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 Digestion in an Ectothermic Herbivore, the Green
 Iguana (Iguana iguana): Effect of Food
 Composition and Body Temperature

 Wouter D. van Marken Lichtenbelt*

 Carmabi Foundation, P.O. Box 2090, Curagao, Netherlands Antilles and
 Zoological Laboratory, State University of Groningen, Kerklaan 30, 9751 NN
 Haren, The Netherlands

 Accepted 11/4/91

 Abstract

 In laboratory experiments, the effect offood composition and body temperature

 on digestive efficiency was investigated in the lizard Iguana iguana on Curagao
 (Netherlands Antilles). In a series of experiments the animals were kept in cages
 with a temperature gradient and different foods were offered ad lib. Mean se-
 lected daytime body temperatures were 35.00 -36 4 C (mean 24 h Tb: 31.80
 -33. 7 C). Mean apparent dry-matter digestibility (DDM) varied from 30. 0% to
 84.2%, depending on the kind offood. Mean DDM and digestible energy were
 significantly inversely related to the cell wall components lignin and cutin, and
 these components could explain most of the variance in DDM (r = 0. 88). The
 amount of digestible protein was significantly correlated with crude protein con-
 tent in the food. Mean transit time offood through the digestive tract varied from
 3.9 (berries) to 8.5 (leaves) d. A second series of experiments, in which body tem-

 peratures were varied (Tb range: 30. 0 -36 1 C), showed that an increase in
 body temperature induced a significant curvilinear decrease of the transit time
 from 10 d down to 3 d. Dry-matter digestibility, however, was not affected by a
 change in body temperature. Maximal fresh:food intake was inversely related at
 a significant level to the transit time. It is argued that body temperature affects
 the potential digestive capacity of the green iguana.

 Introduction

 The evolution of herbivory depends on a set of interrelated adaptations.
 Protein and carbohydrates of plant cellular contents are often nearly com-

 * Present address: Department of Human Biology, State University of Limburg, P.O. Box 616, 6200 MD Maas-

 tricht, The Netherlands.
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 pletely available to animals while the structural carbohydrates of the cell

 wall are available only to those animals that harbor the requisite bacteria

 and protozoa in their digestive tracts. Thus, some herbivores consume or
 select plant parts for the sake of the cellular contents, rejecting or passing

 the main part of the cell-wall portions through the digestive tract. The al-
 ternative adaptation is the retention of the fibrous cell wall to extract more

 available energy from it, as found in foregut (Van Soest 1982) and some
 hindgut fermenters (Foley, Hume, and Cork 1989). Because the rate of
 digestion of structural carbohydrates is considerably slower than that of the

 cellular contents, intake is limited by the need to retain these more slowly

 digesting residues. In the past reptilian herbivores were thought to belong

 to the first group (rapid passage coupled with limited utilization of plant
 cell walls), because it was assumed that they lacked the intestinal special-

 izations necessary for fiber digestion (Szarski 1962; Ostrom 1963; Sokol
 1967; Nagy 1977). However, the intestinal tract of some herbivorous turtles

 and lizards in fact have special morphological adaptations (Tiedemann 1817)
 for the retention of microbes responsible for degradation of plant-wall ma-

 terial (Bjorndal 1979; Iverson 1980; Troyer 1984b).
 The green iguana (Iguana iguana) is one of the relatively few species

 of lizards living solely on a diet of vegetation throughout its life (Rand 1978;

 Iverson 1982; Troyer 1984b; White 1985). Green iguanas possess a large,
 partitioned colon with bacteria (McBee and McBee 1982) and huge popu-
 lations of commensal nematodes (Leussink 1958; Iverson 1982). Hindgut
 fermentation may supply up to 30%-40% of the energy budget (McBee and
 McBee 1982), and the digestibility of cell-wall constituents may be as high

 as 54% (Troyer 1984a), indicating that iguanas are able to digest leaf material

 approximately as effectively as their endothermal counterparts (Nagy and
 Milton 1979; Van Soest 1982). The natural diet of the green iguana consists
 of leaves, flowers, and fruits (Rand 1978; Troyer 1984a). Diet composition

 may shift from one food class to another, depending on the season (van
 Marken Lichtenbelt 1991). Although some information is available on the

 dry-matter digestibility in green iguanas feeding on leaf material (Troyer
 1984a), a comparison between digestibilities of different kinds of food
 available to the animal has not been made. In this study on the green iguana

 from Curanao, Netherlands Antilles, several food classes (leaves, flowers,

 and berries) were examined with respect to the digestibility of several nu-
 trients and to the transit time of the food through the digestive tract.

