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Abstract We consider a general class of disordered mean-field models where both the
spin variables and disorder variables η take finitely many values. To investigate the size-
dependence in the phase-transition regime we construct the metastate describing the proba-
bilities to find a large system close to a particular convex combination of the pure infinite-
volume states. We show that, under a non-degeneracy assumption, only pure states j are
seen, with non-random probability weights wj for which we derive explicit expressions in
terms of interactions and distributions of the disorder variables. We provide a geometric
construction distinguishing invisible states (having wj = 0) from visible ones. As a further
consequence we show that, in the case where precisely two pure states are available, these
must necessarily occur with the same weight, even if the model has no obvious symmetry
relating the two.

Keywords Gibbs measures ·Mean-field systems · Disordered systems ·Metastates · Ising
model · Potts model

1 Introduction

Dealing with phase transitions in the theory of Gibbs measures of disordered systems is
usually not an easy task. First of all, one likes to understand which are the possible phases
and how do they depend on the realization of the disorder. This can be a formidable task,
even for mean-field models, as the history of the SK-model shows. Secondly, even if we
suppose that the phases are identified, it is not a priori clear what role they will play for the
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typical behavior of a large but finite system. Indeed, in a regime where there are competing
extremal phases (say a plus and a minus phase in a random field model) it may depend on
the realization of the disorder variables which of the convex combinations the system will
be close to in equilibrium. Some of the possible infinite-volume equilibrium states might
not even show up in a typical large volume. To make sense of these questions, the concept
of a metastate has been invented by Aizenman and Wehr [1], Newman and Stein [19–21],
being a probability measure which gives the weights in the large-volume asymptotics to
find a system close to one of the possible candidates among the Gibbs measures. We stress
that the metastate is a notion describing purely the equilibrium behavior. Yet another type
of questions is of dynamic nature: Suppose a system undergoes a Glauber dynamics, how
much time will it need to go from an initial state to it global free energy minimum? For some
initial states this time is exceptionally long, a phenomenon called metastability (not to be
confused with the notion of a metastate), and again, to derive precise asymptotic saying how
long, examples of mean-field systems have been very instructive model systems [4, 12].

On the lattice the metastate has been shown to be a useful concept in spinglasses by
Newman and Stein [18] and Arguin et al. [3] who showed that there is only one groundstate
pair in the two-dimensional Edwards-Anderson model in the half-plane, using translation-
ergodicity and Burton-Keane type of arguments.

Explicit constructions for lattice models are difficult (see however [11] where the in-
fluence of random boundary conditions on an Ising model was analyzed), but possible in
mean-field models. Previously treated examples are given in very specific models, namely
the symmetric random field Ising model and Hopfield model with a finite or a growing
number of patterns [7, 8, 13–15].

In this paper we aim for completeness in a particular direction, namely disordered mean-
field models with finitely many values for both spin and disorder variables. Such models
include in particular the random-field Curie-Weiss Ising model and Potts-type Curie-Weiss
random field models with or without symmetries in Hamiltonians or random field distribu-
tions. What we aim for is the abstract construction of the phase diagram, embellished with
probability weights giving us the appearance of the candidate states. That is, we first say
which states are available. This, for disordered mean-field models comes from an investi-
gation of the corresponding free energy (resp. rate functions) and is a standard thing. Next
and new in our paper is the additional information on the weights with which they occur,
and the proof of the validity of a corresponding approximate extreme decomposition, as-
ymptotically for large volumes. This is then cast in the metastate formulation. The weights
are obtained by studying the distribution of the free energy fluctuations w.r.t. to the disorder
variables entering. Will the same type of results be true for corresponding lattice models at
low temperatures at phase coexistence? We believe yes, but a proof will have to build around
sophisticated expansion techniques and be technically rather challenging. One would need
to show first the coexistence of states (as it was done for the random field Ising model in [5]),
and then the dominance of one of the available states over the others for typical realizations
of the disorder. The mean-field results should provide guidance for that, and moreover we
believe that they are a rather nice complete example for a limit theorem in statistical me-
chanics.

1.1 The Models: Mean-field Models with Local Disorder

These are the models we consider. At each site i = 1, . . . , n there is a spin variable σ(i) tak-
ing values in a finite set E and a disorder variable η(i) taking values in the finite (possibly
different) set E′. We write P(E) for the set of probability measures on E, and use simi-
lar notation for other spaces. We write Ln = 1

n

∑n

i=1 δσ(i) ∈ P(E) for the (total) empirical
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measure of the spins and consider a twice continuously differentiable function F on P(E).
The influence of the disorder variables on the Gibbs measures for the spins is through the
local a priori measures α[b] ∈ P(E), for any possible type of the disorder b ∈ E′. Hence
the present analysis excludes models with disorder entering the interaction such as e.g. the
Hopfield model treated in [8, 13].

Definition 1.1 The mean-field model with Hamiltonian nF(ν) and a priori measures α[b] ∈
P(E), for all b ∈E′, is given by the disorder-dependent finite-volume Gibbs measures

μF,n[η(1), . . . , η(n)](σ (1)= ω(1), . . . , σ (n)= ω(n))

= 1

ZF,n[η(1), . . . , η(n)] exp
(−nF

(
Lω

n

)) n∏

i=1

α[ηi](ωi)
(1)

together with the prescription of a probability distribution π ∈ P(E′) for the disorder vari-
ables according to which they are chosen independently over the sites. We assume π(b) > 0
for all b ∈E′.

To summarize, our model depends on the triple of parameters (F,α,π) of: mean-field
interaction F , a priori measures α = (α[b])b∈E′ , and disorder distribution π .

We need to introduce more notations. Given η, we write

	n(b)= {i ∈ {1,2, . . . , n};η(i)= b}

for all b ∈E′, for the b-like sites. Write

π̂n(b)= |	n(b)|
n

for the frequency of the b-like sites (empirical distribution of random field types). Write

L̂n(b)= 1

|	n(b)|
∑

i∈	n(b)

δσ(i)

for the empirical spin-distribution on the b-like sites. Write L̂n = (L̂n(b))b∈E′ for the vector
of empirical distributions. The total empirical distribution is then the scalar product of π̂n

with the vector of empirical spin distributions

Ln =
∑

b∈E′
π̂n(b)L̂n(b) (2)

1.2 The Metastate on the Level of the States

Let us jump into the following definition of a metastate, obtained by a conditioning proce-
dure, which was given first by Aizenman and Wehr [1]. There are different constructions of
a metastate, but the present one will be the only one considered in the paper. This Aizenman-
Wehr construction is related to a different and more intuitive construction as empirical aver-
ages of Gibbs measures along volume-(sub-)sequences by Newman and Stein. We refer to
the monographs [6, 19].
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Definition 1.2 Assume that, for every bounded continuous 
 : P(E∞)× (E′)∞ → R the
limit

lim
n↑∞

∫

P(dη)
(μn[η], η)=
∫

J (dμ,dη)
(μ,η) (3)

exists. Then the conditional distribution κ[η](dμ) := J (dμ|η) is called the AW-metastate
on the level of the states.

As is common, continuity is meant in the following sense: A function on an infinite
product of a finite space is continuous (w.r.t. local topology) if it is a uniform limit of local
functions. For probability measures on P(E∞) we use the weak topology (according to
which a sequence of measures converges iff it converges on continuous test-functions), and
for P(E∞)× (E′)∞, we use the product topology.

1.3 Main Theorem

How do we get the possible equilibrium states of the system? They are obtained as solutions
to the following minimization problem.

