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Abstract 

Van den Berg, I.P., Extended use of IST, Annals of Pure and Applied Logic 58 (1992) 
73-92. 

Internal Set Theory is an axiomatic approach to nonstandard analysis, consisting of three axiom 
schemes, Transfer (T), Idealization (I), and Standardization (S). We show that the range of 
application of these axiom schemes may be enlarged with respect to the original formulation. 
Not only more kinds of formulas are allowed, but also different settings. Many examples 
illustrate these extensions. Most concern formal aspects of nonstandard asymptotics. 

1. Introduction 

1.1. On Internal Set Theory 

The original approach to nonstandard analysis by A. Robinson [17, 19731 was 
based on the extension of the ‘standard’ model of analysis Iw to a larger 
‘nonstandard’ model *[w. The latter contains, next to a copy of [w, nonstandard 
elements, in particular infinitesimals and infinitely large numbers. 

The extension chosen by Robinson is an ultrapower, hence I$! and *[w are 
elementary equivalent. The immediate consequence of this is that every theorem 
concerning real numbers, formulated in the usual formal set theory ZFC, can be 
proved in a new way, i.e. by proving the corresponding theorem within *[w. Thus 
Robinson concluded that nonstandard analysis, more than creating new mathe- 
matical entities, consists of introducing new deductive procedures. 

Such new principles of deduction were stated formally by E. Nelson in 1977 
[13]. He introduced a new unary predicate symbol ‘st’ (for ‘standard’) and three 
axiom schemes. Formulas which do not contain the symbol ‘st’ are called internal, 
and formulas which do contain the symbol ‘st’ are called external. The first axiom 
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scheme is the principle of transfer: 

(T) (V”‘t)((V”‘x) A@, t) @ (VX) A@, t)). 

Here A is internal. The second axiom scheme is the principle of idealization: 

(I) (V”‘““z)(3y)(Vx E 2) B(x, y) G (3y)(V”‘x) B(x, y). 

Here B is some internal formula, which may contain free variables. The third 

axiom scheme is the principle of standardization: 

(S) (V”‘X)(3”‘y)(V”‘z)(z E y e 2 E x A C(z)). 

The formula C may be internal or external and may also contain free variables. 

N.B. (W’x) is an abbreviation of (Vx)(str+ . . -), (3”‘~) is an abbreviation of 

(3x)(st_X A * * -) and (Vstfinx) is an abbreviation of (Vx)(st_x AX finite +. . -). 

Together with the axioms of ZFC the above axioms form Internal Set Theory 

(IST). The Internal Set Theory resumes for a large part the practice of 

Robinsonian nonstandard analysis, but from a theoretical point of view there is 

an important difference: nonstandard objects exist already within standard sets. 

Thus the infinitesimals are part of R instead of some extension of R. 

Introductions to IST are included in [S], [9], [ 121, [13], [15] or [16]; for notions 

and notations concerning elementary nonstandard analysis, we refer to [8] or [12]. 

The structure of IST is at the same time simple and powerful. Up to 

equivalence, there are only three types of closed external formulas: formulas of 

the form (Y’x)A(x), of the form (V”‘x)A(x), or of the form (tl”‘x)(3”‘y)A(x, y) 
where A is always supposed to be internal. The formulas of the first type, called 

galactic, and the formulas of the second type, called hulk, are incompatible, i.e., 

a formula which is both equivalent to a galactic and a halic formula must be 

internal. The ‘nonstandard world’ and the ‘standard world’ are connected in a 

straightforward manner by the Reduction Algorithm, which transforms every 

external theorem and proof into an internal theorem and proof. Finally, IST is 

completely saturated. The above properties were shown by Nelson in [13] and 

[14], except for the incompatibility result proved in [ 11. 

The Internal Set Theory has been adopted by quite a number of working 

mathematicians, and this number is growing. It appears to be accessible to 

non-logicians, and to be an efficient tool in dealing with practical and theoretical 

problems. Important contributions have been made notably in the domain of 

asymptotic analysis in the wider sense (singular perturbations, divergent series, 

ordinary differential equations), but also in probability theory, the study of the 

moire-technique, the desingularization of algebraic manifolds and the class- 

ification of Lie-algebra’s. Bibliographies may be found in [7], [9], [12] and [19]. 

1.2. Aim of this paper 

In this paper we show that within IST the principles of transfer, idealization, 

standardization and saturation may be generalized, or be applied in entirely new 
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situations. The idealization principle may be generalized from internal to halic 
formulas. The principles of saturation and standardization, whose original 
formulation concerns only the standard elements of a set, may under some 
restrictions also be applied to the nonstandard elements of a set. Some 
generalizations of the transfer principle, such as the uniqueness principle, had 
already been remarked by Nelson. Here we prove two transfer principles of a 
different kind: a ‘function criterion’, related to the sequence criterion for 

continuity of ordinary analysis, and the so-called monadic transfer principle. 
Essentially, the latter says that every property expressed within IST (without 
using nonstandard constants) can be transferred from a given internal set I to its 
monad, i.e. the intersection of all the standard sets containing I. 

Many examples illustrate the new principles. Most of them concern formal 
properties of standard and nonstandard asymptotic analysis. For instance, 
generalized idealization yields a short proof of the existence theorem relative to 
the nonstandard shadow expansions. Generalized standardization readily turns 
such a nonstandard existence theorem into a standard existence theorem relative 
to the classical asymptotic expansions. The function criterion shows the equiv- 
alence of certain notions within the theory of regular variation. A particular case 
of the monadic transfer principle constitutes an important step in the proof of a 
general theorem on the asymptotic behaviour of solutions of differential 
equations. 

The use of this logical machinery within asymptotics may surprise somewhat, 
but it has been preceded by the ‘Cauchy principle’ and the ‘Fehrele principle’. 
The first is based on the incompatibility of internal and external formulas, and the 
second on the incompatibility of galactic and halic formulas, mentioned above. 
These frequently used principles have been very successful in dealing with, 
usually delicate, matching problems. 

