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Interval Estimates for Posterior Probabilities 
in a Multivariate Normal Classification Model 

A. W. AMBERGEN 

Centre for Mathematics and Computer Science, 
Amsterdam. The Netherlands 

AND 

W. S~HAAFSMA 

University of Groningen, 
Groningen, The Netherlands 

Communicated by P. R. Krishnaiah 

This paper is devoted to the asymptotic distribution of estimators for the 
posterior probability that a p-dimensional observation vector originates from one of 
k normal distributions with identical covariance matrices. The estimators are based 
on training samples for the k distributions involved. Observation vector and prior 
probabilities are regarded as given constants. The validity of various estimators 
and approximate confidence intervals is investigated by simulation experiments. 
0 1985 Academic Press, Inc. 

1. INTRODUCTION 

Suppose that an observation x comes from one of k populations 17,, 
h = l,..., k, which are characterized by p-dimensional multivariate normal 
distributions with equal covariance matrices. Accordingly let fh denote the 
p.d.f. of N&U,,, C), h = l,.,., k. The parameters p1 ,..., pk, Z are unknown. 
We assume that past experience is available in the form of outcomes of 
independent random vectors X,,, ,..., Xhnh, h = l,..., k, X,,i having density f,,. 
Let ph denote the prior probability that the observation comes from Z7,, 
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h = l,..., k, Cf= i P,, = 1. For p1 ,..., Pk and x given, the posterior 
probabilities 

t = l,..., k (1.1) 

are considered as unknown parameters which are to be estimated from the 
training samples. 

Let R. ,X = (R,,, ,..., Rk,X)T denote any of the estimators for P.,~ = 
(P llx?--? P!J to be defined in Section 2. We shall prove that 
n’/‘(R ,X - p ,s) is asymptotically normal with expectation zero and a 
singular dispersion matrix. Application to practice requires that the 
unknown parameters in the asymptotic covariance matrix are replaced by 
suitable estimates. The diagonal elements of the obtained estimated 
asymptotic covariance matrix provide the means of constructing 
asymptotic confidence intervals for the posterior probabilities separately. 
The whole matrix is needed if one wants to apply a Scheffe-type method for 
judging linear combinations. Pairwise comparisons might be treated by 
applying theory for the case k = 2 where certain exact moments can be 
exploited (see, e.g., Schaafsma and van Vark [8]). The main purpose of 
this paper is to present the asymptotic variances and covariances of the 
R+‘s as means of expressing the involved uncertainties. 

Most of the literature about estimating posterior probabilities deals with 
the case k = 2. The case p = 1, k = 2 is considered in Schaafsma and van 
Vark [7]. The case p 3 1, k = 2 can be found in Schaafsma and van Vark 
[8]. In Ambergen and Schaafsma [2] the extension to p 2 1, k 2 2, with 
no assumption about the equality of covariance matrices, is considered. 
Apart from the “estimative” methods used in this paper the “predictive” 
method of Geisser [3] has been discussed in the literature. Aitchison, Hab- 
bema and Kay [l] is a comparison of the two methods. McLachlan [4] 
studies the bias of sample based posterior probabilities. McLachlan [S] 
compares the bias of classical plug-in estimators with that of predictive 
estimators. Rigby [6] constructs credibility intervals for the posterior 
probabilities in order to compare the estimative and predictive estimators. 

2. DEFINITION OF THE ESTIMATORS 

The densities of the populations are given by 

fh(x) = 12d\ - “* exp( -fd$h), h = l,..., k 

where 

(2.1) 

(2.2) 
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i h=l 
(2.3) 

For k = 2 it is useful to rewrite (2.3) as 

hlx= Cl +P~-~P? exp~~(~~;,-~,;,-,)}l-‘, t = 1, 2 (2.4) 

because then an approximate confidence interval for p,,, can be obtained 
by transforming the approximate confidence interval for A$, - A& _ , based 
on exact moments (see Schaafsma and van Vark [8] and Rigby [6], who 
used a similar approach in a Bayesian context). 

Let X,, denote the mean of the hth sample and S the pooled matrix of 
cross-products: 

&=?I;’ 2 Xhi, s= $ f (x,i-x,)(x,,-x,)‘. (2.5) 
i=l h=l i=l 

It sometimes happens that extra samples are available for estimating C. 
Therefore, instead of S- W’,(n -k, C) where n = Mini, we shall work with 
+ w&L 0 

The maximum likelihood estimator R$‘.J for pIIX is obtained by plugging 
in the estimators X, for pub and (f+ k) - ‘S, for Z. Three other estimators 
R$ (j= 1,2, 3) for pIIX are obtained by plugging in unbiased estimators for 
various parameters in (2.2) and (2.3); with the notation 

v’;,=(x-&)cs/yx-&) (2.6) 

we get the following estimators for A’$,: 

a;!,“’ = (f + k) v$$ 

a:$ ) = j-v$$ 

Jf!;’ = (f - p - 1) q;h 
(2.7) 

i&y= (f-p- 1) I,-$$- pn,’ 

where the last three are based on ESf= fZ’, ES,- * = (f -p - 1) - ‘Z - ’ and 
Ecih = (f - p - 1) - ‘A& + n; ‘(f - p - 1) - ‘p, respectively. By plugging 
into (2.3) we obtain the estimators 

RIl!=p,exp(-f~~~~)~~~p,exp(-~d:1:I) (t=l,...,k; j=O,...,3). 