Definition 1.3 Consider the free energy minimization problem

ν̂ �→�[π ](ν̂) (4)

on P(E)E′ , with the free energy functional

� : P(E′)×P(E)E′ �→R

�[π̂ ](ν̂)= F

(
∑

b∈E′
π̂(b)ν̂(b)

)

+
∑

b

π̂(b)S(ν̂(b)|α[b])
(5)

where S(p1|p2) =∑
a∈E p1(a) log p1(a)

p2(a)
is the relative entropy. We say that the random

mean-field system obeys the non-degeneracy condition (1) if ν̂ �→�[π](ν̂) has a finite set of
minimizers M∗ =M∗(F,α,π) where all the eigenvalues of the Hessian are strictly positive.

It is very hard for a system not to satisfy this condition and we will assume in the follow-
ing that it is satisfied. If it is true the vector of the empirical spin distributions of the system,
L̂n, will concentrate around the set M∗. More than that, it may even concentrate on a smaller
set. The following theorem about the metastate will tell us how this concentration will take
place and get the weights wj .

Let ν̂j be a fixed element in M∗. Let us consider the linearization of the free energy
functional at the fixed minimizers as a function of π , which reads

�[π̃ ](ν̂j )−�[π ](ν̂j )=−Bj [π̃ − π] + o(‖π̃ − π‖) (6)

where

Bj [π̃−π] = −
(

dFπ ·ν̂j

(
∑

b

(π̃(b)−π(b))ν̂j (b)

)

+
∑

b

[π̃(b)−π(b)]S(ν̂j (b)|α[b])
)

(7)

This defines an affine function on the tangent space of field type measures T P(E′) (i.e.
vectors which sum up to zero), for any j .
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Definition 1.4 We call Bj the stability vector of ν̂j . We call

Rj :=
{
x ∈ T P(E′), 〈x,Bj 〉> max

k �=j
〈x,Bk〉

}
(8)

the stability region of ν̂j .

Now comes our second condition.

Definition 1.5 We say the vector B = (B1, . . . ,Bk) satisfies the non-degeneracy condition
(2) if no different minimizers j, j ′ have the same Bj = Bj ′

In other words the randomness lifts all symmetries. The Hopfield model for instance
(which was excluded already before because of the structure of the randomness) would also
be excluded at this state since it has spin-flip symmetry for all realizations, and so minimizers
in the free energy would come in pairs.

Note that the condition in the definition implies that (
⋃

j=1,...,k Rj )
c has zero Lebesgue

measure in T P(E′). Indeed, if the map j �→ 〈x,Bj 〉 has no unique maximizer for fixed x,
then, for some pair j �= k we have that 〈x,Bj − Bk〉 = 0. For fixed j, k this set of x’s is a
hyperplane (hence a measure zero set) since, by assumption, Bj �= Bk .

We note the following simple but important geometric lemma.

Lemma 1.6 Rj �= ∅⇔ Bj ∈ ex(Hconv{B1, . . . ,Bk}).

Here, for a subset A ⊂ R
d , Hconv(A) denotes the convex hull of A, that is the smallest

convex set which contains A. ex(C), for a convex set C, denotes the extremal points of C,
that is those points which can not be written as a non-trivial convex combination with points
from C. In our case Hconv{B1, . . . ,Bk} is a convex polyhedron and ex(Hconv{B1, . . . ,Bk}) is
the smallest set of points which generates it.

Proof of Lemma 1.6 We prove the implication “⇒” by contradiction. Suppose that Bj is not
an extremal point. Then it can be written as a non-trivial convex combination Bj =∑i αiBi

with
∑k

i=1 αi = 1, where αi ≥ 0 and non-zero only for Bi ∈ ex(Hconv{B1, . . . ,Bk}). Any
vector x ∈ Rj satisfies 〈x,Bj 〉 > 〈x,Bi〉 for all i �= j and hence 〈x,Bj 〉 =∑i αi〈x,Bj 〉 >∑k

i=1 αi〈x,Bi〉 = 〈x,Bj 〉. This is a contradiction and hence Rj = ∅.
To prove the opposite implication “⇐” let us consider an extremal point Bj and note the

following: If Bj �∈ Hconv{B1, . . . ,Bj−1,Bj+1, . . . ,Bk} then, after a suitable translation and
rotation, we can find coordinates such that the vectors take the form Bj = (0, . . . ,0,Bj,d)

and Bi = (B ′
i ,Bi,d) with Bj,d > 0 and Bi,d ≤ 0 for i �= j . (The latter statement follows from

the fact that there is a separating hyperplane between Hconv{B1, . . . ,Bj−1,Bj+1, . . . ,Bk}
and the point Bj . This finite-dimensional version of the Hahn-Banach theorem is a classical
result in geometry, see Theorem 1.2.4 in [17]. Having this separating hyperplane we choose
the origin as the orthogonal projection of Bj to this plane, the first coordinates as orthogonal
coordinates inside the plane, and the last coordinate axis pointing in the direction of Bj .)
The proof relies on the last two inequalities. Indeed we have, with the general notation
x = (x ′, xd) ∈R

d−1 ×R that
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Rj = {x ∈R
d : ∀i �= j holds 〈x,Bj −Bi〉> 0}

= {x ∈R
d : ∀i �= j holds 〈x ′,B ′

j −B ′
i〉 + xd(Bj,d −Bi,d) > 0}

=
{

x ∈R
d : xd > max

i:i �=j

〈x ′,B ′
i −B ′

j 〉
Bj,d −Bi,d

}

�= ∅ (9)
�

Before we state our theorem let us introduce the kernels

γ [b](a|ν)= e−dFν(a)α[b](a)
∑

ā∈E e−dFν(ā)α[b](ā)
(10)

with ν ∈ P(E). These are the limiting local distributions of a spin at a site with a disorder
variable in the state b if the empirical spin-average of the rest of the system is given by the
measure ν. The products over all sites of these quantities, for ν = πν̂j , will play the role of
pure measures.

We are now in the position to give our main result.

Theorem 1.7 Assume that the model satisfies the non-degeneracy assumptions (1) and (2).
Define the weights

wj := Pπ (G ∈Rj) (11)

where G ∈ T P(E′) is a centered Gaussian variable with the same covariance as
√

n(π̂n−π)

which is given by the expression Cπ(b, b′)= π(b)1b=b′ − π(b)π(b′).
Then

∑k

j=1 wj = 1 and the metastate on the level of the states equals

κ[η](dμ)=
k∑

j=1

wjδμj [η](dμ) (12)

where μj [η] :=∏∞
i=1 γ [η(i)]( · |πν̂j ).

Comment. We like to reformulate our result on the visibility or invisibility of the phases
in the following way. Let us denote by M∗∗ = {ν̂ ∈M∗ : wν̂ > 0} the subset of visible pure
phases in the pure phases M∗. Let us use the symbol B· for the bijection (under our hypoth-
esis)

B· :M∗ → T P(E′)

ν̂ �→ Bν̂

Then we can write in short

M∗∗ = (B·)−1(ex(Hconv(B·(M∗)))

Let us derive the following immediate consequence which provides a symmetry, due to
the randomness (the symmetry of the Gaussian, obtained via the CLT).

Corollary 1.8 Suppose that the system admits precisely two pure phases, i.e. |M∗| = 2.
Then the metastate is the symmetric mixture between the two, i.e.

κ[η](dμ)= 1

2
δμ1[η](dμ)+ 1

2
δμ1[η](dμ) (13)
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The corollary is clear from the theorem since in that case R1 =−R2 and this implies by
the non-degeneracy assumption (2) that w1 =w2.