 In comparison with endotherms, the digestion of food in ectotherms is
 time-consuming (Parra 1978). While the retention time in many herbivorous

 mammals of less than 3 kg is 2-18 h (Karasov et al. 1986), the food passage

 time through the intestinal tract of herbivorous lizards amounts to several
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 Food Digestion in Herbivore Lizard 651

 days (Harlow, Hillman, and Hoffman 1976; Christian, Tracy, and Porter 1984;

 Troyer 1984a; Karasov et al. 1986). Although the reason for this difference

 has not yet been clarified, there exist morphological and physiological dif-

 ferences between mammals and reptiles that may play a role with respect

 to digestibility. Reptiles, compared with most mammals, only minimally

 reduce food particle size, and large particles are digested at significantly
 slower rates (Bjorndal, Bolten, and Moore 1990). There are indications that
 the greater intestinal surface area in mammals is the main basis for a faster

 absorption of nutrients (Karasov and Diamond 1985), thus making relatively

 rapid transit time optimal. Besides, body temperature may play a role, be-
 cause lizards have much more variable body temperatures than do mammals.

 For example, the uptake of glucose in intestinal sleeves increases with tem-

 perature (Karasov, Solberg, and Diamond 1985), as does the breakdown of

 structural carbohydrates by microbial degradation (Hungate 1966). Thus,

 the rate of digestion is not only determined by the intestinal morphology
 but also by body temperature. In this study the influence of temperature on

 dry-matter digestibility, transit time of food, and potential food intake is
 examined in green iguanas in which food was offered ad lib.

 Material and Methods

 Experimental Design

 The experiments were carried out on Curagao at the Carmabi Foundation.
 Because green iguanas recently captured in the wild refused to accept food
 in captivity and force-feeding might alter the results of the experiments,
 animals were used that had been living in captivity for more than a year.
 Before and between trials the iguanas were kept in outdoor cages (100 cm
 X 50 cm X 40 cm) and were fed leaves, flowers, and fruit. Commercial or

 animal food was never offered. Only males were used because some of the
 experiments took place in the egg-laying period. Gravid females tend to
 eat less in the reproductive stage because developing eggs can use so much

 space that there is less room for digesta (W. D. van Marken Lichtenbelt,
 unpublished data).

 To determine the influence of food composition and body temperature

 on digestive efficiency, two series of digestibility trials were performed. In

 one series of experiments the animals were maintained on a daily 10L:14D
 photoperiod, functionally also a 10:14 thermoperiod, reflecting approxi-
 mately the natural period. Dry-matter digestibility of seven different foods

 was measured. Leaf material was obtained from mature leaves of wild plant
 species (Cordia alba and Trichilia trifolia) and from young leaves of cul-
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 652 W. D. van Marken Lichtenbelt

 tivated species (Amaranthus dubius and Ipomoea batatas). Other trials
 were carried out with the small yellow flowers of Acacia tortuosa (native
 species), the flowers of the Hibiscus rosa (exotic), and the berries of C.
 alba (native species). All foods, except A. dubius, I. batatas, and H. rosa,

 were part of the natural diet of the green iguanas on Curagao. The digesti-
 bility of Bourreria succulenta berries was determined by analysis of feces

 that were collected in the wild. Because in some periods of the year the
 diet consisted of these berries for several weeks and the pits of these fruits

 were defecated intact, the number of ingested berries could be determined

 by counting the number of pits in the feces. From this number and the dry-

 matter content of fresh berries collected in the field the dry-matter intake

 corresponding to the amount of berries found in the feces could be calcu-

 lated. Dry-matter intake and dry matter of feces were used to calculate the

 dry-matter digestibility according to the formula presented below (see cal-

 culations). In a second set of trials the influence of body temperature on
 digestion was studied with leaves of I. batatas by manipulating the ther-
 moperiod and the amount of infrared radiation.

 To control temperature, cages used for the digestibility trials were placed

 indoors. The dimensions of the cages were 50 cm X 40 cm X 40 cm, with

 a shade compartment of 40 cm X 20 cm X 20 cm (fig. 1). Small-mesh wire

 netting was used on top while the bottom was spanned with wire netting

 WHITE RED
 SPOTLIGHT SPOTLIGHT

 SHADED

 EX.R ETA..
 WAT ER . .

 EXCRETA

 Fig. 1. Cage used for the digestibility trials
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 Food Digestion in Herbivore Lizard 653

 with a mesh width of 2 cm allowing the droppings to fall through. The
 droppings were caught on a plastic tray placed underneath the cage. A 150-

 W spotlight was fitted 10 cm above the cage. The animals could move freely

 to and from the shaded and the illuminated part. In one experiment a second
 150-W infrared bulb served as an extra heat source and the animals were

 excluded from the shaded part, ensuring relatively high body temperatures.

 To test the range of possible body temperatures a copper replica of a green
 iguana covered with a skin of a green iguana was used (W. D. van Marken

 Lichtenbelt, J. T. Vogel, and R. A. Wesselingh, unpublished manuscript).
 The temperature was measured by placing the model directly under the
 spotlight and in the shaded area. Equilibrium temperature of the model pro-

 vided a good estimate of the temperature the iguanas could reach (table 1).

