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The copositive cone, and its dual the completely positive cone, have useful applications
in optimisation, however telling if a general matrix is in the copositive cone is a co-NP-
complete problem. In this paper we analyse some of the geometry of these cones. We
discuss a way of representing all the maximal faces of the copositive cone along with a
simple equation for the dimension of each one. In doing this we show that the copositive
cone has faces which are isomorphic to positive semidefinite cones. We also look at some
maximal faces of the completely positive cone and find their dimensions. Additionally we
consider extreme rays of the copositive and completely positive cones and show that every
extreme ray of the completely positive cone is also an exposed ray, but the copositive cone
has extreme rays which are not exposed rays.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

The copositive and completely positive cones are proper cones (i.e. closed, convex, pointed and full dimensional), which
are the duals of each other [1, p. 71]. Surveys on copositivity and complete positivity are provided by [2,3].

The copositive and completely positive cones, denoted C and C∗ respectively, are of interest due to their applications in
optimisation, especially in creating convex formulations of NP-hard problems. It has been shown in [4] that if we consider
the quadratic binary problem, where the symmetric matrix Q and the vectors c,a1, . . . ,am are of order n, the vector b is of
order m and B ⊆ {1, . . . ,n},

min xT Q x + 2cTx,

s.t. aT
i x = bi (i = 1, . . . ,m),

x � 0,

x j ∈ {0,1} ( j ∈ B),

then this can be reformulated under mild assumptions into the following completely positive problem which is a convex
linear problem,

min 〈Q , X〉 + 2cTx,

s.t. aT
i x = bi (i = 1, . . . ,m),〈

aia
T
i , X

〉= b2
i (i = 1, . . . ,m),

(x) j = (X) j j ( j ∈ B),(
1 xT

x X

)
∈ C∗.
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An example of an NP-hard problem which can be formulated like this is the maximum clique problem [5,6]. If we let
ω(G) be the clique number of a graph G with adjacency matrix AG and let e be the all-ones vector, then

1

ω(G)
= min

{
xT(eeT − AG

)
x
∣∣ eTx = 1, x � 0

}
.

The use of the copositive cone in the formulations comes from the standard Lagrangian approach which means that if
we consider a proper cone K and its dual K∗ then

min 〈Q , X〉,
s.t. 〈Ai, X〉 = bi (i = 1, . . . ,m),

X ∈ K,

is, under some regularity conditions (e.g. Slater’s Condition), equivalent to

max
m∑

i=1

bi yi,

s.t. Q −
m∑

i=1

yi Ai ∈ K∗,

yi ∈ R (i = 1, . . . ,m).

In this paper we will be looking specifically at the geometry of the copositive and completely positive cones. This
includes studying extreme and exposed rays of both cones, as well as maximal faces of them. Every point on the boundary
of a proper cone is a member of a maximal face so the union of the maximal faces is equal to the boundary of the cone.

We will start in Section 2 by considering relationships between a general proper cone and its dual in terms of their rays
and exposed faces. Some of these results will then be demonstrated using the copositive and completely positive cones in
Section 3. After this, in Section 4, we will show that every extreme ray of the completely positive cone is also an exposed
ray, which is in contrast to the copositive cone which we will show to have extreme rays which are not exposed. We also
present here some exposed rays of the copositive cone. In Section 5 we will use results developed in this paper in order to
find the form of the maximal faces of the copositive cone and their dimensions. In doing this we will also find faces of the
copositive cone which are isomorphic to positive semidefinite cones. In Sections 6 and 7 we finish by looking at some of
the maximal faces of the completely positive cone.

We will be using the following notation in this paper:

Inner product for symmetric matrices, 〈A, B〉 := trace(AB),

Nonnegative orthant, R
n+ := {x ∈ R

n
∣∣ x � 0

}
,

Strictly positive orthant, R
n++ := {x ∈ R

n
∣∣ x > 0

}
,

Set of symmetric matrices, S n := {A ∈ R
n×n

∣∣ A = AT},
Set of nonnegative symmetric matrices, N n := {A ∈ S n

∣∣ A � 0
}
,

Positive semidefinite cone, S n+ := {A ∈ S n
∣∣ xT Ax � 0 for all x ∈ R

n}
=
{∑

i

aia
T
i

∣∣∣ ai ∈ R
n for all i

}
,

Copositive cone, Cn := {A ∈ S n
∣∣ xT Ax � 0 for all x ∈ R

n+
}
,

Completely positive cone, C∗n :=
{∑

i

aia
T
i

∣∣∣ ai ∈ R
n+ for all i

}
.

For the matrix sets we will usually omit n when the dimension is apparent from the context.
For a closed convex set L we shall use bd(L) to denote its boundary, int(L) to denote its interior and reint(L) to denote

its relative interior.
The last bit of notation that we will mention for the moment is ei as the unit vector with the ith entry equal to one and

all other entries equal to zero.
One thing to note from the definitions is it can be immediately seen that

C∗ ⊆ (S+ ∩ N ) ⊆ (S+ + N ) ⊆ C.

We finish our introduction with some properties of copositive matrices.
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Theorem 1.1. Let A be a copositive matrix, then we have that:

(i) Every principal submatrix of A must also be copositive (where a principal submatrix of A is a matrix formed by deleting any rows
along with the corresponding columns from A).

(ii) (A)ii � 0 for all i.
(iii) (A)i j � −√(A)ii(A) j j for all i, j.
(iv) If (A)ii = 0, then (A)i j � 0 for all j.
(v) If P is a permutation matrix and D is a nonnegative diagonal matrix, then PDADPT ∈ C .

(vi) If there exists a strictly positive vector v such that vT Av = 0, then A ∈ S+ .

Proof. A proof for (i)–(iv) can be found in [7], (v) comes trivially from the fact that D P T
R

n+ ⊆ R
n+ , and (vi) comes directly

from [8, Lemma 1]. �
2. Geometry of general proper cones

We start by analysing the relationships between the extreme rays in a general proper cone and the maximal faces in its
dual. In order to do this we first need some definitions. The definitions for a face, an exposed face, an exposed ray and an
extreme ray are equivalent to those used in [9, Section 18].

Definition 2.1. A face of a closed convex set L ⊆ R
n is a convex subset F of L such that every closed line segment in L

with a relative interior point in F must have both end points in F . A facet of a closed convex set L is a face of the set
with dimension equal to dim L − 1. An extreme point of a closed convex set L is a face of the set with dimension equal to
zero.

Definition 2.2. Let L be a closed convex set in R
n and ∅ 	= F ⊆ L. F is an exposed face of L if it is the intersection

of L and a non-trivial supporting hyperplane, i.e. if there exists a ∈ R
n \ {0}, b ∈ R such that L ⊆ {x ∈ R

n | 〈x,a〉 � b} and
F = {x ∈ L | 〈x,a〉 = b}. An exposed point of a closed convex set L is an exposed face of the set with dimension equal to
zero. (Rockafellar also refers to L and ∅ as exposed faces, however we shall exclude these. In much of the literature, for
example [10], these faces are called improper exposed faces whilst the exposed faces that we will be considering are called
(proper) exposed faces.)

Remark 2.3. Every exposed face must also be a face.

Theorem 2.4. Every face of a full dimensional closed convex set L which is not equal to L is contained within an exposed face.

Proof. If F1 	= L is an arbitrary face of L, then we must have F1 ⊆ bd(L). Let x be in the relative interior of F1. By the
supporting hyperplane theorem there exists an exposed face F2 such that x ∈ F2. Therefore F2 ∩ reint(F1) 	= ∅ so from [9,
Theorem 18.1] we must have F1 ⊆ F2. �
Definition 2.5. A face F1 is a maximal face of a full dimensional closed convex set L if F1 	= L and there does not exist a
face F2 	= L such that F1 ⊂ F2.

