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Supersymmetric string waves
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We present plane-wave-type solutions of the lowest-order superstring effective action which have
unbroken space-time supersymmetries. They are given by a stringy generalization of the Brinkmann
metric, dilaton, axion, and gauge fields. Some conspiracy between the metric and the axion field
is required. The ' stringy corrections to the effective on-shell action, to the equations of motion
(and therefore to the solutions themselves), and to the supersymmetry transformations are shown
to vanish for a special class of these solutions that we call supersymmetric string waves (SSW'’s).
In the SSW solutions, there exists a conspiracy not only between the metric and the axion field,
but also between the gauge fields and the metric, since the embedding of the spin connection in the

gauge group is required.
PACS number(s): 11.17.+y, 11.30.Pb

I. INTRODUCTION

In recent years an active field of research has been the
search for and study of nonperturbative solutions to the
classical equations of motion of superstring effective-field
theories and the corresponding ¢ models. Many bosonic
solutions of such theories have been discovered. Some
special solutions turned out to have a highly nontriv-
ial property: Although bosonic, they have some unbro-
ken supersymmetries. This means that when embedded
into the right supersymmetric theory they admit Killing
spinors. Bosonic solutions with unbroken supersymme-
tries in theories of quantum gravity are very special be-
cause they have some kind of supersymmetric nonrenor-
malization property. Arguments that explain these prop-
erties were given for supersymmetric string solitons [1]
and for extremal black holes [2].

A particularly interesting kind of metric is provided by
the so-called PP waves.! The purpose of this paper is to
find metrics in this class which, together with appropriate
dilaton, axion, and gauge fields, provide solutions of the
lowest-order superstring effective action and have unbro-
ken supersymmetries. Then we will study how this prop-
erty and the solutions themselves are affected by stringy
corrections in o [3].

There exists an extensive literature on this subject. We
start by reviewing some results relevant for our purposes.

*Electronic address: bergshoeff@hgrrugb

tOn leave of absence from: Lebedev Physical Institute,
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!Here PP waves stands for plane-fronted waves with parallel
rays.
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PP-wave geometries are space-times admitting a co-
variantly constant null vector field

Vb, =0, IYl,=0. (1)

Space-times with this property were first discovered by
Brinkmann in 1923 [4]. In four dimensions the metrics
of these spaces can be written in the general form

ds® = 2dudv + K (u, &, €)du? — dedE | (2)
where u and v are light-cone coordinates defined by
ly=0uu, Fo,v=1 (3)

(thus the metric does not depend on v) and & = = +
iy and £ = z — iy are complex transverse coordinates.
These metrics are classified and described in detail in [5].
Different PP-wave spaces are characterized by different
choices of the function K in Eq. (2). For example, when
K is quadratic in € and &,

K(u,&8) = f(u)€® + F(u)€® + g(w)é€ (4)

they are called ezact plane waves. Plane waves (2) with
K of the form

K (u,€,€) = 6(u)f(£,€) (5)

are called shock waves. A specific example of shock waves
is given by the Aichelburg-Sexl geometry [6]

K(u,€,€) = 6(u)In (9 , (6)

which describes the gravitational field of a pointlike par-
ticle boosted to the speed of light.

Giiven established in 1987 [7] that a solution to the
lowest-order superstring effective action consisting of a
straightforward generalization of the four-dimensional
exact plane waves to d = 10, dilaton, axion, and Yang-
Mills fields has half of the N = 1, d = 10 supersym-

5444



47 SUPERSYMMETRIC STRING WAVES

metries unbroken and is also a solution of the equations
of motion of the superstring effective action including all
the o’ corrections. We will describe Giiven’s solution
in detail below. Investigations on the supersymmetry of
plane-fronted waves in general relativity were made even
earlier. In [8] there is a reference to unpublished work of
J. Richer who found that PP waves are supersymmetric.
Very general classes of PP waves were found by Tod to be
supersymmetric in the context of d = 4, N = 2 ungauged
supergravity in 1983 [9]. Different aspects of plane-wave
solutions in string theory have been investigated in the
last few years [10-12].