 Body temperature was measured with a probe mounted on the skin of
 the chest of the animal. When covered with insulating material (Armaflex)

 and aluminum foil and fixed into place with leucoplast tape the measured

 temperature was in good agreement with the deep cloacal temperature (Tchest
 = 1.01 X Tcioaca - 0.350C, r2 = 0.995, P< 0.001). In most circumstances the

 difference between cloaca and chest was less than 0.30C. During cooling
 the chest temperature was somewhat lower and during heating of the animal

 somewhat higher than the cloacal temperature, with a maximal difference

 of 0.50C. Temperature was measured by means of a thermistor and an in-

 terface connected to an Apple II computer. Body and air temperatures were

 integrated over 15-min periods, providing a mean temperature for each of

 these 15-min periods. Body temperature was measured in the temperature
 experiments with the leaves of I. batatas and in the experiments with the
 berries of C. alba and the flowers of H. rosa. Temperature was measured
 for four animals (three with Hibiscus).

 Each experiment was preceded by a period in which the animals could
 adapt to the cages. Two strips of plastic surveyors tape (0.5-1 cm long)
 were fed at the start. Because defecation of complete skeletal networks of

 leaves is normal in green iguanas, these plastic strips provided acceptable
 markers for determining the passage rate of the food. The digestibility trial

 started 3-6 d after the initial markers had passed the digestive tract. Two
 strips were fed again at the beginning of the trial and in most cases once

 more after recovery of these strips in the feces. Time elapsed from feeding

 to the appearance of the markers in the feces provided an estimate of the

 transit time of the food through the intestinal tract of hindgut fermenters

 (Van Soest 1982). The experiments lasted, depending on the feeding regime,
 from 7 d when berries served as food to 19 d with the leaves of I. batatas

 at low body temperatures. During these periods dry-matter intake and total
 feces production were determined. Fresh food was offered ad lib. from 0900
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 TABLE 1
 Temperature regimes for the digestibility experiments

 Mount Temperature Mean Body Temperature

 Temperature Regime and Food Spotlight (h) Red Light (h) Day (oC) Night (OC) Day (OC) Night (+C)  Normal:
 Cordia berry 10 0 29-41 27 35.9 + .5 29.9 .4  Hibiscus flower 10 0 29-41 28 36.4 + 1.7 31.7 + 1.6  Ipomoea leaf 10 0 29-41 27 35.0 + .7 29.6 + .4

 Low:

 Ipomoea leaf 0 0 29-31 27 31.4 + .0 29.4 + .1
 High:

 Ipomoea leaf 10 24 34-43 32-36 37.7 + .6 34.6 + .4
 Note. Resulting ranges of possible temperatures are measured with a taxidermic mount. Day and night body temperatures of the experimental animals are  means (+ SD, n = 4, except experiment with Hibiscus, in which n = 3). At normal temperatures the animals could move freely to and from a shaded and an  illuminated part of the cage; at low temperatures there was no extra heat source; at the high-temperature regime the animals had no access to the shaded  compartment.

This content downloaded from 129.125.148.19 on Thu, 01 Nov 2018 08:25:47 UTC
All use subject to https://about.jstor.org/terms



 Food Digestion in Herbivore Lizard 655

 to 1700 hours, with new food being provided at 0900 and 1300 hours. Cloacal
 excreta were collected twice a day.

 Chemical Analyses

 Samples of the foods offered, feces, and uric acid (white, often crystalline,

 material, clearly distinguishable from the feces) were dried at 500C for
 preparation for chemical analyses and for determining the water content of
 the food. The mass of food, feces, and uric acid was determined on an

 electronic balance accurate to 0.01 g.

 For nutrient analyses, dried samples were ground in a Culatti mill with a

 screen size of 1 mm. Prior to the analyses subsamples were redried at 500C.

 All analyses were carried out at least in duplicate. The samples for chemical

 analyses were weighed on an analytical balance accurate to 0.0001 g. Energy
 content was determined by an adiabatic bomb calorimeter (Parr) and nitro-

 gen content by the Kjeldahl method. Percentage of crude protein was cal-

 culated by multiplying %N by 6.25. The following components were deter-

 mined according to the methods of Goering and Van Soest (1970), using a
 Tecator hot extraction unit: NDF (neutral detergent fiber), ADF (acid de-

 tergent fiber), lignin (permanganate), cutin, and nitrogen (Kjeldahl) in ADF.

 Complementary nutrients were calculated as follows: hemicellulose (=NDF

 - ADF) and cellulose (=ADF - lignin - cutin). Because the crucibles used
 for the NDF and ADF analyses were often clogged by mucus, a modification
 of the analytical procedure was carried out. Fifteen minutes before extraction

 1 mL N-acetyl-L-cysteine (15%) solution was added, causing depolymeriza-
 tion of mucoproteins.

 Calculations

 The results from the cage experiments were used to calculate digestibilities

 of several foods as well as digestibilities of the different chemical compo-
 nents and energy.