Remark 2.6. From Theorem 2.4 it can be immediately seen that every maximal face must also be an exposed face.

Remark 2.7. The maximal faces of a polyhedron are its facets and the maximal faces of an n-sphere are the points on its
boundary.

The following theorem contributes towards our motivation for looking at the set of maximal faces as it means that the
hyperplanes giving maximal faces are desirable in a cutting plane algorithm.

Theorem 2.8. Let M be the set of maximal faces of a full dimensional closed convex set L, and let S be an arbitrary set of its faces, none
of which are equal to the complete set. Then,⋃

F ∈S

F = bd(L) ⇔ M ⊆ S.

Proof. (⇐) By the supporting hyperplane theorem, every point on the boundary of L must be a member of an exposed
face and therefore must also be a member of a maximal face. This implies that bd(L) =⋃F ∈M

F .
(⇒) Suppose by contradiction that

⋃
F ∈S

F = bd(L) and there exists a maximal face F1 /∈ S. We now consider an
arbitrary point x ∈ reint(F1). We must have that x ∈ bd(L), therefore there exists a face F2 ∈ S such that x ∈ F2. This
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implies that F2 ∩ reint(F1) 	= ∅ and so from [9, Theorem 18.1] we get that F1 ⊂ F2, implying that F1 cannot be a maximal
face. �

We now switch our focus to rays, in particular the exposed and extreme rays. If we consider an arbitrary x ∈ R
n \ {0},

then the ray given by x is defined to be the set {αx | α � 0}.

Definition 2.9. x ∈ K \ {0} gives an exposed ray of a proper cone K if there exists an exposed face F of K such that

F = {αx | α � 0}.
We write Exp(K) for the set of elements giving exposed rays of the cone K.

Definition 2.10. x ∈ K \ {0} gives an extreme ray of a proper cone K if

y, z ∈ K, y + z = x ⇒ y, z ∈ {αx | α � 0}.
We write Ext(K) for the set of elements giving extreme rays of the cone K.

Theorem 2.11 (Straszewicz’s Theorem). (See [9, Theorem 18.6].) For a closed convex set, the set of exposed points is a dense subset of
the set of extreme points.

This can be extended to rays of a proper cone, giving the following.

Theorem 2.12. For a proper cone K,

Exp(K) ⊆ Ext(K) ⊆ cl
(
Exp(K)

)
.

Proof. As K is a closed pointed cone there exists a bounded base of it, B = H ∩ K, for some hyperplane H. We have that
x ∈ Ext(K) (x ∈ Exp(K)) if and only if there exists α > 0 such that αx is an extreme (exposed) point of B. We now consider
Straszewicz’s Theorem to get the desired result. �

The final definition we give in this section is that of the dual of a set.

Definition 2.13. For a set K ⊆ R
n , the dual cone is defined as

K∗ := {a ∈ R
n
∣∣ 〈a, x〉 � 0 for all x ∈ K

}
.

Theorem 2.14. (See [1, Chapter 1].) If K is a proper cone then so is its dual K∗ and we have that K∗∗ = K.

We will now consider how the faces of one proper cone are related to points in its dual.

Theorem 2.15. F is an exposed face of a proper cone K if and only if there exists an a ∈ K∗ \ {0} such that

F = F (K,a) := {x ∈ K
∣∣ 〈x,a〉 = 0

}
.

Proof. From [11, p. 51] we have that

y ∈ K∗ if and only if −y is the normal of a hyperplane that supports K at the origin.

If we now consider any nonzero point in a face of K, then from the definition of a face we get that the ray given by this
point must also be contained within the face. This implies that all nonempty faces of a proper cone contain the origin.

Combining these two facts gives us the required result. �
Using the following observation we now get a similar result relating the maximal faces of one proper cone to the extreme

rays in its dual. This lemma can be immediately seen from the definition of F (K,a) in Theorem 2.15 and the definition of
the dual, so it is presented without proof.

Lemma 2.16. For {a1, . . . ,am} ⊂ K∗ , we have that

F
(

K,

m∑
i=1

ai

)
=

m⋂
i=1

F (K,ai),

where we extend the definition of F (K,a) such that F (K,0) := K.



P.J.C. Dickinson / J. Math. Anal. Appl. 380 (2011) 377–395 381
Theorem 2.17. If F is a maximal face of a proper cone K then there exists an a ∈ Ext(K∗) such that

F = F (K,a).

Proof. Let F be a maximal face of K. Then F is an exposed face, and so by Theorem 2.15 we have F = F (K,a) for some
a ∈ K∗ \ {0}. It is a well-known result that a can be decomposed as a =∑ j∈J a j , where {a j} j∈J ⊆ Ext(K∗). This is in fact
an extension of the Krein–Milman theorem [12]. Therefore

F = F (K,a) = F
(

K,
∑
j∈J

a j

)

=
⋂
j∈J

F (K,a j) (Lemma 2.16)

⊆ F (K,a j) for all j ∈ J .

For an arbitrary j ∈ J we have that F (K,a j) is an exposed face of K and because F is a maximal face we must have that
F = F (K,a j), completing the proof. �

The converse is not true as if a ∈ Ext(K∗) then F (K,a) is not necessarily a maximal face. We do however always get
maximal faces from the exposed rays. Before we prove this we first need the following two trivial lemmas.

Lemma 2.18. For a ∈ K∗ and x ∈ K,

a ∈ F
(

K∗, x
) ⇔ 〈a, x〉 = 0 ⇔ x ∈ F (K,a).

Lemma 2.19. For a ∈ K∗ , λ > 0, we have that

F (K, λa) = F (K,a).

Theorem 2.20. If K is a proper cone and a ∈ Exp(K∗), then F (K,a) is a maximal face of K.

Proof. Consider an arbitrary a ∈ Exp(K∗).
By the definition of an exposed ray and Theorem 2.15, there must exist x ∈ K such that F (K∗, x) = {αa | α � 0}.
From Lemma 2.18 this means that x ∈ F (K,a) and for all b ∈ K∗ \ {αa | α � 0}, we have that x /∈ F (K,b).
From Lemma 2.19 we have that if b = αa where α > 0, then F (K,a) = F (K,b).
Therefore there does not exist b ∈ K∗ \ {0} such that F (K,a) ⊂ F (K,b).
This combined with Definition 2.5 and Theorems 2.4 and 2.15 gives the required result. �
Finally we have a brief look at minimal exposed faces, which will come in useful in Section 7.

Theorem 2.21. If K is a proper cone, x ∈ bd K and a ∈ reint F (K∗, x), then the minimal exposed face of K containing x is given by
F (K,a).

Proof. Consider any exposed face F of K such that x ∈ F . From Theorem 2.15 and Lemma 2.18 we see that there exists
a b ∈ F (K∗, x) \ {0} such that F = F (K,b). As a ∈ reint F (K∗, x) there also exists θ ∈ (0,1), c ∈ F (K∗, x) \ {0} such that
a = θb + (1 − θ)c. Now using Lemmas 2.16 and 2.19 we get that

F (K,a) = F (K,b) ∩ F (K, c) ⊆ F (K,b) = F .

Therefore all exposed faces of K containing x must also contain the exposed face F (K,a) and so this must be the minimal
exposed face. �
3. Copositive and completely positive cones

The results from the previous section are also true for proper cones in spaces which are isomorphic to the real space,
for example the set of symmetric matrices, which is the space that the copositive and completely cones sit in.

