarro and P. K. Townsend (1986) A Chern-Simons action for three-
dimensional anti-de Sitter supergravity theories. Phys. Lett. B, 180(1-2), pp. 89-92.
d0i:10.1016/0370-2693(86)90140-1.

M. Alexandrov, A. Schwarz, O. Zaboronsky, and M. Kontsevich (1997) The geometry
of the master equation and topological quantum field theory. Internat. J. Modern Phys.
A, 12(7), pp. 1405-1429. doi:10.1142/S0217751X97001031. arXiv:hep-th/9502010.

S. Andrea, A. Restuccia, and A. Sotomayor (2005) The Gardner category and nonlocal
conservation laws for N = 1 super KdV. J. Math. Phys., 46(10), pp. 103517, 11.
doi:10.1063/1.2073289. arXiv:hep-th/0504149.

A. V. Bécklund (1881) Zur Theorie der Flachentransformationen. Math. Ann., pp.
387-422.

G. Barnich (2010) A note on gauge systems from the point of view of Lie algebroids.
In XXIX Workshop on Geometric Methods in Physics, AIP Conf. Proc., volume 1307.
Amer. Inst. Phys., Melville, NY, pp. 7-18. arXiv:1010.0899 [math-ph].

I. A. Batalin and G. A. Vilkovisky (1981) Gauge algebra and quantization. Phys. Lett.
B, 102(1), pp. 27-31. doi:10.1016/0370-2693(81)90205-7.

[. A. Batalin and G. A. Vilkovisky (1983) Quantization of gauge theories
with linearly dependent generators. Phys. Rev. D (3), 28(10), pp. 2567-2582.
d0i:10.1103/PhysRevD.28.2567.

101



BIBLIOGRAPHY

[9] C. Becchi, A. Rouet, and R. Stora (1976) Renormalization of gauge theories. Ann.
Physics, 98(2), pp. 287-321. doi:10.1016,/0003-4916(76)90156-1.

[10] F. A. Berezin (1987) Introduction to superanalysis. Mathematical Physics and Applied
Mathematics, D. Reidel Publishing Co., Dordrecht—Boston, MA.

[11] L. Bianchi (1927) Lezioni di geometria differenziale. Zanichelli, Pisa, 3 edition.

[12] A. V. Bocharov, V. N. Chetverikov, S. V. Duzhin, N. G. Khor’kova, I. S. Krasil’shchik,
A. V. Samokhin, Y. N. Torkhov, A. M. Verbovetsky, and A. M. Vinogradov (1999)
Symmetries and conservation laws for differential equations of mathematical physics,
Translations of Mathematical Monographs, volume 182. American Mathematical Soci-
ety, Providence, RI, xiv+333 pp.

[13] L. Bonora, S. Krivonos, and A. Sorin (1996) Towards the construction of N =
2 supersymmetric integrable hierarchies. Nuclear Phys. B, 477(3), pp. 835-854.
d0i:10.1016/0550-3213(96)00377-X. arXiv:hep-th/9604165.

[14] A. B. Borisov, M. P. Pavlov, and S. A. Zykov (2001) Proliferation scheme for Kaup-
Boussinesq system. Phys. D, 152/153, pp. 104-109. doi:10.1016/S0167-2789(01)00163-
4.

[15] A. B. Borisov and S. A. Zykov (1998) The dressing chain of discrete symmetries and
the proliferation of nonlinear equations. Theor. Math. Phys., 115(2), pp. 199-214.
do0i:10.1007/BF02575453.

[16] N. Bourbaki (1989) Lie groups and Lie algebras. Chapters 1-3. Elements of Mathe-
matics (Berlin), Springer-Verlag, Berlin, xviii+450 pp.

[17] S. Bourque and P. Mathieu (2001) The Painlevé analysis for N = 2 super Korteweg-
de Vries equations. J. Math. Phys., 42(8), pp. 3517-3539. doi:10.1063/1.1369641.
arXiv:math-ph/0006029.

[18] L. J. F. Broer (1975) Approximate equations for long water waves. Appl. Sci. Res.,
31(5), pp. 377-395.

[19] J. C. Brunelli and A. Das (1994) The supersymmetric two boson hierarchies. Phys.
Lett. B, 337(3-4), pp. 303-307. doi:10.1016/0370-2693(94)90979-2.

[20] E. Cartan (1946) Les systémes différentiels extérieurs et leurs applications
géométriques. Hermann, Paris.

[21] A. S. Cattaneo, P. Mnev, and N. Reshetikhin (2013) Semiclassical quantization of
classical field theories. Preprint, arXiv:1311.2490 [math-ph].

102



BIBLIOGRAPHY

[22] M. Chaichian and P. P. Kulish (1987) Superconformal algebras and their relation to
integrable nonlinear systems. Phys. Lett. B, 183(2), pp. 169-174. doi:10.1016/0370-
2693(87)90432-1.

23] S. S. Chern and K. Tenenblat (1986) Pseudo-spherical surfaces and evolution equa-
tions. Stud. Appl. Math., 74(1), pp. 55-83.

[24] J. Cieblinski, P. Goldstein, and A. Sym (1994) On integrability of the inhomogeneous
Heisenberg ferromagnet model: Examination of a new test. J. Phys. A.: Math. Gen.,
27(5), p. 1645. doi:10.1088/0305-4470/27/5/028.

[25] J. Cieslinski (1993) Group interpretation of the spectral parameter in the case of
nonhomogeneous, nonlinear Schrédinger system. J. Math. Phys., 34(6), pp. 2372-2384.
doi:http://dx.doi.org/10.1063/1.530122.

[26] J. Cieslinski (1993) Nonlocal symmetries and a working algorithm to isolate integrable
geometries. J. Phys. A.: Math. Gen., 26(5), p. L267.

[27] G. Darboux (1887) Lecons sur la théorie générale des surfaces et les applications
géométriques du calcul infinitésimal. Gauthier-Villars, Paris.

28] A. Das, W.-J. Huang, and S. Roy (1992) Zero curvature condition of OSp(2/2) and
the associated supergravity theory. Internat. J. Modern Phys. A, 7(18), pp. 4293-4311.
doi:10.1142/S0217751X92001915.

[29] L. Degiovanni, F. Magri, and V. Sciacca (2005) On deformation of Poisson manifolds
of hydrodynamic type. Comm. Math. Phys., 253(1), pp. 1-24. doi:10.1007/s00220-
004-1190-8. arXiv:nlin/0103052.

[30] P. Deligne et al., eds. (1999) Quantum fields and strings: a course for mathematicians,
volume 1-2. AMS, Providence, RI; Institute for Advanced Study (IAS), Princeton, NJ,
Vol. 1: xxii4+-723 pp.; Vol. 2: pp. i-xxiv and 727-1501 pp.