 The following abbreviations and formulas are used: CP, crude protein
 content in dry matter (%); NDF, neutral detergent fiber content in dry matter

 (%); ADF, acid detergent fiber content in dry matter (%); DMI, dry-matter
 intake (g/d); CPI, crude-protein intake (g/d); DDM, apparent digestibility
 of dry matter (%); DCP, apparent digestibility of crude protein (%); DNDF,

 apparent digestibility of NDF (%); DEI, digestible energy intake (kJ/d);
 DE, apparent digestibility of energy (%); MEI, metabolizable energy intake
 (kJ/d); ME, metabolizable energy as percent gross energy (%); DDM
 = [(DMI - dry matter of feces)/DMI] X 100; D(nutrient) = [(% nutrient in
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 656 W. D. van Marken Lichtenbelt

 food X DMI - % nutrient in feces X DM feces)/(% nutrient in food X DMI)]

 X 100; DEI = [(kJ/g in food X DMI - kJ/g in feces X DM feces)/(kJ/g in
 food X DMI)] X 100; MEI = DEI - uric acid energy; and ME = [MEI/gross
 energy intake] X 100.

 Because not all the animals used in the cage experiments were in nitrogen

 balance, the ME was corrected for nitrogen balance (NB) (McDonald, Ed-
 wards, and Greenhalgh 1981) by subtracting 30 kJ - g-1 NB of the above-
 calculated ME (1 g NB means a deposit of 1 g nitrogen, which is thus not

 lost as 1 g nitrogen in uric acid [approximately 30 kJ]):

 MEI(corrected) = MEI - NB X 30,

 where NB = N(intake) - N(feces) - N(uric acid). The MEI(corrected) is
 thus an energy intake value that characterizes the food at NB = 0.

 Results

 Food Composition and Digestive Efciency

 There were some clear differences in chemical composition between the
 food classes. Berries, for instance, had high lignin and cutin contents (%

 DM) and a low protein content (% DM) compared to the other foods (table
 2). Flowers had intermediate protein values in comparison to berries and
 leaves, and NDF values were relatively low. Young leaves had the highest
 crude protein values. Gross energy content was approximately the same in
 most foods.

 The apparent digestibilities of dry matter (DDM) ranged from 30.0% to
 84.2% (table 3). Berries had the lowest digestibility because of a high con-
 centration of cell-wall components, which was caused by the virtually in-
 digestible seeds. Their transit time (3.9 d), however, was the shortest of all
 studied foods. The seeds of Cordia alba contributed 52% of the total dry
 weight of the berry. Apparently the digestibility of the rest of the fruit
 amounted to nearly 100%. The digestibility of Hibiscus rosa was higher than

 that of the flowers of Acacia tortuosa. This was probably due to the higher

 lignin and cutin content in Acacia flowers. Acacia flowers possessed rela-

 tively large receptacles that probably contain more structural carbohydrates

 than the petals. Flowers and leaves cannot be distinguished on the basis of
 digestibilities only; transit time (TT) through the digestive tract must be
 considered too. Transit time of flowers was relatively short compared to

 leaves, although not significantly so (Kruskal-Wallis one-way ANOVA). The
 (young) leaves of Ipomoea batatas at normal temperatures also combined
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 TABLE 2
 Composition of the plant foods used in the digestibility trials

 Neutral  Detergent Crude Energy

 Class and Species Fiber Cellulose Hemicellulose Lignin Cutin Protein Content  Berries:

 Cordia alba 42.2 21.1 1.2 6.5 13.4 11.1 18.4
 Flowers:

 Hibiscus rosa 18.7 9.7 5.8 2.4 .9 15.8 17.6  Acacia tortuosa 26.6 3.1 10.9 4.8 7.8 16.4 18.4
 Leaves:

 Cordia alba 41.7 2.2 25.5 .9 13.2 21.0 18.6  Trichilia trifolia 35.5 8.6 15.1 5.0 6.8 20.2 18.4  Amaranthus dubius 24.1 5.5 14.7 1.5 2.4 26.5 14.2  Ipomoea batatas 33.5 9.1 18.8 3.2 2.4 31.5 18.7
 Note. Data are presented in percentages of dry matter; gross energy content in kJ/g dry matter.
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 TABLE 3  Body mass (BW), body-mass changes (ABW) and intake and apparent digestibility coefficients of dry matter (DDM), energy  (DE), crude protein (DCP), NDF (DNDF), and transit times (TT) of leaves, flowers, and berries and of the leaves of Ipomoea
 batatas at different temperature regimes

 BW ABW Intake DDM DE DCP DNDF TT

 Species (g) (%/d) (g - kg-1 d) (%) (%) (%) (%) (d)  Berries:
 Cordia alba 1,087 -.7 5.52 + 2.01 47.0 + 8.1 39.9 + 9.4 57.7 + 3.4 19.8 3.9 + 1.7

 (6) (6) (6) (6) (2) (6)

 Bourreria

 succulenta 30.0 + 11.7

 (9)

 Flowers:

 Hibiscus rosa 1,168 -.1 5.13 + 1.01 84.2 + .5 80.0 + .6 71.3 + 1.0 64.1 + 3.8 5.8 + 2.5

 (3) (3) (3) (3) (3) (3)

 Acacia tortuosa 635 .04 4.23 53.5 45.7 31.4 10.8 4.8

 (1) (1) (1) (1) (1) (1)

 Leaves:

