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STRUCTURE PRESERVING SPATIAL DISCRETIZATION OF A 1-D
PIEZOELECTRIC TIMOSHENKO BEAM∗

T. VOSS† AND J. M. A. SCHERPEN‡

Abstract. In this paper we show how to spatially discretize a distributed model of a piezoelec-
tric beam representing the dynamics of an inflatable space reflector in port-Hamiltonian (pH) form.
This model can then be used to design a controller for the shape of the inflatable structure. Inflat-
able structures have very nice properties, suitable for aerospace applications, e.g., inflatable space
reflectors. With this technology we can build inflatable reflectors which are about 100 times bigger
than solid ones. But to be useful for telescopes we have to achieve the desired surface accuracy by
actively controlling the surface of the inflatable. The starting point of the control design is modeling
for control. In this paper we choose lumped pH modeling since these models offer a clear structure
for control design. To be able to design a finite dimensional controller for the infinite dimensional
system we need a finite dimensional approximation of the infinite dimensional system which inherits
all the structural properties of the infinite dimensional system, e.g., passivity. To achieve this goal
first divide the one-dimensional (1-D) Timoshenko beam with piezoelectric actuation into several
finite elements. Next we discretize the dynamics of the beam on the finite element in a structure
preserving way. These finite elements are then interconnected in a physical motivated way. The in-
terconnected system is then a finite dimensional approximation of the beam dynamics in the pH
framework. Hence, it has inherited all the physical properties of the infinite dimensional system. To
show the validity of the finite dimensional system we will present simulation results. In future work
we will also focus on two-dimensional (2-D) models.

Key words. infinite dimensional port-Hamiltonian systems, structure preserving spatial dis-
cretization, piezoelectric beam, passivity

AMS subject classifications. 65M60, 93C20

DOI. 10.1137/100789038

1. Introduction. Inflatable structures are a very promising technology for space
applications [7]. With this emerging technology one is able to build bigger space crafts,
which are cheaper in terms of costs but still use the same space in the orbiting device.
As a consequence, the developments may enable us to build bigger solar panels and
reflectors.

Due to the fact that any inflatable structure is built out of a polymer casing which
is folded on Earth and then inflated with a gas in space, an inflatable structure cannot
have the same surface accuracy as a rigid body. This disadvantage is the reason why in-
flatable structures are currently not the best option for high accuracy situations. In or-
der to eventually improve the surface accuracy by using piezoelectric elements, in this
paper we focus on modeling for control of an inflatable space reflector; see Figure 1.1.

In order to change the shape of an inflatable structure, one could use smart
materials which can change their properties on demand, e.g., piezoelectric polymers
[15]. This means that with such materials it is actually possible to change the shape of
an element by means of an applied voltage. Since these materials are made of polymers
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130 T. VOSS AND J. M. A. SCHERPEN

Fig. 1.1. An inflatable space reflector test setup of the company L’garde (www.lgarde.com).

it is possible to build extremely thin actuators which can then be bonded to the casing
of the inflatable structure. Moreover, to be able to change the shape of the reflecting
surface locally, the actuators are spread out over the whole surface. If one applies a
voltage to the actuators, the piezoelectric material will change its length. Also, due
to the bonding to the shell of the reflector the reflecting surface will bend locally.

We show how to spatially discretize an infinite dimensional port-Hamiltonian (pH)
model [19] of a nonlinear Timoshenko beam with piezo actuation. The reason why we
treat a one-dimensional (1-D) Timoshenko beam and not directly a two-dimensional
(2-D) model is that we first want to treat a simplification of the very complex plate
model. Therefore, we consider a cut through the piezoelectric surface which we model
as a nonlinear Timoshenko beam. This simpler problem, although still complex, will
be the starting point for the design of a shape controller which is able to actively
change the shape of the beam. The inside that we obtain for the 1-D case is then the
starting point for discretization of the (more complex) 2-D case.

Note that the model we have derived in [19] is an infinite dimensional pH model
in the framework. But since we would like to use control methods that are specifically
developed for finite dimensional energy based models, such as interconnection and
damping assignment [11], we need to spatially discretize the system. The spatially
discretized model can serve as the basis for the design of a controller which is able
to change the shape of the beam so that a desired shape is achieved. For the task
of spatially discretizing an infinite dimensional pH model, one could use well known
spatial discretization schemes, e.g., the finite element method [20]. However, these
schemes have several disadvantages which make them less useful if one would like
to design a controller for a specific task. First of all, the usual spatial discretization
schemes, e.g., [20, 6, 3], assume that the boundary conditions are given, but to obtain
a model useful for control one would like to use the boundaries to control the system.
Secondly, other spatial discretization schemes destroy the pH structure and the pas-
sivity of the system and this destroys the structure we would like to use for control.
The reason for preserving the pH structure is that the structure provides excellent
opportunities to design a controller; i.e., the interconnection of a finite dimensional pH
system with another pH system yields a closed-loop pH system, which possesses the
profitable properties on passivity and stability that stem from a general pH structure.
If we use this for control, we obtain in fact a rather simple control structure, which
can be used for controlling nonlinear systems. Note that although we present some
simulation results of the controlled system we do not treat the controller design. The
details of control design are presented in [18]. We should mention that there exist
spatial discretization schemes, e.g., [6, 3], that preserve the structure or energy of the
system but for all these schemes the boundary conditions cannot be used as inputs
to the system. Also they do not preserve the pH interconnection structure.
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STRUCTURE PRESERVING DISCRET. OF A TIMOSHENKO 131

Therefore, we will apply a specialized spatial discretization scheme which enables
us to use the boundary values as control inputs while preserving the structure of the
system. The scheme was first described in [5]. Note that the authors of [5] treat only
systems which are very small (2 states only) while we have systems with 8 states.
This makes the spatial discretization more involving. Additionally, in this paper, we
tackle a system which has a nonconstant Dirac structure while the paper mentioned
above only treats constant Dirac structures. Treating a system with a nonconstant
Dirac structure results in additional problems during the spatial discretization. In
this paper we show how to overcome these problems. At last we also show how to
incorporate infinite dimensional inputs into the system, where the original paper was
only using boundary inputs. Furthermore, the system is a piezoelectric structure which
is modeled in such a way that one defines the mechanical and electrical dynamics
independently and then interconnects the two dynamics of the system by defining the
energy exchange between the two domains; see [17]. This divide and conquer modeling
approach is possible due to the excellent properties of the pH framework.

The paper is organized as follows. In section 2 we give a short overview of the
concept of pH modeling and explain why this modeling framework is so suitable
to design controllers. Next, in section 3, we introduce the model of a piezoelectric
composite beam with a quasi-static electrical field in the pH framework. The infinite
dimensional model that we propose in this paper is derived using a reasoning similar
to [19]. However, we now treat the Timoshenko beam, while in [19] we only treated
the Euler–Bernoulli beam. Next, in section 4 we show how to spatially discretize the
infinite dimensional model of a piezoelectric beam with a quasi-static electrical field.
The procedure is split in several parts. We start by defining boundary ports and

Table 1.1

Used symbols.