[31] V. G. Drinfel’d (1986) Quantum groups. Zap. Nauchn. Sem. Leningrad. Otdel. Mat.
Inst. Steklov. (LOMI), 155(Differentsialnaya Geometriya, Gruppy Li i Mekh. VIII),
pp. 18-49, 193. doi:10.1007/BF012470836.

[32] B. Dubrovin (1996) Geometry of 2D topological field theories. In Integrable systems
and quantum groups (Montecatini Terme, 1993), Lecture Notes in Math., volume 1620.
Springer, Berlin, pp. 120-348. doi:10.1007/BFb0094793.

[33] B. Dubrovin (2006) On Hamiltonian perturbations of hyperbolic systems of conser-
vation laws. II. Universality of critical behaviour. Comm. Math. Phys., 267(1), pp.
117-139. doi:10.1007/s00220-006-0021-5. arXiv:math-ph/0510032.

103



BIBLIOGRAPHY

[34] B. Dubrovin, S.-Q. Liu, and Y. Zhang (2006) On Hamiltonian perturbations of
hyperbolic systems of conservation laws. I. Quasi-triviality of bi-Hamiltonian per-
turbations. Comm. Pure Appl. Math., 59(4), pp. 559-615. doi:10.1002/cpa.20111.
arXiv:math.DG/0410027.

[35] B. A. Dubrovin, A. T. Fomenko, and S. P. Novikov (1991) Modern Geometry — Meth-
ods and Applications. Part I: The Geometry of Surfaces, Transformation Groups, and
Fields, Graduate Texts in Mathematics, volume 93. Springer, Berlin.

[36] C. Ehresmann (1953) Structures locales.  Colloque de topologie et géométrie
différentielle, Strasbourg, 1952, no. 10, La Bibliotheque Nationale et Universitaire de
Strasbourg, 11 pp.

[37] L. D. Faddeev and L. A. Takhtajan (1987) Hamiltonian methods in the theory of
solitons. Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, x+592 pp.

[38] G. Felder and D. Kazhdan (2012) The classical master equation.  Preprint,
arXiv:1212.1631 [math.AG].

[39] E. V. Ferapontov and A. Moro (2009) Dispersive deformations of hydrodynamic re-
ductions of (2 4+ 1)D dispersionless integrable systems. J. Phys. A.: Math. Theor.,
42(3), pp. 035211, 15. doi:10.1088/1751-8113/42/3/035211. arXiv:nlin.SI/0510032.

[40] E. V. Ferapontov, A. Moro, and V. S. Novikov (2009) Integrable equations in 2 + 1
dimensions: deformations of dispersionless limits. J. Phys. A.: Math. Theor., 42(34),
pp. 345205, 18. doi:10.1088/1751-8113/42/34/345205. arXiv:0903.3586 [nlin.SI].

[41] L. Frappat, P. Sorba, and A. Sciarrino (1996) Dictionary on Lie superalgebras.
Preprint, arXiv:hep-th/9607161 [hep-th].

[42] W. I. Fushchich and A. G. Nikitin (1994) Symmetries of equations of quantum me-
chanics. Allerton Press, Inc., New York, xvi+465 pp.

[43] 1. M. Gel'fand and L. A. Dikii (1975) Asymptotic properties of the resolvent of Sturm-
Liouville equations, and the algebra of Korteweg-de Vries equations. Uspehi Mat. Nauk,
30(5(185)), pp. 67-100. doi:10.1070/RM1975v030n05ABEH001522.

[44] H. Goldschmidt (1967) Existence theorems for analytic linear partial differential equa-
tions. Ann. of Math. (2), 86, pp. 246-270.

[45] V. A. Golovko, I. S. Krasil’shchik, and A. M. Verbovetsky (2008) Variational Poisson-
Nijenhuis structures for partial differential equations. Theor. Math. Phys., 154(2), pp.
268-282. doi:10.1007/s11232-008-0022-y. arXiv:0812.4684 [math.DG].

104



BIBLIOGRAPHY

[46] M. Henneaux and C. Teitelboim (1992) Quantization of gauge systems. Princeton
University Press, Princeton, NJ, xxviii+520 pp.

[47] V. Hussin, A. V. Kiselev, A. O. Krutov, and T. Wolf (2010) N = 2 supersymmet-
ric a = 4-Korteweg-de Vries hierarchy derived via Gardner’s deformation of Kaup-
Boussinesq equation. J. Math. Phys., 51(8), pp. 083507, 19. doi:10.1063/1.3447731.
arXiv:0911.2681 [nlin.SI].

[48] N. H. Ibragimov (1985) Transformation groups applied to mathematical physics. Math-
ematics and its Applications (Soviet Series), D. Reidel Publishing Co., Dordrecht,
xv+394 pp.

[49] S. Igonin, P. H. M. Kersten, and I. Krasil’shchik (2003) On symmetries and cohomo-
logical invariants of equations possessing flat representations. Diff. Geom. Appl., 19(3),
pp. 319-342. doi:10.1016/S0926-2245(03)00049-4. arXiv:math/0301344 [math.DG].

[50] S. Igonin and J. Krasil’shchik (2002) On one-parametric families of Backlund transfor-
mations. In Lie groups, geometric structures and differential equations—one hundred
years after Sophus Lie (Kyoto/Nara, 1999), Adv. Stud. Pure Math., volume 37. Math.
Soc. Japan, Tokyo, pp. 99-114. arXiv:nlin.SI/0010040.

[51] S. A. Igonin (2003) Horizontal cohomology with coefficients, and nonlinear
zero-curvature representations. Uspekhi Mat. Nauk, 58(1(349)), pp. 185-186.
d0i:10.1070/RM2003v058n01 ABEH000600.

[52] A. Karasu and A. V. Kiselev (2006) Gardner’s deformations of the Boussinesq
equations. J. Phys. A: Math. Gen., 39(37), pp. 11453-11460. doi:10.1088/0305-
4470/39/37/008. arXiv:nlin.SI/0603029.

[53] A. Karasu Kalkanli, S. Y. Sakovich, and I. Yurdusen (2003) Integrability of Kersten-
Krasil’'shchik coupled KdV-mKdV equations: singularity analysis and Lax pair. J.
Math. Phys., 44(4), pp. 1703-1708. doi:http://dx.doi.org/10.1063/1.1558903.

[54] D. J. Kaup (1975) A higher-order water-wave equation and the method for solving it.
Progr. Theoret. Phys., 54(2), pp. 396-408.

