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MATHEMATICS Proceedings A 86 (2), June 20, 1983 

The formal classification of linear difference operators 

by C. Praagman* 

Department of Mathematics. Groningen University, the Netherlands 

Communicated by Prof. T.A. Springer at the meeting of November 25, 1982 

ABSTRACT 

A Jordan canonical form for formal difference operators, like the one in (71, is derived in a way 
inspired by [3], [4]. This yields a classification of meromorphic difference operators in a neigh- 
bourhood of infinity, up to formal equivalence. 

INTRODUCTION 

Let u(z) be an m-dimensional vector function, meromorphic in a full neigh- 
bourhood of infinity. T is the operator defined by: Tu(z) = u(z+ 1) -A(z)u(z), 
where ,4(z) is a square m x m matrix function, meromorphic in the same region. 
In [7] H.L. Turritin proved that by a formal basis transformation T may be 
brought into the following form: To(z) = D(Z + 1) - B(z)u(z) where 

B= diag {B,, . . . . Br}, Bi=$i(biIi+$J,), iiE$ Z, 

with bi a polynomial of degree m ! in z-“~!, bi(0) # 0, for i = 1, . . . , r’; bi = li = 0 
for i=r’+ 1, . . . . r; and Ji the matrix: 

*Research supported by the Netherlands Organization for the Advancement of Pure Research 
(Z.W.O.). 
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In the same paper he proved an analogous result for differential operators. 
Recently several authors have proved these last results by entirely different 
methods: Levelt [3], Malgrange [4] and Robba [5]. Levelt’s method is the most 
complete, since it also yields uniqueness properties. As will be explained in 0 7, 
his method does not work for difference operators. In this paper I shall prove 
the result mentioned above, by Malgrange’s method, and some uniqueness 
statements in a way inspired by Levelt’s. 

Just before I finished this paper I received a preprint from Duval [2], in 
which she proves Turritin’s theorem by the method of Robba. 

The problem treated in this paper was suggested to me by professor van der 
Put, whom I would like to thank for all the inspiring discussions we had on the 
subject. 

$1. PRELIMINARY REMARKS AND NOTATIONS 

For the moment assume A(z) is invertible, and consider A - ’ T instead of T. 
Substitute t = (1 /z). Then A - * T transforms into an operator defined by: t u’(t) &T(t)22 - ( > t+1 

-u’(t). 
Denote by @ the operator @u(t) =A(t)u(t/t + 1). Then @(au)(t) = a(t/t + I)u(t) 
for all meromorphic functions a. I shall call @ a difference operator in the 
sequel, and my aim is to find a special matrix representation for @. 

I shall use the following notation: 
b= C[[t]] = ( C E,-, fit’ Ifi E C}, the ring of formal power series; 
K= C((t)), the quotient field of 8; 
u : 0-, N U (0) is the additive valuation defined by u( 2 ,Ei fit’) =j if fi #O. 

o extends in a unique way to a valuation on K, and even to a valuation on K, 
an algebraic closure of K. This valuation will still be denoted by o. As is well 
known the field of Puiseux series over C is an algebraic closure of K. With the 
usual abuse of notation I shall write R= UQE M C((W)). L will be an algebraic 
extension of K, contained in R. In general I shall write L = C((s)), with sq = t, 
and BL=C[[s]], the valuation ring of L. 9: K+K is the Gautomorphism 
defined by 9(t) = (t/t + 1). Then 9 extends to a Gautomorphism of R by 
defining for all 4~ N: 

Vis an m-dimensional linear space over K. We denote by @ : V-* Va difference 
operator, i.e. a C-linear map satisfying @(au) = 9(a)@o for all a E K, o E V. If L 
is an extension of K, then the map 9@ @ : L aK V-+L & V will still be denoted 
by @. 

K[X, 9,0] is a skew polynomial ring over K. Its elements are polynomials in X 
over K, which add in the usual way. The multiplication is non-commutative: 
Xa = 9,(&Y for all a E K. 

250 



Define a left K[X, 9,0]-module structure on V by Xu = Qio for all o E I’. Note 
that R&V becomes a K[X, 9,0]-module in this way. 