The existence of a covariantly constant null vector field
has dramatic consequences. For instance, for the class of
d-dimensional PP waves with metrics of the form

ds? = 2dudv + K (u, z*)du? — dz'dz® (M
where 4,7 = 1,2,...,d — 2, the Riemann curvature is [12]
Ryvpo = —QI[M(BV]alpK)lcr] . (8)

The curvature is orthogonal to [, in all its indices. This
fact is of crucial importance in establishing that all higher
order in o’ terms in the equations of motion are zero
due to the vanishing of all the possible contractions of
curvature tensors. Giiven added dilaton ¢(u), axion
Hy;; = bij(u), and Yang-Mills fields Fy;(u), which were
functions of u only, to a metric of the form Eq. (7),
choosing K (u,z?) quadratic in z* (exact plane waves),
and then proved the absence of quantum (') correc-
tions to the equations of motion [7]. In addition, Giiven
showed that these solutions have half of the possible su-
persymmetries unbroken. Moreover, he proved that the
corrections to the supersymmetry equations vanish. This
shows how special these solutions are, especially consid-
ering that at the time when Giiven did his research not
much was known about o corrections.

Note that supersymmetry played no role in establish-
ing this nonrenormalization theorem. Similar results
have been obtained in Refs. [10-12].

In arbitrary dimension d the most general metrics ad-
mitting a covariantly constant null vector (1) were dis-
covered by Brinkmann in 1925 [13]:

ds? = 2dudv + A, (u, z')dz du — gi;(u,z")dz'dr? |

FA, =0, 9)

where p,v = 0,1,...,d—1and i,j = 1,2,...,d — 2. The
supersymmetry properties of this general metric have
not yet been studied, although they have been discussed
recently in the context of string theory and o models
in [14,12,15]. Note that the general Brinkmann metric
(9) in d = 10 has 8 functions A4;(u,z') and 28 func-
tions g;;(u,z*) more than the metric (7) investigated
by Giiven, where only the uu-component of the metric
A, = %K was present and was quadratic in z¢.

The issue of corrections to the effective string equa-
tions of motion for general Brinkmann metrics has been
studied by Horowitz [12]. He argued that if the func-
tions A; depend on the coordinates x?, the metrics of the
solutions do acquire corrections. If, however, this depen-
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dence is polynomial, the number of nonvanishing terms
that corrects the equations of motion is finite for these
solutions. An analogous statement was made for the cor-
rections to the axion field: no corrections for By, linear
in ! and a finite number of corrections for polynomial
dependence.

Our aim is to investigate a subclass of Brinkmann
metrics more general than the one studied by Giiven.
We will consider (9) with flat transverse space, i.e.,
9ij(u, z*) = 6;5. The functions A, will be arbitrary func-
tions of u and z’. First we will identify the solutions
to the zero slope limit of the superstring effective action
(N = 1,d = 10 supergravity) coupled to Yang-Mills fields
and those which have unbroken supersymmetries in this
limit. We will look for solutions with at most one half
of the supersymmetries broken. This means that we will
admit only one algebraic constraint, which in our case
will be

e =% =0 (10)

and no more. This is the content of Sec. II. In Sec. III the
stringy o’ corrections will be studied. The metric-axion
conspiracy, which was necessary for classical supersym-
metry, will be shown to be sufficient to ensure the absence
of @’ corrections to supersymmetry transformations and
to the on-shell effective action. However, to get no cor-
rections to the equations of motion one has to constrain
the solutions even more by embedding the torsionful spin
connection in the gauge group. We call the exact solu-
tions obtained through the embedding supersymmetric
string waves (SSW’s). Finally, in Sec. IV we will present
our conclusions.

Appendix A presents a lemma which is used in Sec.
III in the proof of the absence of &' corrections, and Ap-
pendix B contains our notation and conventions.

II. STRING PLANE WAVES
IN TEN-DIMENSIONAL
EINSTEIN-YANG-MILLS SUPERGRAVITY

Our starting point is the bosonic part of the action of
N =1, d = 10 supergravity coupled to Yang-Mills fields
(16]:

S = % /dwm /—ge™ % (—R+4(6¢)2—%H2—%ﬁtrF2),

(11)
where ¢ is the dilaton, F),, is the field strength of the
Yang-Mills field V,; Fj, = 20,V,) + [V, Vo], and H is
the field strength of the axion B,, which includes the
Yang-Mills Chern-Simons form:

Hyyp = OuByp) — 3ﬁtr{V[MB,,Vp] - %V[uVVVp]} .

(12)

The constant 3 is related to the Yang-Mills coupling con-
stant g by 3 = 1/g%. Traces are taken in the adjoint
representation.