(2.8) 



ESTIMATING POSTERIOR PROBABILITIES 435 

3. THE ASYMPTOTIC DISTRIBUTION OF THE ESTIMATORS 

All estimators for AZ+,, suggested in Section 2, are asymptotically 
equivalent. In this section it is therefore suffficient to focus on ff?.,. The 
corresponding estimator R,,, = Rj;J for pIIX has the same asymptotic dis- 
tribution as each of the other estimators R$ (j=O, 2, 3). (R,,,,..., Rk,JT is 
asymptotically effkient and the asymptotic covariance matrix follows from 
Fisher’s information matrix. Elaborating on this and related principles we 
have to consider the inverse Wishart distribution. 

LEMMA 3.1. If Wf- W,,(f, C) rhen 

.Yf “*(f - ’ vec( Wf) - vet(C)) + N,z(O, A) 

and 

Yf “*(f vec( WY I) - vec(Z ~ ‘)) -+ N,z(O, B) 

with 

B,, 
rJkl 

= aikail + ailaik 

(3.1) 

(3.2) 

where we use the notations M,, = M,,- l,P + i,o- ,jP + k for M a p2 x p2 
matrix, aii= C,, aii = (F’),, and vet(A) = (a:,..., a:)’ where ai is the ith 
column of A. 

Proof Equation (3.1) is an immediate consequence of the multivariate 
central limit theorem. Equation (3.2) follows from the h-method: 

The proof is completed by using 

aaii 
ia fij 

a(r,,=-” a. 

LEMMA 3.2. Zff + co, n,Jf + b,, > 0 (h = l,..., k), c = (P$ ,..., vYR,;+) and 
42, = (A$, ,..., A$k)T then 

Tf “*(px - A:) + N,(O, r) 

where r is determined by 

(3.3) 

rh.,, = 4&h + 24 

rh.r=2((x-llh)r~-1(X--,1)}2, h # t. 
(3.4) 

6X3 I6 3-11 
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Proof: The independent random variables X1,..., X,, S, satisfy 
f1’2wh - P/J + ip N,(O, b;‘C) andf”‘(fSy’ -Z-l) +% N,z(O, B) where B 
is defined in Lemma 3.1. Consider the partial derivatives 

aA2.. 
3 zz -2,z - 1(x - &) 6,, 

allj 
i, j = I,..., k 

and 

g&(X-p&-&, i = l,..., k; LX, /I = l,..., p (3.6) 

where 6, = 1 if i = j and = 0 if i # j. The S-method gives 

and 

Equation (3.4) follows by simple computation. 

THEOREM 3.3. If f-co, wf -, b,>O (h = l,..., k), 

(R llxr..., &,,)Tand P. I.x = (P~,.~,..., pklxlT then 

9f “‘CR. ,.y - P ,x1 -+ N,(O, ‘YTW 

where r is determined by (3.5) and Y by 

y,,, = ~PP,,,A -1 + Pl,,) 

yt,, = iP,,.xPh,.v t # h. 

(3.5) 

(3.7) 

(3.8) 

R /* = 

(3.9) 

(3.10) 

Proof: With the &method where Y is the matrix of partial derivatives. 

4. FOUR METHODS To CONSTRUCT CONFIDENCE INTERVALS 

An approximate lOO( 1 - a)% confidence interval for ptlX is given by 

[ R’J’ fly - ;L$, RI/; + +L$], j = 0 ,..., 3 (4.1) 

where R$ has been defined in (2.8) and 

q: = %1,2h 
f- l/2{ ( tj3(j)$(i)@i))t I} 112 (4.2) 



ESTIMATING POSTERIOR PROBABILITIES 431 

with u(li2)a defined by P (iJ> u~~,~)J = z Ia if U has a standard normal dis- 
tribution. The estimators P(j) and @(j) for the corresponding parameters in 
(3.4) and (3.10) are obtained by plugging in the estimators R$ for P+, 

in (3.4) is estimated 
6”‘=f+ k, b”‘=f, 

= c(l) = c(2) = 0 and ~(3) = -pn, 1 d,, 

5. SIMULATION EXPERIMENT 

An overall comparison of small sample performance of the estimators 
R$ and the approximate confidence intervals R$! +_ tL$ (j= O,..., 3) is 
rather complicated because the performance depends on the very large 
number of parameters 