In general one may define a skew polynomial ring K[X, 9, s] as the set of 
polynomials in X, with coefficients in K, with the (non-commutative) multipli- 
cation Xu = 9(a)X+ 6(a), for all a E K. Here 9 is a C-automorphism of K, and 6 
a y/-derivation, i.e. a C-linear map satisfying 6(ab) = 9(&I(b) + 6(u)& as one 
may derive from X(ub) = (Xu)b. Now if 19: I’+ V is a C-linear map satisfying 
6(uu) = 9(u)& + 6(u)o, then 8 defines a K[X, 9, &module structure on V. In the 
sequel I shall use the following result: (Cohn [l, p. 67, 2991). 

K[X, IJI, s] is Euclidean with respect to the degree function, and every finitely 
generated module M over K[X, v/, s] is the direct sum of cyclic submodules. 

Note that this implies that Vis the direct sum of subspaces invariant under 19, 
each having a basis of the form (u, Bu, &J, . ..). i.e. containing a cyclic vector. 

$2. THE NEWTON POLYGON ASSOCIATED TO A DIFFERENCE OPERATOR 

In this section assume that the difference operator @ : Y+ Vis invertible, and 
induces the structure of a cyclic K[X,9,0]-module on I’. This implies the 
existence of a (clearly non-unique) PE K[X, 9,0], say P= u,Xm + . . . + UO, with 
a, #0, uo#O, such that VnK[X, 9,00]/(P). Define the Newton polygon of P in 
the following way (slightly different from [3]): Associate to ui the half-line in 
lR* : x= i, y 5 o(uJ. Then N(P) is the convex hull of the union of the half-lines 
associated to UO, . . . , a,,, . Number the non-vertical edges from left to right: 
Al, -**, /I, and define & as the slope of ni. Then - UJ < Izi . . . < A,< QD. If 
necessary I shall indicate the dependence on P by writing Ai( 

In the same way one defines a Newton polygon for elements in an extension 
L[X, 9,0], denoted by NL(P) if necessary. The same arguments as used in [3] 
lead to the following properties: 

i) If P= QR, then N(P) = N(Q) + N(R), (Ai( = {&(Q)} U { Ai(R 
ii) P is in a natural way an element of K[X, 9,0], and NR(P) = Nx(P). 

iii) Substitution of Y = tflX, p E GJ yields a polynomial PI E R[ Y, 9,0]. 
N(PI) is obtained from N(P) by rotating the lower edge of N(P) by an angle a, 
with tgcw = - p, around (0, I). Then Ai = A,(P) -p. 

REMARK. Note that these properties do not depend on the particular form of 
9. In 0 9 I shall use this definition and these properties for arbitrary I. 

5 3. A HENSEL LEMMA FOR SKEW POLYNOMIAL RINGS 

B[X, v/,4 is the subset of K[X, 9, s] consisting of all polynomials with coeffi- 
cients in d If P E B[X, 9,6], P may be written uniquely as C 0” t’Pj, Pj E C[a. 
Note that Satz IV of [6] implies that ty(B)c 8, or even u/(t) = tyot +ut*, with 
v. E C*, u E & In general, however a(0) Q 8, so 0[X, 9, s] is a ring only with the 
additional condition d(t) E 8. 
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LEMMA 1. Let v/ be as above, and assume a(t)‘= &t + bt2, & E G b E & Let P 
be a manic polynomial in U[X, w, 4. Suppose PO = qr, q and r manic poly- 
nomials in c[x]. Further let the following condition be satisfied: If a is any root 
ofr then ~i~a-6~ C,!b-’ I&” is not a root of q for all integers k. 
exis; manic polynomials Q and R E B[X, w, s] such that: 

Then there 

i) P=QR, 
ii) Q0 =q, R0 =r. 
Moreover Q and R are unique, and one has an isomorphism of left modules: 
KK w WV’) ~K[X, K MQ)OK[X w, W(R). 

