
 

 

 University of Groningen

Essential singularities of rigid analytic functions
Put, Marius van der

Published in:
Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen. Series A:Mathematical Sciences

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1981

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Put, M. V. D. (1981). Essential singularities of rigid analytic functions. Proceedings of the Koninklijke
Nederlandse Akademie van Wetenschappen. Series A:Mathematical Sciences, 84(4), 423-429.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 11-12-2022

https://research.rug.nl/en/publications/5d5c0506-1d6e-4f29-a906-81adea0ff0ca


MATHEMATICS Proceedings A 84 (4). December 21, 198 1 

Essential singularities of rigid analytic functions 

by Marius van der Put 

Dept. of Mathematics, Groningen University, the Netherlands 

Communicated by Prof. T.A. Springer at the meeting of October 25, 1980 

INTRODUCTION 

The Picard theorem for a complex analytic function can be formulated as 
follows: 

“Let f be a holomorphic function on {z E C 1 O< Iz 1 < 1} with values in 
C - {O,l } then f can be extended as meromorphic function on 

{ZEC( 121 cl}“. 

A short proof of this statement would be the following: The group 

acts freely as a group of fractional linear transformations on the upper half- 
space H. The group has 3 parabolic points and the genus of the corresponding 
algebraic curve is 0. This means that H/Q,j~ C - {O,l} and as a consequence 
R : W-C- (0,l) is the universal covering of C- {O,l}. 

Let 

U~=(ZECIOCIZI cf,arg(z)=n}; 
UZ={ZEC IOc 121 cl,arg(z)=O} 

U, fl U, = U+ U U- where 

U+={zfU,nU,]im(z)>O) 
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and 

There are lifts J : Ui-+iY of f/Vi (i.e. R 0 A=f/Ui for i= 1,2) such that 
fi(+i) = fi(+i). So f, coincides with f2 on U+ . There is a unique YE r(2) with 
fi=yof20n U-. 

We divide N, by the action of ( y), the subgroup of r(2) generated by y. The 
result N’ = n/( v> is analytically isomorphic to one of the following spaces 

(a) (zEC] Iz] tl} if y=id. 
(b) (zEC)O< ]z] cl} if y is parabolic 
(c) (z~Clr< [z[<l) for somer>Oif yis hyperbolic. 

Let 7r’ : U’+ C - (0, 1) denote the natural map induced by R. From the above 
it follows that f lifts to a holomorphic map F : {ZE C IO < lzl < l}-+JY’ such 
that R’ 0 F= f. Since F is bounded, it follows that F (and so also f) extends to 
(ZEC 1 lzl c 1). 

We consider a field K, complete with respect to a non-archimedean valuation. 
In order to simplify the exposition we suppose that K is algebraically closed. Let 
P = P’(K) denote the projective line over K. In many situations one has to study 
holomorphic or meromorphic functions on an open set 52~ IP of the form 
52 = P -L, where L is a compact set. We call L an essential singularity for the 
meromorphic function f on 52 if f does not extend to a meromorphic function 
on any Q’= P-L’ where L’ is a proper closed subset of L. 

If L has at least one isolated point then it turns out that f(Q) omits at most 
one value of P. However if L is perfect then f(D) may omit a finite number of 
values in IP (0 2, example 1) or f(S) may even omit a compact infinite subset of 
IP (0 2, example 2). 

The examples are derived from the theory of discontinuous groups over a 
non-archimedean valued field. In this respect the theory seems quite far from its 
archimedean analogue. We refer to [l] and [2] for non-archimedean function 
theory of one variable and for discontinuous groups. 

5 1. POSITIVE RESULTS ON THE VALUES OF HOLOMORPHIC MAPS 

A connected affinoid subset X of P is a subset of the form X = IP - (Bi U . . . UB,) 
where B r, . . . . B, are disjoint open disks in P. The Bi, . .., B, are usually called the 
holes of X, their number is n. 

(1.1) PROPOSITION. Let f be a non-constant holomorphic function on a 
connected affinoid subset X of IP. Then f(X) is a connected affinoid subset of 
P. Moreover the number of holes of f(X) is less than or equal to the number of 
holes of X. 

PROOF. The canonical reduction X of X is the maximal ideal space of U(X) 
([2] p. 113). According to [2] p. 78, 79 the ring 8(X) has the form R[z,, . . ., z,,]/1 
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where I is an ideal generated by elements E,,(i #j, 1 I& j I n) of the form 

EG = ZiZj + Q+Z~ + &~j with CY.+ fly E E. 

It follows that each component L of X is isomorphic to P(R)- V(L) where 
V(L) is a finite non-empty subset of lP(R). We construct X, the completion of 
X, by completing each component L of T to a P(R). The total number of 
“missing” points of X (i.e. the points of X-X) is equal to C # V(L) = n = the 
number of holes of X. 

