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Communicated by the Editors 

It is well known that symmetric statistics based on a kernel with finite second 
moment have a limit law which can be described by a multiple Wiener-It0 integral. 
However, if the kernel has less than second moments, no weak limit law holds in 
general. In the present paper we show that by a suitable change of the empirical 
process this process has a p-stable multiple integral as its limit. 0 1990 Academic 

Press, Inc. 

1. INTRODUCTION 

In this paper we shall study the asymptotic distribution of symmetric 
statistics of the form 

U,(h)= n 0 
-1 

m c h(Xi, 9 . ..y X,) Yj, ’ ’ ’ Y,p (1.1) 
1Cil-z ci,in 
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where X,, X,, . . . are independent, identically distributed random variables, 
and where Y,, Y,,... is another sequence of i.i.d. variables, independent of 
the process (X,) and such that Y;, i= 1, 2, . . . . belongs to the domain of 
normal attraction of some p-stable law ( Yi E NDA(p)), p E (1, 2). Such a 
process, also called U-statistic in nonparametric inference, may be alter- 
natively expressed in the form 

z:(h) =Krn’P I I . . . h(x,, **., x,) dF,(x,). . .dF,(x,), (1.2) 

where 

F,(x) := c 1(X&x}. Y,. (1.3) 
ldi<?I 

n -‘IPF will be called the resampled empirical process, since it arises from 
the clissical empirical measure given by the random points Xi, . . . . X,,, 
“resampled” by independent random weights defined by Yi, . . . . Y,,. 
Similarly, U,(h) is called the resampled symmetric statistic, “resampled” 
from the usual statistic based on X,, X,, . . . . 

(1.4) 

Integration in (1.2) is not to be extended over the diagonals. Alter- 
natively, we may assume that h vanishes on all diagonals, i.e., 
4x,, . . . . x,) = 0 if xi = xi for some i #j. Without loss of generality we may 
always assume that the Xis are uniformly distributed on [0, l] (see 
Denker et al. [6]). 

It turns out that the limit distribution of the resampled symmetric 
statistics (l.l), properly normalized, can be represented as a multiple 
p-stable stochastic integral of the form 

r”(h) = j- j h(x,, . . . . xnl) ~~(x,)*~~~~(xm), (1.5) 

where {M(x), x > 0} is a p-stable motion, i.e., a process with independent 
stationary increments such that E[exp( itM( 1 ))] = exp( - 1 t 1”). (For the 
notion of multiple stochastic integrals we refer to Rosinski and Woyczynski 
[lS], cf. also Kwapien and Woyczynski [lo].) This development, roughly 
speaking, parallels the results for Gaussian multiple integrals, but permits 
handling U-statistics without finite variance. U-statistics-and resampled 
symmetric statistics as a special case-form a backwards martingale [ 1 ] 
when h E L’. This implies the a.s. and L’-convergence of U,(h) towards 
Eh(X, , . . . . X,) Y1 . . . Y,. On the other hand, for degenerate h, (z) U,(h) has 
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a forward martingale structure. This property, together with a variance 
estimate, gives the weak convergence to a multiple Wiener-It0 integral in 
the case of h having finite second moments. (This goes back at least to the 
work of Filippova [S].) In the present case, without the second moment 
assumption, to the best of our knowledge no weak convergence results exist 
in the literature. 

The extension of our results to von Mises functionals, i.e., integrals as in 
(1.2) but including the diagonals, can be carried out by standard 
arguments and will not be discussed here. 

Probabilistic aspects of symmetric statistics have been studied recently 
by several authors, e.g., the a.s. invariance principle is derived in Dehling 
et al. [5], Nolan and Pollard [ 131 proved uniform a.s. convergence over 
certain classes of kernels h and McConnell [ 121 provides a necessary and 
sufficient condition for two-parameter convergence in the strong law of 
large numbers for U-statistics. 

In Section 2 we prove a continuity theorem, i.e., an inequality for 
integrals of the form (1.2) which shows that Zz is a bounded map from 
L’( [0, 1-J”) + Lq(Q) (Y >p > q). This is augmented by some auxiliary 
technical results on these integrals. Theorem 2.1 has an immediate applica- 
tion to the bootstrap method showing that a.s. the bootstrap distributions 
converge to the theoretical limit distribution. This proof also carries over 
to the case of square integrable kernels, providing an easy argument for a 
result in Bickel and Freedman [2]. 

