7%
university of 5%,
groningen YL

R

University Medical Center Groningen

University of Groningen

Resampling U-statistics using p-stable laws
Dehling, Herold; Denker, Manfred; Woyczynski, Wojbor A.

Published in:
Journal of Multivariate Analysis

DOI:
10.1016/0047-259X(90)90057-O

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1990

Link to publication in University of Groningen/lUMCG research database

Citation for published version (APA):
Dehling, H., Denker, M., & Woyczynski, W. A. (1990). Resampling U-statistics using p-stable laws. Journal
of Multivariate Analysis, 34(1), 1-13. https://doi.org/10.1016/0047-259X(90)90057-O

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/lUMCG research database (Pure): http.//www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 04-06-2022


https://doi.org/10.1016/0047-259X(90)90057-O
https://research.rug.nl/en/publications/48de9d29-e47a-4ef7-8511-58caf9ad025f
https://doi.org/10.1016/0047-259X(90)90057-O

JOURNAL OF MULTIVARIATE ANALYSIS 34, 1-13 (1990)

Resampling U-Statistics Using p-Stable Laws
HEROLD DEHLING

University of Groningen, Groningen, The Netherlands,
and Boston University

MANFRED DENKER

Universitdt Gottingen, Gottingen, West Germany,
and Indiana University

AND

WOoOIBOR A. WOYCZYNSKI*

Case Western Reserve University

Communicated by the Editors

It is well known that symmetric statistics based on a kernel with finite second
moment have a limit law which can be described by a multiple Wiener-Ito integral.
However, if the kernel has less than second moments, no weak limit law holds in
general. In the present paper we show that by a suitable change of the empirical
process this process has a p-stable multiple integral as its limit.  © 1990 Academic

Press, Inc.

1. INTRODUCTION

In this paper we shall study the asymptotic distribution of symmetric
statistics of the form

—1
Gh=(1) T XYY (D)
1<i<

e <im<€hn
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where X, X,, ... are independent, identically distributed random variables,
and where Y, Y,,.. is another sequence of i.i.d. variables, independent of
the process (X,) and such that Y, i=1,2, .., belongs to the domain of
normal attraction of some p-stable law (Y,€ NDA(p)), pe(1,2). Such a
process, also called U-statistic in nonparametric inference, may be alter-
natively expressed in the form

I"(hy=n"—"" '[ . --fh(xl, oy X)) AF (%) -+ - dF (X,,), (1.2)

where

Fux):= Y 1{X,<x} Y. (1.3)

1<ign

n~""F_will be called the resampled empirical process, since it arises from
the classical empirical measure given by the random points X, .. X,
“resampled” by independent random weights defined by Y,,..7Y,.
Similarly, U,(h) is called the resampled symmetric statistic, “resampled”
from the usual statistic based on X, X;, ...

m

-1
(") T hX,. .. X,). (1.4)
1€i< <im<€<n

Integration in (1.2) is not to be extended over the diagonals. Alter-
natively, we may assume that s vanishes on all diagonals, ie.,
h(xy, s X,,) =0 if x, = x; for some i#j. Without loss of generality we may
always assume that the X;s are uniformly distributed on [0, 1] (see
Denker et al. [6]).

It turns out that the limit distribution of the resampled symmetric
statistics (1.1), properly normalized, can be represented as a multiple
p-stable stochastic integral of the form

P(h) = [+ [ A1, o ) dM(x,) - dM(x,), (1.5)

where {M(x), x>0} is a p-stable motion, i.e., a process with independent
stationary increments such that E[exp(irM(1))]=exp(—|t|?). (For the
notion of multiple stochastic integrals we refer to Rosinski and Woyczynski
[15], cf. also Kwapien and Woyczynski [10].) This development, roughly
speaking, parallels the results for Gaussian multiple integrals, but permits
handling U-statistics without finite variance. U-statistics—and resampled
symmetric statistics as a special case—form a backwards martingale [1]
when he L!. This implies the a.s. and L'-convergence of U,(h) towards
EWX,, .., X,)Y,---Y,. On the other hand, for degenerate &, (,,) U,(h) has
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a forward martingale structure. This property, together with a variance
estimate, gives the weak convergence to a multiple WienerIto integral in
the case of h having finite second moments. (This goes back at least to the
work of Filippova [8].) In the present case, without the second moment
assumption, to the best of our knowledge no weak convergence results exist
in the literature,

The extension of our results to von Mises functionals, i.e., integrals as in
(1.2) but including the diagonals, can be carried out by standard
arguments and will not be discussed here.