Corollary 1.9 Suppose that the random-field is two-valued, i.e. |E′| = 2, and the number of
pure phases |M∗| ≥ 2 arbitrary. Then the set of visible states has two elements and w(ν̂)= 1

2
for both elements ν̂ ∈M∗∗.

The corollary is clear from the theorem since any convex polyhedron in one dimension
has only two extremal points.

For illustrational purposes recall the situation in the mean-field random field Ising model
with two-valued symmetrically distributed random field with coupling strength ε and tem-
perature β−1. In this model the β−1, ε-plane contains a bounded open region for which
|M∗(β−1, ε)| = 2. The boundary of this region is a curve which splits into a part for which
|M∗(β−1, ε)| = 3 and a part for which |M∗(β−1, ε)| = 1. In the complement of the union of
those previous regions we have |M∗(β−1, ε)| = 1. The situation of the second corollary is
met on the curve where |M∗(β−1, ε)| = 3.

1.3.1 Exploiting the Mean-field Equation

Using variational calculus and assuming differentiability of F one sees that the minimizers
of the variational problem above must satisfy the consistency (mean-field) equations

ν̂[b](a)= γ [b](a|π · ν̂) (14)

which are coupled over b ∈E′. Summing over these indices one gets the mean-field equation
for the total empirical mean ν = π · ν̂ of the form

ν(a)=
∑

b∈E′
π(b)γ [b](a|ν) (15)

We note the following lemma.

Lemma 1.10 Define the function �̂ : P(E)→ P(E)E′ by the r.h.s. of the mean field equa-
tion, namely

�̂(ν)= (γ [b](·|ν))b∈E′ (16)

Define the function B̂ : P(E)→ T P(E′) by

B̂ν[b] = log
∑

a∈E

e−dFν (a)α[b](a)−C

C = 1

|E′|
∑

b∈E′
log

∑

a∈E

e−dFν(a)α[b](a)

(17)

Then, for all ν̂ ∈M∗ we have that

ν̂ = �̂(πν̂)

Bν̂ = B̂πν̂

(18)

For all ν ∈ πM∗ we have that the free energy can be written as

�[π ](�̂(ν))= F(ν)− 〈dFν, ν〉 − 〈B̂ν,π〉 +C (19)
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The first statement is just a rephrasing of the mean-field equation. It serves us to see
that there is a bijection between πM∗ = {πν̂|ν̂ ∈M∗} ⊂ P(E) (a subset in a space of mea-
sures with dimension |E| − 1) and M∗ (a subset in a space of measures with dimension
(|E| − 1)|E′ |). The second part means that the logarithm of the normalization factor (“little
partition function”) of the mean-field kernels in the total empirical distribution ν of type
b produces the b’th component of the stability vector corresponding to the minimizer with
total empirical mean ν.

The interesting feature is that the form of π does not enter at all into this formula (it
enters however through the question which minimizer ν̂ and hence also ν appears).

Proof The first part is obvious. To prove the second part, for ν̂ ∈ M∗ we write, with a
constant C ′ to be determined

−Bν̂[b] =
∑

a∈E

dFπ ·ν̂ (a)ν̂[b](a)+ S(ν̂[b]|α[b])−C ′

≡ ν̂[b](dFπ ·ν̂ (·))+ S(ν̂[b]|α[b])−C ′

= − log
∑

a∈E

e−dFπν̂ (a)α[b](a)−C ′ (20)

where the last equality follows from the mean-field equation. This proves the second claim.
The last claim follows from the first equality of the last display multiplying with π(b) and
summing over b ∈E′. �

1.4 Ising Random-field Examples

Let us take the Ising model with F(ν)=−β(ν(+)2 + ν(−)2).
Any possible local single-site measure α can be described as an α[h](σi)= ehσi

2 coshh
. Any

ν = νm can be described in terms of its mean value νm(+)− νm(−)=m.
So we can write

B̂νm [h] ≡ B̂νm [α[h]] = log
eβ2 1+m

2 +h + eβ2 1−m
2 −h

2 coshh
−C

= β + log
cosh(βm+ h)

coshh
−C (21)

Let us now fix E′ = supp(π) = {αh : h ∈ {h1, h2, . . . , hL}} as the set of allowed local
measures. This gives us the normalized vector in the tangent space T P(E′) with entries

B̂νm [hi] := log
cosh(βm+ hi)

coshhi

− 1

L

L∑

j=1

log
cosh(βm+ hj )

coshhj

(22)

Writing a vector with L= |E′| components we have

B̂νm =
⎛

⎜
⎝

log cosh(βm+h1)

coshh1

. . .

log cosh(βm+hL)

coshhL

⎞

⎟
⎠− 1

L

L∑

j=1

log
cosh(βm+ hj )

coshhj

⎛

⎝
1
. . .

1

⎞

⎠

Lemma 1.11 Let E′⊂R, 2≤ |E′|<∞. Then the map m �→ B̂νm is injective.
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Proof We have at least two elements, h1 < h2 (after possible change of indices) in E′. Let
νm, νm̃ be given with B̂νm = B̂νm̃

. By easy manipulations looking at the first two components
of B̂ the latter implies that

cosh(βm+ h1)

cosh(βm+ h2)
= cosh(βm̃+ h1)

cosh(βm̃+ h2)
(23)

From this follows m= m̃ by injectivity of the function x �→ coshx
cosh(x+1)

. �

Let us extend the random-field Ising model to a non-quadratic Hamiltonian F(ν) =
G(ν(+) − ν(−)) and general local measures α = (α[h])h∈E′ with a finite set E′ just as
above in the quadratic case.

Then the mean field equation becomes

m=
L∑

i=1

π(hi) tanh(−G′(m)+ hi) (24)

The stability vector becomes

B̂νm [hi] := log
cosh(−G′(m)+ hi)

coshhi

− 1

L

L∑

j=1

log
cosh(−G′(m)+ hj )

coshhj

(25)

Then the injectivity of the map m �→ B̂νm holds under the assumption that m �→ G′(m) is
injective, by the same proof, replacing m by −G′(m) in (23).

We have thus proved the following statement.

Proposition 1.12 For a random-field Ising model with Hamiltonian F(ν) = G(ν(+) −
ν(−)) and G′ injective the non-degeneracy assumption (2) is automatically satisfied, for
any distribution of random fields with finite support.

It is easy to create a two-minima situation where there is no symmetry, by looking at the
equal-depth condition for the free energy

�[π](�̂(νm)) = F(νm)−
∑

a∈E

dFνm(a)νm(a)−
∑

b∈E′
π(b) log

∑

a∈E

e−dFνm (a)α[b](a)

= G(m)−mG′(m)−
L∑

i=1

π(hi) log
cosh(−G′(m)+ hi)

coshhi

where both minima would get the same weight in the metastate necessarily.
In fact, a situation with precisely two minimizers not related by symmetry was proved to

occur (even) for the (symmetric) model G(m) = − βm2

2 , E = E′ = {1,−1}, π(1) = 1+α
2 =

1− π(−1), α[b](a)= eβεab

coshβε
, for the region R34 in the (β−1, ε)-plane characterized in [16]

and depicted below, for a suitable choice of α = α(β, ε) > 0. We note that the part of the
phase diagram corresponding to the case α = 0 was given already in [2].
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1.5 Potts Random Field Examples

Let us take the Potts model with quadratic interaction

F(ν)=−β

2
(ν(1)2 + · · · + ν(q)2)

in the presence of the local single-site measures α[b](σi) (specified below) where we write

E′ = supp(π)= {α[b] : b ∈ {b1, b2, . . . , bL}}
Then we have for the stability vector

B̂ν =
⎛

⎝
log

∑q

a=1 eβν(a)α[b1](a)

. . .

log
∑q

a=1 eβν(a)α[bL](a)

⎞

⎠− 1

L

L∑

j=1

log
q∑

a=1

eβν(a)α[bj ](a)

⎛

⎝
1
. . .