We will now illustrate some of the theorems from the previous section with a quick example in Fig. 1. For this we use
the copositive and complete positive cones in S 2, which are proper cones and duals of each other. In order to show these
in two dimensions we first use the svec operator to give an isomorphic mapping from S 2 to R

3.

svec

[(
x y
y z

)]
:= ( x

√
2y z )T ,
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Fig. 1. The figure above is of bases of cones equivalent to the copositive and completely positive cones in S 2, contained within “− · − · −” and “. . . . . .”
respectively. The equivalence between this figure and the cones is explained in Section 3. Letters in upper case label rays and the equivalent letters in lower
case label the corresponding hyperplanes.

which has the property

〈A, B〉 = trace(AB) = svec(A)T svec(B).

We then consider the bases of these cones given by their intersections with the hyperplane eTx = 1, where e is the all-ones
vector.

For these cones we have the following relationships between their extreme rays and their exposed faces:

(i) A and B give exposed rays of the completely positive cone, whilst the corresponding hyperplanes a and b give maximal
faces of the copositive cone.

(ii) A and B give extreme but not exposed rays of the copositive cone, whilst the corresponding hyperplanes a and b give
nonmaximal faces of the completely positive cone.

(iii) C gives an exposed ray of the copositive cone, whilst the corresponding hyperplane c gives a maximal face of the
completely positive cone.

4. Extreme rays of the copositive and completely positive cones

In this section we will look at extreme rays of the copositive and completely positive cones. We will show that for n � 2,
every extreme ray of the completely positive cone is also an exposed ray of it, and this is in contrast to the copositive cone
for which we will give an example of extreme rays which are not exposed.

Before we begin this we first introduce the following notation, which we will use regularly in this section, along with
the corresponding properties, which are trivial to prove by the definitions.

Lemma 4.1. For a finite set of vectors Y , we define the matrix

A(Y) :=
∑
v∈Y

v vT.

For a finite set Y ⊂ R
n we have that A(Y) ∈ S n+ ⊂ Cn, and the exposed face,

F
(

C∗, A(Y)
)=

{∑
cic

T
i

∣∣∣ ci ∈ R
n+, cT

i v = 0 for all v ∈ Y, for all i

}
.

i
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For a finite set Y ⊂ R
n+ we have that A(Y) ∈ C∗n, and the exposed face,

F
(

C, A(Y)
)= {X ∈ C

∣∣ vT X v = 0 for all v ∈ Y
}
.

We will now consider the extreme rays of the completely positive cone.

Theorem 4.2. For n � 2, every extreme ray of the completely positive cone is also an exposed ray of it, i.e.

Exp
(

C∗n)= Ext
(

C∗n)= {bbT
∣∣ b ∈ R

n+
∖{0}}.

Proof. The set of extreme rays of the completely positive cone is already known,

Ext
(

C∗)= {bbT
∣∣ b ∈ R

n+
∖{0}} (

see [1, p. 71]
)
.

For an arbitrary b ∈ R
n+ \ {0}, let Yb be a set of n − 1 linearly independent vectors which are perpendicular to b. Now

consider the exposed face of the completely positive cone given by A(Yb),

F
(

C∗, A(Yb)
)= {∑

i

cic
T
i

∣∣∣ ci ∈ R
n+, cT

i v = 0 for all v ∈ Yb, for all i

}

=
{∑

i

cic
T
i

∣∣∣ ci = αib, αi � 0 for all i

}
= {αbbT

∣∣ α � 0
}
.

Therefore the ray given by bbT must be an exposed ray by the definition. �
For n � 4 finding the complete set of extreme rays of the copositive cone is still an open question. We do however have

the following results for matrices which give the extreme rays.

Theorem 4.3. For n � 2, we have the following results for the extreme rays of the copositive cone:

(i) α(eieT
j + e jeT

i ) ∈ Ext(Cn), where i, j = 1, . . . ,n, α > 0, and this is all the nonnegative matrices which give extreme rays of
copositive cone.

(ii) aaT ∈ Ext(C), where a ∈ R
n \ (Rn+ ∪ (−R

n+)), and this, along with the relevant nonnegative matrices αeieT
i from (i), is all the

positive semidefinite matrices which give extreme rays of copositive cone.
(iii) The set {X ∈ Ext(C) | (X)i j ∈ {−1,0,+1}, (X)ii = +1 for all i, j}, was found in [13].
(iv) PDMDPT ∈ Ext(C) ⇔ M ∈ Ext(C), where P is a permutation matrix and D is a diagonal matrix such that (D)ii > 0 for all i.

(v) For M ∈ Cn \ {0}, B ∈ R
n×m we have that

(
M B
BT 0

)
∈ Ext(Cn+m) if and only if B = 0 and M ∈ Ext(Cn).

(vi) If
(

M m
mT μ

)
∈ Ext(Cn) \ N n, then

( M m m
mT μ μ

mT μ μ

)
∈ Ext(Cn+1).

Proof. Where these results have an explicit reference we shall just give the reference rather than reproving the result.
Parts (i) and (ii) come directly from [14]. Part (iii) is from [13]. Part (iv) is trivial to show by transforming the coordinate
basis. Part (vi) comes directly from [15]. We are now left to prove part (v):

We let M̂ =
(

M B
BT 0

)
.

From Theorem 1.1 we can see that M̂ ∈ Cn+m if and only if M ∈ Cn and B � 0. We have that M̂ is the sum of the two
copositive matrices.

M̂ =
(

M 0
0 0

)
+
(

0 B
BT 0

)
.

Therefore M̂ ∈ Ext(C) implies that B = 0.
The result now comes directly from [8,15]. �
We now give an example of an extreme ray of the copositive cone which is not an exposed ray.

Theorem 4.4. Let n � 2 and i ∈ {1, . . . ,n}. Then eieT
i gives a ray of the copositive cone Cn which is extreme but not exposed.

Proof. From the previous theorem we have that eieT ∈ Ext(C).
i
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Assume by contradiction that eieT
i also gives an exposed ray of the copositive cone. This is only true if there exists an

exposed face of the copositive cone which is equal to this ray. Therefore, by Theorem 2.15, there must exist B ∈ C∗ such
that {

αeie
T
i

∣∣ α � 0
}= F (C, B) := {A ∈ C

∣∣ 〈A, B〉 = 0
}
.

As B ∈ C∗ , we decompose it as B =∑k bkbT
k , where bk ∈ R

n+ for all k.
As eieT

i ∈ F (C, B), we get that 〈eieT
i , B〉 = 0 and so bT

k ei = 0 for all k.
We now consider the copositive matrix (eieT

j + e jeT
i ), where i 	= j.〈

eie
T
j + e je

T
i , B
〉= 2

∑
k

(
eT

j bk
)(

bT
k ei
)= 0.

Therefore (eieT
j + e jeT

i ) ∈ F (C, B) \ {αeieT
i | α � 0} = ∅, a contradiction. �

From the extension of Straszewicz’s Theorem, we naturally have that the copositive cone does have exposed rays. Before
we present some of these we will first need the following lemma for part of the proof.

Lemma 4.5. For a matrix X ∈ C we have the following:

(i) If (ei + e j)
T X(ei + e j) = 0 then (X)ii = (X) j j = −(X)i j .

(ii) If (X)ii = (X) j j = (X)kk = −(X)i j = −(X) jk and we also have that (ei + 2e j + ek)
T X(ei + 2e j + ek) = 0 then (X)ik = (X)ii .

Proof. Part (ii) is trivial to show.
Part (i) comes from the inequality of arithmetic and geometric means and some of the properties of copositive matrices

from Theorem 1.1, namely as X ∈ C we have that (X)i j � −√(X)ii(X) j j for all i, j and (X)ii � 0 for all i.