PROOF. Write Q = C t’Qj and R = C tjRj and try to find Qj and Rj inductively. 
Define qk = (tWkQtklo, then qk E C[X’l, and from (X- a)tk = y(tk)X+ d(tk) - 
- atk =tyotk(X-a)+&, c tpfi+tk+*&, with $EB[X,y1,6], it follows that qk 
and r are relatively prime for all integers k. The equation for Qk and Rk 
becomes: Qkr + qkRk = Pk + expression in the coefficients of Qc, RO, Q1, . . . , Rk _, . 
This equation has a unique solution Qk, Rk E 6=[x], with degree Qk < degree q, 
degree Rk< degree r. In this way one finds by induction on k: 

i tjPj = ( i tjQj)( i tjRj) mod tk+ ’ . 
j=O j=O j=O 

Letting k-r oo one finds a unique solution Q, R E B[X, v, s] such that i) and ii) 
are satisfied. The proof of the last assertion is identical with the proof of the 
analogous statement in (31, and will be omitted here. 

$4. DECOMPOSITION OF V ACCORDING TO THE NEWTON POLYGON 

Let @, V, P, N(P) be as in 0 2. Without loss of generality one may assume 
that a, = 1. Then one may find a decomposition of P into polynomials of lower 
degree in an extension of K[X, p, 01, each having a Newton polygon with one 
slope; corresponding to this there exists a decomposition of V into subspaces 
stable under @. 

THEOREM 2. There exists a finite extension L of K, say L = C((s)), SQ = t, such 
that 

P= fl PU, with Pij=pii( fl (tAi-‘-aii+ciih)+PG), 
ii h=l 

where 

i) L&V= @ vii, Vi,aLIX,~,O]/(Pti), 
ii 

ii) q(m!. 
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PROOF. By induction on m = dimK V= degr P. If m = 1 the theorem is trivial, 
so assume that m > 1, and that the theorem is proved for all m’c m. 

Iz,, the slope of the last non-vertical edge /i, of N(P) is rational, say 
&=(1,/q,), with q,E{l,..., m}, g&l,, qr) = 1. Substitute Y= &X, then the 
resulting polynomial P= tQ&) . . . pm-‘(&)PeL,[Y,(p,O], where [L,: K] =qr. 
Put P= Yrn+b,-,Y”-‘+ . . . +&. Then N(P) has slopes Xi=ni-A,lO, SO 

P E BL,[ Y, cp, 01, and since & = 0 we have 

Fob= Ym+bm-l(0)Ym-l+... +b,(O)Y”, with b,(O)#O, Osn<m. 

Consider the following argument: 
(A) &, =&. Y”, where PO is a polynomial in Y9r. Then & splits into qr+ 1 
factors, which are relatively prime, and hence lemma 1 assures that P splits into 
qr+ 1 factors, one of degree n, with slopes x1, . . . . Ir- 1, and qr of degree 
(m - n)/q, with slope A, = 0. 

If n > 0 or qr > 1 then (A) reduces the rank and the induction hypothesis leads 
to a proof of the theorem. So suppose qr = r= 1 (implying n = 0 and L, =K). 

If & splits nonetheless, m is reduced again, so assume moreover: &, = (Y - u)~, 
aeC*. Define Y, =(1/t) (Y-a), then &Y)=@(t) . . . @‘-‘)(t)P1(YI), with 
PI E K[ Y,, p, 6], 6 = (a/t)(u, - 1). Now consider N(P,). Let &,(P,) have the same 
meaning for PI as A,(P) for P. 
1) If I.(P,)<O, then PI = r+t(...) and hence P=p((l/t)Y-(a/t))m+t(...). 
2) If A,,(P1) >O, it is necessarily not an integer, since the construction implies 
L, < 1. Hence one may apply the argument (A) onto P, . 
3. If &(P,) = 0, then P, E B[ Yr, q, s] and 8(t) = at + higher order terms. If (Pl)o 
splits into factors which satisfy the condition of lemma 1, then the rank is 
reduced, leaving 

P,= fi (Y,-p+c,)+t(...), withchE:aB. 
h=l 

Hence 

P=p fi t”r-IX-q-B+c,, + t(...), with c,,eaH. 
h=l > 

$ 5. SIMPLIFICATION 

Now look at VU for fixed i andj. For simplicity I shall omit these subscripts in 
this section: Vz L[X, ~0, O]/(P). Choose a basis (e) of I’, such that er corresponds 
to 1, and if eh corresponds to S, then eh + I corresponds to (tA- ’ - a + ch)s. Then 
t*- 1 @ - a is pseudolinear with respect to v, and 6, 6 = a(u, - 1). And the matrix 
Mat(tA-I@--cr,(e))=A,+sA,, whereAIEEnd B’, and 
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LEMMA 3. There exists a BE Cl,,,(L), such that with respect to the basis (Be) 
we have Mat(t”- ‘cP - a, (Be)) = F0 + SF,, where F0 is a nilpotent matrix with 
entries in C, and F, E End &“. 