1

⎞

⎠

Remark The map B̂· : P(E)→ T P(E′) is a map between spaces of dimension |E| − 1
and |E′| − 1. It has a chance to be injective as such (on the whole space P(E)) only when
|E′| ≥ |E|.

Let us take E ≡ E′ and π to be the equidistribution and switch to the specific case
α[b](a)= eB1b=a

eB+q−1
(random field with homogeneous intensity). The kernels become

γ [b](a|ν)= eβν(a)+B1a=b

∑
ā∈E eβν(ā)+B1ā=b

We will be looking at measures in νj,u ∈ P(E) of the form νj,u(j)= 1+u(q−1)

q
, νj,u(i)= 1−u

q

for i �= j . The stability vector for ν1,u is given by

B̂ν1,u
=

⎛

⎜
⎜
⎜
⎜
⎝

q−1
q

log eβu+B+q−1
eβu+eB+q−2

− 1
q

log eβu+B+q−1
eβu+eB+q−2

. . .

− 1
q

log eβu+B+q−1
eβu+eB+q−2

⎞

⎟
⎟
⎟
⎟
⎠
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the other ones are related by symmetry. We note that the first entry is strictly positive while
the other entries are negative (for B > 0 and u > 0).

We have the mean-field equation for u of the form

u= eβu

eβu + eB + (q − 2)
− 1

eβu+B + (q − 1)
(26)

We notice that u = 0 is always a solution, and for B = 0 we obtain exactly the known
mean-field equation for Potts without disorder. The latter model shows a first-order transition
as a function of temperature at critical temperature βc = 2(q−1)

q−2 log(q − 1) [10].
The r.h.s. of (26) is always positive, as a computation shows. This gives rise to a non-

trivial solution u, in a certain range of parameters. Note that this non-trivial solution is
not always the one to be chosen. It is to be chosen iff �[π](�̂(νj,u)) < �[π](�̂(νj,u=0)).
So, the first order transition point is given by equality of the last equation. Forgetting a
u-independent term we have, independently of the direction j ,

�[π](�̂(νj,u))= log
eB + q − 1

eβu + eB + q − 2
+ β(q − 1)

2q
u2 + β

q
u− 1

q
log

eβu+B + q − 1

eβu + eB + q − 2
(27)

with the property that �[π ](�̂(νj,u=0) = 0. For illustrational purposes let us focus on the
case q = 3. We don’t provide a complete bifurcation analysis here, but just outline the pic-
ture. The case B = 0 is perfectly understood and we know that there is a first order tran-
sition at the critical inverse temperature β = 4 log 2. The nature of the transition stays the
same when B takes small enough positive values and there is a line in the space of temper-
ature and coupling strength B of an equal-depth minimum at u= 0 and a positive value of
u= u∗(β, q). (See Fig. 1 for a numerical example.) Along this line the set of Gibbs measures
is strictly bigger then the set of states which are seen under the metastate.

The Plot shows the graph of u �→ �[π ](�̂(νj,u)) for B = 0.3, q = 3, β = 4 log 2 +
0.03203 at which there is the first order transition.

The metastate becomes κ[η](dμ) = 1
3

∑3
j=1 δμj [η] with μj [η] =

∏∞
i=1 γ [η(i)]( · |νj,u=u∗(β,q)). This follows from the form of the stability vector using that

B̂ν1,u=0 = 0 and hence lies in the convex hull of the three others.

1.6 Strategy of Proof, Non-degeneracy Assumption and Concentration

The outline of the remainder of the paper is as follows.
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We begin in Sect. 2 with a discussion of another related result, namely the metastate
on the level of the empirical spin-distributions. The theorem is quite analogous, the same
weights wj appear, and the proof is slightly easier than that of the full theorem. To arrive
at the proof of this theorem we will discuss the concentration property of the vector of the
empirical distributions for good realizations of the disorder which will force the system to
be in one definite state. In particular it will show how the non-degeneracy assumptions (1)
and (2) are naturally used in that argument and this will explain how the CLT for empirical
distributions of disorder variables translates into the form of the weights wj .

Then we will turn in Sect. 3 to the proof of the metastate theorem on the level of states
and conclude.

2 The Metastate on the Level of the Empirical Spin-distribution

Two ways of looking at the spin-distributions of disordered mean-field systems are natural.
In the first one, described in the introduction, we focus on measures on the spins themselves,
and evaluate them on local observables. In the second one, we focus on aggregate properties
of the system, and look at functions of the empirical spin-distribution of the whole system.
From the second point of view it is natural to make the following definition of a metastate
on the level of the empirical spin-distribution.

Denote by ρ[η](n) := μF,n[η](Ln) the image of the finite-volume Gibbs-measure under
the empirical distribution. This defines a disorder-dependent element in P(P(E)). Under our
assumptions these measures will concentrate on the finite set πM∗ = {πν̂j , j = 1, . . . , k}. It
is useful to introduce a metastate which tells us more precisely how this concentration takes
place. This is the reason for the following definition.

Definition 2.1 Assume that, for every bounded continuous � : P(P(E))× (E′)∞ the limit

lim
n↑∞

∫

P(dη)�(ρ[η](n), η)=
∫

K(dρ,dη)�(ρ,η) (28)

exists. Then the conditional distribution κ̄[η](dρ) :=K(dρ|η) is called the metastate on the
level of the empirical spin-distribution.

Believing in the first theorem it is not surprising that this metastate takes the following
form.

Theorem 2.2 Under the non-degeneracy assumptions (1) and (2), we have

κ̄[η](dρ)=
k∑

j=1

wjδδπν̂j
(dρ) (29)

for Pπ -a.e. η.

As a difference with respect to the first theorem let us point out that in this case the
dependence on the disorder has vanished on the r.h.s.

Proof of Theorem 2.2 For n1 < n2 integers, let’s define

X[n1,n2][η] =
1√

n2 − n1 + 1

n2∑

i=n1

δηi
−√n2 − n1 + 1π (30)
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Define n, l-dependent good-sets Hτ
n,l of the realization of the randomness as follows

Hτ
i,n,l :=

{
η ∈ (E′)n−l :X[l+1,n][η] ∈Rτ

i,n

}

Hτ
n,l :=

k⋃

i=1

Hτ
i,n,l

(31)

where Rτ
i,n := {x ∈ T P(E′) : 〈x,Bi〉 − maxk �=i〈x,Bk〉 > n−

1
2+τ ,‖x‖ ≤ n

τ
4 }, where 0 <

τ < 1
2 . For the sake of clarity set δn = n−

1
2+τ . The chosen range of τ ensures that δn ↓ 0, but

not too fast, namely in such a way that
√

nδn ↑∞.
Hτ

i,n,l is a region of the disorder random variables which allows us to deduce that the
measure on the empirical distribution will be with large probability inside a ball around
πν̂∗i .

Remark We need δn ↓ 0 because we want to cover all of the corresponding stability-region
Ri (8) in the large-n limit. The condition regarding the velocity with which δn is going to
0 ensures the concentration of the measure around a particular minimizer, in other words
it will enable us to see the breaking of the degeneracy of the minimizers caused by the
fluctuations of π̂n. The relevance of the cutoff ‖x‖ ≤ n

τ
4 will be seen later.