0 = (ei + e j)
T X(ei + e j)

= (X)ii + (X) j j + 2(X)i j

� (X)ii + (X) j j − 2
√

(X)ii(X) j j

� 0.

Thereby we have that (X)ii = (X) j j =√(X)ii(X) j j = −(X)i j . �
Theorem 4.6. For n � 2, we have the following results for the exposed rays of the copositive cone:

(i) α(eieT
j + e jeT

i ) ∈ Exp(Cn), where i 	= j, α > 0.

(ii) aaT ∈ Exp(Cn), where a ∈ R
n \ (Rn+ ∪ (−R

n+)).
(iii) M ∈ Exp(Cn) for all M ∈ Ext(Cn) such that (M)i j = ±1 for all i, j.
(iv) PDMDPT ∈ Exp(Cn) ⇔ M ∈ Exp(Cn), where P is a permutation matrix and D is a diagonal matrix such that (D)ii > 0 for all i.

(v) M̂ =
(

M 0
0 0

)
∈ Exp(Cn+m) if and only if M ∈ Exp(Cn).

(vi) If
(

M m
mT μ

)
∈ Exp(Cn) \ N n, then

( M m m
mT μ μ

mT μ μ

)
∈ Exp(Cn+1).

Proof. In this proof we will regularly use Theorem 2.15 and Lemma 4.1.
(i) For an arbitrary i 	= j, i, j = 1, . . . ,n we define the set

Yi, j := {ek + el
∣∣ k � l, {k, l} 	= {i, j}}⊂ R

n+.

Now we consider the exposed face of the copositive cone given by A(Yi, j),

F
(

C, A(Yi, j)
)= {X ∈ C

∣∣ (ek + el)
T X(ek + el) = 0 for all {k, l} 	= {i, j}}

= {X ∈ C
∣∣ (X)kk + 2(X)kl + (X)ll = 0 for all {k, l} 	= {i, j}}

= {X ∈ C
∣∣ (X)kl = 0 for all {k, l} 	= {i, j}} (by first considering k = l)

= {α(eie
T
j + e je

T
i

) ∣∣ α � 0
}
.

Therefore this ray must be an exposed ray by the definition.
(ii) For an arbitrary a ∈ R

n \ (Rn+ ∪ (−R
n+)) we start by defining the following.
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I+ := {i
∣∣ (a)i > 0

} 	= ∅,

I0 := {i
∣∣ (a)i = 0

}
,

I− := {i
∣∣ (a)i < 0

} 	= ∅,

b := 1

|I+|
∑
i∈I+

1

(a)i
ei + 1

|I−|
∑
i∈I−

1

|(a)i |ei +
∑
i∈I0

ei,

and for arbitrary i+ ∈ I+ , i− ∈ I− ,

Ya := {e j | j ∈ I0} ∪
{

1

(a)i+
ei+ + 1

|(a) j|e j

∣∣∣ j ∈ I−
}

∪
{

1

(a) j
e j + 1

|(a)i−|ei−

∣∣∣ j ∈ I+ \ {i+}
}
.

It is immediately apparent that b is strictly positive, Ya ⊆ R
n+ , and for all v ∈ Ya ∪ {b} we have that vTa = 0. It can also be

seen that Ya is a set of n − 1 linearly independent vectors. We now consider the exposed face of the copositive cone given
by A(Ya ∪ {b}),

F
(

C, A
(

Ya ∪ {b}))= {X ∈ C
∣∣ bT Xb = 0, vT X v = 0 for all v ∈ Ya

}
= {X ∈ S+

∣∣ bT Xb = 0, vT X v = 0 for all v ∈ Ya
} (

from Theorem 1.1 and the fact that b ∈ R
n++
)

=
{∑

i

cic
T
i

∣∣∣ ci ∈ R
n, cT

i v = 0
for all v ∈ Ya ∪ {b},
for all i

}

=
{∑

i

cic
T
i

∣∣∣ β ∈ R, ci = βa for all i

}
= {αaaT

∣∣ α � 0
}
.

Therefore the ray given by aaT must be an exposed ray by the definition.
(iii) A method for finding all the matrices M giving extreme rays of the copositive cone with (M)i j = ±1 for all i, j was

first presented in [16], however we will use the more general method from [13]. In this they defined the simple graphs
G1(M) and G−1(M) associated with a symmetric matrix M such that (M)i j = ±1 for all i, j and (M)ii = 1 for all i. G1(M)

(G−1(M)) is defined to be a graph on n vertices such that i and j are adjacent if (M)i j = 1 ((M)i j = −1). We have that M
gives an extreme ray of the copositive cone if and only if G−1(M) is connected and contains no triangles, and G1(M) is
precisely the edges (i, j) such that i and j are at a distance of 2 in G−1(M).

Now for an arbitrary matrix M of this form we define the following,

J− := {(i, j)
∣∣ i < j, (M)i j = −1

}
,

J± := {(i, j,k)
∣∣ i < k, (M)ik = −(M)i j = −(M) jk = 1

}
,

Y− := {ei + e j
∣∣ (i, j) ∈ J−

}
,

Y± := {ei + 2e j + ek
∣∣ (i, j,k) ∈ J±

}
.

Now we consider the exposed face of the copositive cone given by the completely positive matrix A(Y± ∪ Y−),

F
(

C, A(Y± ∪ Y−)
)= {X ∈ C

∣∣ vT X v = 0 for all v ∈ Y± ∪ Y−
}

=
⎧⎨⎩X ∈ C

∣∣∣∣∣
vT X v = 0 for all v ∈ Y±,

α � 0, (X)ii = α for all i,

(X) jk = −α for all ( j,k) ∈ J−

⎫⎬⎭(
from Lemma 4.5(i) and because G−1(M) is connected

)
= {αM | α � 0} (

from Lemma 4.5(ii) and the condition on G1(M)
)
.

Therefore the ray given by M must be an exposed ray by the definition.
(iv) The multiplications with a permutation matrix P and a diagonal matrix D with all the diagonal entries strictly

positive can be seen as a transformation of the coordinate basis, and as D P T
R

n+ = R
n+ the implications are trivial.

(v) (⇒) If M̂ ∈ Exp(Cn+m) then there exists a B̂ ∈ C∗ such that the exposed face F (C, B̂) = {αM̂ | α � 0}. As B̂ is com-
pletely positive there must exist sets {b1, . . . ,bp} ⊂ R

n+ and {β1, . . . , βp} ⊂ R
m+ such that

B̂ =
∑

i

(
bi
βi

)(
bi
βi

)T

.

If we now define B =∑i bibT it can be seen that the exposed face F (C, B) = {αM | α � 0}.
i
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(⇐) For the case when M ∈ Exp(C) ∩ S+ , it is trivial that M̂ ∈ Exp(C), by considering Theorem 4.3(ii), Theorem 4.4 and
Theorem 4.6(ii).

Now we consider the case when M ∈ Exp(C) \ S+ . As M is an exposed ray there must exist a B M ∈ C∗n such that
F (C, BM) = {αM | α � 0} and as BM is completely positive there must exist a set {b1, . . . ,bp} ⊂ R

n+ such that BM =∑i bibT
i .