PROOF. We have ch = (1 /&n&r. Assume for SiIIIpliCity 0 = nl < n2 < . . . < n,. 
We may achieve that cl = 0, by a basis transformation of the type (e) -s&(e). 

One proves the lemma with induction on n,. If n, = 0 there is nothing to 
prove. Assume n, > 0, then there is a constant basis transformation CE G/,(C), 
such that C&C-i =diag {F,,,F22}, where F22 has the unique eigenvalue c,,,, 
and F,, does not .have the eigenvalue c,. Let cf) be (Ce), the image of (e) 
under C. 

Assume 

If D=diag {I,sl}, then 

The eigenvalues of the leading matrix are the eigenvalues of F,, and of 
F22 - (l/q)cr,, so that n, is reduced by one. 

The next step is to prove that one may remove all powers of s. 

LEMMA 4. Assume Mat(t-I@- a),(e)) =F=FO +FIs+F2s2 + . . . . with F0 
nilpotent. Then there is an A E GI,(&), such that Mat(t*- 1 @ - a, (Ae)) = FO. 

PROOF. Define~=Aei,then(t~-‘~-a~i=(t~-‘~-a)Aei=F~(A)ei+6(A)ei. 
I want to find A such that (t”-I@- aVi= Fofi, so the equation to solve is 

Fp(A)+6(A)=AFo. 

Try A = I+ C z 1 Aisi. Comparing powers of s, we obtain an equation for Ai: 

AiFo- 
( i > 
Fo-- aqL Ai=an expression in A0 ,..., Ai-1,Fo ,,.., Fi. 

Since F0 and F0 - (i/q)cr,l have no eigenvalues in common, there is a unique 
solution. 

COROLLARY. b’= 0 L[X, (p, (I]/(+‘X- t@. 
k=l 

8 6. UNIQUENESS 

The corollary at the end of the preceding paragraph shows that statement i) in 
theorem 2 may be replaced by 

9 L&V=@&, VijkPLIX,~,O]/(tAi-lX-aij)“‘ik. 
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This section is dedicated to the study of the uniqueness of this representation. 
To simplify notations, write for all n E IN, A E (i/q)& a E t- ’ BL* 

M n,Ja=LIX,(o,o]/(t~-‘X-a)“. 

Choose &E C[s- ‘1 such that d = a mod ML. 
Note first that lemma 4 implies Mn,5. =I&,,,. 

LEMMA 5. iki,,~,~ii&~,~ if and only iJaB-’ E 1 +(l/q)Zt+sq+‘&. 

PROOF. Assume there is an isomorphism between the modules. The image of 
(X-a)“-’ has the form c(X”-1 + . ..). The image of (X- a)” then has the form 

fp(c)(X--& a)(Xnpl + . ..)=&c)(X--8)“. 

Hence 

~a=/30ra/I-1=-~l+Lkt+s~+1BL. 9(c) 
9(c) C 4 

On the other hand suppose a = b, /I=P. This is no restriction in view of the 
remark preceding the lemma. Then ap- ’ = 1 + (h/q)t + . . . for some h E Z. 

Consider the map from L[X, 9,0] +L[X, 9, O]/((tA- ‘X-p)“@) defined by 
1 rsh. This map is clearly surjective, its kernel is (tA-1X-/3)m. Further 

(ti-lX-~)msh=sh(tk-lX-a)m+sh+l(...). 

Hence 

M .A,p=LIX,Cp,O]/((tA-lX-a)“+s(...))zM,,A,u 

LEMMA 6. RQLM,,I,a is indecomposable. 

PROOF. Suppose i?&.M,,, I, a = Ml @ M2, and 

p=1+pl(t”-‘X-a)+p2(tA-‘X-a)2+...~MI. 