Symbol Meaning

CE Young’s modulus

ekB
a/b

boundary force related to velocity k ∈
{
v1, v3, θ̇

}

el
a/b

value of the approximated effort at a/b, l ∈ {p1,p2,p3, ε1, . . . , ε4, E}
e effort
E electrical field

fkB
a/b

boundary flow related to velocity k ∈
{
v1, v3, θ̇

}

f lab value of the approximated flow on Zab, l ∈ {p1,p2,p3, ε1, . . . , ε4, E}
f flow

GE shear modulus
Ktot total kinetic energy
Ptot total potential energy
p momenta
q electrical charge distribution
z spatial coordinate

Zab = [a, b] interval for discretization
Z = [0, L] spatial domain

ε11 normal strain in the x-direction
ε13 shear strain

ε̃ =
[
u′0, w

′, φ, φ′
]

strain parameters

ψl modified flow, l ∈ {p1,p2,p3, ε1, . . . , ε4, E}
φe magnetic flux distribution

ωl
a/b

zero-form basis function, l ∈ {p1,p2,p3, ε1, . . . , ε4, E}
ωl
ab one-form basis function, l ∈ {p1,p2,p3, ε1, . . . , ε4, E}
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132 T. VOSS AND J. M. A. SCHERPEN

the spatially approximating basis functions. Then we have to discretize the infinite
dimensional interconnection structure and redefine the total effort in the considered
finite element. This enables us to define a finite dimensional interconnection structure.
The last step is to derive a finite dimensional approximation to the stored energy.
During this process we also focus on several related questions, such as including inputs,
and show simulations results. Finally, in section 5 we conclude the paper with some
recommendations for future research.

Note that the model that we propose can also be used for modeling other struc-
tures, namely any flexible structure with piezo actuation, e.g., for vibration control
in civil engineering.

2. Short introduction to pH system. In this section we introduce the pH
modeling framework; see [14, 2]. The reason why we use this framework to do modeling
for control is that pH systems have specific properties which make them suitable for
control design. The first property of pH systems is that they are port-based models.
This means that in order to interconnect two or more pH systems, one simply connects
the ports in a physical way. Hence, the interconnection of pH systems is quite natural.
This property can also be exploited for large scale modeling. One divides then the
modeling of a complex system in subparts and uses the interconnection properties of
pH systems to obtain the full dynamics of the system. Furthermore, pH models give
an energy representation of the dynamics. Hence, one can use energy based control
schemes to design the controller; such an example is the interconnection and damping
assignment (IDA-PBC) [11]. Finally, pH systems are automatically passive and this
property is also very helpful when designing a suitable controller.

This framework was originally developed for the modeling of finite dimensional
systems. However, the framework has been extended to the case of infinite dimensional
systems; see, for example, [10, 9].

2.1. Finite dimensional systems. Here we recall briefly what finite dimen-
sional pH systems are and refer the interested reader to [4]. A finite dimensional pH
system in local coordinates can be described as

ẋ = (J(x)−R(x))
∂H

∂x
(x) +B(x)u(2.1)

y = B�(x)
∂H

∂x
(x),

where
• x = (x1, . . . , xn) expresses local coordinates in an n-dimensional state space
manifold X ⊂ R

n;
• u ∈ R

m and y ∈ R
m are the inputs and outputs, respectively, and together

they define the ports of the system;
• J : X → R

n×n is the interconnection matrix and depends smoothly on x,
and J(x) is skew-symmetric J(x) = −J�(x);

• R : X → R
n×n is the resistance matrix and is symmetric positive semidefinite

R(x) = R�(x) ≥ 0, and R(x) depends smoothly on x;
• B : X → R

n×m is the input force matrix and depends smoothly on x;
• H(x) : X → R with H(x) > c > −∞∀x ∈ X the so called Hamiltonian of
the system. Normally H(x) represents the stored energy in the system.
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Note that for this system the energy-balancing property holds:

dH

dt
=
∂�H
∂x

ẋ =
∂�H
∂x

(
(J(x)−R(x))

∂H

∂x
(x) +B(x)u

)
(2.2)

= − ∂�H
∂x

R(x)
∂H

∂x
(x)︸ ︷︷ ︸

≥0

+
∂�H
∂x

B(x)︸ ︷︷ ︸
y�

u ≤ y�u.

So, the Hamiltonian is a storage function and, therefore, a candidate Lyapunov func-
tion for the unforced system. Also it follows from (2.2) that the system is passive.

The last property we would like to point out is that the interconnection of two
finite dimensional pH systems is a finite dimensional pH system. This property can be
exploited for finite dimensional control design which is based on shaping the energy
system of the system to be controlled by interconnecting it with another passive
system (the controller).

Later on we will often use the effort-flow form of finite dimensional pH system.
Therefore, we now shortly introduce this notation. The system in the form (2.1) can
be recast as

f = (J(x)−R(x)) e+B(x)u(2.3)

y = B�(x)e

with flows f = ẋ and efforts e = ∂
∂xH(x).

Another concept which we will use is the energy flow, also called the net power
of the system. The energy flow is defined as

Pnet = e�f + y�u.

2.2. Infinite dimensional systems. An infinite dimensional pH system con-
sists of a Hamiltonian that describes the stored energy and the interconnection struc-
ture, which interconnects the energy storing elements, much like a finite dimensional
system. In [10, 9] damping is included, but for our considerations we neglect dissipa-
tion. The reason for this is that we consider a piezoelectric beam in complete vacuum
and without any gravity. Hence, we do not have external damping influences. More-
over, the effect of internal damping of a polymer is so small that it has hardly any
effect. Furthermore, inclusion of damping will increase the complicity of the derivation,
but does not add additional insight. The energy function of an infinite dimensional
system can be described as

H(x) =

∫
V

H(x(z))dV,

where H(x(z)) is the energy density depending on the state x(z) at a specific point
z ∈ V in the n-dimensional volume V ⊆ Z. Here Z describes the actual space where
the volume V is located—for physical systems this is normally R

3 and is related to
the positions in space. Note that in the physics literature x relates to the spatial
coordinate, but in systems theory one uses x to denote the state of a system. In this
paper we denote the spatial coordinate by z and the state of a system by x. For the
sake of simplicity of notation, we neglect from now on the spatial dependency of our
state x when there is no danger of confusion.
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In the finite dimensional case we calculate the gradient of the Hamiltonian to
define the equations of motions but this is not possible for the infinite dimensional
case. Instead of calculating the gradient we have to calculate the variational derivative
of H(x) which is defined as

δH

δx
=
∂H
∂x

(x).

We have to replace the interconnection matrix in the infinite dimensional setting
with a formal skew-adjoint differential operator J(x(z)) = −J(x(z))∗. If we assume
the operator J(x) can be stated as

(2.4) J(x)ζ(x) =

N∑
i=0

(
Pi(x)

∂i

∂xi

)
ζ(x),

where ζ(x) is an arbitrary function and the Pi(x) are n×n matrices, then the formal
adjoint J∗ is given by

J(x)∗f(x) =
N∑
i=0

(−1)i
∂i

∂xi
(Pi(x)f(x)) .

Using these results we can now define an infinite dimensional pH system as

ẋ(z) = J(x(z))
δH

δx
(x(z)).

Note that this system is autonomous. In order to add inputs and outputs we have two
possibilities:

• Boundary ports
Here the input acts directly at the boundary of the spatial domain of our
infinite dimensional systems and the outputs are functions of xb = x|∂V .
Then we have

u(t) = B(x(z))xb(t),

y(t) = C(x(z))xb(t),

where B(x) and C(x) are boundary operators. An example for a boundary
port is a force acting on one side of a flexible beam.

• Distributed ports
The second class of ports for infinite dimensional systems are the so called
distributed ports. These ports influence the dynamics of the whole spatial
domain of our system or only of a subdomain. An example of a distributed
port is a pressure acting on a flexible structure. The dynamics of the system
in this spatial domain where the actuation takes place can be described as

ẋ(z) = J(x(z))
δH

δx
(x(z)) +B(x(z))u(z),

y(z) = B�(x(z))
δH

δx
(x(z)),

where the operator B is the input force operator and u is the given input.
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As for the finite dimensional case (2.2), we can also prove that an infinite dimensional
system in pH form is conserving energy

dH

dt
=

∫
V

δ�H
δx

ẋdV =

∫
V

δ�H
δx

(
J(x)

δH

δx
+B(x)u

)
dV

=

∫
V

y�udV.