1.3. Conventions and notation 

Strictly speaking IST only concerns internal sets, i.e. sets defined by internal 
formulas, and does not dispose of ‘external sets’. However, like most of the 
mathematicians working within IST we adopt the use of external sets as far as 
they have only internal elements, and are ‘defined’ by a formula of IST. In this 
context statements involving external sets may be considered as abbreviations of 
formulas. External sets induce a certain neatness and flexibility into argumenta- 
tion and description. For instance they are very adapted to describe accurately 
qualitative or asymptotic behaviour of functions. 

Often it is convenient to define external sets by the union or intersection of 
internal families of sets, rather than by external formulas. The following notions 
will be used throughout this paper. 

A union of the form 
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where X is standard and (AJxex is an internal family of sets is called a pregafaxy ; 

if it is external G is called a galaxy. An intersection of the form 

H= n A, 
StXCX 

where X is standard and (A,),Ex is an internal family of sets is called a prehafo, if 
it is external H is called a halo. Thus a (pre)galaxy is defined by a galactic formula 
and a (pre)halo is defined by a halic formula. Note that external sets can always 
be reduced to the forms 

U f-l A,, stxcx styeY 

where X and Y are standard, and (AxY)xEx,yEY is an internal family of sets. 
Sometimes we wish to precise the index set X in the definitions of (pre)galaxy 

and (pre)halo. Then we 
set of real infinitesimals 

speak about X-galaxies, X-halos etc. For instance, the 

is an N-halo. 
A formula of IST is called absolute if it does not contain nonstandard 

parameters. For instance if f : R += R is standard, and E E R, then (Vx = 
+m)(f(x) = 0) is absolute and (Vx = +m)(f(x) c E is not absolute. A (pre)galaxy ) . 

is called absolute if it is of the form lJsticXAx, where stX and (Ax)xsx is a 
standard family of sets. Note that a (pre)galaxy or (pre)halo is absolute if and 
only if it is defined by an absolute formula. 

We recall some notation concerning particular external sets. The set of real 
infinitesimals will be written 0, the set of positive real infinitesimals will be 
written 0+, the set of limited real numbers will be written f and the set of 
positive appreciable (i.e. limited, but not infinitesimal) numbers will be written 
@. We may ‘calculate’ with these symbols in an obvious way (0 * 0 = 0,0. f = 
0, @ . & = %, l/(1 + 0) = 1 + 0 etc.). In some cases the equality sign should be 
interpreted as an inclusion, which is not uncommon within asymptotics. For 
instance f(o) = (1 + 0)~ is another way of saying that f(w)/w = 1. Sometimes 
the set of real numbers infinitely 
hal(r). The set of positive limited 

Finally an internal or external 
elements are nonstandard. 

1.4. Structure of this paper 

close to a given real number r will be written 
real numbers will be written hal(+m). 
set will be called purely nonstandard if all its 

Chapter 2 is devoted to the idealization principle and its consequences. The 
idealization principle will be generalized from internal formulas to halic formulas. 
Applications include simple proofs of the existence theorem for shadow- 
expansions in various settings. 
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In Chapter 3 we present an extension of the saturation principle and of the 

standardization principle in its modified form S’. These extensions are similar and 

concern the existence of an internal ‘choice function’ under external conditions. 

We also consider situations where such a choice function does not exist. Among 

the applications are simple proofs of Du Bois-Reymond’s lemma and the 

Borel-Ritt existence theorem for asymptotic expansions. 

Chapter 4 is devoted to extensions of the transfer principle. We first recall 

some direct generalizations, already observed by Nelson. Section 4.1 contains a 

function criterion; a special case corresponds to the sequence criterion for the 

continuity of functions within ordinary analysis. In Section 4.2 we first define the 

monad of a set. We then state the very general monadic transfer principle, which 

transfers all absolute properties from a given prehalo to its monad. Special care is 

given to the problem how to determine the monad of a set. We give some 

applications, which suggest that the function criterion and the monadic transfer 

principle are useful in two-parameter problems and in the problem of how to 

transform local asymptotic behaviour into global asymptotic behaviour. The 

applications concern notably the theory of regular variation and the asymptotics 

of differential equations. 

2. Generalized idealization 

The idealization principle is crucial to nonstandard analysis, for it generates 

nonstandard elements in any infinite set. Other important consequences are the 

principles of extension and saturation, the Fehrele principle and a compactness 

and finite intersection property. 

For a brief account of extension and saturation we refer to the next section. 

The Fehrele principle states that no halo is a galaxy. This incompatibility yields 

permanence results: halic properties verified on galaxies still hold somewhere 

beyond, and vice-versa. A high amount of literature testifies to the usefulness 

of such results in nonstandard asymptotics (see, among others, [2] or [19]). The 

Fehrele principle is a direct consequence of a separation theorem: for every 

galaxy G and halo H such that G c H there exists an internal set I such that 

G c I c H. A short proof is the following. Let stS, T, let (As)ses be an internal 

family such that G = UStiES AS and let (Bt)rsT be an internal family such that 

H = n,,,, T B,. For every standard finite u c S, v c T there exists an internal set I 

such that A, c I c B, for all s E U, t E v; take, say, I = U,,,, A,. By idealization 

there exists an internal set I such that A, c I c B, for all standard s E S, t E T. 
Hence GcZcH. 

The compactness property and the finite intersection property will be used 

throughout this paper, and run as follows. 

Compactness property. Let H be a prehalo, let T be standard, and let (At)reT be 
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an internal family of (internal) sets. Assume that H c UstrcTAt. Then there is a 

standard finite set z c T such that H c U,,,,, A,. 