[55] D. J. Kaup and A. C. Newell (1978) An exact solution for a derivative nonlinear
Schrodinger equation. J. Math. Phys., 19(4), pp. 798-801.

[56] P. Kersten, I. Krasil’shchik, and A. Verbovetsky (2004) Hamiltonian operators and [*-
coverings. J. Geom. Phys., 50(1-4), pp. 273-302. d0i:10.1016/j.geomphys.2003.09.010.
arXiv:math.DG/0304245.

105



BIBLIOGRAPHY

[57] P. Kersten and J. Krasil’shchik (2002) Complete integrability of the coupled KdV-
mKdV system. In Lie groups, geometric structures and differential equations—one
hundred years after Sophus Lie (Kyoto/Nara, 1999), Adv. Stud. Pure Math., volume 37.
Math. Soc. Japan, Tokyo, pp. 151-171.

[58] P. H. M. Kersten and A. S. Sorin (2002) Bi-Hamiltonian structure of the N = 2
supersymmetric « = 1 KdV hierarchy.  Phys. Lett. A, 300(4-5), pp. 397-406.
doi:10.1016/S0375-9601(02)00852-6.

[59] A. Kiselev (2007) Algebraic properties of Gardner’s deformations for integrable sys-
tems. Theor. Math. Phys., 152(1), pp. 963-976. doi:10.1007/s11232-007-0081-5.
arXiv:nlin.SI/0610072.

[60] A. Kiselev and V. Hussin (2009) Hirota’s virtual multisoliton solutions of N=2 su-
persymmetric Korteweg-de Vries equations. Theor. Math. Phys., 159(3), pp. 833-841.
doi:10.1007/s11232-009-0071-x. arXiv:0810.0930 [nlin.SI].

[61] A. V. Kiselev (2012) Homological evolutionary vector fields in Korteweg—de Vries,
Liouville, Maxwell, and several other models. J. Phys.: Conf. Ser., 343(1), p. 012058.
arXiv:1111.3272 [math-ph].

[62] A. V. Kiselev (2012) The twelve lectures in the (non)commutative geometry of differ-
ential equations. Preprint THES/M/12/13.

[63] A. V. Kiselev (2013) The geometry of variations in Batalin—Vilkovisky formalism. J.
Phys.: Conf. Ser., 474(1), p. 012024. arXiv:1312.1262 [math-ph].

[64] A. V. Kiselev (2013) The Jacobi identity for graded-commutative variational Schouten
bracket revisited. Preprint, arXiv:1312.4140 [math-ph].

[65] A. V. Kiselev and A. O. Krutov (2012) Gardner’s deformations of the graded
Korteweg—de Vries equations revisited. J. Math. Phys., 53(10), pp. 103511, 18.
do0i:10.1063/1.4754288. arXiv:1108.2211 [nlin.SI].

[66] A. V. Kiselev and A. O. Krutov (2013) On the (non)removability of spectral pa-
rameters in Zs-graded zero-curvature representations and its applications. Preprint,
arXiv:1301.7143 [math.DG].

[67] A. V. Kiselev and A. O. Krutov (2014) Gardner’s deformations as generators of
new integrable systems. J. Phys.: Conf. Ser., 482(1), p. 012021. arXiv:1312.6941
[nlin.SI].

106



BIBLIOGRAPHY

[68] A. V. Kiselev and A. O. Krutov (2014) Non-Abelian Lie algebroids over jet spaces.
J. Nonlin. Math. Phys., 21(2), pp. 188-213. doi:10.1080/14029251.2014.900992.
arXiv:1305.4598 [math.DG].

[69] A. V. Kiselev and J. W. van de Leur (2011) Involutive distributions of operator-
valued evolutionary vector fields and their affine geometry. II. In Proc. 5th Int. work-
shop ‘Group anlysis of differential equations and integrable systems’ (June 6-10, 2010;
Protaras, Cyprus). pp. 99-109. arXiv:0904.1555 [math-ph].

[70] A. V. Kiselev and J. W. van de Leur (2011) Variational Lie algebroids and ho-
mological evolutionary vector fields. Theor. Math. Phys., 167(3), pp. 772-784.
doi:10.1007/s11232-011-0061-7. arXiv:1006.4227 [math.DG].

[71] A. V. Kiselev and S. Ringers (2013) A comparison of definitions for the Schouten
bracket on jet spaces. In Proc. 6th Int. workshop ‘Group analysis of differential equa-
tions and integrable systems’ (June 18-20, 2012; Protaras, Cyprus). pp. 127-141.
arXiv:1208.6196 [math.DG].

[72] A. V. Kiselev and T. Wolf (2006) Supersymmetric representations and integrable
fermionic extensions of the Burgers and Boussinesq equations. SIGMA Symmetry In-
tegrability Geom. Methods Appl., 2, pp. Paper 030, 19. doi:10.3842/SIGMA.2006.030.
arXiv:math-ph/0511071.

(73] A. V. Kiselev and T. Wolf (2007) Classification of integrable super-systems us-
ing the SsTools environment.  Comput. Phys. Comm., 177(3), pp. 315-328.
d0i:10.1016/j.cpc.2007.02.113. arXiv:nlin.SI/0609065.

[74] M. Kontsevich and Y. Soibelman (2009) Notes on A,.-algebras, A.-categories and
non-commutative geometry. In Homological mirror symmetry, Lecture Notes in Phys.,
volume 757. Springer, Berlin, pp. 153-219.

[75] Y. Kosmann-Schwarzbach (2004) Derived brackets. Lett. Math. Phys., 69, pp. 61-87.
d0i:10.1007 /s11005-004-0608-8.

[76] Y. Kosmann-Schwarzbach and F. Magri (1990) Poisson-Nijenhuis structures. Ann.
Inst. H. Poincaré Phys. Théor., 53(1), pp. 35-81.

[77] B. Kostant (1979) Quantization and representation theory,. In Proceedings of the
SRC/LMS Research Symposium held in Oxford, June 28-July 15, 1977, London
Mathematical Society Lecture Note Series, volume 34. Cambridge University Press,

Cambridge-New York, pp. v+341.

107



BIBLIOGRAPHY

[78] I.S. Krasil’shchik and P. H. M. Kersten (2000) Symmetries and recursion operators for
classical and supersymmetric differential equations, Mathematics and its Applications,
volume 507. Kluwer Academic Publishers, Dordrecht, xvi+384 pp.

[79] 1. S. Krasil’shchik, V. V. Lychagin, and A. M. Vinogradov (1986) Geometry of jet
spaces and nonlinear partial differential equations, Advanced Studies in Contemporary
Mathematics, volume 1. Gordon and Breach Science Publishers, New York, xx+441

pbp.

