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We formulate o-model duality transformations in terms of spin connection. This allows one to
investigate the symmetry of the string action including higher order a' corrections. An important
feature of the new duality transformations is a simple homogeneous transformation rule of the spin
connection (with torsion) and specifically adjusted transformation of the Yang-Mills field. We find
that under certain conditions this duality is a symmetry of the full effective string action in the target
space, free of a’ corrections. We demonstrate how the exact duality generates new fundamental string

solutions from supersymmetric string waves.

I. INTRODUCTION

In recent years an active field of research has been the
study of modified Einstein-Maxwell equations. The mod-
ifications that have been considered include additional
scalar or antisymmetric tensor fields (called dilatons and
axions) or modifications in which the electromagnetic
field is replaced by non-Abelian Yang-Mills fields. These
modified Einstein-Maxwell theories admit new solutions
whose consistency crucially depends on the presence of
the new fields and/or on the non-Abelian nature of the
Yang-Mills fields. For examples of such new solutions,
see the review articles [1-3] and references therein.

One motivation for studying the above-mentioned
modifications to Einstein-Maxwell theory is that they
arise in string theory. The zero slope limit o’ — 0 of
string theory corresponds to a modified Einstein-Maxwell
theory of the type discussed above. The complete effec-
tive action also includes contributions which are of higher
order in the Riemann tensor and the Yang-Mills field
strength. Since string theory claims to give a consistent
description of quantum gravity, solutions of the string
effective action will contribute to our understanding of
quantum gravity.

Not many exact solutions to the string equations of
motion are known. One of the reasons for this is that
knowledge about the explicit form of the higher order
o' corrections to the string effective action have become
available only fairly recently [4]. The higher order terms
in o in the effective action are, for instance, crucial in
the construction of the five-brane soliton [5].

In general, it appears difficult to find exact solutions
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to the string equations of motion. Fortunately, if one
considers space-times with a symmetry, there exist trans-
formations which generate new solutions from old ones.
Examples of solution generating transformations specific
to the string effective action are the target space duality
transformations [6, 7] and the symmetry transformations
of [8].

So far, the target space duality transformations have
only been derived in a ¢ model formulation of string the-
ory [6]. The explicit form of the duality transformation is
only known to lowest order in o’. In general one expects
that the duality transformations will be modified with
an infinite number of terms of increasingly higher order
in o' but no information is available about these higher
order corrections. Recently, Kliméik and Tseytlin found
an exact duality between some pp (plane-parallel) waves
and flat space with nonvanishing antisymmetric tensor
and dilaton fields [9]. A discussion, from the & model
point of view, of other examples of situations where the
duality transformations are exact can be found in [10,11].
A discussion of less explicit examples of situations where
the leading-order duality transformations do not acquire
o' corrections for a special choice of field redefinitions
can also be found in [9].

The purpose of this paper is to find duality transfor-
mations which form a symmetry of the theory in the zero
slope limit, and remain a symmetry of the theory even
with account taken of o’ corrections. However, o’ cor-
rections include terms involving spin connection. This
forced us to formulate duality transformations not in
terms of metric, as is usually done, but in terms of spin
connection with torsion. The resulting transformations
have a rather simple structure, which allowed us to in-
vestigate higher order o’ corrections.

We will also investigate special field configurations for
which these duality transformations do not receive higher
order corrections, i.e., are exact transformations to all
orders in a’. To be specific, our starting point will be

6663 ©1994 The American Physical Society
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the supersymmetric string wave (SSW) solutions to ten-
dimensional string theory [12]. These solutions are char-
acterized by an arbitrary vector field A,. It has been
shown in [13] that, for the special case of plane fronted
waves where only A, # 0, these wave solutions are dual
to the field outside a straight fundamental string [14].
Furthermore, it is known that the plane fronted waves are
an exact solution of the string equations of motion [15,
16, 18]. We will show that the fundamental string (FS)
solution is also an exact solution. As a consequence, we
find that the duality transformation, applied to a plane
fronted wave, is an exact transformation.

The above result can be generalized in the following
way. We will derive a theorem stating that, given a field
configuration that solves the zero slope limit of the string
equations, the same field configuration can be promoted
to an exact solution provided that all o corrections to
the space-time supersymmetry transformation rules van-
ish. The latter condition is equivalent to the require-
ment that for our solution (i) the (Lorentz + Yang-Mills)
Chern-Simons forms vanish and (ii) the so-called T ten-
sors [see Egs. (31)—(33)] vanish. In order to satisfy these
two conditions, it will be necessary in certain cases to
make a nontrivial ansatz for the Yang-Mills gauge fields.’

A corollary of our theorem is that, given two solutions
to the zero slope limit of the string equations, which are
connected to each other by a duality transformation, then
the duality transformation is exact to all orders in o
provided both solutions satisfy the two conditions in the
theorem given above.

We would like to emphasize that the proof of this the-
orem relies on a conjecture about the structure of o’ cor-
rections. We assume (i) that only o’ corrections related
to Lorentz and Yang-Mills anomalies are relevant for our
analysis and (ii) that the conjecture of [4] about their
form is correct. The reason to ignore other corrections
is based on the conjecture that solutions with unbroken
supersymmetries do not acquire higher order corrections
in the absence of anomalies [17].

The main application of our theorem in this paper will
be to show that the SSW solutions, after duality, lead to a
generalized FS solution, which is again an exact solution.
Therefore, the duality transformation connecting the two
solutions is exact to all orders in o'.