Finite intersection property. Let G be a pregalaxy, let T be standard and let 

(At)reT be an internal family of (internal) sets. Assume that nstteTAr c G. Then 

there is a standard finite set z c T such that n,,,,, A, c G. 

The finite intersection property is just the complementary form of the 

compactness property. The latter is easily derived from the separation principle 

and the contraposition of (I): 

(VY)P”‘X) C(x7 Y) * (3 “‘fi”z)(Vy)@X E 2) C(x, y). (2. I) 

Again C(x, y) is an internal property. To obtain the compactness property, notice 

that H and G = Ustrtr A, are separated by some internal set I, and then apply 

(2.1) with C(t, y): y E Z+ y E A,. 
The main result of this chapter is the following generalization of the 

idealization principle. 

Theorem 2.1 (Halic idealization principle). Let H(x, y) be a halic property. Then 

(v”‘“i”z)(3y)(Vx E 2) H(x, y) @ (3y)(v”‘x) H(x, y). (2.2) 

Proof. The formula H(x, y) is of the form (V’s) A(s, x, y) where A is an internal 

property. By interchanging quantifiers and applying the usual idealization axiom 

we see that the left-hand side of (2.2) is equivalent to 

(Vst”“z)(Vs’““w)(3y)(Vx E z)(V.s E w) A@, x, y). (2.3) 

So A@, x, y) holds on every Cartesian product of standard finite sets z x w. This is 

equivalent to saying that A(s, x, y) holds on every standard finite set u of couples 

(s, x). Indeed, on the one hand u is included in the Cartesian product of its 

projections and on the other hand every Cartesian product of standard finite sets 

is itself standard finite. Hence (2.3) is equivalent to 

(Wtfi”u)(3y)(Vc = (s, x) E U) A@, x, y). (2.4) 

By the usual idealization axiom (2.4) is equivalent to 

($)(V”‘c = 6, x)) A(s, x, Y). (2.5) 

Finally (2.5) is equivalent to the right member of (2.2). 0 

The contraposition of (2.2) is valid for galactic formulas G(x, y) and reads 

(VY)(~“‘X) G(x, Y) = (3 s’fi”z)(Vy)(3x E z) G(x, y). (2.6) 
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Example (Existence theorems for shadow expansions). The nonstandard notion 
of shadow expansion of numbers corresponds to the classical notion of asymptotic 
expansion of functions. For an introduction to the shadow expansions, notation 
and terminology we refer to [2] or [S]. 

A question of theoretical interest is the following. Let the sequence of positive 
real numbers (z.+&~ be an order scale, i.e. such that uL+,/uk -0 at least for 

stk E N, and let (c,JkcN be a standard sequence of real numbers. Does the formal 
series C&,C~U~ have a ‘sum’, i.e., does there exist a real number s such that the 
series is the shadow expansion of s with respect to the given order scale? The 
answer is affirmative, and we even have the following precision: there exists an 
(unlimited) integer Y such that the partial sums C& ckuk have the prescribed 
expansion for all j_4 G Y, p = +m. Several proofs have been given; they have in 
common that Y depends on the sequence (c~)~~~, but in an external way. 

However, it appeared that there exists a ‘universal’ index p, valid for all 
standard sequences. Using halic idealization we may give a simple proof of this 
fact. 

Let n E N, and let s, = C;=O ckuk be the nth partial sum of the series CL=, ckuk. 
As usual, we write s - CLZO C&k if Cr=,, CkUk is the shadow expansion of the 
number s. 

Proposition 2.2. Let (uk)k& be an order scale. Then there exists an unlimited 
index p such that sp - c& k k c u for all standard sequences of real numbers 

tCk)kcN- 

Proof. It fOllOWS readily from its definition that the notion “S - cz=,, C&k” iS 
halic. For every standard sequence (Ck)k& there exists Y 21 +m such that 
s - CrcO C&k for all p = +w, y < v, so certainly there exists an unlimited index 
p” common to any standard finite set of sequences. By halic idealization there 
exists p = +a such that sp - CT=0 CkUk for all standard sequences. q 

Shadow expansions of functions have also been considered. They consist of 
formal series c&j&k, where the fk form a standard sequence of real functions; 
it follows from the ‘theorem of the continuous shadow’ that the functions are 
necessarily continuous (see [S, p. 891). Shadow expansions of functions are useful 
in nonstandard perturbation theory (see for instance [7]). Halic idealization yields 
a quick proof for the following existence theorem; as usual we denote the nth 
partial sum by s,. 

Proposition 2.3. Let (uk),& be an order SC&? and (fk),& be a standard sequence 
of real (continuous) functions. Then there exists an unlimited index Y such that 

Sp - kzof#k for all p = +03, p S y. 
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Proof. To apply idealization, it is sufficient to show that for every stm E N and 
sta,b E R there exists an index IZ > m such that 

(VCL, m s y s n)(Vx E [a, W((s,(x) -L(X))/& = 0). (2.7) 

We may take n > m to be any standard index. Then, indeed for y such that 
mSpCn, 

because the &(x) are limited and the quotients uLIu,,, are infinitesimal. By halic 
idealization, there exists Y L- +m such that (2.7) holds for all stm, and for all 
limited x. Hence, by the definition of shadow expansions of real functions, 
sV - Cz=,f& for all p = +m, p s v. Cl 

There exists also a universal index, valid for all standard sequences of 
continuous real functions; this may be proved in a similar way as Proposition 
2.2. 

From Proposition 2.2 we will derive an existence theorem for classical 
asymptotic expansions in the next chapter, using extended standardization. 

3. Extended standardization and saturation 

Both standardization and saturation may be formulated in a way close to the 
axiom of choice, and it is in such a form that they will be extended. 

It has been shown by Nelson in [13] and [14] that the standardization principle 
may be modified as follows: 

(S’) (V”‘x)(3”‘y) @(x, y) e (3”‘y)(V”‘x) @(x, Y(x)). 