This system can also be written in the effort-flow form and is then given by

f = J(x)e +B(x)u,

y = B�(x)e,

where

e =
δH

δx
, f = ẋ.

The net power of an infinite dimensional system can be written as follows:

Pnet =

∫
V

e�f +

∫
∂V

u�y,

where the first term describes the flow of energy in the system and the second term
describes the flow of energy into or from the system via the boundaries. We use the
infinite dimensional pH framework introduced here to describe the dynamics of our
infinite dimensional structure.

2.3. Short introduction to the differential-geometric framework. We
now give a brief introduction to differential forms which we will use during the spatial
discretization of the piezoelectric beam. Since we treat a 1-D spatial domain Z ⊂ R,
we can distinguish between functions (zero-forms) and distributions (one-forms). A
zero-form is the differential-geometric representation of a function. Hence, we can
evaluate a zero-form at any point of the interval. Then it is clear that we use zero-
forms to represent zero-dimensional physical effects, e.g., the stress (force) at a point
of our spatial domain since we can measure the stress acting on a point.

A one-form is the differential-geometric representation of a distribution. It is
obvious that we cannot evaluate a distribution at a specific point of the interval.
To actually calculate a value we have to integrate over a subdomain of our spatial
domain. So, we can use one-forms to represent 1-D physical effects. One example for
a one-form in the beam is the strain of the beam. We cannot measure the strain of a
point but we can measure the strain between two points. This means that the strain
must be a one-form since one has to integrate over a strain distribution to calculate
the actual change in length between two points.

Hence, if we consider the spatial coordinate z for our interval Z then a zero-form
is simply given by a function f(z) : Z → R, while a one-form is given by g(z)dz for
a certain density function g(z) : Z → R. We denote the space of n-forms over the
spatial domain Z as Ωn(Z). Next we will list some of the possible operators which
are defined for n-forms.

One can transform a zero-form into a one-form by spatial differentiation ω :=
∂f
∂z dz. In the coordinate-free language that we want to use, this is denoted as
ω = df , where “d” is called the exterior derivative, converting (n − 1)-forms to
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n-forms. Another operator we introduce is the wedge product “∧, ” which given a k-
form ω1 and a l-form ω2 creates a (k+ l)-form. The last operator we use is the Hodge
star operator ∗ converting any k-form on the n-dimensional spatial domain Z to a
(n− k)-form. E.g., for our 1-D domain it holds that ∗ω = g(z) and ∗f(z) = f(z)dz.

3. Infinite dimensional model of the Timoshenko beam with quasi-
static electrical field. In this section we summarize the dynamics of a piezoelectric
composite with a quasi-static electrical field in distributed pH form. We have chosen
to treat a quasi-static electrical field due to the fact that this is mostly done if one
treats piezoelectricity in engineering. For the complete derivation see [19]. We also
treat a very thin layer of material which is in space; therefore we have neglected any
dissipation effects.

We assume that the considered composite consists of a base layer (identified by
the subscript “b”) to which a piezoelectric layer (subscript “p”) is bonded. The cross
section of the beam is depicted in Figure 3.1. Moreover, and without loss of generality,
we assume that the base layer has a constant thickness (2db) and a constant height 2hb
while its length is L. We define the origin of the z2z3-plane in the center of mass of the
base layer. So, the cross sectional area of the base layer Ab is [−db, db]×[−hb, hb]. The
piezoelectric layer is bonded on top of the base layer. Let hp denote the height of the
piezoelectric layer and let the width of this layer be 2dp. Moreover, and without loss
of generality, we assume that the width of this layer is symmetric with respect to the
z1-axis. Hence, the cross sectional area of the piezo layer Ap is [−dp, dp]×[hb, hb + hp].
To simplify the notation in the following paragraphs we define the total area Atot =
Ab +Ap, the first moment of area of the piezoelectric layer I0.p =

∫
Ap
z3dAp, and the

second moment of area of the piezoelectric layer I1.p =
∫
Ap
z23dAp. Now that we have

described the geometry of the composite we define an expression of the strain in the
beam.

z3

z2

dp

hp

hb

db

Fig. 3.1. Cross sectional area of the composite.

The standard assumption for a Timoshenko beam (see [12, 13]) is that there exist
only two strains in the beam. All other strains are considered to be zero. The first
one ε11 is the normal strain in z1 direction while the second strain ε13 describes the
shear strain in the direction z1z3. Let f

′ = ∂
∂z1

f denote the prime operator. Then
these strains are derived as follows:

ε11 = u′0 − z3φ
′ +

1

2
(w′)2 +

1

2
(u′0 − z3φ)

2
,

ε13 =
1

2
(w′ − φ)− 1

2
(u′0 − z3φ

′)φ,
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where u0 is the deformation of the beam in direction z1, w is the deformation in direc-
tion z3, and φ is the rotation of the cross sectional area. Note that for a Timoshenko
beam it holds that φ �= w′ (φ = w′ yields the Euler–Bernoulli beam).

The total energy Htot stored in the composite consists of the energy stored in the
purely mechanical base layer Hb and the the energy stored in the piezoelectric layer
Hp. We can state Htot as

(3.1) Htot = Hb +Hp = Ktot + Ptot,

where Ktot is the total kinetic energy and Ptot is the total potential energy stored in
the system. The kinetic and potential energies are given by

Ktot =
1

2

∫ L

0

p�M−1
totpdz1,

Ptot =
1

2

∫ L

0

∫
Atot

CE
totε

2
11 + 2GE

totε
2
13dAtot + εeApE

2dz1,

where

p = Mtotu̇, Mtot = Mb +Mp,

u = (u0, w, φ)
� ,

CE
tot(z3) =

{
CE

b for all z3 ∈ [−hb, hb]
CE

p for all z3 ∈ (hb, hb + hp]

GE
tot(z3) =

{
GE

b for all z3 ∈ [−hb, hb]
GE

p for all z3 ∈ (hb, hb + hp]

with Mtot the mass matrix of our systems, CE
tot the Young’s modulus, GE

tot the shear
modulus of the used materials, and E the applied electrical field. All these variables
depend on the spatial coordinate z1 and on the time t. Note that the factor 2 stems
from the fact that ε13 = ε31 so one always has 2 shear strains.

Let (p, ε̃, E)� be the state variables of the infinite dimensional pH system. Note
that we choose ε̃ to contain the 4 strain parameters u′, w′, φ, and φ′. The reason
for using 4 strain parameters is that the interconnection matrix J becomes constant.
If we would have chosen only 3 strain parameters the interconnection matrix would
become state dependent, and the spatial discretization scheme we want to use here
is not able to deal with state dependent interconnection matrices. This explains our
choice of strain parameters. Of course the models with 3 or 4 strain parameters have
the same dynamics. Moreover, note that the states φ and φ′ are interdependent.