Then 

Now (1 + a(p- 1)~~) =0 would imply 0((9- 1)~~) = 1. This is impossible, for 
as one easily calculates the coefficient of t in (9- 1)a is zero for all aeK. 
So (tA-‘X-a)+f2(tA-1X-a)2+...EMI. Proceeding this way we obtain 
(tA-‘X-a)“-‘EMI and hence(t*-‘X-a)“-2,...,1 EMU. SOM,=R@M~,~,,, 
and M2 = 0. 

At this stage we may conclude: given the iii and the nii, the aV are determined 
up to an equivalence relation. The next lemma assures the uniqueness of the Ai 
and the nti. 
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LEMMA 7. Let Tu p : I&*,~ +M,,r,cr be the map defined by left multiplication 
by (Y’X-p), with BE (l/t)&*, p E (l/q)Z. Then 

dimcker(T~~;M,,&= min@,n)ifA=p, c@-1E1+1Zt+s4+10~. 
4 

the stated condition. Let 

= 0 otherwise. 

PROOF. First suppose p or /I does not satisfy 

n-l 
a= C ai(F’X-a)‘E ker TP,o. 

i=O 

Then TP,j a = 0 i.e. 

zi: m(o,)(t.-lx-~)(t”-lx- a)‘= 
I 

= C &ai)(tA-p(tA-‘X-CZ)‘+’ 
I 

+ (a-$$y”-‘x-a)‘). 

This implies in succession a0 = al = . . . = ai- I = 0, since 

t A - pjGli a--#O. 
Hai) 

So ker TkD = 0 and a fortiori ker TLa = 0 for all p. 
Since M,,A,~%,A,~ if and only if czp- ’ E I+ (1 /q)Zt + sq+ I CL, it suffices to 

suppose now 1 =p and (Y =p. One proves with induction on p the following 
stronger statement: 

ker (Tfa; M,,A,.)=C(tA-lX-a)“-‘+ 
+ qt’.-1X- a)“-2 . ..+~(tA-l~-~)n-min@.n). 

For p = 0 there is nothing to prove, so assume that p >O, and that the statement 
is true for all p’<p. 

Let 
n-l 

a= C ai(tA-‘X-a)‘Eker TX, 
i=O 

then TA aa E ker Tf,‘. We have 

n-1 
i&a = ,Fo Cp@i)(t” - ‘x- a) i+‘+a((p- l)ai(t”-‘X-o)‘Eker Tt,‘. 

Hence 
p(qi-t)+a(v-l)ai=OfOri=O,l,...,n-min@,n) 

ECfori=n-min(p,n)+l,...n-1. 

This implies consecutively 

a0=0, ..mrafl-min@,n)-l =O, an-min@,n), . . ..a.-, EQ=, 

which had to be proved. 
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57.THEMAINTHEOREM 

The results of the preceding paragraphs enable us to reformulate theorem 2. 

THEOREM 8. Assume V is a K[X, p, 0] module of dimension m over K. Suppose 
moreover Xo = 0 implies o = 0. Then there exists a finite extension L of K, with 
[L : K] = q 1 m !, and a decomposition of L @k V in cyclic submodules: 

where nUk E N, C ntik = m, Ai E (1 /q&Z, and a0 = C RCO ati& h, sq = t, aUq # 0. 
We have Re (aUO/aUq) E [0, (1 /q)). Moreover the nUk, Ai and aij are unique. 

COROLLARY 9. Let @ : V-, V be an invertible difference operator. Then there 
exists a basis (e) of L @k V such that 

a0.. . .O 

MN@, 09) = diag Fniik,Ai,aij> F,,,I,~ = t’-* 
1 a.. (. .O 
. . . . . . . 

an n x n matrix, with nUk, li and ati as above. This matrix is unique modulo the 
order of the blocks. 

PROOF. L OK V= @IK,.., li, UU. Then 

(l,t"i-'X-ag, (t'i-'X-a.#, (tAi-lX-Clij)nij-l) 

is an L-basis of M”iik,li,aij. Let (e) represent the images of these elements, then @ 
has the above representation. 