Our approach is different from the one developed in [8]
in the treatment of the duality transformation of vector
fields. We do not include vector fields in the zero slope
limit of the effective action but treat the non-Abelian
vector fields at the level of @’ corrections. These correc-
tions cancel against gravitational o’ corrections for the
special configurations which we are considering.

The organization of this paper is as follows. In Sec. II
we will review the o model derivation of the target space
duality transformations in the zero slope limit. As a new
result we will also present the duality transformation of
the Yang-Mills gauge fields since we will need them in the

'Note that the Yang-Mills vector fields do not occur in the
zero slope limit of the string effective action.

following. In Sec. III we will explicitly show how the tar-
get space duality invariance works in the zero slope limit.
In the next section this duality transformation will be ap-
plied to construct the generalized FS solution. In Sec. V
we will give the derivation of our theorem. In Sec. VI
we will show that the FS solution is an exact solution
and hence that the duality rotation connecting the SSW
and generalized FS solution is exact. Details about our
notations and conventions can be found in Appendix A.
Finally, in Appendixes B and C we prove that the gener-
alized F'S solution and the solution of [9] are space-time
supersymmetric.

II. 0o MODEL DUALITY

We consider the o model action of the form

s= L / iz
21

+i (O + V,JKSMK)} . (1)

(guv + Buv) dz* Oz

This action is a truncation of a supersymmetric o model
[19] related to the heterotic string. We assume that the
background fields g,,, B., and V,IX are independent
of some coordinate z and may depend on all remaining
bosonic coordinates z*, where {z*} = {z,2*}. This o
model allows a straightforward generalization of the dis-
crete target space duality transformation rules [6] in the
presence of the vector fields in the background. We pro-
ceed in the standard way [20] by presenting the first order
action

Sl = él—— /dzz{g:wAz‘i + (g:ca + BEQ)A 81}0
™

+[(gae + Baz)02% + Vo] A + (gap + Bag) 0z%02”
+ih 0! + V, dz™ + 0(0A — A)} . (2)
The following simplifying notation has been used:
Ve =iprVo' "0
Va=iprVa' 79 (3)
By integrating out the Lagrange multiplier field 6 on a
topologically trivial world sheet, one recovers the original
action since the solution to the equation (04 — 0A) =0
is A = 0z,A = 9z. It is important to stress that this
dualization procedure requires the nonvanishing value of
geox- If one integrates out the gauge fields A, A one gets
the dual model
1

§- L
27

+ipr (BT + V, Kz k)] (4)
The new coordinates are {##} = {#,2%} and the dual
metric and antisymmetric tensor field are
gzm = l/gzz 5 gza = B:ca/gmm P
JaB = GaB — (g:cagxﬁ - B:coszB)/gz:c s
Bma = gza/gmz . Baﬁ = Baﬁ + zgm[aBﬁ]I/gI:t . (5)
The dual vector field is

4z (G + Byw) 02403
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f/a:JK = —V::JK/gzz )
(6)

f/aJK = VaJK - (g:ca + Ba:a)V:nJK/g:za: .

Taking into account the one-loop Jacobian from integrat-
ing out A, A fields one finds, as usual, the dilaton trans-
formation rules? [6]

¢~S:¢_%lng:z- (7)

Thus by using the truncated version of a supersymmetric
o model it is easy to supplement the well known target
space duality transformations of the metric and of the
antisymmetric tensor field and of the dilaton by the ac-
companying transformations of the vector fields.

III. TARGET-SPACE DUALITY IN THE ZERO
SLOPE LIMIT

Our starting point is the bosonic part of the action of
N =1, d = 10 supergravity® [21]:

S(gnuaBnu,¢) = %/dwz \/__ge_zd’
X[-R+4(06) — 3HY,  (8)

where g, is the metric, ¢ the dilaton, and H the field
strength of the axion B,,. We now consider the spe-
cial class of field configurations which have an isome-
try generated by a Killing vector k#. It is convenient
to use a special coordinate system where k* is constant
and is only nonzero in one direction, let us say the z di-
rection. Furthermore, we assume that k* is a non-null
Killing vector, i.e., k2 # 0. The isometry property then
amounts to the following condition on the field configu-

ration {g,w, Bp.va d’}
k*8,{9uv> Buv #} = 82{Guw, Buv, ¢} =0 . (9)

We want to show that the action (8) is invariant under
target space duality transformations modulo terms which
contain the derivative of one of the fields with respect to
z. In other words we want to show that

S(guua B;un ¢) = 5(.(3;”,, Buu: J))
+/$%Mm3@&3m3¢% (10)

where A and B are some expressions in terms of g,,,,, B,
and ¢. If this is the case for any field configuration that
satisfies (9) then the target space duality transformation

?Strictly speaking, we should take in (7) the absolute value
|gz=| instead of g

3We use the same conventions as in (12], except that we
have redefined the axion field with B,, — —2B,, in order to
agree with the duality transformations given in the previous
section. Further details about our notation and conventions
can be found in the Appendix of [12].
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serves as a truly solution generating transformation: the
dual of any solution of the field equations that is indepen-
dent of the coordinate  will automatically be another,
inequivalent, solution of the same field equations.