Under this choice of state variables the gradient of the Hamiltonian with respect
to the state variables is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δptot
1
H

δptot
2
H

δptot
3
H

δu′
0
H

δw′H
δφH
δφ′H
δEH

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u̇0
ẇ

φ̇∫
Atot

[
CE

totε11 (1 + u′0 − zφ)− 2GE
totε13φ

]
dAtot∫

Atot

[
CE

totε11 (w
′) +GE

totε13
]
dAtot∫

Atot

[−GE
totε13 (1 + u′0 − zφ)

]
dAtot∫

Atot

[−CE
totε11 (z3) (1 + u′0 − zφ) + 2GE

totε13 (z3φ)
]
dAtot

εeApE

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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The interconnection structure of the system which describes the energy flow in
the system is given by

⎡
⎣ ṗ

˙̃ε

Ė

⎤
⎦ =

[
0 J̃

−J̃∗ 0

]
δH +B

⎡
⎣ fu

fw
Ie

⎤
⎦ ,(3.2)

y = B�∇H,

where

J̃ =

⎡
⎢⎢⎢⎢⎢⎣

∂

∂z1
0 0 0 g1(x)

0
∂

∂z1
0 0 g2(x)

0 0 −1
∂

∂z1
g3(x)

⎤
⎥⎥⎥⎥⎥⎦ ,

g1(x) = − e

εeAp

∂

∂z1
((Ap +Apu

′
0 − I0,pφ

′) · x) , g2(x) = − e

εe
∂

∂z1
(w′ · x) ,

g3(x) =
e

εeAp

∂

∂z1
((I0,p + I0,pu

′
0 − I1,pφ

′) · x) ,

B� =

⎡
⎢⎣

2db 0 −2dbhb 0 0 0 0
0 2db 0 0 0 0 0

0 0 0 0 0 0
1

εeAe

⎤
⎥⎦ .

The constant εe represents the permittivity of the piezoelectric material; the inputs fu
and fw represent a distributed force in the u and w direction, respectively. The input
Ie represents a current distribution on the electrodes. Note that the system can also
be written in its differential-geometric form. Then the interconnection matrix, efforts,
and flows are given by

J̃ =

⎡
⎣ d 0 0 0 g1(x)

0 d 0 0 g2(x)
0 0 −∗ d g3(x)

⎤
⎦ ,

f =
[
fpi , f εi , fE

]�
= ẋ, e =

[
epi , eεi , eE

]�
= δH.

In the differential-geometric form, gi (for i = 1, 2, 3) is given by

g1(x) = − e

εeAp
d ((Ap +Apu

′
0 − I0,pφ

′) · x) , g2(x) = − e

εe
d (w′ · x) ,

g3(x) =
e

εeAp
d ((I0,p + I0,pu

′
0 − I1,pφ

′) · x) .

Moreover, also note that the interaction between the mechanical and electrical do-
main for this model is only in the interconnection structure. The variational derivative
of the mechanical energy depends only on the mechanical states. The same remark
holds for the electrical energy. This results from the fact that for now we have chosen
to model a quasi-static electrical field which is a standard assumption in the field of
piezoelectricity for engineers. The reason for this is that the magnetic field which will
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emerge between the two electrodes is so small that it is most of the time omitted
because it has hardly any influence on the dynamics.

Note that we here treat a system without any damping. This results from the fact
that we treat a system in space, so in vacuum, which is made of a very thin membrane
so that any viscous effects are so small that they can be neglected.

4. Discretization of the 1-D Timoshenko beam with quasi-static electri-
cal field. Recall from section 1 that the purpose of the here derived finite dimensional
model is to design a controller which actively changes the shape of our beam. Specif-
ically we want to be able to use pH based finite dimensional control schemes such as
IDA-PBC [11]. So, we have to first spatially discretize the infinite dimensional dynam-
ics while preserving the pH structure. The method we apply here was first proposed
in [5]. In this paper we extend the method from [5] in order to be able to treat systems
which have a nonconstant interconnection structure and are multiphysics systems and
therefore more complex.

Hence, the goal of this section is to derive a finite dimensional pH model of a
piezoelectric beam by applying the scheme in [5]. In order to calculate a finite dimen-
sional approximation to the dynamics of a beam with length L, we have to perform
several steps. First we have to subdivide the interval Z = [0, L] into n subintervals. On
each of these subintervals we discretize the dynamics of the system. Let Zab = [a, b]
denote the subinterval on which we perform the discretization. On any other subin-
terval the same procedure will be performed. We proceed as follows: we start with
the discretization of our interconnection structure and then we discretize the energy
function of our system. This yields a finite dimensional model which approximates the
dynamics of the given subdomain [a, b]. Note that we have to perform these steps for
all n intervals. Then we interconnect the n finite dimensional pH models to achieve a
lumped model. The interconnection of the n local lumped models approximates the
dynamics of our infinite dimensional model. During this discretization approach the
main goal is to preserve the pH structure of the system. To simplify the notation we
use from now on ε instead of ε̃ to denote our four strain states ([u′0, w

′, φ, φ′]). In the
following section we refer to the ith element of ε by using εi.

We now consider the part of the piezoelectric composite on the interval Zab =
[a, b]. Note that all the flows of our system are distributions (one-forms) and all ef-
forts are functions (zero-forms). Also note that in order to simplify the calculations
we neglect for the moment distributed ports. These will be added after the discretiza-
tion. We will add the effect of an applied pressure to the beam after the spatial
discretization.

The procedure will be divided in the following steps:
• approximate the efforts and flows;
• define the boundary over which the elements exchange energy;
• discretize the interconnection structure;
• define the finite dimensional efforts via the net power;
• formulate the finite dimensional interconnection structure;
• discretize the energy function.

All these steps combined yield then a finite dimensional approximation of the infinite
dimensional dynamics of our piezoelectric composite on the interval Zab.

4.1. Modified efforts and flows. Before we start spatially discretizing the
system we perform a transformation to our system in order to simplify the spatial
discretization. Note that the interconnection matrix of the system (3.2) has two types
of entries: the exterior derivative d and the Hodge star operator ∗. Most nonzero
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entries in the interconnection matrix J depend on the exterior derivative d. These
entries relate the one-form flow with the zero-form effort via spatial differentiation.
The Hodge star operator ∗ at J̃3,3 on the other side transforms the zero-form eε3
directly into a one-form. So, there is no need to approximate eε3 directly. Instead we
can just combine eε3 with fp3 and treat the modified system. Therefore, in order to
combine the effort eε3 with fp3 we use the following parametrization of the matrix J̃ :

J̃ =

⎡
⎣ d 0 0 0 g1(x)

0 d 0 0 g2(x)
0 0 −∗ d g3(x)

⎤
⎦ =

⎡
⎣ 0 0 0 0 0

0 0 0 0 0
0 0 −∗ 0 0

⎤
⎦+

⎡
⎣ d 0 0 0 g1(x)

0 d 0 0 g2(x)
0 0 0 d g3(x)

⎤
⎦

= J̃0 + dJ̃1.

We use this parametrization of the interconnection matrix to define the modified flow
ψ as follows:

ψ := f −
[

0 J̃0
−J̃∗

0 0

]
e.

Then we reformulate our equations of motion as presented next:

ψ = d

[
0 J̃1

−J̃∗
1 0

]
e+Bu.(4.1)

Since we have redefined only the flow (f → ψ), it is clear that the model with the
modified flows ψ will have the same dynamics as the original model (3.2). So, instead
of using (3.2) to compute the first finite dimensional approximation we use (4.1).

4.2. Approximation of efforts, flows, and boundary values. Similar to
the classical finite element approach we define basis functions ω which are used to
approximate the energy and coenergy variables in our system. In order to obtain
the best approximation we first have to define the goals to be achieved with this
approximation.