The equations of motion that follow from (11) are
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Ry —2V,0,¢ + Hyunp,H, N + BtrF,\F,> =0,

(13)
R—4V,0"¢ +4(9¢)* + 1 H? + 1ptrF% =0,
(14)
V(e ??HM) =0,
(15)
Va(e 20 FM) + e~ 2V, F¥#] 4+ e 26 H#) ,F3* = 0.
(16)

In order to investigate the existence of unbroken su-
persymmetries for our purely bosonic solutions we only
need to consider the bosonic terms in the supersymmetry
transformation rules of the fermions. They are given by

%= (s — 9 vab)e (17)
SA= (V0u¢ — §Huwpv""?)e (18)
ox = _% /,u/)“uye , (19)

where the torsionful spin connections Q“ibﬂ are defined by

QF, = w,(e) £ H,. (20)
w,?(e) is the torsion-free, metric-compatible spin con-
nection, and so the axion field strength H gives torsion
to the spin connections Q‘ibu. Our ansatz for the metric
will be Brinkmann’s with flat transverse space. In our
notation?

Guv = N +2A4Ly , " = 17’“’—2A(“l") Ny
(22)

where A, = A, (u,z*), and [, is the covariantly constant
null vector (1). For later purposes, we need to reformu-
late our ansatz in terms of zehnbein fields

e, =0, + A%, et =64 — At . (23)
Our ansatz for the axion and Yang-Mills fields is
By, = 3B[ul,,] , Vo=V, . (24)

Finally, we will assume that all the fields are indepen-
dent of the coordinate v but depend arbitrarily on u and
z'. We also assume that A, = B, = 0 . In covariant
notation, {*0,¢ = I*9,V = I*§,A, = *0,B, = 0 and
*A, = *B, = 0. Note that the component B, is pure
gauge but A, is not.

The Christoffel symbols corresponding to (22) and the
spin connection corresponding to (23) are given by

{/pr} = l(“Au)p + B(HAV)lP R ‘A#V = a;J,Al/ — 6uAu ,
(25)

2The inverse metric can be rewritten avoiding recursiveness
as

guu — nuu _ 2np(unv)aApla + npaApAanuanuﬁlalﬂ .
(21)
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w“abz —'l[aAb]u, + %Aablu , Z”Auu =0. (26)

Note that the spin connection only depends on A,,,
but the Christoffel symbols (25) depend also on 9, A4,).
Then, the curvature tensor is

Ry (w) = —1[,0,) A% — 100" Ay, — 1, A 0 A 1018
(27)

We also need the curvature with respect to the torsionful
spin connection (20). The torsion tensor for our ansatz
is given by

H, =il + 1%, | B,, =08,B, —8,B,,
(28)

since the Yang-Mills Chern-Simons form vanishes identi-
cally in this case. Therefore, the torsionful spin connec-
tions are

g, = —le(A5B)", + L(4£B)"1, (29)

and for the corresponding torsionful curvature tensor we
find

R (04) = ~13,0(A£ B)* ~ [eo¥ (4% 5)

b
U (AFB), (ALB) 0. (30)
The expression for the torsionful curvature satisfies the
interchange identity
Rwypa(ﬂ:t) = Rpa,uu(9¥) . (31)
We are now ready to investigate the supersymmetry
properties of our ansatz. We want to find the supersym-
metry transformations that leave the fermions invariant
(i.e., equal to zero), that is, all the nontrivial supersym-
metry transformation parameters e for which the right-
hand side (RHS) of Egs. (17)-(19) vanish (the Killing
spinors). As we explained in Sec. II, we consider only
solutions with at most one-half of the possible supersym-
metries broken. From Eqs. (17)-(19) we get, respectively,

¢=0), [Ou—glu(A+B),;7]e=0, ye=0.
(32)

One-half of the supersymmetries are always broken.
Also, € is a function of u only, and this implies that
(A+B) = fij(u) must be a function of u only and

e(u) = VDU (Fs@r )3, (33)

where € is a constant spinor which satisfies the algebraic
constraint y“ep = 0. The integrability condition for the
existence of Killing spinors is, of course, satisfied:

Ruuab(ﬂ+) Yab € = —l[u(?,,] (A + B)”’Y“ e=0. (34)

Finally, substitution of our ansatz into the equations of
motion, Egs. (13)-(16), leads to
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AK + 23114.2 + %Aij.Aij - %BijBij + 4¢"
—26tré'Vo,V =0, (35)

AV = §;AY = §;BY =0, (36)

where K = 2A4,, and A = 9;9; is the flat-space Lapla-
cian.