where t indicates the number of the density from which the score vector has 
been drawn. We selected 500 parameter points for the simulation 
experiment, and we did the following for each point: compute pfiX, generate 
1000 times a set of training samples and compute each time Rvi, L$ 
(j = O,..., 3). Count the number of times the interval contains the true value 
ptlr and divide this number by 10, so that it can be compared with the 
value lOO( 1 - a). The 500 points were grouped into 25 clusters of 20 points 
each. Within a cluster only the x vectors differ because they were drawn 
independently. For the points within a cluster the same training set was 
used. We made the restrictions t = 1, a = 0.05, p1 = O,, C= Ip, p,, = k-l 
(h = l,..., k) and considered only p l,X which is the most important, because 
largest, posterior probability. For each cluster we averaged the results of 
the 20 points. These averaged results with their standard deviations are 
presented in Table I; a cluster corresponds with a row in the table. In order 
to get a nice layout of the table we introduce the following notations: 

n = (nl ,..., nk); p = bl ;-; pk); 

a=(O,O,O,O)=; 6=(2,0,0,0)T; c = (0, 2,0, oy; d= (1, 1, 1, l)T 

e=(l, l,O,O)T; f=(O,0,2,O)T; g = a 0, 0,2Y; h=(O,O, 1,‘l)T 

l,= (1, 1, 1, 1); 1, = (14; 14); m4 = (0, LO, 1); m8 = (m4; m4). 

Bias, mean square error (m.s.e) and mean absolute deviation (m.a.d.) of the 
point estimators RI{; (j = 0 ,...> 3; t = 1) were also studied. 
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TABLE I 

The Reliability of the Confidence Intervals 

Input parameter values for the 
clusters 

Averaged confidence coeflkients with stan- 
dard deviations for the four procedures 

P. k P n j=O j=l j=2 j=3 

p=4 
k=4 
/I = (abed) 

p=4 
k=8 

P= 
(ab . gh) 

p=8 
k=4 

p=8 
k=4 

p=8 
k=8 

P= 

50.14 92.0 2.0 92.8 1.8 93.3 1.6 93.0 1.6 
50.14 - 25m4 90.8 2.6 91.8 2.3 92.8 1.9 92.3 2.0 
251,+25m, 90.1 2.9 91.2 3.0 92.1 2.7 91.6 2.4 
25.14 88.9 3.2 90.6 2.7 92.0 2.1 91.4 1.9 
15.14 84.3 4.5 87.2 4.1 89.7 3.4 88.4 3.2 

50.1, 92.4 2.2 93.1 1.7 93.3 1.4 92.9 1.2 
50.1, - 25ms 92.3 2.2 93.1 1.4 93.4 1.1 92.4 1.2 
25.1 s + 25ms 90.0 3.0 91.8 2.3 92.2 1.8 91.7 1.5 
25.1s 90.5 3.3 91.6 2.3 92.2 1.6 91.3 1.3 
15.1s 87.7 4.8 89.8 3.3 90.0 2.2 89.4 1.6 

SO.14 88.7 1.6 89.3 1.5 90.9 1.5 90.4 1.6 
50.1,-25m4 87.0 2.4 87.9 2.2 90.0 2.1 89.4 1.9 
25.1, + 25m4 86.3 2.4 87.5 2.2 89.6 2.0 89.1 2.0 
25.1, 83.4 2.4 85.0 2.2 88.2 2.3 87.2 2.3 
15.1, 76.2 4.0 78.7 3.8 84.8 3.3 83.1 3.3 

50.1, 86.4 2.3 88.0 2.1 91.4 2.1 91.1 2.7 
50.1 4 - 25m4 83.8 2.5 86.0 2.4 90.4 2.8 90.5 3.1 
25.1., + 25m, 84.4 2.6 86.2 2.7 90.3 3.5 89.2 3.2 
25.1, 80.2 2.7 83.3 2.8 89.0 4.4 88.6 4.6 
15.14 73.3 3.8 77.5 4.3 86.5 6.3 85.6 6.7 

50.1, 89.4 2.2 90.0 1.8 90.8 1.4 90.3 1.4 
50.1 s - 25m, 89.1 2.1 90.0 2.1 90.9 1.6 89.4 1.7 
25.1, + 25m, 85.9 3.1 86.7 2.6 87.9 1.9 88.2 1.7 
25.1, 85.0 4.2 86.6 3.2 88.0 2.3 87.3 2.2 
15.1, 79.2 5.2 82.0 3.6 84.8 2.8 83.5 2.6 

CONCLUSIONS 

For the chosen parameter points we conclude that the m.1. estimator R$ 
has smaller bias, smaller m.a.d. and smaller m.s.e than its competitors, at 
least on the average. Table I shows that the confidence intervals forj= 1,2 
and 3 are slightly more reliable than those based on the m.1. estimator 
(j= 0). Sample sizes should certainly not be smaller than 50 (25) if one 
requires that the true confidence coefficient of the interval based on the m.1. 
estimator and 1 - a = 0.95 should not be smaller than 0.90 (0.85). 
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