The main goal is to approximate the dynamics on the interval Zab in such a way
that we achieve a finite dimensional system that is able to approximate the boundary
behavior as well as possible. The reason for this is that pH modeling and control of
pH systems depends on the exchange of energy via ports. Note that in the case of an
infinite dimensional system on the interval Zab these ports relate to the behavior of
system at the boundaries. This idea becomes clearer if one takes into account that we
want to approximate the total dynamics on Z = [0, L] by an interconnection of n local
systems which exchange energy via the boundary ports. Then it immediately follows
that the approximation of the total dynamics is directly related to the approximation
of the boundary values. Every approximation error that we make at the boundaries
will propagate through the whole system. Also note that one would like to connect
the system via the boundary ports to the actual controller. Here we will not do this
because we are treating a distributed port and therefore we deal with a distributed
input and not with a boundary input. Moreover, one could use the divide and conquer
idea (splitting a complex modeling problem into several smaller modeling problems)
to model a physical problem. Then it becomes clear that a good approximation of the
boundary values is necessary to ensure a certain accuracy of the total model, because
the interconnection of the submodels will be done via the boundary ports.

Another property which we would like to preserve as well as possible is the struc-
ture of the system. In particular we want the finite dimensional approximation of our
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infinite dimensional pH system to also be a pH system. The reason for this is that we
want to preserve the passivity and the structure of the system—these are very useful
properties when one wants to design a controller or wants to analyze the behavior of
a system.

All these considerations are playing an important role in the definition of the
boundary ports and the approximation of the efforts and flows.

4.2.1. Boundary ports. We first define the flow of energy over the boundaries.
From a physical perspective it is clear that we have 3 power ports at both sides of the
spatial domain Zab. The reasoning behind this is as follows.

At each boundary of the spatial domain we have 3 different velocities, the ones in
z1 and z3 direction (denoted by v1 and v3, respectively), and the rotational velocity
θ̇. Let F1, F3, and τ denote the forces corresponding to the directions in z1, z3, and
θ, respectively. The product of the corresponding velocity and force pair defines then
a power port, e.g., (v1, F1). But since velocities are flows we denote them for now as

fkB
a/b, where k ∈

{
v1, v3, θ̇

}
is the corresponding velocity, a and b determine whether

the flow is at the left or right side, and B shows that it is a boundary value. For the
efforts at the boundaries we use a slightly different notation. The indicator for the left
and right boundary stays unchanged (subscript a or b), but to determine the direction
of the force we use a related flow identifier; e.g., the force in the z1 direction at the
left boundary is denoted as ev1Ba . This notation has the advantage that like this we
are able to identify a specific power pair, e.g., (ekBa , fkB

a ).
Note that there is no electrical power port since we model a quasi-static electrical

field. So, we only have the effort part of the energy domain and we are unable to
define a power exchange over the boundaries. A sketch of the port structure can be
seen in Figure 4.1.

Fig. 4.1. Boundary ports of a finite element.

The next step is then to find a relation between the boundary ports and the efforts
and flows of the system. As we already mentioned all power ports consist of a velocity
and a force at the left or right boundary and, hence, they are zero-forms. This means
that the boundary variables have to be related to the efforts of our system. From
(3.2) it follows that the variational derivatives of the energy function with respect
to momenta yield the velocities in the beam, while the variational derivatives with
respect to [u′0, w

′, φ′] yield the forces acting in the beam. This relation leads then to
the following definition of the boundary ports.

1. Velocity/force in z1 direction
The first boundary power port consists of the velocity v1 and the force F1 in z1

direction. The relations between the boundary ports and the efforts are given by

F1(ζ) = eε1(ζ) = ev1Bζ ,(4.2)

v1(ζ) = ep1(ζ) = fv1B
ζ ,
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where ζ ∈ {a, b}.
2. Velocity/force in z3 direction
The second boundary port consists of the velocity v3 and the force F3 in z3

direction. The relations between the boundary ports and the efforts are given by

F3(ζ) = eε2(ζ) = ev3Bζ ,(4.3)

v3(ζ) = ep2(ζ) = fv3B
ζ .

3. Torque/angular velocity
The last port consists of the torque τ and the angular velocities θ̇ at the boundaries

and is given by

τζ = eε3(ζ) = eθ̇Bζ ,(4.4)

θ̇ζ = ep3(ζ) = f θ̇B
ζ .

4.2.2. Approximation of efforts and flows. The general idea used here to
approximate the infinite dimensional efforts and flows with a finite dimensional value
is that we split the spatial and temporal dependent efforts and flows into the product
of two parts which are either spatial or temporal dependent. Then by integration over
the spatial domain we eliminate the spatial dependency of the efforts and flows and
have just the temporal part left which is then finite dimensional. For more details see
[5].

First we define a way to approximate the efforts on the spatial domain Zab. As we
have already discussed in section 4.2.1, the approximation of the two boundary values
is one of our biggest concerns. It is also known that all the efforts are zero-forms;
e.g., we can measure the velocity of any particle. So, we are going to approximate the
efforts as follows:

el(z, t) ≈ ela(t)ω
l
a(z1) + elb(t)ω

l
b(z1),

where l ∈ {p1,p2,p3, ε1, . . . , ε4, E}. We choose ela/b(t) and e
l
a/b(t) such that they ap-

proximate the physical value of the efforts. Additionally, we choose them such that
they coincide with the boundary values; e.g., ep1

a (t) = fv1B
a (t). The zero-forms ωl

a(z1)
and ωl

b(z1) are the basis functions which are used to approximate the original value
spatially. Hence, these basis functions are only spatially dependent. Due to the fact
that we have chosen ela(t) and e

l
b(t) to be equal to the boundary values and that the

boundary values are given by el(z1, t)
∣∣
∂Z

it immediately follows that the approximat-
ing basis functions have to fulfill the following conditions:

ωl
a(a) = ωl

b(b) = 1,

ωl
a(b) = ωl

b(a) = 0.

A possible choice of two basis functions can be found in Figure 4.2.
Next we want to define the approximation of the flows. Due to the fact that

all flows are one-forms we have to choose as basis function also a one-form which is
used for the spatial approximation. Similar to the efforts where we wanted a good
approximation of the boundary values we chose here the basis functions such that
we achieve a good approximation of the total flow of the spatial domain. Hence, we
choose the following approximation:
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Fig. 4.2. Example for basis function of a 1-D finite element.

ψl(z1, t) ≈ ψl
ab(t)ω

l
ab(z1),

where ψl
ab(t) is the approximation of the total flow of the spatial domain. So, it

holds that ψl
ab(t) ≈ ∫

Zab
ψl(z1, t). And ωl

ab(z1) is the basis function which spatially

approximates the flow. Moreover, since the total flow is approximated by ψl
ab(t), it

immediately follows that the basis function ωl
ab(z1) must fulfill the following condition:∫

Zab

ωl
ab = 1.

Given these two approximation schemes we can define the following approximation
for all efforts and flows of our system:

Flows (one-forms)

ψpi(z1, t) ≈ ψpi

ab(t)ω
pi

ab(z1), ψ
εi(z1, t) ≈ ψεi

ab(t)ω
εi
ab(z1),(4.5)

ψE(z1, t) ≈ ψE
ab(t)ω

E
ab(z1),

∫
Zab

ωab = 1.

Efforts (zero-forms)

epi(z1, t) = epi
a (t)ωpi

a (z1) + epi

b (t)ωpi

b (z1),(4.6)

eεi(z1, t) = eεia (t)ωεi
a (z1) + eεib (t)ωεi

b (z1),

eE(z1, t) = eEa (t)ω
E
a (z1),

ωa(b) = ωb(a) = 0, ωa(a) = ωb(b) = 1.

Due to the boundary value approximation goal we cannot choose any function as
a basis function, because we have to ensure that the constraints are fulfilled. But
these are not the only properties which the basis functions have to fulfill. We will see
while deriving the final finite dimensional approximation that we have to obey more
constraints to ensure the other approximation goal (to preserve the pH structure of
the discretized system). In order to simplify the notation, in the following sections we
will neglect the time and spatial dependency of all functions.