REMARKS: 1) The condition Xv=0 if and only if v=O, implies that V is 
cyclic [l, p. 297, 2991. 
2) In fact one may dispense with the condition on @. For one can find a basis 
(v) of V such that Mat( @, (v)) = diag Fi, F, invertible, and 

for j> 1 ([I, p. 2971, together with lemma 1). For VI, the part of V corre- 
sponding with F,, one may apply theorem 8. 
3) The li in the theorem are the slopes of the Newton polygon associated with 
V and @. The uniqueness of the 1i and the n,@‘s shows that, although the choice 
of P in 8 4 was not unique, the shape of N(P) is. Note that ni = Cj,k n,$ is just 
the length of the projection of Ai on the x-axis. 
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4) The rather artificial condition on ati0 is needed to assure the uniqueness of 
au. Another way to express this would be: the aij are unique mod (a$). 
5) A more careful examination of the splitting in the case r = 1 (see the proof 
of theorem 2) leads to the conclusion aii E C[t - l’qi], qi a divisor of ni ! or even of 
1.c.m. (1,2 ,..., ni). This also yields a better estimate for q: q divides 1.c.m. 
(1,2,...,@ 131. 
6. One may also verifv the following statement: The aii only depend on the 
monomials of P whose images lie in a strip of width one along the lower edge of 
N(P). The ntik depend on the monomials whose images lie in a strip of width 
N+ 1 along the lower edge, where N = max ) ciir - I+,,, 1, the c$, as in theorem 2. 

ii, r. m 

Let me finish this paragraph with a remark on Levelt’s method. In [3] he 
derives the analogue of theorem 8 for differential operators from the existence 
of a unique decomposition of the differential operator D in a semisimple 
differential operator S, and a nilpotent K-linear map N, such that [S, NJ = 0. 

For difference operators, however, such a decomposition does not exist in 
general, as may be seen from the following example: 

Let @ be given by 

MN@, (e)) = t”fi’ f ,), 
and let A be a K-linear map commuting with @. An easy calculation shows that 

However, in that case @-A will not be diagonal, hence not semisimple. For the 
same reason a decomposition in a product of a semisimple and a unipotent 
operator does not exist. It is possible to decompose @ in the sum of a topo- 
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logical semisimple and a topological nilpotent C-linear operator, but in general 
these maps do not behave well with respect to elements of K. 

$ 8. FORMAL CLASSIFICATION OF INVERTIBLE DIFFERENCE OPERATORS 

Let (e) be a K-basis of V. What I have done is essentially the following: If 
F= Mat(@, (e)), then there exists an A E G&,(L) such that 

Now let g be a generator of Gal (L IK). If 2; = (lJq), then the action of g yields 

diag (r-‘iF,,.,i,p(~,))cp(g(A)) = g(4F9 

where < is a primitive q-th root of unity, since q?g = gq. 
By a constant transformation BE GI,(@) we find: 

die (Fniik, A~, ~-~ig(a,))~W4) = WWF. 

But as a consequence of the uniqueness of the representation by F,, I, .‘s we have 

DEFINITION. Let 4+, Q2 : V+ V be two invertible difference operators. @ is 
formally equivalent to sPz, @, - G2 if there exists an A E G&,(R) such that 
QIA =A@$. 

It is clear from the preceding paragraph that every equivalence class is 
determined completely by the finite set of pairs (j$, nJ, &ER*/(~ + Qt + tit) 
where tar is the maximal ideal of 8, and niE M (pi= t’-‘iaJ. Another question 
we should consider is, given a finite set {(pi, ni)i} as above, does there exist a 
linear space V over K, and a @ : V-+ V such that @ belongs to the equivalence 
class defined by {(pi, ni)i}? Obviously a necessary condition is that if (/I;, ni) 
occurs, then also (g(/?J, ni), for all gE Gal (k’(K). I shall show that this 
condition is sufficient. 