Lemma 2.3 Let us assume that η ∈ Hτ
i,n,0. Then

μF,n[η(1), . . . , η(n)](d(Ln,πν̂∗i )≤ ε)≥ 1− r̄(ε, n) (32)

where limn↑∞ r̄(ε, n)= 0 for all ε > 0.

Proof Call Mn := {ν ∈ P(E) : ∃ω ∈En such that Lω
n = ν}. To every element ν ∈Mn corre-

spond several possible values of the empirical distribution vectors L̂n ∈ P(E)E′ , given π̂n.
We call this set M̂n := {ν̂ ∈ P(E)E′ : ∃ω ∈ En such that ν̂ = L̂n}. Let’s define ρε[η](n) ∈
P(πM∗) assigning probability weights to the ε-balls by

ρε[η](n)(πν̂∗i ) :=
μF,n[η(1), . . . , η(n)](Ln ∈ B(ε,πν̂∗i ))

∑k

j=1 μF,n[η(1), . . . , η(n)](Ln ∈ B(ε,πν̂∗j ))
(33)

At this stage the measures appearing in the former definition involve a sum over ν ∈Mn ∩
B(ε,πν̂∗i ) and for the correspondence formerly mentioned we can write

ρε[η](n)(πν̂∗i ) =
∑

ν̂:π̂nν̂∈B(ε,πν̂∗
i
) μF,n[η(1), . . . , η(n)](L̂n = ν̂)

∑k

j=1

∑
ν̂:π̂nν̂∈B(ε,πν̂∗

j
) μF,n[η(1), . . . , η(n)](L̂n = ν̂)

=
∑

ν̂:π̂nν̂∈B(ε,πν̂∗
i
)

∑
σ∈En :L̂σ

n=ν̂
e−nF(π̂nν̂)

∏n
i=1 α[ηi ](σi )

∑
ν̄∈M̂n

∑
σ∈En :L̂σ

n=ν̄
e−nF(π̂nν̄)

∏n
i=1 α[ηi ](σ̄i )

∑k

j=1

∑
ν̂:

π̂nν̂∈B(ε,πν̂∗
j

)

∑
σ∈En :L̂σ

n=ν̂
e−nF(π̂nν̂)

∏n
i=1 α[ηi ](σi )

∑
ν̄∈M̂n

∑
σ∈En :L̂σ

n=ν̄
e−nF(π̂nν̄)

∏n
i=1 α[ηi ](σ̄i )

(34)
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Decomposing the spin-sums into sums over possible values of the vector of empirical
distributions on the b-like sites we can rewrite the last expression as

∑
ν̂:π̂nν̂∈B(ε,πν̂∗

i
) e
−nF(π̂nν̂)

∏|E′|
b=1 α[b]|	n(b)|(�|	n(b)|(ν̂(b)))

∑k

j=1

∑
ν̂:π̂nν̂∈B(ε,πν̂∗

j
) e
−nF(π̂nν̂)

∏|E′ |
b=1 α[b]|	n(b)|(�|	n(b)|(ν̂(b)))

(35)

where �|	n(b)|(ν̂(b))= {σ ∈ E|	n(b)| : L̂σ
n (b)= ν̂(b)}, and α[b]|	n(b)|(·) is the product mea-

sure on the b-like sites. For sake of clarity let us recall the finite-volume finite-alphabet
version of Sanov’s theorem which is stated as Lemma 2.1.8 in [9], which we will make use
of in the next step.

Lemma 2.4 Let ν be a probability measure on a finite state space E. For fixed n define the
set of microstates compatible with ν by

�(ν) := {ω ∈En|Lω
n = ν

}
(36)

Then, if nν(x) is integer-valued for all x ∈ E we have the upper and lower large deviation
bounds

(n+ 1)−|E|e−nS(ν|μ) ≤ μ(�(ν))= μ
({

ω : Lω
n = ν

})≤ e−nS(ν|μ) (37)

Using (37) we get a lower bound to (35) of the form

1

1+∑k

j �=i

∑
ν̂:π̂nν̂∈B(ε,πν̂∗

j
) e−n�[π̂n](ν̂)

∑
ν̂:π̂nν̂∈B(ε,πν̂∗

i
) e−n�[π̂n](ν̂)

∏
b∈E′ (|	n(b)|+1)−|E′ |

(38)

Let us notice that, in the last expression, the free energy (5) has appeared. However it does
not involve yet the minimizer ν̂∗i in an explicit way. What we would like to do next, is to
understand the π̂n-dependence of the minima in the different balls. Differences in the depths
of the minima would not be present for π̂n = π but will be created by the fluctuations of π̂n.

In order to achieve this we first need to compare the values that the π̂n-dependent free
energy takes on the ball with the one corresponding to the center. As we will see in Proposi-
tion 2.5 this can be done uniformly with respect to the centers (π -minimizers). Secondly we
will compare, for any fixed minimizer, the difference between the π̂n-dependent free energy
and the π -dependent one; this will be done using the linearization procedure (6). Let us
emphasize the fact that the definition of the good-sets Hτ

i,n,l has been chosen ad hoc to guar-
antee, in the limit n ↑∞, that the i-th stability vector will “dominate” the others, and thus
the concentration around ν̂∗i will take place. We also need an upper bound on ‖π̂n − π‖ for
that procedure to work which is the reason for the cutoff in the definition of the good-sets.

The next proposition formalizes the first step.

Proposition 2.5 Under the non-degeneracy assumption (1) there exists an ε0 > 0 and a
positive constant K such that for all ε ≤ ε0 and for n sufficiently large

−K‖π̂n − π‖2

2
≤ inf

ν̂∈M̂n∩B(ε,πν̂∗
j
)

(�[π̂n](ν̂)−�[π̂n](ν̂∗j )) (39)

for all minimizers ν̂∗j .
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Proof We will show that there exists a positive K such that

−K‖π̂n − π‖2

2
≤ inf

ν̂∈B(ε,πν̂∗
j
)
(�[π̂n](ν̂)−�[π̂n](ν̂∗j )) (40)

holds, hence the proposition will follow using the inequality infν̂∈M̂n∩B(ε,πν̂∗
j
) ≤ infν̂∈B̂(ε,πν̂∗

j
).

Let us take a Taylor expansion of �[π̂n](ν̂) around ν̂∗j , namely

�[π̂n](ν̂) = �[π̂n](ν̂∗j )+ 〈∇�[π̂n](ν̂∗j ), ν̂ − ν̂∗j 〉

+ 1

2
〈ν̂ − ν̂∗j ,H�[π̂n](ν̂∗j )(ν̂ − ν̂∗j )〉 + ‖ν̂ − ν̂∗j ‖2R(ν̂, ν̂∗j ) (41)

where R(ν̂, ν̂∗j ) is a continuous function at ν̂ = ν̂∗j with R(ν̂∗j , ν̂
∗
j )= 0, and H is the Hessian.

So we have

�[π̂n](ν̂)−�[π̂n](ν̂∗j )≥ 〈∇�[π̂n](ν̂∗j ), ν̂ − ν̂∗j 〉 +
1

2
〈ν̂ − ν̂∗j , (H�[π̂n](ν̂∗j )−C1)(ν̂ − ν̂∗j )〉

(42)
where C1 is a non-negative constant which can be chosen arbitrarily close to zero when we
restrict to balls with sufficiently small radii ε.