The formula @ is an arbitrary formula of IST. It is tacitly supposed that the x 
range over a standard set X, the y range over a standard set Y, and jj is a 
standard mapping from X to Y. 

It has also been shown by Nelson [14] that the following form of the saturation 
principle is a theorem of IST: 

(V”‘x)($) @(x, Y) e (W(V”‘x) @(K Y(x)). 

Again the formula CD is an arbitrary formula of IST and it is tacitly supposed that 
the x range over a standard set X; the difference with (S’) lies in the fact that the 
y are allowed to be internal nonstandard, and thus the mapping 9 may also be 
internal nonstandard. 

Often the modified standardization principle and the saturation principle are 
used as an extension principle: every external function defined only on the 
standard elements of a standard set X, with standard (respectively internal) 
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values, may be extended to a standard (respectively internal) function defined on 
the whole of X. 

The next theorems show that under some restrictions standardization or 
saturation is possible also on the nonstandard elements of a set. 

Theorem 3.1 (Standardization on absolute N-halos). Let stX, Y and H c X be a 
purely nonstandard absolute N-halo. Let @(x, y) be an absolute galactic or N-halic 
property such that for all x E H there exist y E Y such that @(x, y). Then there 
exists a standard mapping y : X+ Y such that @(x, y’(x)) for all x E H. 

Proof. Put E = {(x, y) E X x Y 1 @(x, y)}. We distinguish two cases: (i) E is a 
pregalaxy; (ii) E is an N-halo. 

(i) E Is a pregalaxy. Let stT and (A& be a standard family of subsets of 
X x Y such that E = UsttcTAt. Then 

By compactness there is a standard finite z such that C = U,,,,, P,(A,) 2 H. Let 

B = Us,,,, A,. Then B and C are standard, P,(B) = C and B c E. By modified 
standardization, and transfer, there is a standard mapping 9: C+ Y such that 
(x, f(x)) E B for all x E C. Then certainly (x, y’(x)) E E for all x E H. The domain 
of y may trivially be extended to X. 

(ii) E is an N-halo. Without restriction of generality we may assume that 

P,(E) = H. Let (B&N be a standard strictly decreasing sequence of subsets of 
X x Y such that BO = X x Y and nstnErm B, = E. Put C, = P,(B,) for every n E N. 

Then (C&N is a standard decreasing sequence of subsets of X such that 

H = f-ktne~ C,,. Again without restriction of generality we may assume that 

(Cn)neN is strictly decreasing because H is external. Then by modified standard- 
ization, and transfer, for every stn E N there exists a standard mapping y,, : C,\ 
C n+l-, Y such that (x, yn(x)) E B, for every x E C,,\C,+,. Let y:X-+ Y be the 
standardized of lJstncN yn. Let x E H. Because H is purely nonstandard, we have 
nneN C,, = 0. So there exists o = +w such that x E C,\C,+,. Then (x, y(x)) = 

(x, J%,(X)) E B, = E. q 

Theorem 3.2 (Saturation on halos). Let stX, Y and H c X be a non-empty 
prehalo. Let @(x, y) be a galactic or N-halic property such that for all x E H there 
exists y E Y such that @(x, y). Then there exists an internal mapping y : X + Y such 
that @(x, y’(x)) for all x E H. 

Proof. Put E = {(x, y) E X X Y ) @(x, y)}. If E is a pregalaxy, the proof is similar 
to part (i) of the proof of Theorem 3.1. So let us assume that E is a halo. 

Let (B&N be an internal decreasing sequence of (internal) subsets of X x Y 
such that E = nstncN B,, we may assume that BO = X x Y. For every n E N we 
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put C, = P,(B,). Then (C,JnsN is also decreasing. Put K = nstneN C,,. Then 
K 1 H. If K is internal, then K = C,, for some Y = +w. By the axiom of choice 
there is an internal function 3: C,* Y such that (x, y(x)) E B, for every x E K. 
Then certainly (x, y’(x)) E E for every x E H. If K is external, we may assume 
without loss of generality that (QeN is strictly decreasing for stn E N. By the 
Cauchy principle there is o E N, o = +a such that (i) (C,,),So is strictly 
decreasing and (ii) C, # 0. By the axiom of choice for every it < o there exists an 
internal function 9” : C,\C,+, + Y such that (x, L(x)) E B, for every x E Cn\Cn+,, 
and a function yU : C, 4 Y such that (x, jjw(x)) E B, for every x E C,. Let 

F = U&,x. Then (x, y(x)) E E for every x E K, hence certainly for every 

XEH. 0 

We give three applications of standardization on halo’s. The first and second 
concern nonstandard proofs of existence theorems of asymptotics, and the third 
concerns a useful particular case. 

Proposition 3.3 (Du Bois-Reymond’s lemma). Let (fn)ncN be a sequence of real 
strictly positive functions such that for every n E N one has fn+I(x) = o(f”(x)) for 
x + +m. Then there is a real strictly positive function f such that for every n E N 
one has f(x) = o(f”(x)) for x + +a. 

Proof. By transfer, we may assume that the sequence is standard. Let w L- +m, 
and stn EN. Then fn(o) = 0. fn_l(o) = . . . = 0 .fo(o). It follows from 
Robinson’s lemma (or from halic idealization) that there exists y > 0 such that 
p = 0 - fn(w) for all stn E N. By halic standardization there exists a standard 
strictly positive real function f such that f(w) = 0 . f”(w) for all w = +a and 
stn E N. Then for every stn E N one has that f(x) = o(fn(x)) for x+ +a. By 
transfer, the same holds for all n E N. 0 

Proposition 3.4 (Existence theorem for asymptotic expansions; Borel-Ritt 
theorem). Let (fjJneN be a sequence of strictly positive real functions such that for 
every n E N one has fn+I(x) = o(fn(x)) for x--+ +w. Let (c~,,)~~~ be a sequence of 
real numbers. Then there is a real function s such that the formal series Cz+ a,, fn is 
the asymptotic expansion of s. 