In Section 3 we shall show that the resampled empirical process F, in 
(1.3) converges weakly in the Skorohod topology to a stable motion A4, 
and, as a result, U,(h) converges weakly to r”(h). 

We do not know how to obtain almost sure approximations for U,(h) 
as in Dehling et al. [S]. However, an invariance principle in probability 
can be obtained (Section 4), extending the results of Section 3. 

2. THE CONTINUITY THEOREM 

With the same notation as in Section 1 we obtain: 

THEOREM 2.1. For any q <p < r there exists a constant C = C(p, q, r, m) 
such that 

IlCV)ll u(o) G C Ilhll~yp,1y). (2.1) 

Proof: Since the general case is similar, we consider only the case q = 1. 
Since h vanishes on the diagonals, it suffices to look at tetragonal sets in 
order to estimate Z;(h). 
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From the decoupling inequality (see Kwapien and Woyczynski [lo], 
especially Theorem 3.1 in Krakowiak and Szulga [9]) we obtain that 

I= IKVNI L’(R) = E c h(Xi,, .,., l<i,< <i,<rl 
Xi.& . . . .3L& 

y!” y!m’ 
<KE,E,...E, c h(Xii 7 ...T 

1Cil-c ci,Cn 
Xi.+. . . . .Lt-) n’/P 

where K denotes some constant, and where (Yil)), ..,, (Yi”“) denote m 
independent copies of ( Yi). Here Ex denotes the expectation with respect 
to (Xi) and Ej with respect to (Yij’). 

Integrating with respect to E, and using the properties of the p-stable 
law we obtain the upper bound 

I< KE,El... Z&,-I c h(Xi,, **.y Xi,,,) 
1 C il c < im 

x~. ,.. . y~z” “1 1/P y!” 1, 
nl/P &P 

I > n 

so that, since r >p, 

Z<KExEl~~~E,-l C I C h(X,,, ...T Xi,,,) 
1Cilc dim 

y!” 
11 

y?&‘) r 1 l/r 

XnllP”” .- - I 1 n’lP n 

=KExEl...E,-I c 
II 

c h(X, y .*.y Xi,,,) 
lgi,<n l$il< -zim-l<im 

Y!"  

x-. ... .~l,im~l,.i,n,(x,)/( 
11 . 

n’lP ,m 
L’(dXm) 

Since L’(dx,) (~>p) is of stable type p (cf., e.g., [17, p. 369]), we get the 
bound 

Y?’ P 
11 

yy; ” 1 UP 

XnNP. ... 
.A l,,- 

nl/P l/n,idnI .’ - I/ > Lr(dxm) n 
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. l,,- l/n,i&] (xm) 
II L’(d.Ym-l;L’(dx,)) h 

where L’(dx; E) denotes the space of all functions f with values in a Banach 
space E such that j Ilf(x)ll’dx< co. Since L’(dx,-,;L’(dx,)) is also of 
stable type p [ 17, p. 3731, we can repeat the above procedure to obtain 
finally, ’ I 

which is the required estimate. Q.E.D. 

Below, in the proof of the invariance principle we will also need the 
following maximal inequality which is an immediate corollary to 
Theorem 2.1 and to the fact that U-statistics have the martingale structure. 

COROLLARY 2.2. Let n = (n 1, . . . . n,), and define 

Z:(h) = (n, . . . . .r~,)-“~ s s 
. . . h(x,, . . . . x,) dF,,,(xl). . . dF,,(x,). (2.2) 

Then, for all t > 0 we have 

(2.3) 

In the remaining part of this section we shall show how Theorem 2.1 can 
be applied to obtain a.s. convergence of the bootstrap distributions. In the 
case of square integrable kernels the analogue to Theorem 2.1 is well 
known (e.g., [8]); consequently the short argument below together with 
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the Hoeffding decomposition for multiple integrals give an alternative proof 
of Theorem 3.1 in Bickel and Freedman [2]. 