The inf for the previous r.h.s. is obtained at the point ν̂∗ = −(H�[π̂n](ν̂∗j ) − C1)
−1×

∇�[π̂n](ν̂∗j )+ ν̂∗j .
So we have

inf
ν̂∈B(ε,πν̂∗

j
)
(�[π̂n](ν̂)−�[π̂n](ν̂∗j ))≥−

1

2
〈∇�[π̂n](ν̂∗j ), (H�[π̂n](ν̂∗j )−C1)

−1∇�[π̂n](ν̂∗j )〉
(43)

Non-degeneracy assumption (1) implies together with the twice continuous differentiability
of F that there exists a positive constant K̃ such that

〈x,H�[ξ ](ν̂∗j )x〉 ≥ K̃‖x‖2 (44)

for all ξ in a neighborhood of π . Noticing that ‖∇�[π̂n](ν̂∗j )‖ ≤ c‖π̂n − π‖ we have

−K‖π̂n − π‖2

2
≤ inf

ν̂∈B(ε,πν̂∗
j
)
(�[π̂n](ν̂)−�[π̂n](ν̂∗j ))≤ 0 (45)

with K = c2

K̃−C1
which is positive for ε0 sufficiently small. �

From the last right-hand side of (38) we have

1

1+∑k

j �=i

∑
ν̂:π̂nν̂∈B(ε,πν̂∗

j
) e
−n(�[π̂n](ν̂)−�[π̂n](ν̂∗j ))

e
−n�[π̂n](ν̂∗j )

∑
ν̂:π̂nν̂∈B(ε,πν̂∗

i
) e
−n(�[π̂n](ν̂)−�[π̂n](ν̂∗i ))

e
−n�[π̂n](ν̂∗i )∏

b∈E′ (|	n(b)|+1)−|E′ |

≥ 1

1+∑k

j �=i

∑
ν̂:π̂nν̂∈B(ε,πν̂∗

j
) e

−n(inf ν̂∈
M̂n∩B(ε,πν̂∗

j
)

(�[π̂n](ν̂)−�[π̂n](ν̂∗j )))

e
−n�[π̂n](ν̂∗j )

e
−n(�[π̂n](ν̃)−�[π̂n](ν̂∗i )))

e
−n�[π̂n](ν̂∗i )∏

b∈E′ (|	n(b)|+1)−|E′ |
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≥ 1

1+∑k

j �=i

∑
ν̂:π̂nν̂∈B(ε,πν̂∗

j
) e

Kn‖π̂n−π‖2
2 e

−n�[π̂n](ν̂∗j )

e−Ce
−n�[π̂n](ν̂∗i )∏

b∈E′ (|	n(b)|+1)−|E′ |

(46)

In the first inequality we have chosen ν̃ as a best-approximation of ν̂∗i in M̂n to get rid
of the sum in the denominator of the denominator. In the second inequality we have used
Proposition 2.5, and moreover the bound on the corresponding discretization error of the
order 1/n and the uniform boundedness of the first derivative of �. The sums over measures
in balls only give rise to polynomial constants which are swallowed by the terms in the
exponential (as we will see, because the random terms lifting the degeneracy between the
minimizers will be of order squareroot).

Now to the lowest order in π̂n − π , we have

�[π̂n](ν̂∗i )=�[π ](ν̂∗i )+�π [π ](ν̂∗i )(π̂n − π)+ o(‖π̂n − π‖) (47)

So the last right-hand side of (46) becomes

≥ 1

1+∑k

j �=i e
Kn‖π̂n−π‖2

2 +Ce
−n〈Bν̂∗

i
−Bν̂∗

j
,π̂n−π〉

e−n·o(‖π̂n−π‖)∏
b∈E′(|	n(b)| + 1)2|E|

(48)

We are considering n sufficiently large such that there is at least one element in {ν̂ : π̂nν̂ ∈
B(ε,πν̂∗i )}.

For η ∈ Hτ
i,n,0 we have that

ρε[η](n)(πν̂∗i ) > 1− r(n) (49)

Indeed we defined the good-set Hτ
i,n,0 in such a way that n‖π̂n − π‖2 ≤ n

τ
2 and n〈Bν̂∗

i
−

Bν̂∗
j
, π̂n − π〉 ≥ nτ . Here we see the reason for the choice of the cutoff.
In order to prove Lemma 2.3 let us write

μF,n[η(1), . . . , η(n)](Ln ∈ B(ε,πν̂∗i ))

= ρε[η](n)(πν̂∗i )(1−μF,n[η(1), . . . , η(n)](d(Ln,πM∗)≥ ε)) (50)

Now we can use the concentration property for the empirical distribution saying that ∀ε > 0
and for all η ∈ Hτ

i,n,0 we have

μF,n[η(1), . . . , η(n)](d(Ln,πM∗)≥ ε)≤ r̂(n, ε) (51)

with limn↑∞ r̂(n, ε)= 0 for all positive ε.
This concentration property is a consequence of the bound

μF,n[η(1), . . . , η(n)](d(Ln,πM∗)≥ ε)

≤
∏

b∈E′
(nπ̂n(b)+ 1)2|E| exp

(
−n inf

ν̂∈M̂n :
d(π̂nν̂,πM∗)≥ε

�[π̂n](ν̂)+ n inf
ν̂′∈M̂n

�[π̂n](ν̂ ′)
)

≤
∏

b∈E′
(nπ̂n(b)+ 1)2|E|eK2n‖π̂n−π‖+C2 exp

(
−n inf

ν̂∈P(E)|E′ | :
d(πν̂,πM∗)≥ε

�[π](ν̂)+ n inf
ν̂′∈P(E)|E′ |

�[π](ν̂ ′)
)

(52)
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where in the second inequality we have used the Lipschitz property of � w.r.t. π and the
control of the discretization error. On the good-sets we have n‖π̂n − π‖ ≤ n

1
2+ τ

4 , while the
quadratic nature of the minima gives us a term of exponential decay in n from the rightmost
exponential, for any fixed ε > 0. This proves the concentration property. So the lemma
follows from (49), (50) and (51). �

Having proved, for a particular choice of the disorder variables, the concentration of the
empirical distribution around a given minimizer, the following lemma represents the natural
extension to averages.

Lemma 2.6 For any real-valued continuous function g on P(E) the following holds:

|ρ[η](n)(g)− g(πν̂∗j )| ≤ r̃(n), ∀η ∈ Hτ
j,n,0 (53)

where limn↑∞ r̃(n)= 0.

Proof Let B(ε,πν̂∗j ) be an ε-ball around the measure πν̂∗j . Then for any ε > 0 and integer n,

|ρ[η](n)(g)− g(πν̂∗j )|
= |ρ[η](n)(1B(ε,πν̂∗

j
)(g− g(πν̂∗j )))+ ρ[η](n)(1Bc(ε,πν̂∗

j
)(g − g(πν̂∗j )))|

≤ sup
ν∈B(ε,πν̂∗

j
)

|g(ν)− g(πν̂∗j )| + 2‖g‖∞ρ[η](n)(Bc(ε,πν̂∗j ))

holds. Choosing first ε sufficiently small and then n sufficiently large proves the lemma. �

Now comes the study of how the probability of the good-sets Hτ
j,n,l behaves in the limit

n ↑ ∞. Out of this analysis the weights (11) will arise. The fundamental step is that the
limit will not depend on any finite number l of coordinates η, while the corresponding tail
will provide, using CLT, the longed-for weights. This together with the Stone-Weierstrass
theorem and Lemma 2.6 are the overriding tools for proving Theorem 2.2.