Due to the fact that the state x of the system is directly related to the flow f ,
(ẋ = f), we can approximate the state using the same basis functions as for the flow

pi = piabω
pi

ab, εi = εiabω
εi
ab, E = Eabω

E
ab.(4.7)
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Then we conclude that the following relation must hold:

⎡
⎣ fpi

ab

f εi
ab

fE
ab

⎤
⎦ =

∂

∂t

⎡
⎣ piab

εiab
Eab

⎤
⎦ .

4.2.3. Infinite dimensional approximation of the equations of motion.
Now we substitute the approximation of the flows and efforts defined above described
by (4.5) and (4.6) into (4.1). This yields then an infinite dimensional approximation
to the equations of motion; e.g., for the first equation of motion we get

ψp1

abω
p1

ab = eε1a dω
ε1
a + eε1b dω

ε1
b + g1

(
eEa ω

E
a

)
.(4.8)

Note that these equations of motion still consist of flows which are one-forms and
efforts which consist of zero-forms, but this approximation has a clear separation of
the spatial and temporal coordinate. The separation between the spatial and temporal
coordinates enables us to integrate over the spatial domain of interest Zab, which yields
then a dynamical equation of motion with only a temporal coordinate.

4.3. Discretization of the interconnection structure. In this section we
compute a finite dimensional version of the infinite dimensional approximation (4.8)
of the last section. To do this we have to find relations between the one-forms and the
zero-forms that we have chosen to approximate the infinite dimensional dynamics. We
do this as proposed in [5].

From (4.8) it is clear that there must exist a relation between the one- and zero-
forms such that (4.8) is fulfilled at all times. Therefore, we have to choose the one-
and zero-forms in such a way that for every possible choice of ela, e

l
b, and ψl

ab, the
approximated equations of motion are still fulfilled. Of course, this has to be done
such that we preserve the pH structure of the system, since this is our main goal. One
way to do this is to assume that every ela and elb is zero except one and calculate the
relation between the one-form and remaining zero-form. We show how this can be
done for (4.8).

Discretization procedure:
Assume that eε1b and eEa are zero. This is the case if there is electrical energy

stored in the element and if the force ev1Bb at the right hand side is equal to zero.
As already discussed we have to choose the basis functions in such a way that even
under these conditions the first equation of motion described by (4.8) still holds. We
can then write the equation of motion as

ψp1

abω
p1

ab = eε1a dω
ε1
a .

If one now divides the equation above by eε1a , we can reformulate this equation as

c1ω
p1

ab = dωε1
a

with c1 = ψp1

ab · (eε1a )−1. Next, in order to calculate the value of c1 and with this relate
ωp1

ab with dωε1
a , we integrate the equation above over Zab. This yields

c1

∫
Zab

ωp1

ab︸ ︷︷ ︸
=1

= ωε1
a (b)︸ ︷︷ ︸
=0

−ωε1
a (a)︸ ︷︷ ︸
=1

.
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Since we require that ωl
a(b) = 0 and

∫
Zab

ωl
ab = ωl

a(a) = 1 it follows that c1 has to
be equal to −1 in order to ensure the equation of motion. Hence, we find that the
relation between ωp1

ab and dωε1
a can be described as follows:

−ωp1

ab = dωε1
a .

This means that the zero-form ωε1
a is completely determined up to a constant by the

one-form ωp1

ab .
In the same way we obtain that ωp1

ab = dωε1
b . Substituting this relation into (4.8)

yields

ψp1

abω
p1

ab = eε1b ω
p1

ab−eε1a ωp1

ab−
e

εe
eEa

(
dωE

a + u′abd
(∗ωε1

ab ∧ ωE
a

)− I0,p
Ap

φ′abd
(∗ωε4

ab ∧ ωE
a

))
.

If we then integrate the equation of motion over Zab and use that
∫
Zab

ωp1

ab = 1 we

obtain a finite dimensional approximation to (4.8)

ψp1

ab = (eε1b − eε1a )− e

εe
eEa

(
ωE
a

∣∣b
a
+ u′ab

(∗ωε1
ab ∧ ωE

a

)∣∣b
a
− I0
A
φ′ab

(∗ωε4
ab ∧ ωE

a

)∣∣b
a

)
.(4.9)

The above procedure has to be applied in the same way to all equations of motion.
In order to derive the relations between the basis functions ωj

ab , ω
i
a, and ω

i
b we again

assume that all coefficients but one are equal to 0 and then we integrate over the
interval Zab.

Note that (4.9) is a finite dimensional approximation for (4.1). So, we have to
change the states from the modified flows to the original physical states that we have
chosen. We show how this can be done for the third equation of motion, because the
only nonzero row of J0 is in the 3rd row. Since we have defined ψ = f − J0e in the
infinite dimensional case we can now insert the approximations for the efforts and
flows, which yield

ϕp3

abω
p3

ab = fp3

abω
p3

ab − ∗ (eε3a ωε3
a + eε3b ω

ε3
b ) .

If we multiply this equation with the zero-forms ∗ωε3
ab and integrate over Zab we obtain

the following relation between the modified flow ϕp3

ab and fp3

ab :

ϕp3

ab = fp3

ab +
1∫

Zab
ωp3

ab ∧ ∗ωε3
ab

eε3a

∫
Zab

ωε3
a ω

ε3
ab −

1∫
Zab

ωp3

ab ∧ ∗ωε3
ab

eε3b

∫
Zab

ωε3
b ω

ε3
ab.

Substituting the relation between the modified flows and the originals into the first
finite dimensional approximation and assuming that the following conditions for the
basis functions can be fulfilled

ωE
a

∣∣b
a
= 1,(4.10)

(∗ωε1
ab ∧ ωE

a

)∣∣b
a
=

∫
Zab

∗ωε1
ab ∧ ωε1

ab =

∫
Zab

∗ωε1
ab ∧ ωε4

ab,

(∗ωε4
ab ∧ ωE

a

)∣∣b
a
=

∫
Zab

∗ωε4
ab ∧ ωε1

ab =

∫
Zab

∗ωε4
ab ∧ ωε4

ab,

(∗ωε2
ab ∧ ωE

a

)∣∣b
a
=

∫
Zab

∗ωε2
ab ∧ ωε2

ab
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yields the following finite dimensional approximation of our system:

fp1

ab = eε1b − eε1a + c1(u
′
ab, φ

′
ab)e

E
a ,(4.11)

fp2

ab = eε2b − eε2a + c2(w
′
ab)e

E
a ,

fp3

ab = − 1

ᾱ
(αε3

abe
ε3
a + αε3

bae
ε3
b ) + eε4b − eε4a + c3(u

′
ab, φ

′
ab)e

E
a ,

fε1
ab = ep1

b − ep1
a ,

f ε2
ab = ep3

b − ep3
a ,

f ε3
ab =

1

ᾱ
(αp3

abe
p3
a + αp3

bae
p3

b ) ,

fε4
ab = ep3

b − ep3
a ,

fE
ab = c1(u

′
ab, φ

′
ab) (e

p1

b − ep1
a ) + c2(w

′
ab) (e

p2

b − ep2
a ) + c3(u

′
ab, φ

′
ab) (e

p3

b − ep3
a ) ,

where

c1(u
′
ab, φ

′
ab) = − e

εe

(
1 + u′ab

∫
Zab

∗ωε1
ab ∧ ωε1

ab −
I0
A
φ′ab

∫
Zab

∗ωε4
ab ∧ ωε1

ab

)
,

c2(w
′
ab) = − e

εe
w′

ab

∫
Zab

∗ωε2
ab ∧ ωε2

ab,

c3(u
′
ab, φ

′
ab) =

eI0
εeA

(
1 + u′ab

∫
Zab

∗ωε1
ab ∧ ωε1

ab −
I

I0
φ′ab

∫
Zab

∗ωε4
ab ∧ ωε1

ab

)
,

ᾱ =
1∫

Zab
ωε3
ab ∧ ∗ωp3

ab

, αl
ab =

∫
Zab

ωl
aω

l
ab, α

l
ba =

∫
Zab

ωl
bω

l
ab.