Recall that X,, . . . . X, are i.i.d. random variables with uniform distribu- 
tion function F. Denote by H,(t) = (l/n) C 1 jX,S ,) its empirical distribution 
function. Now, let XT, . . . . X,* be an i.i.d. sequence of r.v.‘s with common 
pdf H,. If h is a symmetric kernel, then 

n-““xh(X, ,,..., X,)Yi;..Yim 2 n-“/p/-jh(x, ,..., x,) fj dF,(xi) 
i= I 

(5.1) 
and 

Crnjp 1 h(Xt, . . . . Xl*,) Y;, . ... . YLm 

9 =?I -m/p s s . . . h(H,‘(x,), .*‘y H,‘(xm)) fi dF,(Xi), (5.2) 
i=l 

where F&)=C ltx,,,) Yi denotes the resampled empirical process as in 
(1.3). 

THEOREM 2.3. Zf h E L’( [0, 11”) f or some r > p, then, with probability 
one 

d(~U;(h)), =WCYh(H,l(~), . . . . H,‘(4))))--4 

where d denotes some metric for the topology of weak convergence of 
measures, and where 2(Z) denotes the distribution of the r.v. Z. 

ProoJ By Theorem 2.1 we have that 

E IZ;(h)-Z;(h(H,‘( .), . . . . H,‘(.)))IY 

6C IV-W,‘C), . . . . H,1(4)l14,r,C,,,~,~~. 

If h is bounded the upper bound tends to zero by the Lebesgue dominated 
convergence theorem since H;’ + F-’ a.s. Now, any h can be 
approximated by bounded functions so that another application of 
Theorem 2.1 gives the result. Q.E.D. 

3. WEAK CONVERGENCE OF THE RESAMPLED EMPIRICAL PROCESS 
AND SYMMETRIC STATISTIC 

In this section we first prove weak convergence of the resampled empiri- 
cal process to a p-stable motion. Applying the continuity theorem, we get 
as a corollary the weak convergence of the resampled symmetric statistic. 
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THEOREM 3.1. There exists a p-stable motion M(t) such that 

n-‘~PF,+A4 (3.1) 

weakly in D( [0, 11) with respect to the Skorohod topology. 

Proof. We first show convergence of the finite dimensional distribu- 
tions. For simplicity, we write out the proof only for d= 2. 

Let 0 <s < t 6 1 be fixed and define 

J,(n)={i:1<i6n;Xi<s} 

J2(n)={i: lQi<IZ;s<Xi<t}. 

Then 

n-“P(Fn(s),Fn(t) - F,(s)) 

=n --I” 
( 

C ‘{Xi&s} yi7 1 l{s<X,<,) Yi 
i<n i<n ) 

The two coordinates of this vector are conditionally independent given 
(Xi). Consequently, in view of Fubini’s theorem, it suffices to check that 
each of them, conditioned on (Xi), converges weakly to the required limit, 
(Xi)--a.s. 

By the strong law of large numbers 

n-l IJ,(n)l +s a.s. 

n-’ IJ2(n)l -+ t-s as. 

Therefore, by the assumption on (Y,), 

and 

n-‘lP 1 Yi 3 M( 1)s”P 2 M(s), 
ie J,(n) 

n - VP 
c c-+ M(l)(t-s)“P 1 M(t)-&f(s), 

iE h(n) 
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and thus 

It remains to show uniform tightness of the process (n-l’PF,,). For this we 
will use the following lemma of Skorohod [ 161: 

LEMMA 3.2. Let {g(t) : 0 6 t < 1). be a process with sample paths in 
D [0, 1 ] and with independent increments. Denote 

Ap(c, ~)=su~min{P(I5(t)-T(t,)l>@, P(lt(tJ-t(t)l >S)l 

and 

A(c) = SUP mini It(t)- t(fl)l, It(b) - t(t)1 1, 

where both suprema extend over all (t, t 1, t2) with 0 < t Q 1 and 
t-cctt,<t<t,<t+c. 