Let us start the analysis looking at the n, l-dependent good-sets Hτ
i,n,l in a slightly differ-

ent way.
For any l < n, we have

Hτ
i,n,0 =

{

η ∈ (E′)n :
√

nl

n
X[1,l][η] +

√
n(n− l)

n
X[l+1,n][η] ∈Rτ

i,n

}

(54)

Saying that X[1,n][η] ∈Rτ
i,n it means

an〈X[1,l][η],Bi〉 + bn〈X[l+1,n][η],Bi〉 −max
k �=i

(an〈X[1,l][η],Bk〉 + bn〈X[l+1,n][η],Bk〉) > δn

(55)
and ‖X[1,n][η]‖ ≤ n

τ
4 , where an =

√
nl
n

and bn =
√

n(n−l)

n
.

Now let us define a subregion of Hτ
i,n,0, namely Hτ

i,n,0(l) as follows

Hτ
i,n,0(l) :=

{
η ∈ (E′)n : an〈X[1,l][η],Bi〉 + bn〈X[l+1,n][η],Bi〉 −max

k �=i
(an〈X[1,l][η],Bk〉)

−max
k �=i

(bn〈X[l+1,n][η],Bk〉) > δn, and ‖X[1,n][η]‖ ≤ n
τ
4

}
(56)
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Remark While Hτ
i,n,0 does not depend on l , Hτ

i,n,0(l) does, indeed the partitioning might
change the max-value.

It is worthwhile mentioning the following results.

Lemma 2.7 For any integer l, P(Hτ
i,n,0 \Hτ

i,n,0(l)) goes to zero in the limit n ↑∞.

Proof Note that

Hτ
i,n,0 \Hτ

i,n,0(l) ⊆
{
η ∈ (E′)n :max

k �=i
〈anX[1,l][η],Bk〉 +max

k �=i
〈bnX[l+1,n][η],Bk〉 + δn

≥ 〈anX[1,l][η] + bnX[l+1,n][η],Bi〉
> max

k �=i
〈anX[1,l][η] + bnX[l+1,n][η],Bk〉 + δn

}
(57)

Now

Hτ
i,n,0 \ Hτ

i,n,0(l) ⊆
{

η : C(l)√
n
+max

k �=i
〈bnX[l+1,n][η],Bk〉 + δn

≥ 〈anX[1,l][η] + bnX[l+1,n][η],Bi〉

>−C(l)√
n
+max

k �=i
〈bnX[l+1,n][η],Bk〉 + δn

}

(58)

where C(l)=√l maxη maxk |〈X[1,l][η],Bk〉| ≤
√

l maxk ‖Bk‖∞.
The set on the right-hand side of (58) can be written as

{

η : C(l)√
n
+max

k �=i
〈bnX[l+1,n][η],Bk〉 + δn ≥ an〈X[1,l][η],Bi〉 + bn〈X[l+1,n][η],Bi〉

}

∩
{

η : −C(l)√
n
+max

k �=i
〈bnX[l+1,n][η],Bk〉 + δn < an〈X[1,l][η],Bi〉 + bn〈X[l+1,n][η],Bi〉

}

=
{

η :
(

C(l)√
n
− an〈X[1,l][η],Bi〉 + δn

)

b−1
n ≥ 〈X[l+1,n][η],Bi〉 −max

k �=i
〈X[l+1,n][η],Bk〉

}

∩
{

η :
(

−C(l)√
n
− an〈X[1,l][η],Bi〉 + δn

)

b−1
n

< 〈X[l+1,n][η],Bi〉 −max
k �=i
〈X[l+1,n][η],Bk〉

}

⊂
{

η :
(

2C(l)√
n
+ δn

)

b−1
n ≥ 〈X[l+1,n][η],Bi〉 −max

k �=i
〈X[l+1,n][η],Bk〉

}

∩
{

η :
(

−2C(l)√
n
+ δn

)

b−1
n < 〈X[l+1,n][η],Bi〉 −max

k �=i
〈X[l+1,n][η],Bk〉

}

(59)

Let’s define

ϕi(X[l+1,n][η]) := 〈X[l+1,n][η],Bi〉 −max
k �=i
〈X[l+1,n][η],Bk〉 (60)
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So we have

P
(

Hτ
i,n,0 \Hτ

i,n,0(l)
)≤ P

({

η : ϕi(X[l+1,n][η]) ∈ b−1
n

(

δn − 2C(l)√
n

, δn + 2C(l)√
n

)})

(61)

To take care of the n-dependence of the interval it’s enough to notice that, ∀ε > 0 ∃n̄(ε)

such that, for all n > n̄(ε) the following holds

b−1
n

(

δn − 2C(l)√
n

, δn + 2C(l)√
n

)

⊂ (−ε, ε) (62)

So

lim
n↑∞

P

({

η : ϕi(X[l+1,n][η]) ∈ b−1
n

(

δn − 2C(l)√
n

, δn + 2C(l)√
n

)})

≤ lim
n↑∞P({η : ϕi(X[l+1,n][η]) ∈ (−ε, ε)}) (63)

By the multidimensional CLT we have

lim
n↑∞

P({η : ϕi(X[l+1,n][η]) ∈ (−ε, ε)})= Pπ (ϕi(G) ∈ (−ε, ε)) (64)

where G is a centered Gaussian variable.
Taking the limit ε ↓ 0 and using the non-degeneracy assumption (2), the lemma is

proved. �

We have just seen that, for any fixed integer l, there is a subregion of the good-set which
will not play any role in the limit n ↑ ∞. We focus now on the probability of the main
part of the good-set, especially on how its limit does not depend on any finite number of
η-coordinates. Let us formalize the previous heuristic.

The condition (56) defining Hτ
i,n,0(l) can also be written as

〈X[l+1,n][η],Bi〉 −max
k �=i
〈X[l+1,n][η],Bk〉> an

bn

(
max
k �=i
〈X[1,l][η],Bk〉 − 〈X[1,l][η],Bi〉

)
+ b−1

n δn

and ‖X[1,n][η]‖ ≤ n
τ
4 . (65)

Define the following sets

Aτ
i,n(l) :=

{

η : 〈X[l+1,n][η],Bi〉 −max
k �=i
〈X[l+1,n][η],Bk〉

>−an

bn

C2(l)+ b−1
n δn,‖X[l+1,n][η]‖ ≤ b−1

n n
τ
4

}

Bτ
i,n(l) :=

{

η : 〈X[l+1,n][η],Bi〉 −max
k �=i
〈X[l+1,n][η],Bk〉

>
an

bn

C2(l)+ b−1
n δn,‖X[l+1,n][η]‖ ≤ b−1

n (n
τ
4 − C̃2(l))

}

(66)

where C2(l)=maxη |maxk �=i〈X[1,l][η],Bk〉 − 〈X[1,l][η],Bi〉| ≤ 2 maxk ‖Bk‖∞, and C̃2(l)=
maxη ‖X[1,l][η]‖. These maxima give us the intended independence of the set from η ∈ (E′)l
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and we have

Bτ
i,n(l)= (E′)l ×H1,τ

i,n,l

Aτ
i,n(l)= (E′)l × H2,τ

i,n,l

(67)

where

H1,τ
i,n,l =

{
η ∈ (E′)n−l : ϕi(X[l+1,n][η]) > b−1

n (δn + anC2(l)),

and ‖X[l+1,n][η]‖ ≤ b−1
n (n

τ
4 − C̃2(l))

}

H2,τ
i,n,l = {η ∈ (E′)n−l : ϕi(X[l+1,n][η]) > b−1

n (δn − anC2(l)), and ‖X[l+1,n][η]‖ ≤ b−1
n n

τ
4 }
(68)

The following holds

Aτ
i,n(l)⊇ Hτ

i,n,0(l)⊇ Bτ
i,n(l)

H1,τ
i,n,l ⊆ H2,τ

i,n,l

(69)

Lemma 2.8 For any integer l, P(H2,τ
i,n,l \H1,τ

i,n,l) goes to zero in the limit n ↑∞.