 Cordia alba 817 -.8 2.80 + .88 60.1 + 11.2 58.5 + 11.7 58.7 + 8.5 64.0 + 11.8 7.0

 (4) (4) (4) (4) (4) (2)

 Trichilia trifolia 838 -.3 1.00 .47 56.3 + 4.8 50.1 + 5.5 73.4 + 3.9 51.7 + 4.8 8.5 + 2.6

 (4) (4) (4) (4) (4) (4)

 658
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 Amaranthus

 dubius 979 -.3 5.23 + 2.91 58.3 + 5.5 73.7 + 3.5 78.0 + 7.4 76.4 + 4.1 6.1 + 2.7

 (4) (4) (4) (4) (4) (4)

 Ipomoea batatas:

 Low

 temperature 1,115 -.1 5.12 + 1.26 75.3 + 4.2 73.7 + 5.4 83.1 + 3.3 82.2 + 3.3 8.4 + 1.3

 (4) (4) (3) (3) (3) (4)

 Normal

 temperature 970 -.3 4.37 + 1.36 67.8 + 8.2 66.1 + 6.1 77.9 + 2.1 80.7 + 3.6 5.4 + 1.4

 (10) (10) (9) (9) (9) (10)

 High

 temperature 1,022 -.4 5.70 + 1.37 70.5 + 4.8 67.4 + 2.6 81.7 + 2.3 78.2 + 2.0 4.1 + 1.1

 (6) (6) (3) (3) (3) (6)

 Note. Given are the mean values, + SD, and numbers of animals in parentheses. Body-mass changes (ABW) in percentage of initial BW per day. Data from  Bourreria succulenta are from feces analyses; see text for details.
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 660 W. D. van Marken Lichtenbelt

 a high DDM with a low TT, probably because these leaves were crop raised

 with supplementary fertilizer and water.

 It has been recognized in herbivorous mammals (Van Soest 1982) and
 birds (Nehring and Nerge 1966) that there are inverse relationships between

 the percentage of cell-wall constituents and DDM. In this study several cell-

 wall components (lignin, cutin, lignin plus cutin, cellulose, ADF, and NDF)

 and ratios: percentage lignin/ADF (Troyer 1984a) and percentage (lignin
 + cutin)/ADF were compared with DDM. Dry-matter digestibility was sig-

 nificantly inversely related to most tested cell-wall components concentra-
 tions but not to the above-mentioned ratios (table 4). The best predictor
 for DDM is the percentage lignin plus cutin (fig. 2). A highly significant
 correlation was found between the ME, corrected for nitrogen balance, and

 the dry-matter digestibility (r = 0.91, P < 0.001; fig. 3). Without correction

 for nitrogen balance the correlation is also significant, but 30% instead of
 9% of the variation remains unexplained (r = 0.70, P < 0.001). The amount

 of lignin and cutin thus relates to ME.

 Digestibility of crude protein can be estimated by CP in dry matter (Rob-
 bins 1983). In this study the amount of digestible crude protein was linearly

 related to the crude-protein concentration in dry matter (fig. 4).

 Body Temperature and Digestive Efficiency

 The results of the experiments with I. batatas at different temperature re-

 gimes (low, normal, high) revealed no correlation between body temper-

 TABLE 4

 Correlations between DDM and cell-wall components (lignin, cutin,
 lignin + cutin, cellulose, NDF, and ADF)

 Component or Ratio Slope Intercept r P n

 Lignin ................ -4.81 75.3 .64 .086 8
 Cutin ................. -1.97 72.5 .81 .015 8

 Lignin + cutin .......... -1.81 78.7 .88 .004 8
 Cellulose .............. -1.30 71.2 .58 .133 8

 NDF .................. -1.15 96.1 .74 .036 8
 ADF .................. -.92 78.0 .79 .019 8

 Lignin/ADF ............ 27.8 52.2 .14 .75 8
 (Lignin + cutin)/ADF ... -63.2 88.1 .56 .148 8
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 100
 y = 78.76 - 1.81x r = 0.88 p < 0.005 n = 8

 80-

 60-

 o 40-

 20

 I I I I I
 0 10 20 30

 lignin and cutin content (%)

 Fig. 2. Relationship between the content of lignin plus cutin and appar-

 ent dry-matter digestibility. Data are from table 3 with exclusion of the
 "high" and "low" temperature experiments.

 ature and DDM (fig. 5A), and differences between the different temperature

 regimes were not significant (Kruskal-Wallis one-way ANOVA). Transit time,

 however, was negatively correlated with body temperature:

 TT (d) = 459.5 X 10-0.06Tb

 80 - y = -13.199 + 1.055x r=0.91 p < 0.0001 n=42

 70-

 60-

 o--
 ' 50-

 40-

 30

 20-

 40 50 60 70 80 90

 DDM (%)

 Fig. 3. Relationship between metabolizable energy content (ME) and
 apparent digestibility of dry matter (DDM), corrected for nitrogen
 balance. Data are from all experiments of which mean DDMs are pre-
 sented in table 3.
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 y=-2.801 +0.880x r=0.99 p<0.001 n.7
 30-

 20

 10

 0 10 20 30 40

 dietary crude protein content (%)

 Fig. 4. Relationship between apparent digestible amount of crude protein
 and crude protein content (CP).