The additional conditions (4.10) ensure that the finite dimensional approximation is
still skew-symmetric, so we can summarize that treating nonconstant interconnection
structures usually results in more constraints on the basis functions. Of course it could
happen that we are not able to find basis functions which are fulfilling the derived
constraints. But this is here not the case; e.g., the following basis functions fulfill all
derived constraints:

ωl
a =

b− z3
b− a

, ωl
b =

z3 − a

b− a
,

ωl
ab =

1

b− a
, ωE

a =
z3 − a

b − a
,

ωE
ab =

1

b− a
.

This system is not yet in pH form; see section 2—we have not yet defined the
interconnection structure, also the equations of motion depend right now only on the
boundary values ela/b and not on an effort which is defined in Zab. So, in order to be
able to derive the equations of motions in pH form we will have to define the total
effort of Zab (see section 4.4).

4.4. Definition of the total effort via the net power of the system. As
we can see in (2.3) the effort of a finite dimensional pH system is a vector. But up to
now we have expressed the effort in the subdomain Zab by two boundary values ela
and elb. So, in order to define the finite dimensional interconnection structure we first
have to define the total effort of the subdomain Zab. To this aim we will use the net
power of the system in Zab.
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The infinite dimensional net power of the system on the interval Zab is given by

P net
ab =

3∑
i=1

∫
Zab

epifpi +

4∑
i=1

∫
Zab

eεif εi +

∫
Zab

eEfE .(4.12)

Note that for ease of presentation we have neglected for the moment the boundary
ports. If we insert our approximation for the flows and efforts described by (4.5) and
(4.6) in (4.12) we can formulate a finite dimensional approximation of the net power
as follows:

P net
ab =

3∑
i=1

epi

abf
pi

ab +
4∑

i=1

eεiabf
εi
ab + eEabf

E
ab,

where we used the following notation:

elab = αl
ae

l
a + αl

be
l
b,

αl
ab =

∫
Zab

ωl
aω

l
ab, α

l
ba =

∫
Zab

ωl
bω

l
ab,

eEab = αEeEa , α
E =

∫
Zab

ωE
a ω

E
ab

with e∗ab the approximation of the total effort in the system (e∗ab depends on the
boundary values of our spatial domain). This definition of the total effort on Zab can
now be used to define the interconnection structure of our system.

4.5. Formulation of the interconnection structure. To be able to derive the
interconnection structure for our finite dimensional pH system we define the following
states, inputs, and outputs:

ẋab = fab, ∇xab
Hab = eab,(4.13)

uab =
[
ev1Ba , ev3Ba , eθ̇Ba , fv1B

b , fv3B
b , f θ̇B

b

]�
,

yab =
[
−fv1B

a ,−fv3B
a ,−f θ̇B

a , ev1Bb , ev3Bb , eθ̇Bb

]�
,

where Hab is the approximation of the Hamiltonian on Zab and will be defined in
section 4.6. The choice of inputs and outputs is, as for any pH system, arbitrary but
represents the most obvious choice. If one does not want to make the input-output
choice yet, one can transform the system to the image-kernel representation; see [1, 5].
To simplify the notation we use the following properties of the basis functions:

1 +
αl
ab

αl
ba

=
1

αl
ba

, 1 +
αl
ba

αl
ab

=
1

αl
ab

, αεi
ab = αpi

ba, αpi

ab = αεi
ba.(4.14)

Additionally we choose the basis functions such that αE = αpi

ab.
Substitution of (4.14) and (4.13) into (4.11) yields then the pH system in input-

output form

ẋab = Jab∇xab
Hab +Babuab,(4.15)

yab = B�
ab∇xab

Hab +Dabuab,
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where

Jab =

⎡
⎣ 0 A C1 ·

(
αE

)−1

−A� 0 0

−C�
1 · (αp1

ab)
−1

0 0

⎤
⎦ , Bab =

⎡
⎣ B1 0

0 B2

0 (αp1

ab)
−1
C1

⎤
⎦ ,

Dab =

[
0 −I3
I3 0

]
, A =

⎡
⎣ (αε1

ba)
−1 0 0 0

0 (αε2
ba)

−1 0 0

0 0 − 1
ᾱ (αε4

ba)
−1

⎤
⎦ ,

B1 = diag(
1

αε1
ba

,
1

αε2
ba

,
1

αε3
ba

), B2 =

⎡
⎢⎢⎣

(αp1

ab)
−1

0 0

0 (αp2

ab)
−1

0
0 0 0

0 0 (αp3

ab)
−1

⎤
⎥⎥⎦ ,

C1 = [c1, c2, c3]
�
.

It is straight forward to see that this finite dimensional interconnection structure
is skew-symmetric. Hence, we have found a finite dimensional approximation to the
infinite dimensional interconnection structure. But for the system to be in the finite
dimensional pH framework, we additionally have to discretize the energy function of
our system.

4.6. Approximation of the energy function. In this section we discretize
the energy function H . Recall that the Hamiltonian of our system is given by

H =
1

2

∫ L

0

p�M−1p+

∫
A

CEε211 + 2GEε213dA+ εeAE2dz1.

If we reformulate ε11 and ε13 in the following way,

ε11(ε̃) = h�11(ε̃)ε̃, ε13(ε̃) = h�13(ε̃)ε̃,

we can reformulate the Hamiltonian as

H(p, ε̃, E) =
1

2

∫ L

0

p�M−1p+ ε̃�C(ε̃)ε̃+ εeAE2dz1,

where

C(ε̃) =

∫
A

CEh11(ε̃)h
�
11(ε̃) + 2GEh13(ε̃)h

�
13(ε̃)dA.

With the approximation of our state variables we can approximate the Hamiltonian
on Zab as

Hab =
1

2
p�
abM

−1
ab pab +

1

2
ε̃�abCab(ε̃ab)ε̃ab +

1

2
εeabE

2
ab,(4.16)
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where

pab =

⎡
⎣ p1ab
p2ab
p3ab

⎤
⎦ , M−1

ab =

∫
Zab

∗Ωp
ab ∧M−1 ∧ Ωp

ab,

ε̃ab =

⎡
⎢⎢⎣
u′ab
w′

ab

φab
φ′ab

⎤
⎥⎥⎦ , εeab = eA

∫
Zab

∗wE
ab ∧ wE

ab,

Cab(ε̃ab) =

∫
Zab

∗Ωε
ab ∧C(Ωε

abε̃ab) ∧ Ωε
ab,

Ωp
ab = diag(ωp1

ab , ω
p2

ab , ω
p3

ab), Ω
ε
ab = diag(ωε1

ab, ω
ε2
ab, ω

ε3
ab, ω

ε4
ab).

This can then be used to define the values eab since it holds that

epi

ab =
∂Hab

∂pi
, eεiab =

∂Hab

∂εi
, eEab =

∂Hab

∂E
.

The combination of the discretized interconnection structure (4.15) and the approx-
imated energy function (4.16) yields a pH system which approximates the dynamics
of the infinite dimensional Timoshenko beam.