It is possible to reindex the set {(pi, n;)} as follows: { (gf(&), nU)}, where gi is a 
generator of Gal (K(pi) IK) and k= 1, . . . . qi with qi = [K(fli) : K]. Choose 
originals of pi in K* in the following way: 

qi 
&= c cijhftiBi)+h’qi, such that Coqi-Cikqi$-$ ,?! ifj#k. 

h=O I 

Define R, E R[ T] by 

qi “yqf 

R,= n (T-gf(/?U))“U= c rUhTh, 
k=I h=O 

then R, lies in K[ T], so rijh E K. Define Pti E K[X, q, 0] by 

P,j= 2 rijhXh, and P= n Pij* 
h=O i.i 

Put V=K[X, p, O]/(P), and define Q, : V-, V by Qio = Xo. Now @ is an element 
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of the equivalence class defined by { (biBi, nJ) as one may verify by applying the 
procedure described in sections 4, 5 and 6, or as follows immediately from 
remark 6 of 0 7. So I conclude this paragraph with the following theorem: 

THEOREM 10. The set of equivalence classes of invertible difference operators 
on V is represented by { (,gi, nJ}, C nj = m, j3i E i? */(l + Qt + tit). The class 
represented by {(a, ni)} is nonempty if and only if for all g E Gal (R) K) there is 
a j such that g(pi) =a’, ni = nj. 

4 9.AGENERALIZATION 

The special form of a, did not play a decisive role in the preceding paragraphs. 
In fact the method described here may be generalized to arbitrary auto- 
morphisms, or even to arbitrary pseudolinear operators. Let 0 : V-t V be a 
pseudolinear operator, i.e. C-linear and satisfying &au) = v/(a)& + 6(a)u all 
a E K, u E V, with w a C-automorphism of K, 6 a y/-derivation. Distinguish the 
following cases: 
1) w = id, 6= 0. Then 0 is a K-linear operator, and the result is well-known: 
The formal equivalence classes are represented by the eigenvalues and their 
multiplicities. 
2) v/= identity and 6 a derivation. This case is treated by Malgrange [3], and 
Levelt [4]. The analogue of theorem 10 would be: the formal equivalence classes 
of differential operators are represented by ((,Bi,ni)} where piEE@/Q@K/&, 
satisfying the condition: for all g E Gal (RI K), there is a j such that g(pi) =&, 
tZi=nj. 
3) ~(t)=t+at’+f+h.o,aEC*,flO;iff=O, l+anotarootofunity.Then6 
has to be of the form y( v/ - l), y E K. (Cohn [ 1, p. 2951) Let 8’ = 0 - y, then this 
reduces to the case 6 = 0. So assume 6 = 0, V is a K[X, v/, 0] module, and recall 
(Cohn [l, p. 297,299]) that Vis a direct sum of cyclic submodules V,, such that 
V, = K[X, v, O]/(X”k) if k 12. If Vi P K[X, v/, O]/(PX’), r maximal then 

as one may prove in the same way as lemma 1. 
So it is no restriction to assume 8 is invertible, and Vis cyclic (as I did in 0 4). 

Proceeding now as I did for @, with some modifications, induced by f, one may 
formulate theorem 8 in the same way with the following alterations: 

M .,~,,=L[X,W,Ol/(t”-fX-a)“, 
o(a) = -f, (z unique modulo multiplication by 1 + (aZ/q)tf+ mL tf, if f 2 1, a 
unique modulo multiplication by (1 + a/q) + mL if f = 0. 
4) The final case v(t) = at + t2(. ..), ap = 1 is more complicated. Recall first, 
that by choosing a suitable uniformizer t, v/ has the following form y(t) = at + r, 
b(r) =pd+ 1, TV C[[tJ’]]. Next specify extensions of v/ in the following way: 

If [L : K] = q, and g.c.d. (q,p) =pl, then w(s) = as + . . . , (Y a primitive p,p-th 
root of unity, such that a4 = a. Now follow the procedure described in 9 4 and 5: 
Difficulties arise in the proof of lemma 5. Instead one proves the existence of a 
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basis (e) such that Mat(&I- a,(e)) has entries in C[[P]]. This yields a cyclic 
vector and p1 = Ym +pm-, Ymel + . . . +po, Y=tAX, pie C[[P]]. Now t&P)= 
= P + h. o in tp, so if @1)o splits there exist Q and R with coefficients in C[[P]] 
as in lemma 1. Repeating this procedure until one may use the fact that 
y/(P)=P+ctPd+P+... to prove an analogon of lemma 5, one arrives at a 
theorem analogous to theorem 8: A4,,A,a =L[X, ty,O]/(tA-@X- a)“. The 
uniqueness part is very complicated, since one has to determine the set { w(c)/c}. 
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