In order to show that the action (8) is invariant under
the duality transformations given in the previous section
it is convenient to use the zehnbein instead of the metric.
The zehnbein transforms under the duality transforma-
tions

1
84 = _— ¢° ,
k4 gzz x
- 1
€5 =el — —(gm - Bm)e: . (11)

T

From the point of view of reproducing the duality
transformation of the metric, given in Eq. (5), we could
equally well use a different duality transformation for the
zehnbeins. We could have used the transformation

- N 1
€= ——¢€;, €a =€ — —(gza + Bmx)e; .
gml

(12)
This transformation coincides exactly with the duality
transformation of the vector field in Eq. (6). We have
found, however, that to provide the absence of o' cor-
rections we have to use the duality transformation of the
zehnbein given in Eq. (11) if the one for the vector field
is given in Eq. (6). Another possibility is to change both
of them to the opposite one. This will be a necessary
condition for the duality symmetry to preserve the em-
bedding condition of the spin connection into a subgroup
of the gauge group.

Under a duality transformation the spin connection
and the axion field strength transform as

~ a a ]' a 2 a

D% = w2 — ﬁkckdﬂd_ b_ ﬁkdk[ Q2

. 2

Hapc = Hape — Ekdk[aﬂd—,bc] ) (13)

where the torsionful spin connections §2,+°® are defined
by*
3
Q. =w,®(e) F §Hy"b . (14)

For later convenience we note that the dual of the tor-
sionful spin connections are given by

2

A ab __ ab d ab
Q._¥=Q._%— k—2ka Qq_%,
O a a 4 a
Qe ®® =0, % — Flc"’k[ Qq_ M. (15)
Using the identity
—/dmz V—ge ¥R = /dmm —ge 2w, %W’
Fwabews + (B )wst]
(16)

“Note that with this definition the Q4 of this paper is iden-
tical to the Q4 of [12] after the redefinition B,, — —3B,,.
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we can now rewrite the action (8) in the convenient form

1 — a
S = §/d10$ee 22[4(0% + Lwp)?
+wabcwbca _ %HabcHabc] . (17)
where e = det ef,. Using the additional identity
bic
Pk wy cq = —%Gakz , (18)
and the transformation rule
R 1

it is straightforward to show that the action (17) is invari-
ant under target space duality transformations. We note
that the action consists of three parts which are sepa-
rately duality invariant: the combinations ee 2%, (9%¢ 4+
%wbb“), and (wg*wy® — %HabCHabc) are all three duality
invariant.

Thus we have shown that the target space action in the
zero slope limit is invariant under the ¢ model duality
transformations, given in Eqs. (5) and (7). The vector
fields are not present in the effective action in the zero
slope limit.

IV. NEW SOLUTIONS IN THE ZERO SLOPE
LIMIT

The purpose of this section is to show how the duality
transformations can be used to generate new solutions in
the zero slope limit. Higher order o' corrections will be
considered in the next two sections. Our starting point is
the supersymmetric string wave (SSW) solution of [12].
In [12] it was shown that the SSW solves the string equa-
tions of motion to all orders in o’. Here we will only con-
sider the zero slope limit. In particular, we will set the
vector gauge fields equal to zero. The solution thereby
reduces to the one given in (22, 23]. A crucial feature of
the SSW solution is the existence of a null Killing vector
[* with [2 = 0. This Killing vector generates an isometry
in the v direction where we use light-cone coordinates
zH = (u,v,2') (4 = 1,...,8). Since this Killing vector is
null we cannot use it for a duality transformation. We
therefore make the additional assumption that the fields
occurring in the SSW solution are also independent of
the u coordinate. Since the ansatz for the dilaton in the
SSW solution only depends on u, it must be a constant
and for simplicity we will take this constant to be zero.
The remaining nonzero fields g,, and B, are both de-
scribed in terms of one vector function of the transverse
coordinates zt:

A, (z") = {Au(z'), Ay = 0, A;(2Y)} . (20)

They are given by the Brinkmann metric [24] and the
two-form®

®We use the form notation ds® = g,.dz*dz” and B =
B,..dz* A dz”.

ds® = 2dudv + 2A,dz"du — dzidz® |
B=2A,dz" Ndu . (21)

The equations that A, (z*) and A;(z*) have to satisfy are

AA, =0, AOFATT =0 | (22)

where the Laplacian is taken over the transverse direc-
tions only. Since g,, and B,,, are independent of u and
v they are independent of z and t. For our duality trans-
formation we will use the isometry in the spacelike x
direction. The non-null Killing vector generating this
isometry will be denoted by k*. Note that we have now
two isometries given by

lﬂau{guuvBuu} = a'u{gu.l/aBu.u} =0,
(23)
k*0,{guvs Buv} = 0z{guv, B} =0 .

A straightforward application of the o-model duality
transformations given in (5) and (7) on the SSW solu-
tion given in Eq. (21) leads to the following new solution
of the zero slope limit equations of motion:

ds® = — (A, — 1) *{2dudv + 24;dudz’ } — dx*da’
B=(A, - 1) {24, du Adv + 2A;du Adz*} | (24)
¢=-1n(4, - 1) .

Note that we can make the following particular choice of
the vector function %A4,:

Ay =——, A, =0, (25)
where 72 = z'z; and ¢ is a constant. The solution given in
(24) reduces then to the solution of [14] corresponding to
the field outside a fundamental string with total mass M.
We will hence refer to the solution (24) as the generalized
FS solution.”