[80] I. S. Krasil’shchik and A. M. Vinogradov (1989) Nonlocal trends in the geometry of
differential equations: symmetries, conservation laws, and Backlund transformations.

Acta Appl. Math., 15(1-2), pp. 161-209. doi:10.1007/BF00131935.

[81] S. Krivonos, A. Sorin, and F. Toppan (1995) On the super-NLS equation and its
relation with the N = 2 super-KdV equation within the coset approach. Phys. Lett. A,
206(3-4), pp. 146-152. doi:10.1016/0375-9601(95)00651-1.

[82] B. A. Kupershmidt (1983) Deformations of integrable systems. Proc. Roy. Irish Acad.
Sect. A, 83(1), pp. 45-74.

[83] B. A. Kupershmidt (1986) Super long waves. Mech. Res. Comm., 13(1), pp. 47-51.
doi:10.1016/0093-6413(86)90011-X.

[84] P. Labelle and P. Mathieu (1991) A new N = 2 supersymmetric Korteweg-de Vries
equation. J. Math. Phys., 32(4), pp. 923-927. doi:10.1063/1.529351.

[85] C. A. Laberge and P. Mathieu (1988) N = 2 superconformal algebra and integrable
O(2) fermionic extensions of the Korteweg-de Vries equation. Phys. Lett. B, 215(4),
pp. 718-722. doi:10.1016/0370-2693(88)90048-2.

[86] D. Leites (1985) Lie superalgebras. Journal of Soviet Mathematics, 30(6), pp. 2481—
2512. doi:10.1007/BF02249121.

[87] D. A. Leites (1980) Introduction to the theory of supermanifolds. Uspekhi Mat. Nauk,
35(1(211)), pp. 3-57, 255. doi:10.1070/RM1980v035n01 ABEH001545.

[88] D. Levi, A. Sym, and G. Z. Tu (1990) A working algorithm to isolate integrable
surfaces in 3. Preprint DF INFN 761, Roma, Oct. 10,.

[89] S. Lie (1891) Vorlesungen tiber Differentialgleichungen mit bekannten infinitesimalen
Transformationen. B. G. Teubner, Leipzig.

[90] S. Lie (1896) Geometrie der Berihrungstransformationen. B. G. Teubner, Leipzig.

108



BIBLIOGRAPHY

91] F. Magri (1978) A simple model of the integrable Hamiltonian equation. J. Math.
Phys., 19(5), pp. 1156-1162. doi:10.1063/1.523777.

[92] Y. Manin (1985) Holomorphic supergeometry and Yang-Mills superfields. Journal of
Soviet Mathematics, 30(2), pp. 1927-1975. doi:10.1007/BF02105859.

[93] M. Marvan (1997) A direct procedure to compute zero-curvature representations. The
case sly. In The International Conference on Secondary Calculus and Cohomological
Physics (Moscow, 1997). Diffiety Inst. Russ. Acad. Nat. Sci., Pereslavl’ Zalesskiy, p. 9
pp. (electronic).

[94] M. Marvan (2002) On the horizontal gauge cohomology and nonremovabil-
ity of the spectral parameter. Acta  Appl. Math., 72(1-2), pp. 51-65.
do0i:10.1023/A:1015218422059.

[95] M. Marvan (2004) Reducibility of zero curvature representations with ap-
plication to recursion operators. Acta  Appl. Math., 83(1-2), pp. 39-68.
doi:10.1023/B:ACAP.0000035588.67805.0b. arXiv:nlin/0306006 [nlin.SI].

[96] M. Marvan (2009) Sufficient set of integrability conditions of an orthonomic sys-
tem. Found. Comput. Math., 9(6), pp. 651-674. doi:10.1007/s10208-008-9039-8.
arXiv:nlin/0605009 [nlin.SI].

[97] M. Marvan (2010) On the spectral parameter problem. Acta Appl. Math., 109(1), pp.
239-255. doi:10.1007/s10440-009-9450-4. arXiv:0804.2031 [nlin.SI].

(98] P. Mathieu (1988) Supersymmetric extension of the Korteweg-de Vries equation. J.
Math. Phys., 29(11), pp. 2499-2506. doi:10.1063/1.528090.

[99] P. Mathieu (2001) Open problems for the super KdV equations. In Bdicklund
and Darboux transformations. The geometry of solitons (Halifax, NS, 1999), CRM
Proc. Lecture Notes, volume 29. Amer. Math. Soc., Providence, RI, pp. 325-334.
arXiv:math-ph/0005007.

[100] A. V. Mikhailov, A. B. Shabat, and V. V. Sokolov (1991) The symmetry approach to
classification of integrable equations. In What is integrability?. Springer Ser. Nonlinear
Dynam., Springer, Berlin, pp. 115-184.

[101] R. M. Miura (1968) Korteweg-de Vries equation and generalizations. 1. A re-
markable explicit nonlinear transformation. J. Math. Phys., 9, pp. 1202-1204.
d0i:10.1063/1.1664700.

109



BIBLIOGRAPHY

[102] R. M. Miura, C. S. Gardner, and M. D. Kruskal (1968) Korteweg-de Vries equation
and generalizations. II. Existence of conservation laws and constants of motion. J.
Math. Phys., 9, pp. 1204-1209.

[103] T. Miwa, M. Jimbo, and E. Date (2000) Solitons: Differential equations, symme-
tries and infinite-dimensional algebras, Cambridge Tracts in Mathematics, volume 135.
Cambridge University Press, Cambridge, x+108 pp.

[104] G. Monge (1819) Application de ’analyse a la géométrie. Bachelier, Paris, 5 edition.

[105] Y. Nutku and M. V. Pavlov (2002) Multi-Lagrangians for integrable systems. .J.
Math. Phys., 43(3), pp. 1441-1459. do0i:10.1063/1.1427765. arXiv:hep-th/0108214.

[106] P. J. Olver (1986) Applications of Lie groups to differential equations, Graduate Texts
in Mathematics, volume 107. Springer-Verlag, New York, xxvi+497 pp.

[107] L. V. Ovsiannikov (1982) Group analysis of differential equations. Academic Press,
Inc. Harcourt Brace Jovanovich, Publishers, New York-London, xvi+416 pp.

[108] S. Palit and A. Roy Chowdhury (1996) A supersymmetric dispersive water wave
equation. J. Phys. A: Math. Gen., 29(11), pp. 2853-2859. doi:10.1088/0305-
4470/29/11/019.

[109] R. O. Popovych, V. M. Boyko, M. O. Nesterenko, and M. W. Lutfullin (2003) Re-
alizations of real low-dimensional Lie algebras. J. Phys. A: Math. Gen., 36(26), pp.
7337-7360. doi:10.1088/0305-4470/36/26/309. arXiv:math-ph/0301029.