 (r = 0.82, P < 0.05, n = 12) (fig. 5B), and differences between the three
 temperature regimens were significant (P < 0.05, Kruskal-Wallis one-way
 ANOVA). Intakes at the three temperature regimes did not differ significantly.

 These results are strengthened by looking at the outcome of the experiments

 of individual animals, indicated by different symbols in figure 5: all individual

 iguanas show the same trend of a decreasing TT with increasing body tem-
 perature.

 Digestive Tract Capacity

 The capacity of the green iguana to process food is, among other factors,
 set by the size of its digestive tract. Stomach capacity determines how
 much can be eaten in a relatively short time (e.g., one meal). In the
 colon most of the microbial degradation of the plant material takes place
 (McBee and McBee 1982). On the short time scale food intake is prob-
 ably set by stomach capacity and bulkiness of the food. Daily food intake,
 however, is more complex and is among other things determined by
 dry-matter digestibility and transit time of the food, the water content
 of the food, and the rate of water absorption. To obtain an estimate of
 the digestive tract capacity I examined the relation between TT and
 food intake. Even though food was offered ad lib., consumption was not
 always maximal. To avoid contamination of the data by individual points
 where the consumption was not maximal, the upper 30% of the distri-
 bution was selected to fit a regression for stomach capacity, analogous
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 Fig. 5. Relationship between body temperature and (A) apparent digesti-
 bility coeficient (DDM) and (B) transit time (TT). Data are from tem-

 perature experiments with Ipomoea batatas. Different symbols refer to dif-
 ferent individual animals.

 to the solution chosen by Mautz and Nagy (1987), who accepted the
 upper 20%. Maximal fresh-food intake was inversely related to transit
 time of the food (fig. 6):

 Intake (g - kg-1' d-1) = 59.4 - 4.01 X TT

 (r = 0.91, P< 0.001, n = 12).

 Discussion

 Competition between Uptake and Digestion

 Ingested food disappears from the digestive tract through two routes, ab-

 sorption of digested food and passage. Consequently these two processes
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 Fig. 6. Relationship between amount of maximum daily fresh food intake
 and transit time (TT) of the food in the intestinal tract. For selection of
 data see text.

 compete for the same material with some likelihood that potentially di-
 gestible or digested matter will be passed to the feces. Passage is necessarily

 linked to intake because the consumption of more food will enhance the

 flow of material in the digestive tract. Because food was offered ad lib. the

 animal determined the degree of fill of the digestive tract. This is why I

 believe it is better to use animals that are adapted to cage circumstances
 that have been fed with the appropriate food for a long time rather than to
 force-feed animals. Moreover, the procedure I followed minimizes any in-
 fluence of stress. On the other hand it is important that the intake rates are

 comparable to the intake rates under natural circumstances. Mean daily in-

 takes during the trials were comparable to daily food intake observed in the
 field (van Marken Lichtenbelt 1991). Comparison of digestive efficiency
 with data from other studies is difficult not only because of variable tem-

 peratures and diets but also because other digestibility experiments carried
 out with herbivore lizards used force-feeding. The ration used in force-
 feeding experiments influences transit time and dry-matter digestibility to
 unknown extents.

 Food Composition and Digestion

 At "normal" temperatures apparent dry-matter digestibilities of the different

 food types varied considerably (DDM: 30%-84%). This range is comparable

 to the range of digestibilities found in other studies on herbivorous lizards
 (DDM: 36%-86%, table 5) and tortoises (36%-71%, Bjorndal 1989). Diets
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 high in cell contents (Hibiscus rosa, Ipomoea batatas) or low in cell-wall
 digestibility (berries Cordia alba, flowers Acacia tortuosa), which are di-
 gested primarily enzymatically, have slow TTs. Diets with high cell-wall
 digestibilities requiring relatively slow microbial fermentation (leaves of

 C. alba, Trichilia trifolia, Amaranthus dubius) have short TTs. Bjorndal
 (1989) reported the same trend in two tortoise species (Geochelone car-
 bonaria and Geochelone denticulata) in a study comparing digestive pro-
 cessing of fruit and foliage diets.

 The range of DDM of leaves in the green iguanas on Curacao was relatively
 small (56%-68% at normal temperature). The mean values for leaf DDM
 measured in force-fed green iguanas in Panama are somewhat lower (50%-

 53%) (Troyer 1984a). However, the TT found in Panamanian green iguanas

 is generally shorter. The highest digestibilities found in the green iguanas

 on Curacao are those of the hibiscus flowers (DDM: 84%; DE: 80%). Throck-
 morton (1973) also found high energy digestibilities (DE: 86%) of tubers
 of I. batatas in Ctenosaurus pectinata. Both hibiscus flowers and tubers
 have a very low cell-wall content (NDF, lignin, and cutin). Berries, on the

 other hand, possess a virtually indigestible seed. Digestibility of berries is

 the lowest of all foods investigated. However low, the DDM could be com-

 pensated for by a short TT, presumably because of the high concentration

 of sugars in the pulp material. Most of the variation in DDM between
 the different foods studied can be explained by differences in cell-wall
 components. The best predictor for dry-matter digestibility appeared to be

 lignin plus cutin concentration in the food (r = 0.88); lignin and cutin are

 virtually indigestible nutrients and limit the use of cell-wall components
 (Van Soest 1982).