It was shown in [12] that the SSW solution is super-
symmetric under 8 of the 16 ten-dimensional supersym-
metries. In [14], it has been shown that the dual FS
solution, for the special case that A; = 0, is again super-
symmetric. In Appendix B we will show that also the
generalized FS solution, with A; # 0, is supersymmetric.

V. o/ CORRECTIONS

In this section we will consider the o' corrections to
the zero slope limit. In particular, we will derive a the-
orem stating that any solution to the zero slope limit
string equations can be promoted to an exact solution to

5In order to solve Egs. (22), it is understood that a source
term at r = 0, representing a fundamental string, has been
added to these equations.

"Note that the solution (24) does not yet include the vector
fields. The complete generalized FS solution, including the
vector fields, is given in (54) below.
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all orders in o' provided that (i) the T tensors defined
by Egs. (31)-(33) vanish and (ii) a particular combina-
tion of the (Lorentz + Yang-Mills) Chern-Simons terms
vanishes. We note that the discussion in this section is
independent of any particular solution to the field equa-
tions.

There exists one remarkable property of the duality
transformations considered above, which is of crucial im-
portance for the understanding of o' corrections. This
property is best seen in terms of the duality transfor-
mations of the torsionful spin connections Q._2?, defined
above in Eq. (14). The useful form of this transformation
is

Qc_ab — Hcd Qd_ab , (26)

where we have introduced the projector

2
M =4612- k—zkckd . (27)
The square of this projector is a unit operator
IT4¢ = 6.° . (28)

This property of the projector nicely confirms the fact
that we are performing a discrete operation and that two
such operations bring us back to the original configura-
tion since

Qc_ab — Hcd Qd_ab — Hcd Hde Qe—ab — Qc_ab .
(29)

Now let us consider the o’ corrections to the string
effective action. It is well known that one has to add
to S the Lorentz and Yang-Mills Chern-Simons terms
which play a crucial role in the Green-Schwarz anomaly
cancellation mechanism.® These terms break supersym-
metry. To restore supersymmetry order by order in o,
one has to add to S(®°) an infinite series of higher order
terms in o’. By the procedure of adding terms to restore
supersymmetry, the effective action was obtained in [12]
up to order O(a'*) terms:

1
5= /dl% —ge (R + 4(9¢)* — 3H?
+5T +2a'T* T, +6 & THAPT, 5, + O],
(30)

where the antisymmetric tensor T,,,, the symmetric

tensor T),,, and the scalar T are given by

Tuvrp = 20/ [ R, "2 (Q2) Ry ® (Q2) + & trFLFay)

(31)
Ty = 20/ [Rn®(Q0) RN, (Q) + 20trFnFA, ], (32)
T =T, . (33)

8Not much is known about the properties of o’ corrections,
which are not related to anomalies. For some recent re-
sults about these additional corrections see [25] and references
therein. We will not consider these corrections in this paper.

In the above expression there are explicit and implicit
o' corrections. The explicit corrections always appear
via T tensors, and they are essentially the o’ factors in
front of Egs. (31)—(33). The implicit o’ corrections al-
ways appear via the torsion H which is defined by the
following iterative procedure: At the lowest order H is

just H[(Elp] = 0B, With H(©) we calculate the lowest
(0)

order Q4 = Q}°, as given in Eq. (14). At first order
in o, H=H® is H® corrected by the Yang-Mills
Chern-Simons term and the Lorentz Chern-Simons term

corresponding to the zero-order 2_ = Q©:

Hl(l},)p = 0B, ) + a'(wzx + wﬁ‘,,p) , (34)
where

“’;ﬁ\g = —%tr{V[#a,,Vp] - %V[“V,,Vp}} ) (35)
and

L _ (0) ab (0) ab (0) aby(0) ac(0) cb
Wy = —6 {Q[u— 8,,Qp]_ - %Q[u— Q,” Qp_] }.
(36)

With H(®) one would get (1) using again its definition
Eq. (14) and H® would be given by the above expression
but with Q(®) replaced by Q(1). Iterating this procedure
one gets the all-order expression H for the torsion which
involves the promised infinite series of corrections.

In short, to be able to understand the properties of o’
corrections to specific configurations we have to calculate
the value of the Lorentz and Yang-Mills Chern-Simons
terms and the values of all T' tensors, presented above.

To study the corrections to the equations of motion
we will use the corresponding analysis, performed in [12].
We first have to vary the action (30) over all the fields
present in the theory, and only then substitute the so-
lutions in the corrected equations. We will study the
linear corrections separately. The equations of motion
corrected up to first order come from the action

1
sM = E/azmac —ge **[-R+4(0¢)* — 3H* + 1T] .

(37)

All terms of order a’? and higher are neglected at this
stage. The corrections linear in o' to the lowest or-
der equations of motion are derived from the variation
§(S™M — S() = §AS. It is convenient to perform this
variation with respect to the explicit dependence of the
action on g,,, V., ¢, and B,,, and then with respect
to the implicit dependence on these fields through the
torsionful spin connection Q_, that is,

SAS SAS
SAS = 2225, 4 085
39 0 T 5B,

SAS w
Vit S —asdu-"" (38)

sAS
¢

6B, + Y03

SAS

A7

where
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50 _ab o0 ‘ab EYY) 7ab
6, %= "E §g.,+ —E 6B, + —L— 4§V, .
g S I T 5B, 00w T Ty O
(39)
The explicit variations are
0AS _ y y
5 =3V —ge (T — g™ T) | (40)
pHv
0AS
e o (1)
0AS
55 = 3 lV=ge (WA — g0 (42)
Nz
0As —26 A —2¢ A
7(“/" = o {8)\(\/—g€ F u)+\/-g€ [VA,F ”]
m