The set Y=f(X) is according to [2] p. 110, lemma (2,7), the union of an 
affinoid set and a finite set. Since X is connected it follows that Y is actually a 
connected affinoid subset of P. 

The surjective map f : X-* Y induces a morphism f * : o(Y)-, B(X) which is 
an isometry with respect to the spectral norms I[ /lsP on X and Y. We obtain an 
induced, injective f* : 

- - 
B(Y)+ Q(X) and a surjective (since [2] p. 114, lemma 

(2.9.1)) morphism f : X+ Y. 
The restriction off to any component L = lP(R)- V(L )_of &‘ e?tends uniquely 

to a morphism of lP(R)+ 9. Soyextends to a morphismf : 8+ P. The last map 
is surjective since?(X) is complete and contains 7. Hence the number of missing 
points of P is in. This proves the proposition. 

We propose now a second proof of the last statement of the proposition. In 
[l] 0 1, (1.8.9) one has established an exact sequence 

O-+/l(X)+ a(x)*-H”- l +o 

in which 0(X)* is the group of invertible holomorphic functions on X, n is the 
number of holes of X; A(X) = (A(1 + h) 1 A EK*, h E B(X), 11 h lisp < 1). 

Let m be the number of holes of Y. The map f induces f* : O(Y) *+ B(X) * 
such that cf*)-‘(A(X)) =A(Y). So we find an injective map P-i+Z”-l and 
we have shown that 117 sn. 

(1.2) PROPOSITION. Let L be a compact subset of IP and let a= IP -L 
denote the analytic subspace of IP defined by the family 

(FIFaffinoid in IP; FfTL = @}. 

For any non-constant holomorphic map f : Q+ P the set IP -f(Q) is compact. 

PROOF. We consider the subspace Sz’ of IP defined by the family of affinoid 
sets u(X) IX affinoid; XnL = #}. If C?’ is not of the form P - {a compact set} 
then, according to [2] p. 145, (2.3, there exists a non-constant bounded holo- 
morphic function h on $2’. The holomorphic function h 0 J on D is also 
bounded and must be constant according to the same result. This implies 
however that f is constant. So the proposition is proved and we have proved 
slightly more, namely: every affinoid subset, lying in f(0), is the image of an 
affinoid subset of Sz under the mapf. 
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(1.3) PROPOSITION. (A version of Picard’s theorem). Let f be mero- 
morphic function on {z E K 1 R < 1 z I} which cannot be extended at 00. Then f 
omits at most one value. 

PROOF. We note that this result must be known. By lack of reference we 
include two proofs. Suppose that f omits at least one value, then we may take f 
to be holomorphic on {zEKIR< 1~1). 

(1) FIRST PROOF. We may express f as a convergent Laurent-series 

which has infinitely many a, # 0 for n > 0. 
For QE IK*j,Rc~cc=, we form max la, I@= o(e) and we denote the 

smallest integer n with 1 a, I gP = a(~) by n(e). 
Clearly lim,,, n(e) = lim,,, a(,~) = 0~. We will suppose that Q P R such that 

n(e) >O. The set Xe =fl{z E K 1 I z I = Q}) can have the following form: 
(a) Suppose that there is only one n with I a, 1 Q” = o(e), then 

x&4= I=K) lzl =a?)) 
(b) Suppose that there are more positive integers n with I a,, I @ = a(@), then 

x,= {ZEK) 121 Ia(e 
The above follows from the well-known statement: 

has no zeros if and only if there is precisely one m with I b, I = max, I b, 1. 
Situation (b) occurs for an infinite sequence @r, e2, . . . with lim ei = 0~. Hence 

A{zEKpc IzI})=K. 
(2) SECOND PROOF. Suppose that the holomorphic map f omits at least 

two values in Ip. Then we may suppose that f omits 0 and 00. In other words 
fE B((zEKpc lzl}>*. Using [l] $j 1, (1.8.9) one sees that f has the form 
A?(1 + h) where A EK*, GEE and h is holomorphic on (ZEK[R< lzl) such 
that ] h(z) ] < 1 for all z. But then h can be extended to 00 and so also f extends 
at ao. 

0 2. TWO EXAMPLES 

(2.1) The first example imitates the proof of Picard’s theorem that we have 
given in the introduction. 

Let k = F,r ((l/t)) be the Laurent-series field in the variable l/t and with 
coefficients in the finite field lFq. Let K denote the completion of the algebraic 
closure of k. 

The group r(t) is the subgroup of I(1) = PsI(2, FJt]) consisting of the matrices 

(:: z) = (i y) module(t). 
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In [2], Chapter 10, it is calculated that: flf) has (q + 1) inequivalent parabolic 
points and that the genus of the corresponding algebraic curve is zero. 