[110] Z. Popowicz (1993) The Lax formulation of the “new” N =2 SUSY KdV equation.
Phys. Lett. A, 174(5-6), pp. 411-415. doi:10.1016/0375-9601(93)90200-J.

[111] M. Roelofs (1993) Prolongation structures of supersymmetric systems. Ph.D. thesis,
University of Twente, Enschede, The Netherlands.

[112] S. Y. Sakovich (1995) On zero-curvature representations of evolution equations. .J.
Phys. A: Math. Gen., 28(10), pp. 2861-2869. doi:10.1088/0305-4470/28/10/016.

[113] S. Y. Sakovich (2004) Cyclic bases of zero-curvature representations:
five illustrations to one concept. Acta  Appl. Math., 83(1-2), pp. 69-83.
d0i:10.1023/B:ACAP.0000035589.61486.a7. arXiv:nlin/02120109.

[114] R. Sasaki (1979) Soliton equations and pseudospherical surfaces. Nuclear Phys. B,
154(2), pp. 343 357. doi:10.1016,/0550-3213(79)90517-0.

110



BIBLIOGRAPHY

[115] A. Sergyeyev (2004) A simple way of making a Hamiltonian system
into a bi-Hamiltonian one. Acta  Appl. Math., 83(1-2), pp. 183-197.
d0i:10.1023/B:ACAP.0000035597.06308.8a.

[116] E. Sklyanin, L. Takhtadzhyan, and L. Faddeev (1979) Quantum inverse problem
method. 1. Theor. Math. Phys, 40(2), pp. 688-706. doi:10.1007/BF01018718.

[117] D. C. Spencer (1969) Overdetermined systems of linear partial differential equations.
Bull. Amer. Math. Soc., 75, pp. 179-239.

[118] H. Stephani (1989) Differential equation. Their solution using symmetries. Cam-
bridge University Press, Cambridge, xii+260 pp.

[119] 1. V. Tyutin (1975) Gauge invariance in field theory and statistical mechanics.
Preprint Lebedev FIAN no. 39.

[120] A.Y. Vaintrob (1997) Lie algebroids and homological vector fields. Russian Mathe-
matical Surveys, 52(2), p. 428.

[121] A. Verbovetsky (2002) Remarks on two approaches to the horizontal cohomology:
compatibility complex and the Koszul-Tate resolution. Acta Appl. Math., 72(1-2), pp.
123-131. doi:10.1023/A:1015276007463. arXiv:math.DG/0105207.

[122] T. Voronov (2002) Graded manifolds and Drinfeld doubles for Lie bialge-
broids. In Quantization, Poisson brackets and beyond (Manchester, 2001), Con-
temp. Math., volume 315. Amer. Math. Soc., Providence, RI, pp. 131-168.
d0i:10.1090/conm/315/05478. arXiv:math.DG/0105237.

[123] G. Wilson (1981) On two constructions of conservation laws for Lax equations. Quart.
J. Math. Ozford Ser. (2), 32(128), pp. 491-512. doi:10.1093/qmath/32.4.491.

[124] E. Witten (1988) Topological sigma models. Comm. Math. Phys., 118(3), pp. 411
449.

[125] T. Wolf (2004) Applications of CRACK in the classification of integrable systems.
In Superintegrability in classical and quantum systems, CRM Proc. Lecture Notes, vol-
ume 37. Amer. Math. Soc., Providence, RI, pp. 283-300.

[126] T. Wolf (2009). The interactive use of SSTOOLS. Online tutorial. http://lie.math.
brocku.ca/crack/susy/.

[127] V. Zakharov and L. Faddeev (1971) Korteweg-de Vries equation: A completely inte-
grable Hamiltonian system. Functional Analysis and Its Applications, 5(4), pp. 280—
287. doi:10.1007/BF01086739.

111



[128] V. Zakharov and A. Shabat (1979) Integration of nonlinear equations of mathe-
matical physics by the method of inverse scattering. II. Functional Analysis and Its
Applications, 13(3), pp. 166-174. doi:10.1007/BF01077483.

112



Acknowledgments

I express my special appreciation and thanks to my supervisors, dr. A. V. Kiselev and to
prof. pr. J. Top.

I thanks also to the members of reading committee prof. dr. A. C. D. van Enter, prof.
dr. D. A. Leites and prof. dr. A. G. Nikitin.

I thanks to V. M. Buchstaber, 1. S. Krasil’shchik, J. W. van de Leur, V. V. Lycha-
gin, M. Marvan, A. V. Mikhailov, G. Moreno, M. A. Nesterenko, A. M. Vinogradov,
L. Vitagliano, T. Wolf, and A. M. Verbovetsky for discussion and stimulating criticism. I
specially thank V. Yu. Kiselev and V. I. Varlamov for stimulating discussion.

I thank P. Mathieu for his attention to this work.

My thanks go to all my office-mates and colleagues.

I specially thank Natalya and Makar Nalimov for the cover design.

I am profoundly grateful my family and friends for their support and understanding.

Andrey Krutov
Groningen
May 1, 2014

113






Summary

This thesis is devoted to the construction of deformations of equations and structures in
nonlinear problem mathematical physics. We consider such objects as Gardner’s defor-
mations, families of nonlocalities, and families of zero-curvature representation (ZCR) for
partial differential equations (PDE). Their properties and applications are analysed in de-
tail. A general motivation to study deformation problems in the context of nonlinear PDE
is as follows. First, such deformations yield recurrence relations between the Hamiltonians
of PDE hierarchies. Second, we use the deformations as starting points for construction of
new integrable systems and hierarchies.

We present two solutions of Mathieu’s problem of constructing Gardner’s deformations
for the N=2 supersymmetric a=4-Korteweg—de Vries equation (SKdV). Our first solution
is this: On the one hand, we prove the nonexistence of supersymmetry-invariant polyno-
mial Gardner’s deformations that retract to Gardner’s formulas for the Korteweg-de Vries
equation (KdV) under the component reduction. On the other hand, we propose a two-step
scheme for the recursive production of integrals of motion for the N=2, a=4-SKdV. First,
we find a new Gardner’s deformation of the Kaup-Boussinesq equation, which is contained
in the bosonic limit of the super-hierarchy. This yields the recurrence relation between
the Hamiltonians of the limit, whence we determine the bosonic super-Hamiltonians of the
full N=2, a=4-SKdV hierarchy. Our method is applicable towards the solution of Gard-
ner’s deformation problems for other supersymmetric KdV-type systems. This solution is
presented in Chapters 2 and 3 and our paper [JMP10].