III. STRING CORRECTIONS

Until now we have treated the constants o and 3 as
independent parameters. The field equations could be
solved and half of the supersymmetries preserved without
relating these parameters to each other. It is well known,
however, that in string theory both o and 3 are related
to the Regge slope parameter o’ (inverse string tension)
as follows:

B=d, a=2d. 37)
Thus, in this section, we will treat the classical part of the
Yang-Mills action F2? as coming from string corrections.
Here, our starting point will be the zero-slope limit (o/ —
0) of the bosonic part of the effective action. This is given
by

5O = % / d'%z /=ge~?? (—R+ 4(9¢)* — %(H“”V) ,

(38)
where

HQ) = 8uB,,. (39)

The superscript in H(® indicates that no O(o/) correc-
tions of any kind are present. Below we will see that the
definition of the axion curvature H contains an infinite
series of higher-order string corrections.

In this section we are going to consider one particularly
simple choice of the functions A; and B; of our Ansatz
that solves the above theory:

A; = —B;, fij(u) = 0. (40)

The Killing spinor in our coordinates is a constant spinor
satisfying v%€o = 0.3 In a recent paper by Tseytlin [15]
the solution in which the vector function in the metric
is related to the one in the axion was mentioned as the
most natural one from the point of view of the o-model
equations. It is therefore very interesting to investigate
the string corrections to the following class of supersym-
metric plane waves. For convenience we rewrite here the
different fields and the equations they must satisfy in or-
der to be solutions of the theory (38):

3 Another example of an interesting supersymmetric solution
with a constant Killing spinor in Cartesian coordinates is the
purely magnetic extreme dilaton black-hole solution in d = 4
in stringy metric [2].
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Guv = M + 2l Ay, Bu, = 3l[uA,,] y V=V, ,
(41)

where [#A, = A, = 0. All fields are independent of
the v coordinate and, furthermore, ¢ is a function of u
only. We have already included the Yang-Mills fields in
the ansatz (41), but we will not consider them until we
discuss first-order corrections. The equations that have
to be satisfied are

AK + 20 A +4¢" = AV = AAY =0 . (42)
We get the derived quantities

H;(t?f)p = _%l[#AVp] ) (43)

QP = w,%(e) + HO® = —21la 48, | (a4)

Q(_fJLab =wuab(e) _ HLO)ab — +Aabl” , (45)

R)*(Q4) = —21°0% 4, (46)

R (Q_) = —21;,8,)4% . (47)

Observe that the expressions above are true even though
we only have related the transverse components of A and
B in Eq. (40), and we have said nothing about 4, and
B,. The reason is that B, enters in these equations only
through H(®, and, actually, it does not contribute to any
of the components H ;S?/)A (it is “pure gauge”). This fact
offers the possibility of choosing B, so that Ay, = —Bgs.

Now let us consider the o’ corrections. It is well known
that in the calculation of the string effective action one
has to add to S the Lorentz and Yang-Mills Chern-
Simons terms which play a crucial role in the Green-
Schwarz anomaly cancellation mechanism. These terms
break supersymmetry. To restore supersymmetry order
by order in o/, one has to add to S(® an infinite series
of higher-order terms in o/.* By the procedure of adding
terms to restore supersymmetry, the O(a'a) effective ac-
tion was obtained in [3]:

S = —;— /dloz V—ge (—R+ 4(8¢4)% — %—Hz

1
+§T +2a'T* Ty + 6/ T T,,5, + O(a’4)> ,
(48)

where the antisymmetric tensor Tuvxp, the symmetric
tensor 7, and the scalar T are given by

Tuvap =20/ ( R[w/ab (@-) R/\p]ab (Q-)+ 316 trF{quAPI) )
(49)
Ty =20/ (RM,\“b(Q_)R'\,,“"(Q_) + 3 trF,,,\FA,,),
(50)
4The supersymmetrization can be achieved either by the

Noether method [17] or by superspace methods (for a recent
review of the latter method; see [18] and references therein).
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T=T". (51)