If 0 < c < 1 satisfies Ap(c, 6120) < l/4, then for any positive integer 12 3/c 
we have 

P(A( l/l) > 6) < 103Ap(3/l, 6/12)/c. (3.2) 

Using this lemma we can argue as follows: Denote by P, the conditional 
probability given (Xi) = (xi) = x. Under P,, the process F, has independent 
increments and we have that 

P,( SUP min{IFJt) - F,(t,)l, IFJfd - F,(f)1 > > 4 
fl =s 16 f2 

112-111 <2/l 

< 103c-’ SUP min(P,(IJ’,(t) - f’Atl)l > W12h 
I,Gl<f2 

liz-f1/<6/1 

PxWn(~d-Fn(t)l >WW) 

SUP IJ,(& t)l, 
Is--rl<6// 

where K denotes a constant and where J,,(s, t) = {i< n : XiE (s, t]}. 
Choosing 6 = B’n”p, we obtain that 

P( sup min{ IF,(t) -J’,(tI)l, IF,,(b) - F,(t)1 > > d’n”P) 
11<1<12 

Ir?-rlla// 

<K.E sup L IJJS, t)l + 0 as I-00. 
Is--11s6/ln 

Q.E.D. 
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Using an approximation of h by simple kernels we obtain as a corollary 
to Theorems 2.1 and 3.1 the weak convergence of the multiple stochastic 
integrals I:(h). The details of this argument are the same as in the 
Gaussian case [8,6]. 

THEOREM 3.3. Zf Ilhll,rcCo,,,mj -c cc for some r > p then 

43h) + zv) weakly as n + co. (3.3) 

4. AN INVARIANCE PRINCIPLE FOR THE RESAMPLED 
SYMMETRIC STATISTICS 

In this section we extend Theorem 3.3 approximating the integrals 
n”‘“ZT(h) in probability by multiple stable integral 

F(h,Z,):=/...jh(x, )...) x,)dZ,(x,)...dZ,(x,), 

where Z, is a certain sequence of p-stable motions. Here Z, plays the same 
role as the Kiefer process does in the Gaussian case (see Dehling et al. 
[S]). Z, can be written as a sum of i.i.d. stable processes Mj, i.e., 
Z, = CjGn Mj, where each Mj has the same distribution as A4 in 
Theorem 3.1. We have the following properties: 

(i) n-‘lPZ, EM 

(ii) {Z, - Z,- i : it 2 2) is an i.i.d. sequence. 
(4.1) 

THEOREM 4.1. Let h E L’( [0, 1 I”‘), where r >p. Then there exists a 
sequence {Z,(t) : 0 < t < I}, n 2 1, of stable processes satisfying (4.1) such 
that 

nemlp ;:t lk”@Z;(h) - F(h, Z,)l + 0 (4.2) 

in probability, as n + co. 

ProofI Let 7rk = (0 = s,,(k) < s,(k) < ... < Sk(k) = 1 } be a nested 
sequence of partitions of [O, 11. We first approximate h by simple functions 
hk with sets of constancy being rectangles given by the partition K~ satisfy- 
ing 

max lhkl <akf. 
(4.3) 
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For any process {X(s),Odsdl) we denote by AkX=(d:X,...,d~X) the 
k-dimensional increment vector {X(s,(k)), X(s,(k)) - X(s,(k)), . . . . X($,(k)) 
- X(S,- ,(k))} defined by the points of 7ck. 

For the moment let k be fixed. Denote by {Xii’, Yj’), i 2 1 },> 1 inde- 
pendent copies of the basic observations (Xi, Yi : i > 1 }, and let FYI be the 
corresponding resampled empirical processes. It has been shown in the 
proof of Theorem 3.1 that AkFik’ converges weakly to AkA4. By Theorem 1 
of Philipp [14, Corrigendum 19861 and by Lemma2 of Dudley and 
Philipp [7] there exist i.i.d stable processes A4jk’(t), j >, 1, having the same 
distribution as M and satisfying n-‘lP maxjGn lIAkFjk’ - Ak Clsj Mjk)Il 1 
+ 0 in probability. Here lI.II, denotes the I’-norm on lRk, i.e., llxll r = 
CiGk [xii. Hence, there exists an integer n = n,,(k) such that for all n > n,, 

where 

yk = a;1kp”2-k. (4.5) 

Note at this point that (4.4) continues to hold if Ak is replaced by A” for 
any ?C<k. Now, We put tk =c IGk n,,(Z) and we define the basic observa- 
tions Xi and Y,(i > 1) and the stable process 2 in the following way: 

For iE(tk, tk+r] n,?! :xi=~Y)k)~,, Yi= Yl?,,, Mi=Mlk)tk’ 

and Z,= 1 M,. 