These vectors must span the entire space, otherwise there exists an a ∈ R
n \ {0} such that aTbi = 0 for all i which would

imply that aaT ∈ F (C, BM) ∩ S+ . Now we define the following matrices in C∗(n+m) ,

B̂1 :=
p∑

i=1

(
bi
0

)(
bi
0

)T

=
(

BM 0
0 0

)
,

B̂2 :=
m∑

j,k=1

(
0

e j + ek

)(
0

e j + ek

)T

,

B̂3 :=
p∑

i=1

m∑
j=1

(
bi
e j

)(
bi
e j

)T

,

B̂4 := B̂1 + B̂2 + B̂3,

and consider the exposed face of Cn+m given by B̂4,

F (C, B̂4) =
{(

X Y
Y T Z

)
∈ C

∣∣∣ 〈B̂1 + B̂2 + B̂3,

(
X Y

Y T Z

)〉
= 0

}
=
{(

X Y
Y T Z

)
∈ C

∣∣∣ 〈B̂l,

(
X Y

Y T Z

)〉
= 0, l = 1,2,3

}

=

⎧⎪⎨⎪⎩
(

X Y
Y T Z

)
∈ C

∣∣∣∣∣
〈BM , X〉 = 0,

(Z) j j + (Z)kk + 2(Z) jk = 0 for all j,k,

bT
i Xbi + (Z) j j + 2bT

i Y e j = 0 for all i, j

⎫⎪⎬⎪⎭
=
{(

αM Y
Y T 0

)
∈ C

∣∣∣ α � 0, Y e j = 0 for all j

}
= {αM̂ | α � 0}.

Therefore this must be an exposed ray by the definition.

(vi) If
(

M m
mT μ

)
∈ C and M = 0 then we get that both m and μ must be nonnegative, and thereby the whole matrix must

be nonnegative, contradicting the given constraints. Therefore we must have that M ∈ C \ {0}.

If
(

M m
mT μ

)
gives an exposed ray of the copositive cone then there must exist a B ∈ C∗n such that{

α

(
M m

mT μ

) ∣∣∣ α � 0

}
= F (C, B) := {X ∈ C

∣∣ 〈B, X〉 = 0
}
.

As B is completely positive there must exist sets {b1, . . . ,bk} ⊂ R
n−1+ and {β1, . . . , βk} ⊂ R+ such that

B =
∑

i

(
bi
βi

)(
bi
βi

)T

.

We now consider the following finite sets in R
n+ ,

Y1 =
{( b1

β1
0

)
, . . . ,

( bk
βk
0

)}
,

Y2 =
{( b1

0
β1

)
, . . . ,

( bk
0
βk

)}
,

Y3 =
{(2b1

β1
β1

)
, . . . ,

(2bk
βk
βk

)}
,

and the exposed face of C(n+1) given by A(Y1 ∪ Y2 ∪ Y3),



P.J.C. Dickinson / J. Math. Anal. Appl. 380 (2011) 377–395 387
F
(

C, A(Y1 ∪ Y2 ∪ Y3)
) := { X̂ ∈ Cn+1

∣∣∣ vT X̂ v = 0
for all v ∈ Yi,

for all i

}
=
⎧⎨⎩
⎛⎝ X x1 x2

xT
1 γ1 ζ

xT
2 ζ γ2

⎞⎠ ∈ C

∣∣∣∣∣ vT

⎛⎝ X x1 x2
xT

1 γ1 ζ

xT
2 ζ γ2

⎞⎠ v = 0,
for all v ∈ Yi,

for all i

⎫⎬⎭
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎝ X x1 x2

xT
1 γ1 ζ

xT
2 ζ γ2

⎞⎠ ∈ C

∣∣∣∣∣
〈

B,

(
X x j
xT

j γ j

)〉
= 0, j = 1,2,〈

B,

(
4X 2(x1 + x2)

2(x1 + x2)
T γ1 + γ2 + 2ζ

)〉
= 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭
=
{
α

( M m m
mT μ μ
mT μ μ

)
∈ C

∣∣∣∣ α � 0

}
.

The last line is in part implied by the fact that we must have M 	= 0. We now have that this must be an exposed ray by the
definition. �
5. Maximal faces of the copositive cone

We can now use results developed in this paper to give us the maximal faces of the copositive cone.

Lemma 5.1. F is a maximal face of the copositive cone if and only if there exists v ∈ R
n+ \ {0} such that

F = Mn(v) := {X ∈ Cn
∣∣ vT X v = 0

}
.

Proof. By Theorems 2.17, 2.20 and 4.2. �
We will now investigate the dimension of these faces. Without loss of generality we consider a vector defining a maximal

face with the first p entries positive and the next (n − p) entries equal to zero, for some p ∈ {1, . . . ,n}. We can do this as
for any nonzero vector the coordinate basis can easily be permuted so that this is so.

Lemma 5.2. Let v =
(

v̂
0

)
∈ R

n+ , where v̂ ∈ R
p
++ and p ∈ {1, . . . ,n}. Then

dim Mn(v) = dim M p(v̂) + 1

2
(n − p)(n + p + 1).

Proof. In this proof we will subdivide the matrices as follows:

A =
(

Y W T

W Z

)
∈ S n

such that

Y ∈ S p,

W ∈ R
(n−p)×p,

Z ∈ S (n−p).

If A is copositive then Y and Z are copositive from Theorem 1.1.

Mn(v) = {A ∈ Cn
∣∣ vT Av = 0

}
=
{

A =
(

Y W T

W Z

)
∈ Cn

∣∣∣ v̂TY v̂ = 0

}
=
{

A =
(

Y W T

W Z

)
∈ Cn

∣∣∣ Y ∈ M p(v̂)

}
.

To get an equation for the dimension of Mn(v), we will sandwich it between two other sets.

Mn(v) ⊆
{

A =
(

Y W T

W Z

)
∈ S n

∣∣∣ Y ∈ M p(v̂),

Z ∈ C(n−p),
W ∈ R

(n−p)×p
}
.
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Therefore,

dim Mn(v) � dim M p(v̂) + dim C(n−p) + dim R
(n−p)×p

= dim M p(v̂) + 1

2
(n − p)(n − p + 1) + (n − p)p,

Mn(v) ⊇
{

A =
(

Y W T

W Z

)
∈ S n

∣∣∣ Y ∈ M p(v̂),

Z ∈ C(n−p),
W ∈ R

(n−p)×p
+

}
.

Therefore,

dim Mn(v) � dim M p(v̂) + dim C(n−p) + dim R
(n−p)×p
+

= dim M p(v̂) + 1

2
(n − p)(n − p + 1) + (n − p)p. �

We now need the dimension of M p(v̂), which we can find using the following lemma.

Lemma 5.3. Let {u1, . . . , um} ⊂ R
p
+ \ {0} be a set of linearly independent vectors, where u1 ∈ R

p
++ and m < p. Then we have that⋂m

i=1 M p(ui) is an exposed face of the copositive cone which is isomorphic to the positive semidefinite cone S (p−m)
+ .

Proof. It is easy to see that the intersection of exposed faces is another exposed face. From the conditions given we have
that

m⋂
i=1

M p(ui) = {A ∈ C p
∣∣ uT

i Aui = 0 for all i = 1, . . . ,m
}

= {A ∈ S p
+
∣∣ uT

i Aui = 0 for all i = 1, . . . ,m
}

(from Theorem 1.1)

=
{∑

j

a ja
T
j

∣∣∣ a j ∈ R
p, aT

j ui = 0 for all i, j

}
.

This set can now be seen to be isomorphic to S (p−m)
+ . �

We now use this to get the dimensions of the maximal faces.

Lemma 5.4. Let v =
(

v̂
0

)
∈ R

n+ , where v̂ ∈ R
p
++ and p ∈ {1, . . . ,n}. Then

dim Mn(v) = 1

2
n(n + 1) − p.

Proof. From Lemma 5.2 we have that

dim Mn(v) = dim M p(v̂) + 1

2
(n − p)(n + p + 1).