In the above expression there are explicit and implicit o’
corrections. The explicit corrections always appear via
T tensors, and they are essentially the o/ factors in front
of Egs. (49)—(51). The implicit o corrections always
appear via the torsion H, which is defined by the fol-
lowing iterative procedure: At the lowest order H is just
H© | defined in Eq. (39) and it is given by Eq. (43) for
our solutions. With H(® we calculate the lowest order
Qp = QSS) by using its definition Eq. (20). Q4 and Q_
are given in Egs. (44) and (45) for our solutions. At first
order in o/, H = HW is H©) corrected by the Yang-Mills
Chern-Simons term and the Lorentz Chern-Simons term
corresponding to the zero-order Q_ = Q>":

urp

HO — OluBug) — éa’tr{V[ua,,Vp] — %V[MV,,VP]}

1) (0) ab 0) ab _ 1(0) aby(0)acy(0) cb
0 {Q[u— 8”991— - §Q[u—a QV—aCQp—l } '

(52)

With H® one would get Q) using again its definition
Eq. (20) and H® would be given by the above expres-
sion but with Q9 replaced by Q). Iterating this proce-
dure one gets the all-order expression H for the torsion
which involves the promised infinite series of corrections.
Of course, by this procedure, any tensor containing the
torsion (or the torsionful spin connection) receives an in-
finite number of implicit string corrections. This applies
to the T tensors as well.

One may verify that the lowest-order Lorentz Chern-
Simons term and the Yang-Mills Chern-Simons term
vanish identically for these solutions. This means that
H® = HO  and this in turn implies that Q1) = Q©),
etc. The conclusion is that all the implicit string correc-
tions vanish for this class of solutions and the expressions
in Eqs. (43)—(47) are exact to all orders.

Next we have to study the T tensors for these solutions.
One may easily establish that the all-order expressions for
them are

Tuvrp=T=0, (53)

T, = —2d lul,,{(ak.A” )2 — & @V )2} . (54)

Hence, the squares of all these tensors, which we need to
know to calculate the corrections to the on-shell action,
vanish for these solutions:

(Tywrp)? = (Tw)* =T?=0. (55)

Thus the lowest-order effective on-shell string action gets
no corrections. This is in agreement with the general
nonrenormalization theorem for the on-shell action on
bosonic solutions with unbroken supersymmetries, which
was presented in [2].

Finding the corrections to the equations of motion is
more complicated. To study them we first have to vary
the action (48) over all the fields present in the theory,
and only then substitute the solutions in the corrected
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equations. It is convenient to start by studying the lin-
ear corrections separately. The equations of motion cor-
rected up to first order come from the action

SW = % / 407 \/=ge=2¢ (—R+4(6¢)2 = %H2+ %T) .

(56)

Note that the notation S implies by definition that all
terms of order o’ and higher are neglected. This applies
in particular to the implicit o’ dependence present in H
and T.

The corrections linear in o to the lowest-order equa-
tions of motion are derived from the variation §(S™) —
S(©) = §AS. Tt is convenient to perform this variation
with respect to the explicit dependence of the action on
9uvs Vi, ¢, and B, and then with respect to the im-
plicit dependence on these fields through the torsionful
spin connection _, that is,

SAS §AS 5AS
6AS = —bg,, + —— v+ —
89 Iu +6B,l,,63“ + 5% ¢
5AS §AS ab
+ 5V, oV, + 69_#@69_“ , (57)
where
8Q_,% = ‘SQ‘“abé +6Q‘”ab53 +6Q‘“ab 8V,
H T Tog,, IR, SO T Ty, OV
(58)
The explicit variations are
§AS
= —l\/—-_ge"zd’(T‘“’ —g"'T) (59)
69uv 4
6AS 1 —24
56 "5\/*_96 T, (60)
1
6AS _ _a/\[\/_—ge—mb(H(l))\,uu _ H(O))\ul/)] , (61)
6B, 3
SAS

1
—= = —a'{ 0 (V—ge 2 FM) + /=ge2¢[Vy, F*¥]
6V, 15
+\/r§e"2¢H(0)“,\pF>"’
—V,,a,\(\/_—ge_z"’H(O)’\“p)} . (62)

Clearly, the RHS of the last three equations vanish for
these solutions, while the first equation reduces to

6AS 1, 24w ijy2 _ L 172
S Foe 1< (O AY) %(akv )b .

(63)

We next consider the implicit variations represented
by the last term in Eq. (57). In Appendix A we explain
a lemma proved in Ref. [3] that shows that all these
implicit variations are proportional to the lowest-order
equations of motion of the different fields. We therefore
conclude that these solutions of the lowest-order equa-
tions of motion are solutions also of the equations of mo-
tion corrected to order o' if T}, = 0. The latter con-
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dition can be satisfied by embedding the torsionful spin
connection in an SO(8) subgroup of the gauge group and
identifying

g 1
O AY = ——5, V1. 64
k 7% & (64)

Here the Yang-Mills indices IJ refer to the adjoint repre-
sentation of SO(8). Note that SO(8) is contained both in
SO(32)/Z; and in Eg x Eg. In view of their very special
properties, we will call the specific class of solutions that
satisfy (64) supersymmetric string waves (SSW’s) . This
concludes the discussion of the corrections linear in /.