 The digestibility of crude protein by the iguanas was positively related to
 CP and was of the same magnitude as observed for wild ruminants (Robbins

 1983). In the green iguana the digestible crude protein amount was linearly
 related to CP in the food (amount DCP = 0.88CP - 2.80). This means that

 in field studies the CP can be used as a predictor for the DCP per food item,

 although differences in the amount of tannins and other soluble phenolics

 can reduce the apparent digestibility of protein (Robbins 1983).

 The digestibility of NDF was in some cases (i.e., leaves of I. batatas, C.
 alba, A. dubius) high compared with DDM. This is probably caused by the

 fact that DDM is less than true digestibility (because of gut secretions, mi-

 croflora, etc.) while DNDF is close or equal to true digestibility of NDF
 (Van Soest 1982). Hansen and Sylber (in Christian et al. 1984) report high

 cell-wall digestibilities in Sauromalus obesus as well (cellulose digestive
 coefficient: 82%).
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 TABLE 5  Digestive efficiency of dry matter (DDM), NDF (DNDF) and energy (DE), metabolizable energy (ME), transit time (TT), and  body temperatures (Tb) in herbivorous lizards

 Tbb

 DE

 BM DDM DNDF [ME] TT Day Night

 Species Agea (g) (%) (%) (%) (d) (oC) (OC) Feedingc Food Referenced  Conolophus

 subcristatus A 5,340 . . . 39 (cel) 48 6.5 . . . . . . ad lib. Opuntia pads 1
 Iguana iguana A 1,304 53 46 . . . 5.5 36 (12) 31 FF Lonchocarpus 2

 leaves

 A 1,115 75 82.2 74 8.4 31 (10) 29 ad lib. Ipomoea 3

 batatas leaves

 A 970 68 80.7 66 5.4 35 (10) 30 ad lib. Ipomoea 3

 batatas leaves

 A 1,022 71 78.2 67 4.1 38 (10) 35 ad lib. Ipomoea 3

 batatas leaves

 A 817 60 64 59 7 35 (10) 30 ad lib. Cordia alba 3

 leaves

 A 838 56 52 50 8.5 35 (10) 30 ad lib. Trichilia trifolia 3

 leaves

 A 979 58 76 74 6.1 35 (10) 30 ad lib. Amaranthus 3

 dubius leaves

 A 1,087 47 20 40 3.9 35 (10) 30 ad lib. Cordia alba 3

 berries

 666
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 A 1,168 84 64 80 5.8 35 (10) 30 ad lib. Hibiscus rosa 3

 flowers

 A 635 54 11 46 4.8 35 (10) 30 ad lib. Acacia tortuosa 3

 flowers

 A 30 Field* Cordia alba 3

 berries

 J 267 50 57 3.6 36 (12) 31 FF Lonchocarpus 2

 leaves

 J 49 3.3 34 (4) 28 FF Lonchocarpus 4

 leaves

 J 56 3.1 37 (8) 28 FF Lonchocarpus 4

 leaves

 J 132 73 3.8 ad lib. Ipomoea 3

 batatas leaves

 Amblyrhynchus

 cristatus A + 1,200 70 79 Field** Alga 5
 Ctenosa u rus

 pectinata A 750-1,000.. 86 3.0-5 37 (12) 27 ad lib. Ipomoea 6

 batatas tubers

 Cyclura

 carinata A + 600 3.5-10.5 Field 7

 Egernia

 cunninghami A 200-300 75... Trifolium sp. 8

 leaves

 Sauromalus

 obesus A 47 3.1 37-40 (10) 25 FF Rabbit food 9

 A 82 (cel) Flowers, carrots, 10

 chick food
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 TABLE 5 (Continued)  Species Agea BM DDM DNDF DE TT Tbb Feedingc Food Referenced

 (g) (%) (%) [ME] (d)

 (%) Day Night

 (oC) (oC)

 A 56 50 Field*** Leaves, flowers, 11

 fruits

 A 206 65 37 20 FF Flowers, 12

 dandelions

 A 144 67 37 37 FF Flowers, 12

 dandelions

 SA 67 50 3.5,4.7 36 FF (100%) Rabbit food 13  A 65 51 5, 5.5 36 FF (50%) Rabbit food 13  A 65 49 5, 5.5 32 FF (100%) Rabbit food 13  A 58 46 32 FF (50%) Rabbit food 13  A 70 28 FF (100%) Rabbit food 13