The previous lemma and v̂ ∈ R
p
++ implies that M p(v̂) is isomorphic to S p−1

+ , so dim M p(v̂) = dim S p−1
+ = 1

2 p(p − 1).
Consequently,

dim Mn(v) = 1

2
p(p − 1) + 1

2
(n − p)(n + p + 1) = 1

2
n(n + 1) − p. �

By considering permutations of the coordinate basis we can now generalise the result from the previous lemma for all
v ∈ R

n+ \ {0} and combine this with Lemma 5.1 in order to give us the following theorem on the maximal faces of the
copositive cone.

Theorem 5.5. F is a maximal face of the copositive cone if and only if there exists v ∈ R
n+ \ {0} such that

F = Mn(v) := {X ∈ Cn
∣∣ vT X v = 0

}
.

For a vector v ∈ R
n+ \ {0} with p nonzero entries,

dim Mn(v) = 1

2
n(n + 1) − p.
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An interesting result from this is that we get the following tight inequalities for the dimension of a maximal face M of
the copositive cone Cn ,

dim C(n−1) � dim M � dim Cn − 1.

We can now show that the copositive cone has facets, as defined in Definition 2.1.

Theorem 5.6. For n � 2, the copositive cone Cn has n facets and they are of the following form,

Mn(ei) = {A ∈ Cn
∣∣ (A)ii = 0

}
for i = 1, . . . ,n,

Mn(e1) =
{(

0 bT

b B

) ∣∣∣ b � 0, B ∈ C(n−1)

}
.

(When being more specific about the form we took i = 1 for simplicity. The result can then be extended by permuting the coordinate
basis.)

Proof. From Theorem 5.5 it can be clearly seen that the facets of the copositive cone are produced by vectors with only
one nonzero entry. It can also be clearly seen that multiplying a vector by a strictly positive constant does not change the
face that it describes, thereby all the facets can be produced by the unit vectors ei for i = 1, . . . ,n. Using this we now get
the following as the facets.

Mn(ei) = {A ∈ Cn
∣∣ eT

i Aei = 0
}= {A ∈ Cn

∣∣ (A)ii = 0
}
,

dim Mn(ei) = 1

2
n(n + 1) − 1 = dim Cn − 1.

In order to be more specific about the form that the facets take we first note that the conditions we give in the form are
obviously sufficient for the matrix being on the face. Using Theorem 1.1 we see that these conditions are also necessary. �
6. Maximal faces of the completely positive cone

We were able to find all the maximal faces of the copositive cone due to the fact that we know all the extreme rays
of the completely positive cone. Unfortunately finding the complete set of extreme rays for the copositive cone when
n � 4 is still an open question. We can however consider some of the extreme rays which we do know. In particular,
by Theorem 2.20, the exposed rays in Theorem 4.6 must give maximal faces of the completely positive cone. In [17] the
authors consider the exposed face of the completely positive cone given by the Horn matrix and as this matrix is in the set
{X ∈ Ext(C 5) | (X)i j = ±1 for all i} we now see that the face is a maximal face. In this section we will look at some more
maximal faces of the completely positive cone, although we start by presenting the following theorem for a general face of
the completely positive cone. This theorem is trivial to prove by transforming the coordinate basis.

Theorem 6.1. Let M be a copositive matrix, P be a permutation matrix and D be a diagonal matrix such that (D)ii > 0 for all i, then

dim
(

F
(

C∗,PDMDPT))= dim
(

F
(

C∗, M
))

.

Before we start looking specifically at maximal faces of the completely positive cone we first need the following lemma.

Lemma 6.2. If Y = {v1, . . . , vm} is a set of linearly independent vectors, then the following is a set of 1
2 m(m + 1) linearly independent

matrices,

U = {(vi + v j)(vi + v j)
T
∣∣ i � j, i, j = 1, . . . ,m

}
.

Proof. Suppose by contradiction that U is not a linearly independent set. Then there exists α ∈ S \ {0} such that

0 = 1

2

∑
i, j

(α)i j(vi + v j)(vi + v j)
T =

∑
i

vi

∑
j

(α)i j(vi + v j)
T.

As Y is a linearly independent set, we must have that for all i,

0 =
∑

j

(α)i j(vi + v j)
T =

(∑
j

(α)i j + (α)ii

)
vT

i +
∑
j 	=i

(α)i j vT
j .

Again as Y is a linearly independent set, we get that (α)i j = 0 for all i, j. �
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We are now able to find the dimension of the maximal faces of the completely positive cone given by aaT , where
a ∈ R

n \ (Rn+ ∪ (−R
n+)).

Theorem 6.3. Let a ∈ R
n \ (Rn+ ∪ (−R

n+)). Then F (C∗,aaT) is a maximal face of C∗n with dimension 1
2 n(n − 1).

Proof. From Theorems 2.20 and 4.6 it can be immediately seen that F (C∗,aaT) is a maximal face of C∗n .
From the decomposition of completely positive matrices we have,

F
(

C∗,aaT) := {X ∈ C∗ ∣∣ 〈X,aaT〉= 0
}=

{∑
i

bib
T
i

∣∣∣ bi ∈ R
n+, bT

i a = 0 for all i

}
.

We now define Ya as in the proof of Theorem 4.6(ii) and let

U := {(u + v)(u + v)T
∣∣ u, v ∈ Ya

}
,

V :=
{∑

i

bib
T
i

∣∣∣ bi ∈ R
n, bT

i a = 0 for all i

}
.

It is not difficult to see that U ⊂ F (C∗,aaT) ⊂ V . V is isomorphic to S (n−1)
+ , meaning that dim V = 1

2 n(n − 1), and
therefore the dimension of the face must be less than or equal to this. It can also be seen that Ya is a set of n − 1 linearly
independent vectors and so from the previous lemma we see that U gives us a set of 1

2 n(n − 1) linearly independent
matrices contained in the face. �

Before we continue to consider more maximal faces we first need the following lemma which gives an upper bound on
the dimension of an exposed face of the completely positive cone.

Lemma 6.4. Let ∅ 	= I ⊆ {1, . . . ,n} and let X ∈ Cn such that (X)ii > 0 for all i ∈ I . Then

dim
(

F
(

C∗n, X
))

� 1

2
n(n + 1) − |I| = dim C∗n − |I|.

Proof. In this proof, for simplicity of notation, we let dim(F (C∗n, X)) = m.
If we consider the diagonal matrix D±δ,i := I ± δeieT

i for 0 < δ < 1 then from Theorem 1.1 we have that the following
matrix is copositive,

D±δ,i X D±δ,i = X ± δ X̃i + δ2 X̂i,

where X̃i := eie
T
i X + Xeie

T
i ,

X̂i := (X)iieie
T
i .

As (X)ii > 0 for all i ∈ I , we have that { X̃i | i ∈ I} is a set of |I| linearly independent symmetric matrices.
As 0 ∈ F (C∗, X) and dim F (C∗, X) = m, there must exist a set of linearly independent symmetric matrices

{A1, . . . , Am} ⊆ F (C∗, X). We have that 〈A j, X〉 = 0 for all j.
For all i ∈ I , for all j = 1, . . . ,m and for all δ ∈ (0,1), we have A j ∈ C∗ and D±δ,i X D±δ,i ∈ C and therefore, by the

definition of the dual,

0 � 1

δ
〈A j, D±δ,i X D±δ,i〉 = ±〈A j, X̃i〉 + δ〈A j, X̂i〉.

Letting δ → 0 we get that 〈A j, X̃i〉 = 0 for all i ∈ I , j = 1, . . . ,m.
Therefore { X̃i | i ∈ I} ∪ {A1, . . . , Am} is a set of linearly independent symmetric matrices, and this implies that

|I| + m � dim S n = 1
2 n(n + 1). �

Using this lemma, we will now consider the maximal face given by a matrix M ∈ Ext(Cn) such that (M)i j = ±1 for all
i, j, for example the Horn matrix, which was shown in [17] to give a face of dimension 10.