Now let us consider the higher-order corrections. The
general structure of the bosonic part of the effective ac-
tion, which can be obtained by the procedure outlined
before based upon the restoration of supersymmetry, has
been conjectured in Ref. [3] to be of the form

Leff = Z

n=0,1,2,...

o™ (anRT™ + b, T | (65)

where R is the Riemann curvature tensor and T =
o/(R? + F?). This has been proven up to order o’¢ in
Ref. [3]. The terms proportional to ap and by have just
been discussed. It is known that there are no terms pro-
portional to a;. The b; terms are given by

a’/dmz V—ge~ (T"T,, + 3TH 2 T,0,) . (66)

In the variations of the higher-order terms, one should
again distinguish between the variations with respect to
the explicit dependence on the fields g,., ¢, and V,, and
the variations with respect to the implicit dependence of
these terms on the previous fields and B, through the
torsionful spin connection Q_. It is easy to see that the
variations of the first kind do not contribute to the field
equations for the SSW. The same applies to the second
kind of variations. As an example, we show how this
works for the T2 terms written above.

Varying with respect to the spin connection and using
the fact that T#¥P* = 0 for the SSW, one finds that the
only remaining terms are

T Ry ap (=) [DA(Q-)6Q_,%° — D, (Q_)6Q_,] .
(67)
For the SSW solution T#" ~ [#]¥ and
PRL™(Q-) = 1,R,%(Q-)=0. (68)

Hence, the remaining terms also vanish.

Finally, we consider the corrections to the supersym-
metry transformation laws and the Killing spinors. In
Ref. [3] it was shown that the corrections to order o’?
are proportional to T tensors and at most one torsion-
ful curvature tensor. Therefore, these corrections van-
ish for SSW’s that satisfy the embedding equation (64).
Actually, this condition is not necessary in order to es-
tablish the vanishing of the corrections to the Killing
spinors. The reason is that without the condition (64),
the only nonvanishing T tensors are T),,, ~ [,l,. Since
our fermionic fields have at most one free index, one of

5449

the indices of T}, has to be contracted either with a cur-
vature tensor or with an antisymmetrized gamma matrix
’y[‘“""‘"]. In the first case the correction vanishes due to
Eq. (68), and in the second case due to the fact that
luyy*e = 0. Our Killing spinors, which were obtained in
the zero-order approximation, satisfy the corrected equa-
tions as well.

As we have discussed before, we have only considered
the terms that have to be added to the effective action
in order to supersymmetrize the Lorentz and Yang-Mills
Chern-Simons term. It is well known, however, that other
terms occur in the superstring effective action that are
not related by supersymmetry to the Lorentz and Yang-
Mills Chern-Simons forms, for instance, terms of the form
¢(3)R* [19,20].> Nevertheless, all the terms found so far
are at least quartic in the Riemann or Yang-Mills curva-
ture tensors or in the torsion tensor and, therefore, by
simple null vector counting, they are harmless.

Our final conclusion is that the on-shell action, the
fields that solve the lowest-order equations of motion, and -
the Killing spinors for the SSW solutions do not receive
any higher-order string corrections.

IV. SUMMARY AND CONCLUSION

In this paper we have found a quite general class
of plane-wave-type solutions of superstring theory, with
one-half of the space-time supersymmetries unbroken and
whose eight Killing spinors are constant. They are solu-
tions to the field equations of the zero-slope limit of the
superstring effective action and do not receive any higher-
order string corrections. The metric, the axion, and the
gauge fields of these solutions are all described in terms
of one vector function of the light-cone coordinate u and
of the transverse coordinates z?,

Au(u,2") = {Au = 3K (u, 1), A, =0, Ai(u,z)},

i=1,..8, (69)
and are given by

Guv = Nuv + 20 Avy , Huwn = 33[“1,,14)\] ,
FlJ =2v300,471,) , (70)

where A% = 9l 47 . The dilaton ¢(u) is a function of u
only. The equations that A, = 3K (u,z') and A;(u,z*)
have to satisfy are

AK +20°A, +4¢" =0, (71)
DAY =0. (72)