_ % \/":§e~2¢H(0)uApF/\p
+3V,00(v/—ge 22 HO 2wy} (43)

If some solution of the zero slope limit equations has the
property that the T tensors vanish on this solution, the
first two equations above do not get linear o’ corrections.
The third equation is not corrected, provided the com-
bination of Lorentz and Yang-Mills Chern-Simons term
is vanishing for the configuration. The last equation is
satisfied if the classical equation of motion for the vector
field® as well as the equation of motion for the B, field
in the zero slope limit are satisfied. We next consider the
implicit variations represented by the last term in Eq.
(38). In [4] a rather nontrivial property of the string ef-
fective action was analyzed. This property is that all the
implicit variations are proportional to the lowest order
equations of motion of the different fields.1® We there-
fore conclude that, to linear order in o', any solutions of
the lowest order equations of motion are also solutions of
the equations of motion corrected to order o’ provided
that (i) the T tensor T),, and (ii) the (Lorentz + Yang-
Mills) Chern-Simons terms vanish.

Now let us consider the higher order o' corrections.
The general structure of the bosonic part of the effective
action, which can be obtained by the procedure outlined
before based upon the restoration of supersymmetry, has
been conjectured in Ref. [12]. New terms in the action
are quadratic or of higher degree in the T' tensors. There-
fore their contribution to the string equations of motion
automatically vanishes for the configurations with van-
ishing T tensors. This concludes the proof of the theorem
stated at the beginning of this section.

Finally, we would like to note that the vanishing of
a combination of Lorentz and Yang-Mills Chern-Simons
term in H,, and the vanishing of all T' tensors is suffi-
cient for the absence of corrections to the supersymmetry

?One can include the vector field action in the classical La-
grangian of supergravity interacting with the Yang-Mills mul-
tiplet. We treated the vector field here as coming at the level
of @’ corrections, which is natural in the framework of string
effective action.

'°For more details, see [4] and the Appendix of [12].
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transformation laws and the Killing spinors [12,4]. As
a corollary of this we conclude that the condition for a
field configuration that solves the zero slope limit equa-
tions of motion to be exact, i.e., to be free of o’ correc-
tions, coincides with the property of the configuration to
have vanishing o' corrections to classical supersymmetry
transformations.

VI. EXACT DUALITY BETWEEN pp WAVES
AND STRINGS

The complete discussion of the supersymmetric string
waves and o’ corrections has been performed in [12]. Our
final conclusion was that the on-shell action, the fields
that solve the lowest order equations of motion, and the
Killing spinors for the SSW solutions do not receive any
higher order string corrections.

In this section we would like to use the pp-wave solu-
tion, i.e., the SSW solution with A; = 0, as the starting
point for investigation of the corrections to duality sym-
metry in the target space. In the next section we will
consider the general case with A4; # 0.

Gravitational plane fronted waves [24] have a null
Killing vector VI, = 0, {¥l, = 0 and very special de-
pendence of this null vector. This simplifies the analysis
of higher order corrections to field equations.

Consider the class of ten-dimensional pp waves with
metrics of the form

ds? = 2dudv + K (u,z")du® — dz'dz" | (44)
where 7 = 1,2, ...,8; the Riemann curvature is [18, 23]
Ruvpo = —20,(0,)0,,K)lg) - (45)

The curvature is orthogonal to [, in all its indices. This
fact is of crucial importance in establishing that all higher
order in o' terms in the equations of motion are zero
due to the vanishing of all the possible contractions of
curvature tensors. The dilaton, the antisymmetric tensor
field, and the vector field are absent in this solution. The
only nontrivial function in the metric has to satisfy the
equation

AK =0, (46)

where A = 0;0; is the flat space Laplacian. The spin
connection of these pp waves is given by the expression

w,® = ~1, 1°0YK . (47)

Note also that the indices ab related to the fact that the
spin connection is a Lorentz-Lie-algebra-valued object

w = dztw, ® My, = —dal, 108 K My, (48)

have at least one null vector. In this case the spin connec-
tion coincides with the torsionful spin connection since
the antisymmetric field strength tensor Hgp. vanishes:

Q. % = -1 gV K . (49)

This spin connection is orthogonal to I, in all indices
and, what is very important, has at least one [ vector in
ab-type indices.
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In the discussion below we also have to take into ac-
count that

3,1°=0. (50)

The structures which we need, Lorentz Chern-Simons
term given in Eq. (36) and all T tensors given in
Egs. (31)-(33), always have all ab-type indices con-
tracted. This means that for the pp waves all these struc-
tures vanish. There is no way to contract those null vec-
tors; if they are contracted with another [ we get zero
and if they are contracted with 8 we have zero again,
since this is a Killing condition, and the solution is inde-
pendent of v. Thus for pp waves the o’ corrections to the
action, to the equation of motion, and to supersymmetric
transformations of all fermion fields vanish.

As explained in [13] the dual version of pp waves (with-
out a dilaton, antisymmetric field and vector field) is a
string solution of [14]. As explained above, the pp waves
have no o' corrections since the Lorentz Chern-Simons
term and all T tensors vanish for pp waves. Now that we
have a simple duality transformation rule for the torsion-
ful spin connection we can investigate the corresponding
features of the solution dual to the pp waves.