To construct the alternative solution, we study the relation between Gardner’s deforma-
tions and zero-curvature representations. We generalise Marvan’s method for inspecting the
(non)removability of spectral parameters under gauge transformations in zero-curvature
representations to the case of Zs-graded PDE. Using this technique, we prove that the
parameter in ZCR constructed by Das et al. for N= 2, a=4-SKdV is nonremovable. By
tracking the relations between zero-curvature representations and Gardner’s deformations,

115



we construct the second solution of the deformation problem for the N=2 supersymmetric
a=4 Korteweg—de Vries equation. Namely, we show that the zero-curvature representation
found by Das et al. yields a system of new nonlocal variables such that their derivatives
contain the Gardner deformation for the classical KdV equation. In turn, from this system
of nonlocalities we derive the Gardner’s deformation for N=2 supersymmetric a=4 Korte-
weg—de Vries equation. This solution and generalisations of Marvan’s method are described
in Chapters 4 and 5 and in [JPM12] and [1301.7143]. Likewise we obtain the Gardner’s de-
formation for the Krasil’shchik—Kersten system from a zero-curvature representation found
for it by Karasu-Kalkanli et al..

We consider in detail a link between deformation techniques for two types of flat struc-
tures over Zs-graded equations, namely, their matrix zero-curvature representations and
the construction of their parametric families by using the Frolicher—Nijenhuis bracket for-
malism developed by Krasil’shchik et al. In particular, in Chapter 5 and [1301.7143] we
illustrate the generation and elimination of parameters in such structures.

Gardner’s deformations have other important applications. We re-address the problem
of construction of new infinite-dimensional completely integrable systems on the basis
of known ones, and we reveal a working mechanism for such transitions. By splitting
the problem’s solution in two steps, we explain how the classical technique of Gardner’s
deformations facilitates — in a regular way — making the first, nontrivial move, in the course
of which the drafts of new systems are created (often, of hydrodynamic type). The other
step then amounts to higher differential order extensions of symbols in the intermediate
hierarchies (e.g., by using the techniques of Dubrovin et al. and Ferapontov et al.). In
particular we show that Gardner’s deformation from the Kaup—Boussinesq equation yields
the Kaup—Newell system. This technique is described in Chapter 2 and our paper [JPCS14].

In the context of kinematic integrability, which we address first through realisations
of Gardner’s deformations in terms of Lie algebra-valued flat connections, we associate
Hamiltonian homological evolutionary vector fields —which are the non-Abelian variational
Lie algebroids’ differentials— with zero-curvature representations for PDE. This result is
described in Chapter 6 and our paper [JNMP14]. It relates the line of this research to
the geometry of quantum inverse scattering (well know for the seminal works by Drinfel’d,
Manin, and Faddeev’s school including Reshetiknin et al.)
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Samenvatting

Deformaties van vergelijkingen en structuren in niet-lineaire pro-
blemen uit de mathematische fysica

Dit proefschrift behandelt de constructie van deformaties van niet-lineaire partiéle diffe-
rentiaalvergelijkingen (PDVs) en structuren in de mathematische fysica. We beschouwen
objecten zoals Gardner’s deformaties, “nonlocalities”, en families van kromming nul re-
presentaties bij PDVs. Een gedetailleerde analyse van hun eigenschappen en toepassingen
wordt daarbij gegeven. Een algemene motivatie om deformatieproblemen in de context
van niet-lineaire PDVs te bestuderen, ziet er als volgt uit. Ten eerste geven zulke defor-
maties aanleiding tot recurrentierelaties tussen de Hamiltonianen van PDV hierarchieén.
Ten tweede gebruiken we de deformaties als startpunt bij de constructie van nieuwe inte-
greerbare systemen en hierarchieén.

We presenteren twee oplossingen voor het probleem van Mathieu: dit vraagt naar het
construeren van Gardner’s deformaties voor de N=2 supersymmetrische a=4-Korteweg—
De Vries vergelijking (SKdV). Onze eerste oplossing werkt als volgt. Enerzijds bewijzen
we dat een supersymmetrie-invariante polynomiale Gardner’s deformatie, die bovendien
onder reductie van componenten aanleiding geeft tot de standaard Gardner formules voor
de Korteweg—De Vries vergelijking, niet bestaat. Anderzijds geven we een uit twee stap-
pen bestaande methode waarmee recursief bewegingsintegralen voor de N=2, a=4-SKdV
worden geproduceerd. Hiermee vinden we een nieuwe Gardner’s deformatie van de Kaup—
Boussinesq vergelijking, die bevat is in de bosonische limiet van de super-hierarchie. Dit
geeft aanleiding tot de recurrente betrekking tussen de Hamiltonianen van de limiet, waar-
uit we dan de bosonische super-Hamiltonianen van de volledige N=2, a=4-SKdV hierarchie
bepalen. Onze methode is ook toepasbaar bij het mogelijk oplossen van Gardner’s defor-
matieproblemen voor andere supersymmetrische KdV-achtige systemen. Deze oplossing
wordt beschreven in de hoofdstukken 2 en 3 en eveneens in het artikel [JMP10].
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Voor de constructe van een alternatieve oplossing bestuderenen we de relatie tussen
Gardner’s deformaties en representaties met kromming nul. We generaliseren de methode
van Marvan waarmee bepaald wordt of spectrale parameters met behulp van ijktransfor-
maties al of niet kunnen worden geélimineerd, naar het geval van Zs-gegradeerde PDVs.
Gebruikmakend van deze techniek bewijzen we dat de door Das et al. geconstrueerde para-
meter in representaties met kromming nul voor de N=2, a=4-SKdV niet geélimineerd kan
worden. Door de verbanden tussen representaties met kromming nul, en Gardner’s defor-
maties langs te lopen, construeren we nu de tweede oplossing voor het deformatieprobleem
bij de N=2 supersymmetrische a=4 Korteweg—De Vries vergelijking. Namelijk, eerst to-
nen we aan dat de kromming nul representatie gevonden door Das et al. aanleiding geeft
tot een nieuw systeem van niet-locale variabelen met de eigenschap, dat hun afgeleiden de
Gardner deformatie voor de klassieke KdV vergelijking bevatten. Vervolgens leiden we uit
dit systeem van ‘non-localities” de Gardner’s deformatie af voor de N=2 supersymmetri-
sche a=4 Korteweg—De Vries vergelijking. Deze oplossing en generalisaties van Marvan’s
methode staan beschreven in de hoofdstukken 4 en 5 en ook in [JPM12] en [1301.7143]. Op
een zelfde manier krijgen we de Gardner’s deformatie bij het Krasil’shchik-Kersten systeem
vanuit een kromming nul representatie die hierbij gevonden was door Karasu-Kalkanli et
al.