Theorem 6.5. Let M ∈ Ext(Cn) such that (M)i j = ±1 for all i, j. Then F (C∗, M) is a maximal face of C∗n with dimension 1
2 n(n − 1).

Proof. From Theorems 2.20 and 4.6 it can be immediately seen that F (C∗, M) is a maximal face of C∗n .
As M is copositive we must have that (M)ii = 1 for all i, and thus from Lemma 6.4 we have an upper bound of 1

2 n(n −1)

on the dimension of the face.
As in the proof of Theorem 4.6(iii) we now define the sets J± and J− , along with a further set J+ ,
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J− := {(i, j)
∣∣ i < j, (M)i j = −1

}
,

J+ := {(i, j)
∣∣ i < j, (M)i j = +1

}
,

J± := {(i, j,k)
∣∣ i < k, (M)ik = −(M)i j = −(M) jk = 1

}
.

We have that J− ∪ J+ = {(i, j) | i < j, i, j = 1, . . . ,n} and J− ∩ J+ = ∅.
As M ∈ Ext(C), from [13] we must have that J+ = {(i,k) | (i, j,k) ∈ J±}.
We now let J̃± be a minimal subset of J± such that we maintain the property that J+ = {(i,k) | (i, j,k) ∈ J̃±}. We

then have that |J̃±| = |J+|. We will now define Y− as in the proof of Theorem 4.6(iii), along with a further two sets,

Y− := {ei + e j
∣∣ (i, j) ∈ J−

}
,

Ỹ± := {ei + 2e j + ek
∣∣ (i, j,k) ∈ J̃±

}
,

W := {v vT
∣∣ v ∈ Y− ∪ Ỹ±

}
.

It is not difficult to show that W ⊆ F (C∗n, M) and |W | = 1
2 n(n − 1). We will now show that W is a linearly independent

set, which gives us a lower bound of 1
2 n(n − 1) on the dimension of the face and thus completes the proof.

Suppose by contradiction that W is not a linearly independent set. Then there must exist an α ∈ S n \ {0} such that
(α)ii = 0 for all i and

M(α) = 0, where we define

M(α) :=
∑

(i, j)∈J−
(α)i j(ei + e j)(ei + e j)

T,+
∑

(i, j,k)∈J̃±

(α)ik(ei + 2e j + ek)(ei + 2e j + ek)
T.

For an arbitrary (i,k) ∈ J+ we have that 0 = (M(α))ik = (α)ik , and therefore (α)ik = 0 for all (i,k) ∈ J+ . We now
consider an arbitrary (i, j) ∈ J− , for which we have that 0 = (M(α))i, j = (α)i j , and therefore (α)i j = 0 for all (i, j) ∈ J−
and so we have the contradiction that (α)i j = 0 for all i, j. �

We finish this section by considering the maximal faces of the completely positive cone given by the matrices eieT
j +e jeT

i ,
where i 	= j. We will show that these are in fact facets, as defined in Definition 2.1.

Theorem 6.6. For n � 2 the completely positive cone C∗n has 1
2 n(n − 1) facets and they are of the following form,

F
(

C∗n, eie
T
j + e je

T
i

)= {B ∈ C∗n
∣∣ (B)i j = 0

}
for i < j, i, j = 1, . . . ,n

=
{∑

k

ckcT
k

∣∣∣ ck ∈ R
n+, (ck)i(ck) j = 0 for all k

}
.

Proof. From Theorem 2.17 any maximal face of the completely positive cone can be given by an extreme ray of the coposi-
tive cone, so we need only consider the faces F (C∗n, X) where X ∈ Ext(Cn). It has been shown in [14] that

Ext
(

Cn)∩ N n = {α(eie
T
j + e je

T
i

) ∣∣ α > 0, i, j = 1, . . . ,n
}
.

We start this proof by considering the faces given by the vectors eieT
j + e jeT

i where i < j, proving them to be facets. We

then consider the faces given by the vectors eieT
i , proving them not to be facets. As multiplying a vector by a strictly positive

constant does not change the face it describes, the remaining faces to consider are given by matrices in Ext(Cn) \ N n , which
we will prove are also not facets, completing the proof. For simplicity of notation in the proof, we let N = dim(C∗n) =
dim(S n) = 1

2 n(n + 1).
(i) Consider an arbitrary i, j ∈ {1, . . . ,n} such that i < j.
(eieT

j + e jeT
i ) ∈ Cn , therefore (by Theorem 2.15) F (C∗n, eieT

j + e jeT
i ) is an exposed face of C∗n .

F
(

C∗n, eie
T
j + e je

T
i

)= {B ∈ C∗n
∣∣ (B)i j = 0

}
=
{∑

k

ckcT
k

∣∣∣ ck ∈ R
n+, (ck)i(ck) j = 0 for all k

}
.

We now consider the set Yi, j as defined in the proof of Theorem 4.6(i),

Yi, j := {ek + el
∣∣ k � l, {k, l} 	= {i, j}}⊂ R

n+.

We have that {v vT | v ∈ Yi, j} ⊆ F (C∗n, eieT + e jeT).
j i
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Using Lemma 6.2 we see that the set {v vT | v ∈ Yi, j} consists of N − 1 linearly independent matrices. We also have that
0 ∈ F (C∗n, eieT

j + e jeT
i ).

Therefore N − 1 � dim F (C∗n, eieT
j + e jeT

i ) < dim C∗n = N , and this implies that

dim F
(

C∗n, eie
T
j + e je

T
i

)= N − 1 = dim C∗n − 1.

(ii) We shall now consider the faces given by eieT
i .

F
(

C∗n, eie
T
i

)= {B ∈ C∗n
∣∣ (B)ii = 0

}
=
{∑

k

ckcT
k

∣∣∣ ck ∈ R
n+, (ck)i = 0 for all k

}
= {B ∈ C∗n

∣∣ (B)i j = 0 for all j
}

⊂ F
(

C∗n, eie
T
j + e je

T
i

)
for all j 	= i.

Therefore these faces cannot be facets.
(iii) Now it is only left for us to consider the faces given by the matrices in Ext(Cn) \ N n . For an arbitrary ma-

trix X ∈ Ext(Cn) \ N n there must exist an i, j such that (X)i j < 0 and from Theorem 1.1 we must have that i 	= j and
(X)ii, (X) j j > 0. We can now use Lemma 6.4 to show that dim(F (C∗n, X)) � dim C∗n − 2. �
7. Lower bound on the dimension of maximal faces of the completely positive cone

In all of our examples of maximal faces of the completely positive cone so far looked at we have had that their di-
mensions were greater than or equal to 1

2 n(n − 1). From this one might suspect that this is in fact a lower bound on the
dimension of the maximal faces for the completely positive cone, as it was for the copositive cone. For n � 4 we know all
the extreme rays of the copositive cone and from the analysis in the previous section we see that the conjecture does hold
in this case. We will however show that the conjecture is not generally true by giving an example of a copositive matrix
which gives an exposed ray of the copositive cone, implying that it also gives a maximal face of the completely positive
cone, however the dimension of this face is strictly less than the conjectured lower bound.

Before we can do this we need to know how we can take a known copositive matrix, check if it gives an exposed ray
and find the dimension of the exposed face given by it. In order to do this we first introduce the concept of the set of zeros
in the nonnegative orthant for a quadratic form, as used previously in [18]. This is defined as follows for a matrix B ∈ S n ,

V B := {v ∈ R
n+
∣∣ vT B v = 0

}
.