Proof. By transfer, we may assume that the sequences (fn)neN and (un)naN are 
standard. Let cc) = +a. Then the sequence (fn(o))n.N is an order scale. By 
Proposition 2.2 there is a real number o such that o- C~=oa,fn(w). By halic 
standardization there is a standard real function s such that s(w) - Cz=, a,f,(w) 
for every w = +w. Then Cz=,, a,f, is an asymptotic expansion of f for x+ 
+m. 0 

Lemma 3.5. Let stX, Y. Let H c X be a purely nonstandard absolute N-halo and 
let K c Y be an absolute N-prehalo such that K # 0. Then there is a standard 
function f : X + Y such that f(H) c K. 
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Proof. Define L = H X K. By Theorem 3.1 there is a standard function f : X --, Y 
such that fiH c L. This means that f (H) c K. 0 

The next generalization and its corollary will be used in Chapter 4. 

Convention. By ‘halic and/or N-galactic’ properties we mean properties which 
are internal, or of the form (Vs’x) A(x), (3% E kJ) A(n), (V”‘x)(3”‘n E N) A@, n) 
or (3% E N)(V”‘x) A@, n), where A is internal. A ‘galactic and/or N-halic’ 
property is just the negation of a halic and/or N-galactic property. 

Lemma 3.6. Let stX, Y. Let H c X be a purely nonstandard absolute N-halo and 
let K c Y be non-empty and defined by an absolute galactic andfor N-halic 
formula. Then there exists a standard function f :X ---, Y such that f (H) c K. 

Proof. We distinguish two cases: 

6) K = ,tvT ,,EN Ant, (ii) K = n U A,,, 
stneru stteT 

where stT and GL)ne~,rc~ is a standard family of subsets of Y. 
(i) K = UstteTnstnelRl A,,. We write M, = nstnETAnr for every t E T. For some 

stt E T we have M, # 0. By Lemma 3.5 there exists a standard function f :X+ Y 
such that f (H) c M,. Then certainly f (H) c E. 

(ii) K = nswsN UstreTAnr. We write G,, = USttETAIZI. Now G, #0 for all 
stn E N. So for every stn E N there exists stt E T such that A,, # 0. By standard- 
ization there exists a standard sequence (t,JnEN such that A,, # 0 for all stn E N. 

Put F = f-IstncN A,,. By Lemma 3.5 there exists a standard function f :X+ Y 
such that f (H) c F. Then certainly F(H) c K. q 

Corollary 3.7. Let stX and K c X be non-empty, and defined by an absolute 
galactic, and/or N-halic property. Then there exists a standard sequence (x,),,,~ 
such that x, E K for all n = +m. 

It is interesting to note some situations where standardization or saturation on 
halo’s does not work, i.e., where there does not exist a standard or internal 
‘choice function’. 

(1) Let H = {x E R 1 x = 0} and E={(~,~)ER~~x=O,~>O}. There is no 
standard function q: R --, IR such that Q?,” c E for (0, q(O)) should be standard, 
and E does not contain standard points. This does not contradict the theorem on 
standardization on halo’s, for H is not purely nonstandard. Of course, there exists 
an internal choice function. 
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(2) Let H = {x E R 1 x = +w} and 9 = {f : R --, IF!! ) lim,_,+,f(x) = +m}. Put 

E = {(x, y) E R 1 x = +“, y = +=J, (V”f E S)(y <f(x))}. 

The E is a halo, but it easily follows from Du Bois-Reymond’s lemma that E is 
not an N-halo. By the Fehrele principle, for all x = +m there exists y E Iw such 
that (x, y) E E, but clearly there does not exist a standard function q such that 
(x, p(x)) E E for all x = +w. As it has been shown in [2], there does not exist an 
internal function with such properties either, so even saturation does not hold. 
This means that there does not exist an internal function which ‘separates’ the 
bounded standard functions from the standard functions going off to positive 
infinity, on the whole halo of infinity. 

(3) Let H = {x E Q 1 nstx} and let 

E={(x,y)EQ2/x$0,y<Oorx>0,y$0}. 

Then H is a purely nonstandard absolute N-halo and E is neither a halo nor a 
galaxy. Clearly the vertical projection of E contains H. But there does not exist a 
standard or internal choice-function, for it is a direct consequence of what was 
proved in [2, p. 1161 that every internal function f : Cl!+- Q necessarily touches EC. 

4. Generalized transfer 

By the transfer principle an internal absolute property is transferred from the 
(external) set of all standard elements of a given set X to the set X itself. If X is 
infinite, the transfer is non-trivial. 

The subject of this section is to study more situations where a property may be 
transferred from a given set to a bigger set. First we give a short account of direct 
generalizations of (T). In Section 4.1 we present a function criterion, related to 
the sequence criterion for continuity of functions of ordinary analysis. Finally in 
Section 4.2 we prove the monadic transfer principle which transfers absolute 
properties from a particular set to the intersection of all standard sets containing 

this set. 
The following direct generalizations of (T) were already considered by Nelson. 

(i) The transfer principle (T) holds also for absolute halic formulas. 
(ii) The contraposition of (T) 

(3x) A(x) e (Ttx) A(x), (4. I) 

also holds for absolute galactic formulas. 
(iii) (Uniqueness principle). Let A be an internal absolute formula. Then it 

follows immediately from (4.1) that 

3!xA(x) G stx. (4.2) 
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This uniqueness principle is used to prove that the explicitly defined objects of 
classical analysis, such as 1, 2, x, N, R are standard. 

For proofs of the above results we refer to [13] or [14]. 

4.1. A function criterion 

We recall that ‘halic and/or N-galactic’ properties are properties which are 
internal, or of the form (V”x) A(x), (3% E N) A(n), (Vstx)(3*‘n E N) A@, n) or 
(3% E FJJ)(V%) A@, n) where A is internal. 