Probabilistic aspects of symmetric statistics have been studied recently
by several authors, e.g., the a.s. invariance principle is derived in Dehling
et al. [5], Nolan and Pollard {13] proved uniform a.s. convergence over
certain classes of kernels 4 and McConnell [12] provides a necessary and
sufficient condition for two-parameter convergence in the strong law of
large numbers for U-statistics.

In Section 2 we prove a continuity theorem, ie. an inequality for
integrals of the form (1.2) which shows that I’ is a bounded map from
L’([0,1]") > LYR) (r>p>q). This is augmented by some auxiliary
technical results on these integrals. Theorem 2.1 has an immediate applica-
tion to the bootstrap method showing that a.s. the bootstrap distributions
converge to the theoretical limit distribution. This proof also carries over
to the case of square integrable kernels, providing an easy argument for a
result in Bickel and Freedman [2].

In Section 3 we shall show that the resampled empirical process F, in
(1.3) converges weakly in the Skorohod topology to a stable motion M,
and, as a result, U,(h) converges weakly to I'"(h).

We do not know how to obtain almost sure approximations for U, (k)
as in Dehling er al. [5]. However, an invariance principle in probability
can be obtained (Section 4), extending the results of Section 3.

2. THE CONTINUITY THEOREM
With the same notation as in Section I we obtain:

THEOREM 2.1. For any g <p <r there exists a constant C=C(p, q,r, m)
such that

177 (M ey < C Al oo, 19m) 2.1)

Proof. Since the general case is similar, we consider only the case g=1.
Since 4 vanishes on the diagonals, it suffices to look at tetragonal sets in
order to estimate I7'(h).
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From the decoupling inequality (see Kwapien and Woyczynski [10],
especially Theorem 3.1 in Krakowiak and Szulga [9]) we obtain that

m Y,
I=|{IFW)| oy =E Y R(Xs o X)) =5 W W
I<ij< - <ip€n
Yy yim
<KELE,---E,, Y h(X,, Xim)nTlp' _n_;"E ,
1gij< - <igsn

where K denotes some constant, and where (Y(") .., (Y'™) denote m
independent copies of (Y;). Here E, denotes the expectation with respect
to (X;) and E; with respect to (¥{”).

Integrating w1th respect to E,, and using the properties of the p-stable
law we obtain the upper bound

Y Xy, X))

1€ij< v <inm

I\<_KEXE1---Emv1< Y

1<imsn

PN\P
3

yw oy

il im—1

I

so that, since r>p,

IsKEXEl--.Em_1< S Y k(X X,)
N Sip€n 1€i< - <ip
(1) (m—1)
)(Yil Ylm 1 1 \r
nlip nip n
=KELE,--E, | Y Y h(X,, . X;,)
1€ipsn 1€ < <im-1 <im
Y(l) Y(m 1)
nlip nlr Lim— V/n, im/n3 3 m U

Since L'(dx,,) (r>p) is of stable type p (cf, e.g., [17, p. 369]), we get the
bound

Y WX, X,)

1€ij< e Ciyy_2<im—1<im

p 1>1/P
Lr(dxm)

I<SK,ExE, --E,_ 2( Z
ISipm—1sn

(1) (m—1)

Yi1 Ylm 1

bl

Ui 1/ i

n™r nY
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sKlExEl'“Emz( ) Y WX, .. X))
1Sipa1€n 1€i< - <ig2<ip-1<im
(1) (m—2)
Yfl Yi:-nA2
x P Lein = tmim 1n) Xm—1)

: l[r,,,f l/n,i,,,/n](xm)

s
L(dxpm - llLr(dxm))>

where L'(dx; E) denotes the space of all functions f with values in a Banach
space E such that ||| f(x)|" dx < co. Since Lr(dx,,_,; L'(dx,)) is also of
stable type p [17, p.373], we can repeat the above procedure to obtain
finally, -

”I:,n(h)” LY(2) < CEX Z h(Xi1! ) Xi,,.)