As stated in the beginning of the previous section, the
duality transformation Q._%® = II.4 Q;_%® does not af-
fect the structure of the ab-type indices in this expression.
Therefore the proof that the Lorentz Chern-Simons term
and all T tensors vanish for pp waves is immediately ex-
tended to the dual version, i.e., to the string solution of
[14]. The reason for that is that all those terms always
have at least one null Killing vector in the a or b direc-
tion, which has to be contracted with another a- or b-type
index. Although the contraction with new Killing vector
k* is possible in principle and would give a nonvanishing
contribution since k2 # 0 and k -l # 0, we see from the
structure of the Chern-Simons term and T tensors that
after duality transformation no such contraction actually
occurs.

Having established the vanishing of o’ corrections to
the Lorentz Chern-Simons term and all T tensors for the
FS string solution of [14] we may apply the general analy-
sis performed in the previous section. We find that there
are no corrections to the F'S solution of the zero slope
limit equations. We therefore conclude that both the FS
solution of [14] and the pp waves are exact solutions of
the string effective action.

A simplifying feature of the pp waves is the fact that
they cannot have corrections independently of the spe-
cific form of the ' corrections. For the dual version, the
F'S solution, we have under complete control only the o'
corrections described above which are related to anoma-
lies. A priori they could receive an infinite set of correc-
tions, in principle, unless the iterative procedure requires
them to vanish on each step as we have seen above.

The conclusion of this section is that the duality trans-
formation, which relates the pp waves to the F'S solution,
is an exact duality transformation; i.e., the o’ corrections
to the duality transformation vanish for this case.

VII. EXACT DUALITY BETWEEN
SUPERSYMMETRIC STRING WAVES AND
GENERALIZED FS SOLUTIONS

In this section we extend the discussion of the previous
section to the generalized FS solution given in Eq. (24)
for the case that A; # 0. It has been shown in [12] that
even for this case the corresponding SSW solution is an
exact solution to all orders in a’. This is a nontrivial
result since with A; # 0 both the Lorentz Chern-Simons
term as well as the T tensors do not vanish. To make
both vanish one must make a nontrivial ansatz for the
vector gauge fields V,,’7 and embed the torsionful spin
connection _ in an SO(8) subgroup of the gauge group,
thereby identifying the spin connection with the gauge
field:

\/%VMIJ — luVIJ = Q“_ab — luAa'b

(a,b,I,J=1,...,8) . (51)

Here the Yang-Mills indices refer to the adjoint represen-
tation of SO(8). One then makes use of the fact that with
a nonzero gauge field the Lorentz Chern-Simons term al-
ways occurs together with a Yang-Mills Chern-Simons
term. The same applies to the T tensors where the R?
terms are always accompanied by similar F? terms. The
above identification then leads to a cancellation between
the spin connection and gauge field terms such that even
with A; # 0 the (Lorentz + Yang-Mills) Chern-Simons
terms and the (generalized) T tensors do vanish. Of
course this cancellation only involves terms with the func-
tion A;. The terms involving A, in the Lorentz sector
already cancel by themselves as has been shown in the
previous section.

To investigate what happens with the (Lorentz +
Yang-Mills) Chern-Simons terms and the T tensors for
the generalized F'S solution we apply a duality transfor-
mation on the torsionful spin connection corresponding
to the SSW solution. This leads to the following expres-
sion of Q2_ for the generalized FS solution:

Q. =S1. - Mkc A% =T1,.9,A4% . (52)
k2

Note that the structure of the ab indices remains un-
changed under a duality rotation.

In order to show that the generalized FS solution is
again a solution of the field equations to all orders in o’
it is essential that the above-mentioned cancellation be-
tween the spin connection and gauge field terms in the
(Lorentz + Yang-Mills) Chern-Simons terms and the T
tensors is not spoiled by the duality transformation. We
therefore require that the embedding is duality invari-
ant. In order to obtain a duality-invariant embedding we
want that 2_ transforms in the same way as the Yang-
Mills gauge fields. Luckily enough it turns out that this
is indeed the case. Using the duality transformation of
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the vector fields given in (6) one can show that the dual-
ity transformations of the spin connection and the gauge
fields have precisely the same form!!

5 ab _ 17 dj . gab U w1s _yqdy g41d
QC_ HC ldA and \/ﬁ‘fc HC ld.A . (53)
This means that the embedding condition (51) is indeed
duality invariant and the cancellations which took place
between the spin connection and gauge field terms in the
SSW solution again take place, after the duality rotation,
for the generalized F'S solution. Hence, for the general-
ized F'S solution we can again derive that the (Lorentz +
Yang-Mills) Chern-Simons terms and the T-tensors are
zero. At this point we can use the results of Sec. V where
we have shown that the vanishing of the (Lorentz + Yang-
Mills) Chern-Simons form and the T tensors is enough to
ensure that the zero slope limit solution extends to a so-
lution to all orders in o'.

The conclusion is therefore that the generalized F'S so-
lution given by

ds® = —(A, — 1)‘1{2dudv + 2Aidudxi} — dzidz’ |
B=(A, — 1) {24,du A dv + 2A;du A dz'} |
¢=—1In(A, — 1), (54)
VI = (4, -1)7",AY (I,J=1,...,8),

with A,, = 0,4, — 0, A, solves the string equations Qf
motion to all orders in o’. The equations that A,(z")
and A;(z") have to satisfy are

NA, =0, ABAT =0 | (55)

where the Laplacian is taken over the transverse direc-
tions. Furthermore, the duality transformation connect-
ing the SSW solution and the generalized FS solution is
exact to all orders in o’.