Theorem 4.1 (External function criterion). Let stX, Y and let H c X be a purely 
nonstandard absolute N-halo and Kc Y be a non-empty absolute N-prehalo. 

(1) (Transfer from images). Let Q(y) be an absolute hafic and/or N-galactic 
property. Assume @ holds on f(H) for every standard mapping f : X + Y such that 
f(H) c K. Then @ holds on K. 

(2) (Transfer from graphs). Let @c X x Y be an absolute halic and/or 
N-galactic property. Assume @ holds on fH for every standard mapping f : X + Y 
such that f (H) c K. Then @ holds on H x K. 

Comment. If there exists a standard function f such that f (H) II K, the first part 
of the above theorem is of course trivial. However, it is non-trivial in, say, the 

following case. Let (B&N be a standard decreasing sequence of subsets of X 
such that H = nstncN B, and (C,JncN be a standard decreasing sequence such that 

K = nstncN C,,. Assume the B, all have infinite cardinality B and the C, all have 
cardinality C, and that B < C. Let us further assume that B, = X. We show that 

Indeed, let f :X-, Y be an arbitrary standard mapping. Then clearly f (X) $I K, 
i.e., there exists y E K not lying in the image off. The same holds for the union of 
the image of a (standard) finite set of mappings. By halic idealization there is 
y E K not in the image of any standard mapping f :X+ Y and in particular those 
mappings such that f(H) c K. 

The transfer from graphs is nontrivial whenever K is external. Indeed, by the 
Fehrele principle for every x E H the galaxy {f(x) ) stf, f(H) c K} is strictly 
included in the halo K. 

Note that the theorem cannot be extended to arbitrary galactic properties. As a 
counterexample to part (1) take Q(y) = (3”‘f: N-, R)(y E f (N)), H = {n E 
N 1 n = +a} and K = ha](O), and as a counterexample to part (2) take @(x, y) = 
(3”y: R + R)(y = f (x)), H = haI( and K = haI( 

Proof of Theorem 4.1. (1) Put E = { y E Y ( Q(y)}. Suppose EC n K # 0. By 
Lemma 3.6 there exists a standard mapping f :X--, Y such that f(H) c EC n K. 
So @ does not hold on f(H), a contradiction. We conclude that Kc E, i.e., @ 
holds on K. 
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(2) Put E = {(x, y) E X x Y 1 @(x, y)} and L = EC fl H x K. Suppose L # 0. By 

Corollary 3.7 there exists a standard sequence (x,, Y,),,~ of elements of X x Y 

such that (x,, y”) E L for all IZ = + 00. By, if necessary, taking a subsequence we 

may assume that (x,),,~ is injective. Let s = {x, 1 II E N}. Define fi :s+ Y 

by fi(~) =Y, f or all n E N. By Lemma 3.6 there exists a standard function 

fi :X\s+ Y such that f(H\s) c K. Put f =fr Uf2. Then fiH c K, but @ does not 

hold on filM So we have a contradiction. Hence L = 0, i.e., @ holds on 

HxK. 0 

As a corollary we present a sequence criterion. Then we will give some 

examples and applications. 

Corollary 4.2 (External sequence criterion). Let stX and H c X be a nonempty 
absolute N-prehalo. Let S be the external set of all standard sequences (x,,),,,~ such 
that x, E H for all o = +a and K = {x, 1 x E S, w = +a~}. Let Q(x) be a halic 
and/or N-galactic absolute property. If @ holds for every x E K, then Qi holds for 
every x E H. 

Example 1 (Classical sequence criterion). 
limits of real functions 

lim f (x) = q e lim f (x,) = q 
X-P ?I-+= 

The well-known sequence criterion for 

for all sequences (xJnerm 

such that lim x, =p 
n-cm (4.3) 

is a standard counterpart of a special case of Corollary 4.2. Indeed, let p,q E [w 
and f : R + Iw be standard. Then the left member of (4.3) is equivalent to 

(vx=P)f(x)=q 

and the right member of (4.3) is equivalent to 

(4.4) 

(~(&),,,)((V~ = +~)(&J = P) * (VW = +w)(f (x0) = 4)). (4.5) 

Because the property f(x) = q is halic, by Corollary 4.2 the formulas (4.4) and 

(4.5) are equivalent. Notice that the transfer (4.5) + (4.4) is nontrivial, as follows 

from a cardinality argument. 

Example 2 (A function criterion with additional conditions). 

Proposition 4.3. Let P(x, y) be an absolute halic and/or N-galactic property such 
that P(x, g(x)) holds for every x = +m and every standard continuous function 
g : R + R such that g(x) = +m for all x = +m. Then P(x, y) holds for all x = +w, 
y=+m. 

Proof. We first show that P(x, f(x)) holds for every x = +m, where f : I&! + R! is 

any standard function such that f (x) = +m for all x ^- +m. Indeed, let (x,, yn) be a 
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standard sequence such that x, = +m and y, =f(x,) for all n = +m. By choosing a 
subsequence, if necessary, we may assume that (x,),,~ is strictly increasing. Then 
the sequence may be extended to a standard continuous function g such that 
g(x) = +CQ for all x = +m. So the property holds for all (x, g(x)) such that 
x = +m, and in particular for all (x,, yn) such that n = +m. By Corollary 4.2 we 

have P(x, f(x)) f or all x = +m. Hence P(x, y) for all x = +m, y = +a by Theorem 

4.1. q 

It follows from the proof that the above proposition allows for many variations: 
the functions g may be supposed differentiable, Cm and/or monotonous, we may 
transfer to different products of N-halos, like {(x, y) ) x = 0, x > 0, y = 0, y > 0}, 

{(X? Y) I x = + 00, y = 0} etc. 
Let us give a few examples and applications. We leave the verification of the 

details to the reader. 
(i) Let f : R2+ R be standard. Assume that f is S-continuous on every set 

{(x, g(x)) 1 x = +m, stg : R + R, lim,, g(t) = +m}. Then f is S-continuous at 

every point (x, y) with x = +w, y = +w. 
(ii) If stf : R*+ R is limited at all x = +a along every standard continuous 

function g such that lim,,,, g(x) = 0, then f is standardly bounded on some box 
[A, ~0) x [-m, m] with stA and stm > 0. 