The theorems below give two of the properties of this set.

Theorem 7.1. Suppose the matrix Â ∈ Cn and the vector x̂ ∈ R
n+ can be partitioned as below, where p � n, A ∈ S p , B ∈ R

p×(n−p) ,
C ∈ S n−p and x ∈ R

p
++ .

Â =
(

A B
BT C

)
, x̂ =

(
x
0

)
.

Then we have that x̂ ∈ V Â if and only if A is a positive semidefinite matrix and x ∈ Ker(A), where Ker(A) denotes the kernel of A.

Proof. We have that x̂T Âx̂ = xT Ax. From this the reverse implication is trivial. To prove the forward implication we first
suppose that x̂T Âx̂ = 0. This implies that xT Ax = 0. From Theorem 1.1 this in turn implies that A is positive semidefinite
and from the properties of positive semidefinite matrices we also get that Ax = 0. �
Theorem 7.2. Suppose the matrix Â ∈ Cn and the vector x̂ ∈ R

n can be partitioned as below, where p � n, A ∈ S p
+ , B ∈ R

p×(n−p) ,
C ∈ S n−p and x ∈ R

p .

Â =
(

A B
BT C

)
, x̂ =

(
x
0

)
.

Then we have that x̂ ∈ V Â if and only if x ∈ R
p
+ ∩ Ker(A).

Proof. x̂T Âx̂ = 0 ⇔ xT Ax = 0 ⇔ Ax = 0. �
From these properties we immediately get the following two techniques.
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Method 7.3. Theorems 7.1 and 7.2 can be easily extended by considering permutations of the coordinate basis. From this
we see that for a given copositive matrix A we can find V A by first finding the maximal positive semidefinite principal
submatrices of A and then considering their kernels. Applying this method for a given copositive matrix A we find its set
of zeros in the nonnegative orthant in the form

V A =
m⋃

i=1

cone Xi,

where Xi ⊂ R
n+ is a finite set for all i and where we define a conic hull of a set Q as follows,

cone Q :=
{∑

i

θiqi

∣∣∣ θi � 0, qi ∈ Q for all i

}
.

Each Xi relates to the set of exposed rays from the intersection of the nonnegative orthant with the kernel of a maximal
positive semidefinite principal submatrix.

Method 7.4. We can also partially reverse the process in the previous method. Given a finite set V ⊂ R
n+ we can find

necessary conditions on a matrix A ∈ C in order to have V ⊂ V A . These necessary conditions are in terms of certain principal
submatrices being positive semidefinite and containing certain vectors in their kernels.

We now present the following theorem which gives an application of these methods.

Theorem 7.5. Consider a matrix A ∈ C \ {0}. Let {X1, . . . , Xm} be such that Xi ⊂ R
n+ is a finite set for all i and

V A =
m⋃

i=1

cone Xi .

Using Method 7.3 we can always find such a set. We now define the following for i = 1, . . . ,m:

Yi = {b1 + b2 | b1,b2 ∈ Xi},
Zi = {bbT

∣∣ b ∈ Yi
}= {(b1 + b2)(b1 + b2)

T
∣∣ b1,b2 ∈ Xi

}
.

Then we have that:

(i) cone(
⋃m

i=1 Zi) ⊆ F (C∗, A) ⊆ span(
⋃m

i=1 Zi), where we define the linear span of a set Q as follows,

span Q :=
{∑

i

θiqi

∣∣∣ θi ∈ R, qi ∈ Q for all i

}
.

(ii) dim F (C∗, A) = dim(span(
⋃m

i=1 Zi)). (Note that as Zi is a finite set this value is relatively easy to compute.)
(iii) A ∈ Exp(C) ⇔ {X ∈ C |⋃m

i=1 Yi ⊆ V X } = {αA | α � 0}.

Proof. We begin by noting the following, where B ⊂ R
n+ is a finite set,

F
(

C∗, A
)= {∑

i

bib
T
i

∣∣∣ bi ∈ R
n+ for all i,

∑
i

bT
i Abi = 0

}
= cone

{
bbT

∣∣ b ∈ V A},
F
(

C,
∑
b∈B

bbT

)
=
{

X ∈ C
∣∣∣∑

b∈B
bT Xb = 0

}
= {X ∈ C

∣∣ B ⊂ V X}.
We now prove each point in turn.

(i) We have that

cone

(
m⋃

i=1

Zi

)
⊆ cone

{
bbT

∣∣ b ∈ V A}= F
(

C∗, A
)
.

We also have that
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F
(

C∗, A
)= cone

{
bbT

∣∣ b ∈ V A}
⊆ span

m⋃
i=1

{
bbT

∣∣ b ∈ cone Xi
}

= span
m⋃

i=1

{(∑
j

α jb j

)(∑
k

αkbk

)T ∣∣∣ αl � 0, bl ∈ Xi for all l

}

= span
m⋃

i=1

{
1

2

∑
j,k

α jαk
(
b jb

T
k + bkbT

j

) ∣∣∣ αl � 0, bl ∈ Xi for all l

}

= span
m⋃

i=1

{
1

8

∑
j,k

α jαk
(
4(b j + bk)(b j + bk)

T − (b j + b j)(b j + b j)
T

− (bk + bk)(bk + bk)
T) ∣∣∣ αl � 0, bl ∈ Xi for all l

}

⊆ span

(
m⋃

i=1

(span Zi)

)
= span

(
m⋃

i=1

Zi

)
.

(ii) This is implied directly from part (i).
(iii) From part (i) we see that

∑m
i=1
∑

b∈Yi
bbT ∈ reint(F (C∗, A)). From Theorem 2.21 we have that the minimal exposed

face of the copositive cone containing A is given by

F
(

C,

m∑
i=1

∑
b∈Yi

bbT

)
=
{

X ∈ Cn
∣∣∣ m⋃

i=1

Yi ⊆ V X

}
.

We now note that A gives an exposed ray if and only if the minimal exposed face containing it is a ray. �
We now present our counter example to the conjectured lower bound.

Theorem 7.6. If we let A be the matrix given below then we have that F (C∗, A) is a maximal face of the completely positive cone and
dim F (C∗, A) = 27, which is strictly less than the conjectured lower bound, 1

2 (9)(9 − 1) = 36.

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 1 0 0 0 0 1 −1
−1 1 −1 1 0 0 0 0 1
1 −1 1 −1 1 0 0 0 0
0 1 −1 1 −1 1 0 0 0
0 0 1 −1 1 −1 1 0 0
0 0 0 1 −1 1 −1 1 0
0 0 0 0 1 −1 1 −1 1
1 0 0 0 0 1 −1 1 −1

−1 1 0 0 0 0 1 −1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(This matrix is referred to as a Hoffman–Pereira matrix.)

Proof. From [13] we have that A ∈ Ext(C). Using Method 7.3 we find V A , which is given as follows.

V A =
⋃

Cyclic
Permutations

cone

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
0
0
0
0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
1
0
0
0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
1
1
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

Now using Theorem 7.5(iii) and Method 7.4 we get that A ∈ Exp(C), therefore from Theorem 2.20 we see that F (C∗, A) is a
maximal face of the copositive cone. Using Theorem 7.5(ii) we have that dim F (C∗, A) = 27. �
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Finding the actual value of the tight lower bound for the dimension of a maximal face of the completely positive cone is
still an open question. The methods in this section can be used to test specific examples of copositive matrices, however we
would run in to problems if given a copositive matrix which did not lie on an exposed ray and, unbeknown to us, gave a
maximal face of the completely positive cone. We do not currently have any examples of a matrix like this and it is another
open question as to whether such a matrix does in fact exist.
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