We geven een gedetailleerde beschouwing van een verband tussen deformatietechnieken
voor twee types platte structuren over Z,-gegradeerde vergelijkingen, namelijk hun matrix
kromming nul representaties en de constructie van hun parametrische families met behulp
van het formalisme van het Frolicher-Nijenhuis haakje zoals ontwikkeld door Krasil’shchik
et al. In het illustreren we het toevoegen en elimineren van parameters in dergelijke
structuren, dit gebeurt in Hoofdstuk 5 en in [1301.7143].

Gardner’s deformaties hebben nog andere belangrijke toepassingen. We beschouwen
opnieuw het probleem van het construeren van nieuwe oneindig dimensionale volledig in-
tegreerbare systemen gebaseerd op reeds bekende, en we geven een werkend mechanisme
hiervoor. Door de oplossing van het probleem op te delen in tweeén leggen we uit, hoe de
klassieke techniek van Gardner’s deformaties het mogelijk maakt om — op een reguliere ma-
nier — de eerste niet-triviale stap te zetten op weg naar de ontwikkeling van nieuwe systemen
(in veel gevallen van een hydrodynamisch type). De resterende stap komt dan neer op het
uitbreiden tot hogere differentiale ordes van symbolen in de tussenliggende hierarchieén
(bijvoorbeeld gebruikmakend van technieken van Dubrovin et al. en van Ferapontov et
al.). In het bijzonder tonen we aan dat Gardner’s deformatie vanuit de Kaup-Boussinesq
vergelijking resulteert in het Kaup—Newell systeem. Deze techniek wordt beschreven in
Hoofdstuk 2 en in ons artikel [JPCS14].

In de context van kinematische integreerbaarheid, waarop we eerst ingaan vanuit het
realiseren van Gardner’s deformaties in termen van platte connecties met waarden in een
Lie-algebra, associéren we Hamiltoniaanse homologische evolutionaire vectorvelden —dit
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zijn de niet-Abelse variationele differrentialen van een Lie-algebroid— met representaties van
kromming nul voor PDVs. Dit wordt gedaan in Hoofdstuk 6 en in het artikel [JNMP14].
Het geeft een verband tussen het onderzoek in dit proefschrift en de meetkunde van quan-
tum inverse scattering (bekend door het baanbrekende werk van Drinfel’d, Manin, en de
school van Faddeev waaronder Reshetiknin et al.)
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Kparkoe conep:kanue

Hedopmanum ypaBHEeHUl W CTPYKTYP B HeJHWHEHBIX 3aJadaxX Ma-
TeMaTU4eCcKoil Pu3nKun

Jluccepralus OCBLIEHa 3a/1a4e TOCTPOeHu JedpopMaliuil ypaBHEHU U CTPYKTYD B HEJIH-
HEMHBIX 3ajJla9ax MareMaTudeckoin ¢pusuku. B pabore paccMOTpeHbl TakKue 00bEKThI, KaK
necdopmariuu 1o [apanepy n mapaMeTpuveckKue ceMeicTBa HeJIOKaIbHOCTe! Uil IpeicTaB-
JIEHUil HyJIeBOit KpuBU3HBI Jud hepeHnnaabHbIX YPaBHEHUN B YaCTHBIX IIPOU3BOJIHBIX. B
JIaHHoi paboTe JIeTa/IbHO PACCMOTPEHBI UX CBOMCTBA W Npuioxkenud. [Ipuaunbsr g uzy-
JeHud Takux jiecpopMaIiii CocToAT B CaeaytoneM. Bo-1iepBbIX, ¢ UX MOMOIIBIO MOXKHO T10-
JIVIATDH PEKYPPEHTHBIE COOTHOIIEHUS Ha COXPAHSIIONIUECT TaMUJIbTOHUAHBI UEPAPXUN JTUd-
depeHIaIbHbIX YPaBHEHUI B YaCTHBIX IPOU3BOIHBIX. BO-BTOPBIX, jpedopMaiiuu MOKHO
UCIIOJIb30BaTh KaK OTHPABHYIO TOYKY JJId MOCTPOEHUS HOBLIX MHTEIPUPYEMBIX CUCTEM U
nepapxui.

B pmuccepranum naiigensl jBa perienue 3ajadn [I. Marbe o moctpoenun medopma-
nuu 1o lapanepy juta N=2 cynepcumMerpudHoro a=4 ypasHenus Kopresera—iae @puza
(CKa®d). Ileproe perierne TakoBo. Bo-mepBbIX, 0Ka3aHO, UTO HE CYIIECTBYET OJUHO-
MUAJIbHOW CYIIepCUMMETPUYIHO-UHBAPUAHTHON Jleopmariuu 110 ['ap/iHepy uid ypaBHEHUS
N=2, a=4-CKa1® Taxoii, 9To oHa cojep:Kaja Obl B peaykiuu jedpopmanuio 1mo [ap/-
Hepy s Kyaccudeckoro ypashenust Kopresera—ie @pusa (Kad). Ho B 1o ke Bpewms,
noctpoeHa HoBagd jecdopmariug o [apanepy s ypaBuenust Kayma-Byccunecka. Ypas-
nenne Kayna-Byccunecka cosep:kutcs B mepapxun 0030HOTO Iipejiesa ypaBHeHus N=2,
a=4-CKn®. Hedopmanus o lapaaepy ypasenus Kayma—Byccunecka 3amaér pekyppeHT-
HbI€ COOTHOIIEHHUST MEXK/Iy IaMUJIBTOHHAHAMHU OO30HHOTO IIpejiesia, KOTOPbIe, B CBOIO OYe-
Pelib, OIpeessioT cynepramMmuabTonuansl ypasuenus N=2, a=4-CKa®. Paccmorpennbiit
METOJI TaKKe MPUMEHUM K PEIIeHUIO 3a/a4u jgedopMalun JIpyrux CyrnepCuMMeTPUIHBIX
ypasuennit Kji®-tuna. [lepsomy pemenuio 3ayaqu [I. MaTbe mocBsIneHs riaBbl 2 u 3 u
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pabora [JMP10].