 86 83 Carrot, 14

 dandelion

 Dipsosaurus

 dorsalis A 53 54 33 33 FF Rabbit food 15

 A 60 63 37 37 FF Rabbit food 15  A 66 69 41 41 FF Rabbit food 15  A 56 41 (12) 28 FF Rabbit food 15  A 45 3.2 37-40 (10) 25 FF Rabbit food 16

 668
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 A 49 36 [29] 5.8 28 (12) FF Natural 17

 vegetation  (autumn)

 A 61 61 [53] 3 28 (12) FF Natural 17

 vegetation  (spring)

 A 61 37 61 41 FF (100%) Rabbit food 14  A 63 40 61 37 FF (100%) Rabbit food 14  A 60 36 57 33 FF (100%) Rabbit food 14  H 4.2 55 [54] 3 28 (12) FF Natural 17

 vegetation  (autumn)

 H 7.8 67 [61] 2.7 28 (12) FF Natural 17

 vegetation  (spring)

 Klauberina

 riversiana A 14.7 89 3.6 30-31 (14) 20-21 ad lib. Pyrus malus 18

 fruit (apple)

 Note. Ellipses indicate data are not available; cel, cellulose.  aA = adult; J = juvenile.  b In case of cyclic temperature regime, number in parentheses indicates time in hours for temperature.  c FF = force feeding; number in parentheses is percentage of estimated maintenance level; * feces analyses; **ADC (DDM) estimated with marker (Mn);  ***ADC estimated with doubly labeled water method.  d References are as follows: (1) Christian et al. 1984; (2) Troyer 1984a; (3) this study; (4) Troyer 1987; (5) Nagy and Schoemaker 1984; (6) Throckmorton  1973; (7) Auth in Auffenberg 1982; (8) Shine 1971 in Johnson and Lillywhite 1979; (9) Karasov et al. 1986; (10) Hansen and Silber in Christian et al. 1984;  (11) Nagy and Schoemaker 1975; (12) Ruppert 1980; (13) Zimmerman and Tracy 1989; (14) Voorhees 1981 in Zimmerman and Tracy 1989; (15) Harlow et al.  1976; (16) Karasov et al. 1986; (17) Mautz and Nagy 1987; (18) Johnson and Lillywhite 1979.
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 Effect of Body Temperature on Digestibility and Rate of Digestion

 In this study, body temperature greatly affected the transit time in the green

 iguana but did not have much influence on the digestibility coefficient (coef-

 ficients of variation: 37% in TT vs. 5% in DDM). The digestibility coefficients

 were not significantly different at the three temperature regimes and were,

 in view of the long transit times, possibly near their potential maximum.

 Although food was offered ad lib. no significant difference in intake was

 observed during the temperature experiments. In contrast with these findings

 Troyer (1987) showed in juvenile green iguanas in Panama, fed leaves of
 Lonchocarpus pentaphyllus with high contents of cell-wall material, that

 the digestive coefficient did differ significantly at different temperatures (ta-

 ble 5), although differences in transit time were not significant. Harlow et

 al. (1976) also reported that body temperature was significantly correlated

 with apparent digestibility in the desert iguana (Dipsosaurus dorsalis). In
 both studies the animals were force-fed, which, in case of relatively high

 food levels at moderate temperatures, could explain the different results.

 The problem of overfeeding has also been discussed by Zimmerman and
 Tracy (1989). In their experiments with the desert iguana they force-fed
 the animals at a maintenance level, as calculated on the basis of body tem-

 perature. Their results are in agreement with the results of the Curagao
 green iguanas. Dry-matter digestibility was not significantly related to body

 temperature. However, TT of the food in D. dorsalis in their study is not
 known. In another herbivorous iguanine (S. obesus), also fed to maintenance,

 Zimmerman and Tracy (1989) determined that the TT of the food was sig-

 nificantly longer at lower body temperatures. Because these lizards were
 force-fed less food at lower body temperature regimes, they could not report

 whether the rate of passage was lower at lower body temperatures because
 of a direct thermal effect on the physiology of digestion or because of a
 reduction in bulk flow of digesta. In the green iguana on Curapao, the animals

 on average consumed equal amounts of food during the different temper-

 ature experiments, indicating that the observed reduction in TT is indeed

 a direct thermal effect and goes hand-in-hand with a difference in degree

 of fill of the digestive tract. How transit time is optimized, in view of the

 time constants of microbial digestion and the rate of absorption of nutrients

 through the intestinal wall, are matters for further study.

 Our study reveals that TT is inversely related to body temperature although

 dry-matter digestibilities remain comparable, while Zimmerman and Tracy
 (1989) showed that a decrease in transit time brought about by means of

 force-feeding results in lower DDM. These facts must have implications for

 potential food intake. Indeed, our results show that the maximal fresh food
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 intake is inversely related to TT (fig. 6). It will be noted from figure 5 that
 the dependence of TT on body temperature is a steep one, and it appears
 a reasonable assumption to interpret the active attainment of high body

 temperature (350 -36oC) that in this species typically follows active foraging

 (van Marken Lichtenbelt 1991) as functionally aiming at shortening TT and

 hence clearing the gut for a further onslaught.
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