VIII. CONCLUSION

In this paper we presented a set of duality transfor-
mations for the zehnbein, spin connection (with torsion),
and vector fields. They are given in Egs. (5), (6), (11),
and (15). The most elegant duality transformation of the
spin connection with torsion is given in Eq. (26). This
specific transformation plays a crucial role in the analysis
of o’ corrections.

We have found the conditions under which a target
space duality symmetry is exact, i.e., does not acquire o’
corrections. Two configurations can be qualified as being
exactly dual to each other if the following conditions are
met.

(i) There exists a non-null Killing vector in the origi-
nal as well as in the dual configuration, which allows one

''1n the equations given below it is understood that the SSW
metric is used. Note that the dual gauge fields are given with
flat indices. To convert them into curved indices one should
use the metric corresponding to the FS solution.

to identify the corresponding o-model duality transfor-
mation. This transformation defines a symmetry of the
zero slope limit of the string effective action in the target
space.

(ii) The condition for the action and equations of mo-
tion not to acquire o’ corrections is provided by the van-
ishing of the combination of the Lorentz and Yang-Mills
Chern-Simons term as well as by the vanishing of the T
tensors for the original as well as for the dual configura-
tion.

(iii) Exact duality in all explicit examples known to us
brings one supersymmetric configuration to another su-
persymmetric configuration. The zero slope supersym-
metric transformation rules are not affected by the o'
corrections for the original as well as the final configura-
tions related by exact duality.

Exact duality defined above serves as an exact solution
generating transformation. As an example of configura-
tions related by exact duality we have analyzed the pp
waves and fundamental string solutions [14]. Both solu-
tions are free of a' corrections.!?

As a further application of our general results we have
also checked that the examples of exact duality investi-
gated by Kliméik and Tseytlin [9] also have some unbro-
ken space-time supersymmetry. Their original configura-
tion is supersymmetric, since it is equivalent to one of the
Giiven [15] solutions. The dual configuration turns out to
be also supersymmetric, as we have shown in Appendix
C.

A more general example of exact duality is given by
the supersymmetric string waves [12] and the general-
ized fundamental strings given in (54). The last solution
to the best of our knowledge is new. The proof that it is
free of anomaly-related o’ corrections is provided by the
corresponding properties of its dual partner, supersym-
metric string waves, and by special properties of duality
symmetry to preserve the condition of the embedding
of the spin connection in a subgroup of a gauge group.
Our generalized fundamental strings are different from
the charged heterotic string solution obtained by Sen (8]
by twisting the uncharged string solution of [14]. For in-
stance, in Sen’s solution the charge-dependent terms in
the metric occur in the du? + dv? sector, whereas in our
case the A;-dependent terms occur in the dudz® sector.
Another difference is that in our solution the antisym-
metric tensor contains A;-dependent terms, whereas in
Sen’s solution the antisymmetric tensor has no charge-
dependent terms. Sen’s solution is known to be super-
symmetric in the zero slope limit [8, 26]. However, no
information is available about the a’ corrections to this
solution.

The advantage of our method of using o-model duality
is in the fact that the structure of o’ corrections is under
control for the dual solution if it was under control for the

12 As explained above, in the string case we have control onl
P s g
on anomaly-related o’ corrections.
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original solution. In this way the nice properties of the
plane waves are carried over to the string-type solutions
via 0 model duality, acting as a symmetry of the target
space action.
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APPENDIX A: NOTATION AND CONVENTIONS

We use a metric with mostly minus signature. Our
conventions for the Riemann tensor and the spin connec-
tion are given in an Appendix of [12]. We often use a
light-cone basis for the ten-dimensional coordinates z*:

T = (u,v,2%), i=1,...,8,
(A1)
1 1
u=—(t+zx v=—(t—=x

Slt+a), v=—(t-q),
where t = % and £ = z°. In this paper, all the indices
are raised and lowered with the full ten-dimensional met-
ric g,,. In the case in which the metric corresponds to
the SSW solution given in Eq. (21), the relation between
upper and lower indices is

Eu = gv )
8 8
£v=£u_ <2Au+2A?)£v+ZAi£i ) (A3)
=1 1=1
€= Ak — &

The constant Killing vectors k* and [* are given in the
light-cone basis by

(A2)

(A4)

1
k* = —(1,-1,0,...,0) ,
ﬂ( )

(A5)
*=(0,1,...,0) .
The expressions for these Killing vectors with down in-
dices depend on the metric we are using. For the SSW
metric (21) they are given by
k.=1v2(24, - 1,1,4;) ,
(A6)
l,=(1,0,...,0) .

The inner products between k and [ for the SSW metric
are given by

’=o0, k2= A, -1, k-l=3v2.

(A7)
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APPENDIX B: PROOF OF SUPERSYMMETRY
OF THE GENERALIZED FS SOLUTION

In this Appendix we will show that the generalized FS
solution is supersymmetric. Since the supersymmetry
transformation rules involve fermions it is necessary to
reformulate the SSW ansatz for the metric in terms of
zehnbein fields:

e, =08, + A,l° . (B1)

The unbroken supersymmetries of the SSW solution are
given by

Fy,e0=0 or (Y°++%e =0, (B2)

where €g is a constant ten-dimensional spinor. It is in-
structive to see how the o model duality transformation
leads to unbroken supersymmetries for the generalized
F'S solution as well.