[TocTpoenuio aabTEPHATUBHOIO DPENIEHUs] MPEJIIECTBYeT JeTalbHOe H3ydeHUe CBA3U
Mexk Ty nedopmarusaMu 1o apjHepy u mpejicTaB/IeHUSIMU HYJIEBONl KPUBHU3HBI. B pado-
Te 0000111eH Ha Zo-TpajyupOBaHHbBIN ciydaii paspaboranubiit M. Mapsanom merosn mpo-
BepKH (He)yCTPAHUMOCTH IapaMeTpa OTHOCHTEIBHO KAJMOPOBOYHBIX MpPeoOpasoBaHUil B
[IpeJICTaBICHUSX HYJIeBOH KpUBU3HBI Ju(DepeHnnaibHbIX YPABHEHUI B YaCTHBIX ITPOU3-
BOJIHBIX. VCIIOIb3yst 9TOT MeTOJI, MBI JOKa3aJd, ITo mapaMeTp B mocrpoennoMm A. Jlacom
U JIp. NIPEJICTABIECHUN HYJIeBON KpuBU3HbI Jiuisd ypaBHerus N=2, a=4-CKa1® neycrpanum
KaJIMOPOBOYHBIMU ITpeoOpazoBanusamu. [IpociiexkuBasi CBSI3b MEXK/Ty TIPEJICTABICHUSME HY-
JIEBOII KPUBHU3HBI U jedopMmarusamu 110 ['ap/iHepy, Mbl CTPOMM BTOpOE pPEIIeHue 3a/a4u
II. Marpe. [lokazano, 9T0o TpejcTaB/IeHre HyJIeBOW KpWBU3HBI, Haiijgennoe A. Jlacom u
JIp., 33JIa€T CUCTEMY HOBBIX HEJIOKAJILHBIX IMEPEMEHHBIX — TaKyIo, YTO OHA COJEPXKHUT B
peaykiu sedopmariuio 1o lapauepy ypasuenunss Ka®. Ha ocnoBe 310t cuctembl HeJo-
KaJIbHBIX IEpEMEHHBIX TocTpoeHa Jjiechopmarug 1o apanepy g ypasuenus N=2, a=4-
CKn®. 910 pemenne n obobmenne meroma M. Mapsana ommcano B riaBax 4 u 5 JaHHOIM
muccepranu, cratbe [JMP12| u npenpunte [1301.7143]. Mcnonp3yio aHATIOTHYHY IO TeXHI-
Ky, HaM TaKKe YJAJIOCh IMOCTPOUTH jedopMaluio 1mo ['apjnepy Jijisi CUCTeMbl YpaBHEHU
Kpacunbiuka—Kepcrena na ocHoBe ero mnpejictaBjieHus HYJIEBOW KPUBU3HBI, HAMJIEHHOTO
Kapacy-Kaskanasr u ap.

B rnase 5 u mpenpunte [1301.7143] paccMOTpeHBI COOTHOIIEHUST MEXKY TEXHUKAMU
JiecbopMaIiy JIByX TUIIOB IIJIOCKUX CTPYKTYP HaJT Zo-TPalynpoBaHHbIME JuddepenHimaib-
HBIMU YPABHEHUSIMU B YACTHBIX MPOM3BOJIHBIX: MX MATPUYIHBIME ITPEICTABICHUIMU HYJIe-
BOIl KPUBU3HBI U MAPAMETPUIECKUMU CeMefCcTBaMU HAKPBITU, 1eOpMUPYEMbIX CKOOKOI
Dpénuxepa—Huitenxeitaca (kak omucano V. C. Kpacuibimkom u ap.). B wacrnocrn, B ria-
Be 5 u npenpunre [1301.7143] Mbl HIUTIOCTPUPYEM TIPOIELYPY MOPOKICHUS M JINKBU AT
rapaMeTpoB B MOJIOOHBIX CTPYKTYpax.

Hedopmariun o ['apinepy nMeoT Tak:Ke U JAPyrue BayKHbIe IIPUMEHEHUs: HAIPUMED,
[IpY PEIIeHnN 3a/Ia91 TOCTPOEHUsI HOBBIX MHTErPUPYEMbBIX cucTeM. PazduBast perienue gan-
HOIT IpOOJIEMBI Ha JIBa Talla, Mbl YKa3blBaeM, KaK Kjaccudeckue jiechopmalinu 1o ['apanepy
romoraior B e€ perrennu. Ha nepsom mare jiedopmaryn o ['apiHepy MOy T CIyKHUTD HC-
TOYHUKOM “3ar0TOBOK’ HOBBIX cHCTeM (OOBIYHO — IHJIPOJMHAMEIYECKOro Tuia). Ha srame
pacHIupeHnsl CUMBOJIOB IIPOMEXKYTOYHBIX UEPAPXUIl MOT'YT OBITH UCIOJIB30BAHBI ITOIXO/IbI,
pazpaborannbie /[yopoBunbiM, PepantoHTOBBIM U Jp. B wacTHOCTH, UCIIOJIB3Y OIUCAHHBIM
MeToj, 3 Jedopmanuu 1o [apanepy ypasaenus Kayna-Byccunecka MOXKHO TOJYYIUTH
cucremy ypasuenuit Kayma-Hpbros/ta. 91tu pe3ybTars IPUBEJIEHBI B TVIaBe 2 TaHHON JTHC-
cepranuu u pabore [JPCS14].

B rnase 6 ycTaHOBJIEHO COOTBETCTBUE MEYKTY TAMUJIBTOHOBBIMEI T'OMOJIOTTIECKUMHE IBO-
JIIOTITMOHHBIMU BEKTOPHBIMU TTOJISIMUA, PEAU3YIONIUMHI CTPYKTYPY HeabeIeBbIX BapUAITUOH-
HBIX aiarebponsio JIu (u coorBercTByomux jaudepeHIuaios) Ha MPOCTPAHCTBAX GeCKo-
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HEYHBIX CTPYH CylleppacCcilOeHuil, — 1, ¢ APYI'Oi CTOPOHBI, IIPEJICTABICHUAMU HYJICBOI KPU-
BU3HBI ¢ Koaddurmentamu B 3a1aHH0it anredpe JIu s auddepeHuaibubix ypaBHEeHU
B YACTHBIX [IPOU3BOJIHBIX. DTU PE3YJIbTaThl NpuBeeHbl B ctathe [JNMP14|; onu cBsi3biBa-
IOT IIPOBEJIEHHOE BBIIE MCC/IeOBAHNE C TeOMeTPpHUeil KBAHTOBOTO METO/Ia OOPATHO 331841
paccestHust (B TOM BHJIe, B KOTOPOM OH M3BeCTeH 13 ocHoBorosaraomux pador B. I'. Ipus-
denpaa, FO. V. Manuna u mkosst JI. JI. @aseesa, B wactHoctn, H. FO. Pemernxuna).

['maBeI JaHHOI JMccepTalni OCHOBAHBI Ha CJIEIYIONINX CTAThAX B MEXK/TyHAPOIHBIX pe-
IEH3UPYEMBIX KYyPHAJIaX U OJIHOM IIPEIPUHTE.
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