1<ij< - <im<€n

: 1[;,_,/n,i,/n] (X)) - - 1[1’,,,7 l/n.i,,,/n](xm)
Lr(dxy; LM (dxg;..i L (dxm) -+ +)

1 i/r
=CEX< y 1,10, X,»m)l’n—;)

1€ij< -+ <ipsn
t/r
=C (j . j V(X o )| X - -dx,,,>
which is the required estimate. Q.E.D.

Below, in the proof of the invariance principle we will also need the
following maximal inequality which is an immediate corollary to
Theorem 2.1 and to the fact that U-statistics have the martingale structure.

COROLLARY 2.2. Letn=(n,,..,n,), and define

I2() = (g - ) ™2 [ [ Bty s X) A (3)) -+ A (). (22)

Then, for all t >0 we have

10 % go, 137

P{max |Ip(h)] > 1} <C—2

(2.3)

In the remaining part of this section we shall show how Theorem 2.1 can
be applied to obtain a.s. convergence of the bootstrap distributions. In the
case of square integrable kernels the analogue to Theorem 2.1 is well
known (e.g., [8]); consequently the short argument below together with
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the Hoeffding decomposition for multiple integrals give an alternative proof
of Theorem 3.1 in Bickel and Freedman [2].

Recall that X, .., X, are iid. random variables with uniform distribu-
tion function F. Denote by H,(t)=(1/n) 3. 1,4, <, its empirical distribution
function. Now, let X, .., X* be an iid. sequence of r.v.’s with common
pdf H,. If h is a symmetric kernel, then

s

im an(xi)

n_'"/”Zh(X,»,, vy X; )Yi,“‘ Yi,,, Z“ n*M/pJ‘.,_J.h(xl, eny xm)

i=1

(5.1)
and
nmmPY R(XE L XE)Y, Y

2 e [ R, o Hy o) T] dESx), (52)
i=1

where F,(t)=3 1,x,<. Y; denotes the resampled empirical process as in
(L.3).

THEOREM 2.3. If he L'([0, 1]7) for some r>p, then, with probability
one
d(L(I7(h)), LI7RH (), . Hy () -0,
where d denotes some metric for the topology of weak convergence of
measures, and where L(Z) denotes the distribution of the r.v. Z.

Proof. By Theorem 2.1 we have that

E L7 (h) = I (h(H 7' (-), o H ' C))N
SClh=h(H () o HI D rg0.03m-

If 4 is bounded the upper bound tends to zero by the Lebesgue dominated
convergence theorem since H,'—F “! as. Now, any h can be
approximated by bounded functions so that another application of
Theorem 2.1 gives the result. Q.E.D.

3. WEAK CONVERGENCE OF THE RESAMPLED EMPIRICAL PROCESS
AND SYMMETRIC STATISTIC

In this section we first prove weak convergence of the resampled empiri-
cal process to a p-stable motion. Applying the continuity theorem, we get
as a corollary the weak convergence of the resampled symmetric statistic.



RESAMPLING U-STATISTICS 7

THEOREM 3.1. There exists a p-stable motion M(t) such that
n~'"F - M (3.1)

weakly in D([0, 1]) with respect to the Skorohod topology.

Proof. We first show convergence of the finite dimensional distribu-
tions. For simplicity, we write out the proof only for d=2.
Let 0<s<t<1 be fixed and define

Jin)={i:1<i<nm X, <5}
Lm)={i:1<i<ns< X, <1t}
Then

n=VP(F,(s), F,(t) = F,(s))

=n_l/p<z Lixen Yo X Liecxsy Yi)

isn i<n
—1
(3 ¥ T ¥
ieJi(n) ieJy(n)

=n—”P(|J1(n)|”" L Y Y,

ieJy(n)

LI [Ty~ Y)

ieJy(n)

The two coordinates of this vector are conditionally independent given
(X;). Consequently, in view of Fubini’s theorem, it suffices to check that
each of them, conditioned on (X)), converges weakly to the required limit,

(X;)—a.s.

By the strong law of large numbers
n=t|J(n)| > s as.
n ') ->t—s as.
Therefore, by the assumption on (Y,),
nm Y ¥, M(1)s'r 2 M(s),

ieJy(n)
and

TS Y -2 M(1)(t— )Y 2 M(1)— M(s),

ie Jy(n)
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and thus
n=VP(F,(s), F(s)— F,(1)) > (M(s), M(t) — M(s)).