In order to investigate the existence of unbroken su-
persymmetries for our purely bosonic solutions we only
need to consider the bosonic terms in the supersymmetry
transformation rules of the fermions. They are given by

61[’;1 = (au - %Quﬁ'ab'yab)f 3 (B3)
SA= (v*0u0 + Huwpv"?)e (B4)
§x = —% wY*e (B5)

We first consider the A transformation rule. Requiring
that §A = 0 leads to the equation

'7i(ai¢)€ + %Hiuv'yiuve + %Hiju'yijue =0, (BG)

where it is understood that in this equation the general-
ized FS solution is substituted. To investigate this equa-
tion we need the form of the (inverse) zehnbein fields of
the generalized FS solution. They are given by

es =146, ,
v=(1— Ay)6% — AibL (B7)
ei:ﬁi .

It is now not too difficult to show that the first two and
the last terms in (B6) vanish separately provided that
the supersymmetry parameter € satisfies'®

(7" =)e=0.

We next consider the gravitino transformation rule. In-
stead of substituting the generalized F'S solution into the
equation 41, = 0 it is easier, and equivalent, to use the
SSW solution and to require that after a duality trans-
formation 9, = 0. This leads to the equation

0 = (8u -

(B8)

%Qn+ab7ab)5 =0. (B9)

Applying the duality rotation of the torsionful spin con-
nection given in (15) we find

3Note that both (B2) and (B8) can be written as y%e = 0,
using curved indices.
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1, o 1 Ara
auf - ZQu—F b’thbtE + ﬁk/\k Q’\“,Mb'Yabe =0 3

(B10)

where it is now understood that the SSW solution is sub-
stituted. We next substitute the expression for the tor-
sionful spin connections corresponding to the SSW solu-
tion [12]:

Q4% = 21l A%, | Q.- =A%, , (B11)
where A,, = 0,A, — 0,A,. We thus find that the fol-
lowing equation must be satisfied:

1 oo k-1 o

Oue + ilpA,,,/y €+ kaA,wfy e=0.
The p = v component of this equation is automatically
satisfied. Using the condition (B8) we find that the u = u
component is satisfied as well. Finally, for 4 = i we find
that the equation is satisfied provided that

(B12)

€= (A, —1) Y2, (B13)

where ¢g is constant.

Finally, by using the condition (B8) in the form y*e =
0 and the fact that the gauge field corresponding to the
generalized FS solution only has a nonvanishing u com-
ponent, it is not too difficult to show that §x = 0 also.

We thus conclude that the generalized F'S solution has
eight unbroken supersymmetries given by Egs. (B8) and
(B13). We should stress that it is not obvious that duality
transformations always preserve the supersymmetry of a
given solution. Note that the unbroken supersymmetries
before and after the duality transformation differ from
each other.

APPENDIX C: PROOF OF
THE SPACE-TIME SUPERSYMMETRY OF THE
KLIMCIK-TSEYTLIN SOLUTION

The solution of [9] contains a flat metric describing
a four-dimensional space-time with coordinates z* =
{u,v,z1,z2%}, a two-form field

B = —2f(u)dz' A dz? | (C1)

and a u-dependent dilaton ¢(u). The only nonzero com-
ponent of H is given by Hy2 = —%auf.

The supersymmetry transformation rules for the di-
latino

oA = (Y0u0 + iHu,,p'y“"")e =0 (C2)

have a nontrivial solution under the condition that

Ye=0. (C3)

The supersymmetry transformation rules for the grav-
itino have a v component

5y = (0y — 10,4 %Pyap)e= 0. (C4)

This equation is satisfied under the condition that € is v
independent, since 2,2 = 0. The i component of this
equation is solved if € is z* independent and y“¢ = 0:

5ipi = (8 -

The u component of this equation,

%Qi_;.ab’yab)( =0. (C5)

6¢u = (8u + %Hu12712)6 =0 ) (CG)

is satisfied if the spinor of unbroken supersymmetry € has
a specific dependence on the u coordinate of the form

e(u) = edf e (Cn

After a duality transformation in the z! direction, the
dual solution is given by a zero axion field and the nonflat
metric

ds* = 2dudv + 2f(u)dz'dz? — detde' — (1 + f%)dz?dz? .
(C8)

The dilaton field remains unchanged: ¢ = ¢. The su-
persymmetry of the dual solution is proven as follows.
The equation §A = 0 again leads to the condition that
v*e = 0. To investigate the supersymmetry transforma-
tion rule of the gravitino it is convenient to first consider
the dual of Q,

Qe = —3(H. — 4kl H, b)) . (C9)

Here k* is the vector k* = (0,0,1,0). Using this expres-
sion it follows that the equation §%, = 0 is satisfied under
the condition that € is v independent. Furthermore, us-
ing v“e = 0, it follows that §7); = 0 if € is z* independent.
Finally, the equation §v¢, = 0 is satisfied if

0y = (O — 3H,Py12)e=0, (C10)

or

e(u) = e s f e (C11)

Finally, one can show that both before and after the
duality transformation all the T tensors and Lorentz
Chern-Simons terms vanish. We therefore conclude that
both the Kliméik-Tseytlin solution as well as its dual are
supersymmetric to all orders in o'.
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