These solutions are based upon a special conspiracy be-
tween the geometry, the axion field, and the gauge field.
In the nonsupersymmetric plane waves considered in
[12,15] there are no relations between the metric, the ax-
ion, and the gauge fields, other than those coming from

5The supersymmetrization of the most general R* terms has
recently been considered in Ref. [21].
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the equations of motion. In the zero-slope limit the plane
waves are supersymmetric if the geometry and the axion
field are related by 9;4*Y = —9;B*¥. The requirement
of absence of o’ corrections to the zero-slope supersym-
metric solutions puts an even stronger constraint on the
solutions: It forces us to embed the torsionful spin con-
nection in the gauge group and the gauge field is also
now expressed in terms of the same vector field A, (u, z*).
This is possible due to the fact that both A¥ and VI’
satisfy the same (harmonic) equations of motion.

Our SSW solutions extend the supersymmetric exact
plane-wave solutions of string theory studied before by
Giiven [7] in the following sense. In Giiven’s solutions,
the function K (u,z) is quadratic in the z'’s, the non-
diagonal functions in the metric A;(u,z')dz'du are ab-
sent, and the axion H,;; is a function of u only; i.e., the
dependence on z* in B,; is linear in z*. There are no
relations between the geometry, axion, and gauge fields,
besides those coming from the equations of motion. Be-
cause of the restricted dependence of these solutions on
the transverse dimensions, it was not necessary to relate
the axion, graviton, and gauge fields. Also, there was no
need to know the explicit form of the string corrections
to prove that they vanish. The existence of a covariantly
constant null vector along with the simple dependence
on z* was sufficient to establish the nonrenormalization
theorem.

The SSW, which we have studied, have unconstrained
dependence on the transverse coordinates z¢. The price
to pay for making the corrections vanish is the existence
of specific relations between different fields in the solu-
tion. This means, for example, that generalizations of
the Aichelburg-Sexl geometry, where functions such as
In(z;z%) are present, or solutions where any other com-
plicated dependence on z* appears in a metric of the
general form (22), can be investigated in the framework
of this SSW. In this paper we have shown that such met-
rics with the inclusion of appropriate dilaton, axion, and
gauge fields also belong to the class of perturbatively ex-
act stringy supersymmetric solutions.

It is interesting to compare our SSW solutions with
the supersymmetric string solitons (SSS’s) studied in [1].
The common features are the following. In both cases
the interplay between the fact that the supersymmetry
transformations depend on Q4,% torsionful spin con-
nections, and the fact that the o’ string corrections de-
pend on Q_,° is crucial. Both for SSW’s and SSS’s the
embedding of the spin connection into the gauge group
is a necessary condition for the absence of higher-order
string corrections. In addition, the interchange identity
between the two types of curvature (31) ensures the con-
sistency of the solution. In both cases there exists a con-
spiracy between the geometry and the axion.

A difference, however, is that the dilaton plays a cru-
cial role in the construction of the SSS solution but does
not play any particular role in the SSW solution. Fur-
thermore, in the SSS case, the existence of supersymme-
try relies on the four-dimensional space-time self-duality
and the unbroken supersymmetries are given by chiral
spinors with e, = 0. In the SSW case, the preserved
supersymmetries depend on the existence of the covari-
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antly constant null vector !, and the Killing spinors are
constant spinors € such that [,v*e = 0.

Finally, it would be interesting to investigate special
examples of our SSW solutions and apply o-model du-
ality transformations [22] to study how the supersym-
metry and nonrenormalization properties behave under
them. In particular, it has been established before [23]
that the metric outside an extremal fundamental string
is the dual of a plane-fronted wave metric with a dila-
ton and A, function in the metric that describes a string
boosted to the speed of light. These plane waves have
vanishing axion field and vanishing function A; in the
metric and no Yang-Mills field. They satisfy our defini-
tion of supersymmetric string waves, given in Egs. (70).
They are the trivial case in which the conspiracy between
metric, axion, and gauge field is achieved by the choice

i = 0. Will more general supersymmetric string waves
generate new interesting geometries via o-model duality?

On a more fundamental level one may try to develop a
new approach to string quantum gravity starting with
supersymmetric string waves. The standard quantum
field-theory approach is based on the flat-space “plane
waves” ~ e**'Z which are solutions of the linearized Ein-
stein equations. The special class of gravitational waves
investigated in this paper, which are solutions of the non-
linear Einstein equations, and even more, of nonlinear
Einstein equations with all o/ corrections taken into ac-
count, may serve as the basis for a new expansion of the
path integral for quantum gravity.
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APPENDIX A: LEMMA

In this appendix we give the following lemma which is
used in the text when discussing the string corrections.
A proof of (the supersymmetric version of) this lemma
can be found in (3].