It remains to show uniform tightness of the process (n~'"F,). For this we
will use the following lemma of Skorohod [167:

LEMMA 3.2, Let {&(1):0<t<1} be a process with sample paths in
DIO, 1] and with independent increments. Denote

A*(e, 8) = sup min{ P(|(r) — &(2,)] > 6), P(1€(1;) = E(1)] > 6)}

and

4(c)=sup min{|&(r) — &(1,)], 1€(12) — (D)1,

where both suprema extend over all (1,1,,t,) with 0<t<1 and
t_C<t1<t<t2<t+C.

If 0 < c <1 satisfies A7(c, /20) < 1/4, then for any positive integer > 3/c
we have

P(A(1/1) > 3) < 10°4°(3/1, §/12)/c. (3.2)

Using this lemma we can argue as follows: Denote by P, the conditional
probability given (X;) = (x;) =x. Under P,, the process F, has independent
increments and we have that

Px( sup mln{|Fn(t)_Fn(tl)I3 |Fn(t2)—Fn(t)|}>6)

n<€rsn
la—nl<2/1
<10%~"  sup  min{P(|F,(1)— F,(1,)| > /12),
HEILKn
2=} < 6/1

P(IF,(1;) — F(1)| > 0/12)}

12\*
<K(—} sup (s 1),
(S |s —t} < 6/1
where K denotes a constant and where J,(s, f)={i<n:x;e(s, 1]}
Choosing é = 6'n'?, we obtain that

P( sup min{|F,(1)— F.(t,)], |F,(t2) = F(0)]} > 6'n"P)
n<i<n
lty— 1l <2/

1
<K-E sup -\|J,(s,8) -0 as [— o0, Q.E.D.

ls—e <61t
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Using an approximation of 4 by simple kernels we obtain as a corollary
to Theorems 2.1 and 3.1 the weak convergence of the multiple stochastic
integrals I7'(h). The details of this argument are the same as in the
Gaussian case [8,6].

TueoreM 3.3. If || Al 1rro,19m < © for some r>p then

IM(h) = I"(h) weakly as n — 0. (3.3)

4. AN INVARIANCE PRINCIPLE FOR THE RESAMPLED
SYMMETRIC STATISTICS

In this section we extend Theorem 3.3 approximating the integrals
n™PI™(h) in probability by multiple stable integral

mh Z,) :=j : j WXy, o X,) AZ,(X,) - dZ,(X,,),

where Z,, is a certain sequence of p-stable motions. Here Z,, plays the same
role as the Kiefer process does in the Gaussian case (see Dehling et al.
[5]). Z, can be written as a sum of iid. stable processes M, ie.,
Z,=%;<nM;, where each M, has the same distribution as M in
Theorem 3.1. We have the following properties:

) n"z,ZM
N ] (4.1)
(ii) {Z,—Z,_,:n>2}isaniid. sequence.

THEOREM 4.1. Let he L'([0,1]™), where r>p. Then there exists a
sequence {Z,(1):0<t<1}, n=1, of stable processes satisfying (4.1) such
that

n="e sup |k™e I (h) — I"(h, Z,)| — 0 (4.2)

k<n

in probability, as n — co.

Proof. Let m, = {0=so(k) <sy(k)<--- <si(k)=1} be a nested
sequence of partitions of [0, 1]. We first approximate 4 by simple functions
h* with sets of constancy being rectangles given by the partition =, satisfy-
ing

Il —R*), <ni L0
(4.3)
max |h*| <a, 1.
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For any process {X(s),0<s<1} we denote by 4“X = (4% X, .., 47 X) the
k-dimensional increment vector {X(s,(k}), X(s,(k)) — X(5,(k)), ... X(s5:(k))
— X(s4_,(k))} defined by the points of 7.