One problem still remains, namely that it can be shown that the system is not
stabilizable; see [16]. Stabilizability in control means that one is able to stabilize the
system around a desired equilibrium and it is a crucial property one has to ensure in
order to be able to design a controller which performs the stabilization. The reason
why the system is not stabilizable stems from the fact that two of the states (φ and φ′)
are dependent on each other. The problem can be overcome by deriving a coordinate
change which specifically takes into account this property; for details see [16].

4.7. Adding the external inputs. As described in section 2.2 our system has
two external inputs. The first one is the mechanical input, and relates to the pressure
of the beam due to the inflation of the structure. This input can be considered as a
disturbance because we are not able to control the pressure. The second one is the
current which is introduced to the electrodes and then creates an electrical field to
change the length of the piezoelectric elements of the structure. This is the control
input we are able to use to achieve the desired shape. The system (4.15) does not
have any of these inputs, because up to now we have treated an autonomous system.
The only inputs are the ports which are needed to interconnect several of systems of
the type (4.15) to achieve the global approximation to the infinite dimensional model.
So, we are going to add the two external inputs again.

The external input matrix of the infinite dimensional model is given by

B =

⎡
⎣ 2db 0 −2dbhb 0 0 0 0 0

0 2db 0 0 0 0 0 0
0 0 0 0 0 0 0 1

εeAe

⎤
⎦
�

with the related inputs u = [fu, fw, Ie]
�
. This defines the infinite dimensional input

structure Bu. To obtain a finite dimensional expression of this input structure we
simply integrate over Zab (this yields a finite dimensional expression of the exter-
nal input matrix which we denote by Bext

ab while the input itself stays unchanged).
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The input matrix Bext
ab is given by

Bext
ab = (b− a)

⎡
⎣ 2db 0 −2dbhb 0 0 0 0 0

0 2db 0 0 0 0 0 0
0 0 0 0 0 0 0 1

εeAe

⎤
⎦
�

.

So, the finite dimensional model with external inputs can be written as

ẋab =

[
0 J

−J� 0

]
∇xab

Hab +Bint
ab uint +Bext

ab uext,(4.17)

yint =
(
Bint

ab

)� ∇xab
Hab +Dabuint,

yext =
(
Bext

ab

)�∇xab
Hab,

where Bint
ab is the input matrix defined in (4.15), uint is the input defined in (4.15),

and uext is the external input. This model now approximates the total dynamics of
(3.2) on the interval Zab.

4.8. Interconnection of the subsystems and simulation results. With
the procedure from the past sections we can calculate n simple finite dimensional
pH systems which describe the dynamics of the beam locally (on the interval [ai, bi],
where it holds that ai = bi−1). In order to achieve a global model for the dynamics of
our beam we have to interconnect the system in a simple manner.

In (4.13) we have defined the inputs and outputs of a local system. It is clear that
the input for the ith system has to consist of efforts (forces) at the left boundary and
the flows (velocities) of the right boundary. So, the ith system is interconnected to the

(i−1)st and the (i+1)st system. More specifically it must be that eliBa = e
l(i−1)B
b and

f liB
b = f

l(i+1)B
a , where, e.g., eliBa is the effort of the right system at the left boundary.

This gives us an interconnection of the ith system with the neighboring systems, as
illustrated in Figure 4.3.

Fig. 4.3. Interconnection of the i-th system with the neighboring systems.

The following simulation in Matlab shows the behavior of a simple piezoelectric
beam. We consider Kapton [8] as material for the base layer, and polyvinylidene
flouride (PVDF) [15] as piezoelectric material. The base layer has a length of 1m,
while the thickness and the width of the beam are 2 cm. The piezoelectric material
covers the whole beam and has a thickness of 0.25 cm. For the first simulation we apply
a pressure of 10 · t N

m2 until we reach a pressure of 5 N
m2 . For the second simulation we

apply a voltage of 0.1 · t V until we reach a voltage of 0.5V ; see Figure 4.4 and 4.5.
We show snapshots at time t ∈ {0.1, 0.25, 0.5}.
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Fig. 4.4. Simulation of a piezoelectric beam with pressure input.
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Fig. 4.5. Simulation of a piezoelectric beam with voltage input.

Additionally we present some simulation results of a shape controlled beam.
Therefore we consider a beam made of Kapton [8] with a length of 1m, a height
of 25 · 10−4m, and a width of 50 · 10−4m which is always clamped at the right sides.
The clamping on the left side depends then on the shape we would like to achieve.
Onto the beam we have bonded 8 piezoelectric patches of a thickness of 50 · 10−4m
and a height of 25 · 10−4m. The distribution of the electrodes is the following. On the
left and right side we have 2 piezoelectric patches with a length of 25 · 10−4m. Each
of the patches has a distance to the next patch of 10−5m. The rest of the 8 patches
are distributed equally in the middle of the beam with a distance of 10−5m between
each two consecutive patches. This structure is illustrated in Figure 4.6.

We apply an energy based control scheme (potential energy shaping), which is
easy to implement for a system in the pH framework. The idea behind the control
design can be sketched as following. In potential energy shaping one abuses this idea
that injecting energy into the system will change the potential energy of the system.
This idea can be exploited because a change of the potential energy of the system will
also change the equilibrium of the system. Of course one injects the energy in such
a way that the new equilibrium will then be the desired one. Additionally one can
also inject energy with the effect of inducing damping into the system to render the
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Fig. 4.6. Beam structure.

system asymptotically stable. Although the resulting controller is in fact a potential
differential (PD) (linear) controller we can now proof asymptotical stability of our
nonlinear closed-loop system. For more information about the control design we refer
the reader to [18, 16]. We design the controller such that the following shapes will be
achieved:

• Clamped left side. Achieve a parabolic shape described by z3 = 4·10−4(−(z1−
1
2 )

2 + 1
4 ). This is a typical shape of a space reflector. For this shape it holds

that w′(0/L) �= 0.
• Unclamped left side. Achieve a linear shape described by z3 = 10−4(z1 − 1) .
This is a linear shape that we have chosen in order to show the potential of
our controller in achieving shapes which do not fulfill the boundary conditions
w′(L) = 0.

We can see the results for the parabolic shape in Figure 4.7. As we can see the
controller reaches the optimal shape at the desired equilibrium after a short while.
Additionally we see that at the boundary of the beam there is always a small error.
This comes from the fact that we are trying to approximate a shape which violates
the boundary condition of the beam. Therefore we will always have a small error at
the boundaries for shapes which violate the boundary condition of the beam.

Fig. 4.7. Error plot for a controller achieving a parabolic shape.
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Fig. 4.8. Error plot for a controller achieving a straight line.

The results for the straight line are depicted in Figure 4.8. As we can see the
controller stabilizes the shape of the beam around the desired equilibrium also for
open beams. The error behavior is quite similar to the parabolic case. But this is not
surprising because we are using the same system and controller. The only difference
is that we have chosen a different control target.

5. Conclusion. In this paper we have shown how to spatially discretize an in-
finite dimensional piezoelectric beam in pH form with a quasi-static electrical field.
Moreover, we have shown that the proposed discretization method preserves pH struc-
ture of the system, in contrast to the standard discretization methods [20]. The model
that we have derived in this paper can now be used to design a finite dimensional
controller for a 1-D inflatable structure—one can use, for example, passivity based
control methods. In future work we will extend these modeling and discretization tech-
niques to 2-D problems. Additionally in future work we will further extend it to other
multiphysic systems with nonconstant interconnection structures, e.g., Navier–Stokes
equations.

Additionally in the future we aim at investigating the numerical properties of the
proposed method, specifically the convergence, the accuracy of the finite dimensional
approximation, and the relation between the finite and infinite dimensional structure.
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