(iii) Let f : I$!*-, R be of class C* and G be the set of all functions f : IF! + R of 
class C2 such that g(0) = 0. Put q(y) =f(O, y) and $J&) =f(x, g(x)) for every 
g E G. Assume that 

Et’, 
q’(O) = O, CPU(O) < O, 
w;(O) = O, I&(O) < 0 for every g E G, 

then f has a maximum in (0,O). 

Two earlier papers contain results which may be considered as instances of the 
external function criterion. The first result [5] concerns the equivalence for 
standard functions of the notions of ‘asymptotic continuity’ and ‘macroscopic 
observability’. A real function F is said to be asymptotically continuous if for all 
real functions G such that G(X) -X for X + + CC we have F(G(X)) - F(X) for 
X+ +oo and F is said to be observable by macroscope if VW = +m the shadow of 
its image fo(x) = F(wx)/F( ) o under the substitution X = wx, Y = G(w)y is a 
well defined (single-valued) function on at least (0, m). Further, put H(X, Y) = 

F( Y)IF(X). A crucial step in the proof of the equivalence of the above two 
notions consists in showing that H(o, G(o)) = 1 for all o= + CC and for all 
standard functions G such that G(X) = (1 + 0)X for all X = +w if and only if 
H(w, Y) = 1 for all Y = (1 + 0)~. Another instance of the external function 
criterion in [5] concerned the proof that ‘asymptotically bounded’ functions, - 
i.e. functions F which satisfy the property that F(G(X)) = O(F(X)) for X+ +m 
for all functions G such that G(X) -X for X + +m - are of polynomial growth. 



88 I. P. van den Berg 

Special cases of the external function criterion also occur in [4], again to prove 
the equivalence of standard and nonstandard notions relative to standard objects. 
These notions concerned firstly a sort of asymptotic continuity for functions of 
two variables, and secondly a mathematical model for exponential contraction, 
relative to the optical ‘river-phenomenon’ appearing in phase portraits of 
differential equations. 

4.2. Monadic transfer 

In this last section we first recall the notion of monad. We show how in many 
cases absolute properties may be transferred from a given set to its monad. In 
some elementary, but fairly general cases we indicate how the monad of a set may 
be determined. Finally we give some applications within analysis and topology. 

Definition 4.1. Let stX and E c X be an internal or external set. The monad 
M(E) of E is defined by 

M(E)=n{kXIstS, EcS}. 

There are other occurrences of the terminology ‘monad’ within nonstandard 
analysis (see [20]), and the different notions should be well distinguished. The 
monad of a set E relative to a standard topology is the intersection of all standard 
neighbourhoods of E. The monad of a standard family 9 of sets (for instance a 
filter) is the intersection of all standard members of 3. 

Theorem 4.4 (Monadic transfer principle). Let stX and let H c X be a prehalo. 
Let P(x) be an absolute property. If P holds on H, then P also holds on M(H). 

Proof. Put E = {x E X 1 P(x)}. Then 

E = f-l U Cm 
stusu stvsv 

where stU,V and (Cuv)uE~,ve~ is a standard family of subsets of X. For every 
u E U, define 

G,,= lJ C,. 
SWEV 

Then H c G, for every stu E I/. By compactness, for every stu E U the prehalo H 

is covered by a standard finite number of the C,,,, so for every stu E U there exists 
a standard set A such that H c A c G,. By standardization there exists a standard 

family (A&U such that H c A, c G, for every stu E U. Then 

M(H+ n A,C n G,=E. 
stueu stueu 

Hence P holds on M(H). Cl 
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CoroUary 4.5. Let stX and H c X be a prehalo. Let P(x) be an absolute property. 

If there exists x E M(H) such that P(x) holds, then there exists x E H such that P(x) 

holds. 

To render the monadic transfer principle operational, we must have ways to 
determine the monad of sets, or to recognize those sets whose monad is a given 
absolute halo. The next propositions are useful in this context. They will be 
illustrated by various examples, where we concentrate on IF! and [w’. 

Proposition 4.6. Let stX and H c X be an absolute prehalo. Let G c H be a 

purely nonstandard pregalaxy. Then 

M(H\G) = H. 

Proof. Clearly M(H\G) c M(H) = H. Conversely, let V be an arbitrary standard 
set with H\G c V. Then H c V U G. It follows from compactness that there exists 
a standard set U such that H c U c V U G. Because G has no standard elements, 
by transfer we have U c V. So H c V. Hence H cM(H\G), because V was 
arbitrary. We conclude that H = M(H\G). 0 

Examples. Let E, o E R, where E ~0, E > 0, and o e +a. The following 
equalities are immediate consequences of Proposition 4.6. 

(1) M{x E R ( x = +m, x c w} = hal(+w). 

(2) M{(x, y) E R* 1 x ‘0, y ‘0, (xl, 1~12 E} = hal*(O) - (0). 

(3) ~([W2-{(~,y)(~St~,tE[W,~=E+~Ory=E+t})=~2. 

Proposition 4.7. Let stX and ~4 be a standard family of subsets of X. Put 

H=n{stA/AE&}, andletBE&. Then 

M(Hr-IB)=H. 