So the holomorphic map 

f : P(K) - P(k) --, P(K) - lP(k)/T(t) = P(K) - iP( IF,) 

omits exactly q + 1 values. We still have to verify that f has an essential 
singularity at the compact subset P(k) of P. 

Let L be the smallest compact subset of IP such that f admits an extension as 
meromorphic function on P - L. One easily sees that L always exists and that L 
is invariant under T(t). If L # # then L turns out to be lP(k) since it is invariant. 
Further L = @ would mean thatfis a rational function on P. But only a constant 
rational function can be invariant under r(t). 

In this example one can clearly vary the finite field Fq and moreover one can 
composef with a rational function on P. This shows the following statement: 

“Let the field K have characteristic #0 and let {ai, . . ., a,} be a subset of 
P(K). There exists a perfect compact subset L of P(K) and a meromorphic 
functionfwith an essential singularity at L such thatf(P - L) = IP - (al, . . ., a,}“. 

(2.2) The second example works for fields K of any characteristic and 
residue characteristic. However to simplify matters we assume that the residue 
field R has a characteristic # 2. 

Our construction is a variant of the construction of Whittaker groups done in 
[Z], Chapter 9. 

Let the 12 points al, bl, . . ., as, b6 in P be such that the reduction IF’ with respect 
to this set is: 

In other terms this means that the position of the 12 points (after an auto- 
morphism of IP) is such that: 

1) all lajl = Ibit = 1 
2) lai-ail =I for i#j 
3) Ibi-bjI =l for i#j 
4) lai-bil =l for i#j 
5) [ai-& tl for all i. 

Let si (i= 1, . . . . 6) denote the elliptic element of order 2 with fixed points ab bi. 
In [2] p. 281 it is shown that the group r0 = (si, . ..s6) generated by the six 
reflexions is discontinuous and it is shown that the only relations among the 
generators are s: = sf . . . = ~2 = 1. Let $2 denote the set of ordinary points of I-& 
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We introduce now four subgroups Fi (i = 1,2,3,4) of r0 of finite index. Consider 
the surjective group homomorphism r$ : r0 +2/2@h/2 given by @(Si)=(l,O) 
for i = 1,2,3 and @(Si) = (0,l) for i= 4,5,6. The kernel r, of @ is a Schottky 
group on 9 free generators. The generators are 

as one easily verifies. 
The group I-, is generated by IY4 and s1 ; the group r2 is generated by r4 and s4, 

the group r3 is generated by r4 and s1s4. Hence lY4CriC& for i= 1,2,3 and 
[r. : I-J=2 for i=1,2,3. 

The group r3 turns out to be a free group on 5 generators, namely on 
hls2, SIS3t s4s5, s4s6, %s4}. 

The groups ri (i = 0, 1,2) are not free. One easily calculates that the rank of 
. . the abehamzed groups T;.,Iri, rjl is 2 for i= 1,2. 

We write Xi for the algebraic curve sZ/ri (i = 0, . . ., 4). Although the curve is 
not always parametrized by a Schottky group (cases i= 0, 1,2) the curve is 
certainly “locally isomorphic to IP” and hence a Mumford curve. (See [2] 
p. 177). Let gi denote the genus of X, then we have go = 0, gl =g2 = 2, g3 = 5, 
g4 = 9 by using [2] p. 250, 251. Moreover we have a diagram of holomorphic 
maps of degree two between the various curves: 

AX’\ 
“<--27X0=” 

We are especially interested in the morphism X,-X,. The curve XI is a 
Mumford curve of genus 2 and can also be parametrized by a Schottky group d 
with Sz’ as set of ordinary points. 

The map f : X4-+X1 lifts to a holomorphic map F : adI2 since 71 : 9+X4 
and 7~ , : G!‘+Xt are the universal coverings. (Compare [2] p. 149-153). The 
holomorphic map F omits an infinite compact set since IP - 52’ is infinite. 

Our example is completed with the following lemma. 

LEMMA. F has an essential singularity at the compact perfect set IP - 52. 

PROOF. Using the Riemann-Hurwitz formula one finds that f : X4+X, is 
ramified in 12 points. Let p E D be a point such that its image in X4 is one of 
those 12 points. Since 7r4 : D-X4 and ~tr : KY-X, are locally isomorphisms it 
follows that also F is ramified (of index 2) at p. The whole orbit r4 @) consists 
clearly of ramification points of F. Since p is an ordinary point for r4 the limit 
points for this orbit are precisely P - 52. This implies that F cannot be extended 
since in any neighbourhood of any rZ E IP - 52 there are infinitely many 
ramification points of F. So F has an essential singularity at P - 52. 
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