For the moment let k be fixed. Denote by {XV, Y\, i>1},., inde-
pendent copies of the basic observations {X;, ¥,:i>1}, and let F/ be the
corresponding resampled empirical processes. It has been shown in the
proof of Theorem 3.1 that 4*F*) converges weakly to 4*M. By Theorem 1
of Philipp [14, Corrigendum 1986] and by Lemma2 of Dudley and
Philipp [7] there exist i.i.d stable processes M “"( 1), j=1, having the same
distribution as M and satisfying n~ "7 max,, |4*F{*) — 4* Xic M®P|,
— 0 in probability. Here |-||, denotes the l Lnorm on R* ie, |x|,=
¥ i<« |x;]. Hence, there exists an integer n=ny(k) such that for all n=n,,

P {max

jsn

Ak}y}k)_dk Z M}k)

1<y

>ykn“"} <e (4.4)

where
Te=a; km2k (4.5)
Note at this point that (4.4) continues to hold if 4* is replaced by 4* for

any k <k. Now, we put £, =3 ,., no(/) and we define the basic observa-
tions X, and Y{(i>1) and the stable process Z in the following way:

For ie(ty, tip 1nZ:X;=X® Y,=Y® M=MP 46)
and Z,=) M, ‘
Jj<n
Next, we choose a sequence k(k) T oo such that
k. (k)/t,—0 as k— oo. (4.7)

For brevity, we introduce the following notation: If K= (k,, ... k,),
N=(n,, .., n,), let

T h) = oo [ HGe1s o ) T = Pl (48)

and
Ik,n(h) = I(k,...,k), (n,...,n)(h)'

(Note that I,,(h) differs from I™(h) by a norming constant.) Let
t,<n<t,,. Then, with t,=¢,,, we get

max n="" | j7P I (k) — I"(h, Z;)| T+ 11+ I+ 1V, (4.9)

Jjsn
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where

I=n""" max |j"PI7(h)—1, (h)|

K€j<€n

+n7 max |I"(h, Z) = I"(h Z,~ Z,),

<j<n

II = n~"" max j’"/” \I7(h)| +n =" max I"(h, Z))|

ALY AL

M =n""" max |I, (h—h")|+ max |[["(h—h*,Z,—~Z, )

sj<n n<j<n
IV=n="" max [I7 (h¥)—I"(h", Z;—Z,)\.
w<j<sn

We shall first treat I, II, and III using the inequalities of Section 2. A simple
computation shows that

L) =L W < S, oyt e )]+ mE2P I2(),

i=1

where e, is the ith unit vector in R” and 1=(1,..,1)eR™. Now
Corollary 2.2, together with (4.7), proves that

max n~ "7 | IM(h)—1, (k)] -0

<j<n

in probability as # — co. The same reasoning applies to the second term in
I and to II. Using (4.3) and Corollary 2.2 we obtain III - 0 in probability.
Hence, it only remains to deal with IV. We write

hk(xl 3 sy xm) = Z hi;,....i,,, l[s,l(x),s,'lu(x))(xl) te

X I[Sim(K).S[mH(K))(xm)a (410)

where, by (4.3), we have that |k, ,|<a,. Writing F, ,=F,—F, for the
sake of brevity, we obtain for any (11, wees by )y

max n~"7|[] 4F F, ﬂ 49Z,—Z,)
w<jsn I=1 =
< ¥ max |[[ n=YP(4}F, ;—A45(Z,—Z,))
Lo {t,..my xSisn| oy
cardL =1
x [[ n=7 max [4}{(Z,—Z,) (4.11)

1¢L n<j<n
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Each term in the last product can be estimated as follows: Let 7, <<
Then

p+ 1

—1/p K AKX —1/p K i)
n IAIthj AIZFK._i|<n ' |A Fno(k‘+l) A Zno(h+1)|
—1/p (x+ 1) (k)
tn ‘A Fno(K+’) 47 Zno(k+’)
~1/p (] K rz(p)
n TV AEF A5 Z W .

Hence, by (4.4) and the remark following (4.5) we have
1

— .27K+1
a.K

il

k
max n'? |A5F, ;—ATZ, |< Y, ;<
Jj=K

jisn

except on a set of probability less than 2~ *!/(a, k™). Hence, the left-hand
side of (4.11) is bounded by

2m(aKKm)~1 .2—;;/2

except on a set of probability less than ¢, = 2"m((a, k™)' 27 + C277*/™).
Using this last bound, together with (4.10) and (4.3) we finally get that

IV <2m2 72,

except on a set of probability less than .. Hence IV — 0 in probability.
Q.E.D.
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