(46) 

j<n 

Next, we choose a sequence x(k) t co such that 

k,(k)/t, + 0 as k-+co. (4.7) 

For brevity, we introduce the following notation: If K= (k,, . . . . k,), 
N= (n,, . . . . n,), let 

and 

lk,n(h)=z,k ,_._, k),(n ._.., .@). 

(Note that Z,,(h) differs from Z”‘(h) by a norming constant.) Let 
tk<n<tk+,. Then, with t, = tK(k) we get 

max npmJP lj”‘“Z’“(Zz) - Im(Zr,Zj)l < I + II + III + IV, 
j < n 

(4.9) 
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where 

I = n-“@ max 
I, =a 6 n 

Ijm’pZy(Zz) - ZrK, ,(Zz)l 

+n-“lP 
max 

t,<jsn 
IZYh, zj) - ZYk zj-zt,)l, 

II = nPMIP max jmlp IZy(h)l + n-m’P max P(h, Z,)l 
j< f, is 1, 

III = nPmlp max IZ,K,,j(h - h”)l + max Ir”(h - h”, Zj- ZJl 
r,<j<n t,<j<n 

IV=n-“lP max lZ~,j(h”)-r”(h”, Zj-ZJ. 
r,<j<n 

We shall first treat I, II, and III using the inequalities of Section 2. A simple 
computation shows that 

where ei is the ith unit vector in I?’ and 1 = (1, . . . . 1)~ R”. Now 
Corollary 2.2, together with (4.7), proves that 

max KrnlP 
f, <i < n 

1 jm’“ZJ?(h) - Z,K, ,(h)l + 0 

in probability as n -+ 00. The same reasoning applies to the second term in 
I and to II. Using (4.3) and Corollary 2.2 we obtain III + 0 in probability 
Hence, it only remains to deal with IV. We write 

h”(x,, . . . . Xm)= C hi] ,..., i,,, ~[S~,(K),S,,+I(K))(XI). ... 
il,....im 

xl c%,cK).~,,+IcK,)(xm)~ (4.10 ) 

where, by (4.3), we have that Ihi ,.,.,, J < aK. Writing Fk,n = F, - Fk for the 
sake of brevity, we obtain for any (il, . . . . i,), 

max nmmlP 
t,<J’$?l 

fi A; f’tw,j- fi A;(Zj-ZtK) 
I= 1 I= I 

6 c max n n-“P(A;F,;r,,j- A;(Z,-ZrK)) 
L~L=,~~$ ‘,<JGn /CL 

x jJ n-‘lp max IA;(Zj-Z,Jj. 
I&L tk=Si<n 

(4.11) 
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Each term in the last product can be estimated as follows: Let t,, <j < t,, + , . 
Then 

np’lP Id;F, *. i-A;Z,h.il <npljP lA;F~,‘,+,,-A;Z~:,+,,I 
+n-‘/P IA~p+l) -A;z’“’ 

I nrJ(K+2) ?lo(ti+7) 
, 

+n-‘/P A”F’P’ 
1 i ~ I[1 -A;Z?“ 1 I-fp . 

Hence, by (4.4) and the remark following (4.5) we have 

max nllP IA~F~K,j-A;Z,K,jl < 5 Yj< 
j < n j=x 

except on a set of probability less than 2- Kfl/(uK~m). Hence, the left-hand 
side of (4.11) is bounded by 

2m(a,Km)-’ .2-K/2 

except on a set of probability less than E, = ~‘%((u,K~)-’ 2-” + C2-p”‘“). 

Using this last bound, together with (4.10) and (4.3) we finally get that 

IV < 2”2 - K/2, 

except on a set of probability less than E,. Hence IV -+ 0 in probability. 
Q.E.D. 
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