Proof. If B is standard, there is nothing to prove, so let us assume that B is 
nonstandard. Clearly M(H n B) c M(H) = H. Conversely, let V be an arbitrary 
standard set such that H fl B c V. By the finite intersection property there exists 
a standard finite set z c.& such that n {A IA EZ} fl B c V. Noting that 
n {A ) A E z} is standard there exists stC E J& such that n {A ( A E z} n Cc V, 

by transfer. So H c V and hence H c M(H n B). We conclude that M(H n B) = 

H. 0 

Corollary 4.8. (1) Let stX and ~-4 be a standard family of subsets of X. Put 

H=n{stA RAE.&}. A ssume that B E d is such that B c H. Then M(B) = H. 

(2) Let stX and (An)neN be a standard decreasing sequence of subsets of X. Let 

w=+m. Then 



90 I. P. van den Berg 

Examples. (1) Let w = +w. Then M([o, m[) = hal(m). This is an immediate 
consequence of Corollary 4.8(2). 

(2) Let w= +m, E = 0, E > 0. Then M([w, m[ x [0, E]) = hal(m) x 0+: this 
follows directly if we apply Corollary 4.8(l) to the family of rectangles 

{[a, m) x [O, 61 1 a, b ‘01. 
(3) Let X be a standard topological space and x E X. A neighbourhood U of x 

will be called infinitesimal if U is contained in every standard neighbourhood, i.e., 
U c p(x) where p(x) is the monad of x in the topological sense. Then 
M(U) = ,u(x) by Corollary 4.8. Note that by idealization every point has an 

infinitesimal neighbourhood. 

Finally, we give some applications. The first concerns a property which had 
already been observed by Robinson [17, p. 791. 

Proposition 4.9. Let f : R ---, K! be standard and w = +m. Zf f(x) = 0 for all 
x = +m, x < o, then f(x) L- 0 for all x = +m (and thus lim,,, f (x) = 0). 

The next proposition can be reduced to Proposition 4.9. 

Proposition 4.10. Let f, g : R + R’ be standard and w = +a. Zf f (x) = (1 + 0)g(x) 
for all x = +m, x < w, then f(x) = (1+ 0)g(x) for all x = +a (and thus 
f(x) -g(x) for x + +w). 

Proposition 4.10 constituted an important step in the nonstandard proof of the 
existence of ‘rivers’ as presented in [3] and [4]. Rivers are exponentially stable or 
unstable standard solutions of standard differential equations, and Proposition 
4.10 was notably useful in the unstable case. Indeed, using elementary geometric 
means it appeared to be possible to obtain a standard solution f(x) following 
asymptotically a certain standard function g(x) for all x = +m up to some 
w = +m, however, due to the unstability, it was not possible a priori to obtain 
asymptotic closeness for all x = + 00. Yet Proposition 4.10 enabled us to deduce 
the global asymptotic behaviour from the local asymptotic behaviour. 

The next application concerns topological monads. 

Proposition 4.11. Let X be a standard topological space. Let x E X and u(x) be 
the monad of X with respect to the topology. Let E be a standard or an external 
absolute subset of X such that E II u(x) # 0. Then x E Z?. 

Proof. Suppose x $ l?. Then there exists a neighbourhood U of x such that 
U fl E = 0. So U c EC and also U fl u(x) c EC. Now u(x) = M(U f~ u(x)) c EC by 
Proposition 4.7 and monadic transfer. So we have a contradiction. We conclude 
that x EE‘. 0 
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We obtain the following corollary. Let X be a standard &-space, and st.r E X. 
Then for every y E p(x) it holds that x E a&y). Indeed, we have x E p(y) by 
Proposition 4.11, and x $ p(y) because X - {x} is a standard neighbourhood of 

Y. 
The final application concerns the notion of ‘slow oscillations’. There are two 

very different formulations of this notion and we propose to prove their 
equivalence. The proof uses both the external function criterion and the monadic 
transfer principle. 

Definition 4.2 (Schmidt [Ml, Hardy [ 111). A real function f is called slowly 
oscillating if for all functions g with g(x) 2x for all x E R’ 

g(x) -x forx+ +a, 3 f(g(x)) -f(x) = o(1) forx-, +m. (4.6) 

Definition 4.3 (Bingham et al. [6]). A real function f is called slowly oscillating if 

By transfer, to show the equivalence of (4.6) and (4.7), we only need to 
consider standard5 We then prove that (4.6) and (4.7) are both equivalent to 

(Vo = +m)f((1+ 0’)o) =f(w) + 0. (4.8) 

An example of a slowly oscillating function is given by the function sin logx. This 
is perhaps shown in the most easy way using (4.8). 

Proposition 4.12. For standard f the formulas (4.6) and (4.8) are equivalent. 

Proof. Put 

h(x, Y) =f (y) -f(x). 

Then (4.6) is equivalent to 

(V”g)[(Vo = +m)(g(o) = (1 + 0+)w) 3 (Vo = +w)(h(o, g(o)) = a)]. 

(4.9) 

The equivalence of (4.8) and (4.9) is then a direct consequence of the external 
function criterion. 0 

Proposition 4.13. For standard f the formulas (4.7) and (4.8) are equivalent. 

Proof. The implication (4.8) 3 (4.7) is straightforward. Conversely, define the 
standard functions 47 and I/J by 

944 xl = $P, If (tx) -f (x)1, W(A) = limsup q(n, x). 
X’+m 
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Let A = 1, A 3 1. Then v(A) = 0 by the nonstandard characterization of the limit. 
So there exists 5 = +a, such that q(A., w) = 0 for all o 2 5. This means that 
f(to) -f(o) = 0 for all t E [l, A] and w 3 5. By monadic transfer (in fact, as a 
consequence of example (2) above) we have that f(m) -f(w) = 0 for all t = 1, 
t 2 1 and o = +w. Hencef((1 + 0+)0) =f(~) + 0 for all w = +w. 0 

Corollary 4.14. The characterizations (4.6) and (4.7) of slow oscillation are 
equivalent. 
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