Lemma. For arbitrary transformations 69;‘;"_ the vari-
ation of the action
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S = % / d¥z \/—ge~2* (—R+4(8¢)2— %H2+%T)

(A1)

is given by

J

§1L=6B"Q% §Q2° + 2(4€,0 — €pa® + 6B,,) [(V=9)"1e** DA(Q4)(v/—ge 260" )],

2L = 6D, (Q-)(vV=ge 2TH0)6Q2" + 6/—ge2? H* T pab 62,

68 = 2a’/d1°x (6:1£ + 62L), (A2)

with

(A3)

(A4)

where T),,, is defined in (49) and d, c‘:',w, and éuv are given by the expression of ®, £,,, and B,,, the lowest-order
equations of motion corresponding to the fields ¢, B,,., and g,., respectively, but where H (0) is replaced by H. These

lowest-order equations are given by

(0)
o= % N [R — 4V,,0%6 + 4(9¢)" + %(H“’))?] , (A5)
65© 1 _ 0
Ewr = 5o = —5 V=97 (R — 2V,u008 + HQ HO» _g,,@), (A6)
(0)
B = 95— = 2o,y Tge  (HO ), (A7)
6B,, 3
Note that the combination
—25‘“, - 3B~p.u + %g;w(i) =V _ge—2¢[Ruu(Q+) - Zvu(r+)6u®] (AS)

is precisely that in which the H dependence can be ab-
sorbed into a spin connection with torsion Q..

APPENDIX B: NOTATION AND CONVENTIONS

We use the notation and conventions of [3]. However,
in order to conform as much as possible with the recent
literature [1] we have made the following redefinitions
with respect to [3]: ¢ — €2#/3 B, — %\/._‘Z-B,W,Au —
Vi,and A — —%\/2_/\. We use a metric with mostly minus
signature.® Our conventions for the Riemann tensor are

Ru® = 0u{ =08 T 3+ A H LA H o b
(B1)

where {Hp V} are the standard Christoffel symbols:

{’up’/} = %gp)\{auguk + v guxr — a)\guu}' (B2)

The Ricci tensor and the curvature scalar are defined by
R = 9*Ruxp R=R,*. (B3)

The standard general covariant derivative V, is

SNote that in [3] the Pauli metric is used. Here we have
converted the results of [3] to correspond to a mostly minus
metric.

[
v v v
V.V, = auVV_{ up,/ }Vm V.V =98,V +{ Lp }Vp‘

(B4)

The supersymmetry transformation rules (17)-(19) in-
volve the zehnbein fields e,® and their inverses e®,,. They
are related to the metric tensor and its inverse via

Guv = €.°€,%Nab, 9" = eates” Nab- (B5)

The spin connection field w,%®(e) is defined in terms of
derivatives of the zehnbein fields as follows:

w,®(e) = —e"1* (8,6, —0,e,%) — e (8, e0,) €,
(B6)

and it is related to the Christoffel symbols by
wy® = —e,%??{ :p} + €"%9,e,°. (B7)

The curvature tensor corresponding to this spin connec-
tion field is defined by

R}wab(w) = 26[uw,,]“" — 2w[uacw,,]cb,

R(w) = e*4e"p R (w). (B8)
It is related to the Riemann curvature tensor as
R;wpa = Ruuab(w)eapeba (BQ)

This relation follows as an integrability condition from
the zehnbein postulate
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oue,” — {lfl/ }ep”‘ - w““beub =0. (B10)

To specify our ansatz for the metric, axion, and dilaton
fields, it is convenient to first write the ten-dimensional
coordinates z* in a light-cone basis:

o 1
m”:(u’fu’w’), t=1,...,8, UZ%(IEQ-F(IIQ),

v = %(J}Q —1:9). (Bll)

In this paper, all the indices are raised and lowered with
the full ten-dimensional metric g,,. In the case in which
the metric is given by Eq. (22), the relation between
upper and lower indices is

=&, (B12)
8 8
SETI (zAu +> A?) &+ A&,  (B13)
i+1 i=1
£ =Ai & . (B14)

Note that if &, = 0, the transverse indices i can be raised
and lowered with the flat metric.
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