Proof

H2,τ
i,n,l \H1,τ

i,n,l ⊆
{

η : an

bn

C2(l)+ b−1
n δn ≥ 〈X[l+1,n][η],Bi〉 −max

k �=i
〈X[l+1,n][η],Bk〉

>−an

bn

C2(l)+ b−1
n δn

}

= {η : b−1
n (δn + anC2(l))≥ ϕi(X[l+1,n][η]) > b−1

n (δn − anC2(l))
}

(70)

By the same argument we have used in Lemma 2.7, we have P(H2,τ
i,n,l \ H1,τ

i,n,l)−→ 0 in the
limit n ↑∞. �

Lemma 2.9 For any integer l, limn↑∞ P(H1,τ
i,n,l)= Pπ (G ∈Ri) where G∼ N (0,�).

Proof From the previous lemma we know that

lim
n↑∞

P
(

Hτ
i,n,0(l)

)= lim
n↑∞

P
(
Bτ

i,n(l)
)

and

lim
n↑∞P

(
H2,τ

i,n,l

)= lim
n↑∞P

(
H1,τ

i,n,l

) (71)

Now ∀ε > 0 ∃n0(ε) such that for all n > n0(ε) the following holds

γ n
−ε ⊃ H1,τ

i,n,l ⊃ γ n
ε (72)

where γ n
ε = {η : ϕi(X[l+1,n][η]) > ε}. Therefore

lim
n↑∞P

(
γ n
−ε

)≥ lim
n↑∞P

(
H1,τ

i,n,l

)≥ lim
n↑∞P

(
γ n

ε

)
(73)
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Applying the CLT to both the right and the left-hand side and taking the limit for ε ↓ 0 we
have

lim
n↑∞P

(
H1,τ

i,n,l

)= Pπ (G ∈Ri) (74)

where G∼ N (0,�). �

Let us now summarize what we have done above for the decompositions of the various
regions of the η-configuration space.

1Hτ
i,n,0
= 1Hτ

i,n,0(l) + 1Hτ
i,n,0\Hτ

i,n,0(l)

1Bτ
i,n

(l) = 1(E′)l 1H1,τ
i,n,l

1Aτ
i,n

(l) = 1(E′)l 1H2,τ
i,n,l

(75)

To state our next result let us fix one more notation.
We let � be a continuous real-valued function on P(P(E))× (E′)m, for some positive

integer m.

Lemma 2.10 Suppose � is as above. Then under the non-degeneracy assumptions (1) and
(2) the following holds:

lim
n↑∞

∫

Hτ
i,n,0

Pπ (dη)�(ρ[η](n), η)=wi

∫

(E′)m
π⊗m(dη)�(δπν̂i

, η), (76)

where π⊗m(dη)=∏m

k=1 π(dηk), wi = P(G ∈Ri) with G∼ N (0,�).

Proof Set l =m,
∫

Hτ
i,n,0

Pπ (dη)�(ρ[η](n), η) =
∫

Hτ
i,n,0

Pπ (dη)(�(ρ[η](n), η)−�(δπν̂i
, η))

+
∫

Hτ
i,n,0

Pπ (dη)�(δπν̂i
, η) (77)

We can assume that � is of the form �(ρ,η) = �̃(ρ(g1), . . . , ρ(gl), η[1,m]) for a finite l

with continuous and bounded gi ’s, and continuous �̃ . So, together with Lemma 2.6 we have
that the first term in the left-hand side is going to 0 in the limit n ↑∞.

Now from the first equality of (75)
∫

Hτ
i,n,0

Pπ (dη)�(δπν̂i
, η) =

∫

Hτ
i,n,0(l)

Pπ (dη)�(δπν̂i
, η)+

∫

Hτ
i,n,0\Hτ

j,n,0(l)

Pπ (dη)�(δπν̂i
, η).

Under the non-degeneracy assumption (2) the second term on the right-hand side of the
above equation plays no role in the limit, indeed

∫

Hτ
i,n,0\Hτ

i,n,0(l)

Pπ (dη)�(δπν̂i
, η)≤ ‖�‖∞P

(
Hτ

i,n,0 \Hτ
i,n,0(l)

)
(78)

and from Lemma 2.7 P(Hτ
i,n,0 \Hτ

i,n,0(l)) goes to zero in the limit n ↑∞.
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Observe from the first inclusion relation of (69) that

∫

Bτ
i,n

(l)

Pπ (dη)�(δπν̂i
, η)≤

∫

Hτ
i,n,0(l)

Pπ (dη)�(δπν̂i
, η)≤

∫

Aτ
i,n

(l)

Pπ (dη)�(δπν̂i
, η) (79)

Next, observe from (67) that

∫

(E′)l
π⊗l (dη)�(δπν̂i

, η)

∫

H1,τ
i,n,l

π⊗n−l (dη)≤
∫

Hτ
i,n,0(l)

Pπ (dη)�(δπν̂i
, η)

∫

Hτ
i,n,0(l)

Pπ (dη)�(δπν̂i
, η)≤

∫

(E′)l
π⊗l (dη)�(δπν̂i

, η)

∫

H2,τ
i,n,l

π⊗n−l (dη)

(80)

Taking the limit n ↑∞ we obtain

lim
n↑∞

∫

Hτ
i,n,0(l)

Pπ (dη)�(δπν̂i
, η)=

∫

(E′)l
π⊗l (dη)�(δπν̂i

, η) lim
n↑∞

∫

H2,τ
i,n,l

π⊗n−l (dη) (81)

and using Lemma 2.9 we are done. �

Now we have provided all the ingredients, and so the proof of Theorem 2.2 is straight-
forward.

∫

Pπ (dη)�(ρ[η](n), η) =
k∑

i=1

∫

Pπ (dη)�(ρ[η](n), η)1Hτ
i,n,0

(η)

+
∫

Pπ (dη)�(ρ[η](n), η)1(Hτ
n,0)c (η) (82)

Clearly for bounded � one has

∣
∣
∣
∣

∫

Pπ (dη)�(ρ[η](n), η)1(Hτ
n,0)c (η)

∣
∣
∣
∣≤ ‖�‖∞Pπ

((
Hτ

n,0

)c
(η)
)

(83)

and the non-degeneracy assumption (2) tells us that this term will not play any role in the
limit n ↑∞. For every summand of the first term, by Lemma 2.10 we have

lim
n↑∞

∫

Hτ
i,n,0

Pπ (dη)�(ρ[η](n), η)=wi

∫

(E′)m
π⊗m(dη)�(δπν̂i

, η), (84)

where wi = P(G ∈Ri) with G∼ N (0,�).
Therefore

lim
n↑∞

∫

Pπ (dη)�(ρ[η](n), η)=
k∑

i=1

∫

Pπ (dη)�(ρ,η)wiδδπν̂i
(dρ) (85)
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Looking now at the definition of the AW-metastate, we can identify the joint distribution K

we are interested in

K(dρ,dη)=
k∑

i=1

Pπ (dη)wiδδπν̂i
(dρ)

=⇒ K(dρ|η)=
k∑

i=1

wiδδπν̂i
(dρ)

(86)

�

3 The Metastate on the Level of States

Let us go from the global perspective (talking about the empirical mean) to the local view
(talking about finitely many variables σ1, . . . , σk). In different words, we are fixing a sub-
population of finite size, and we are asking how it will behave when we couple it to a large
system whose size n will be let tend to infinity. Let us introduce a metric on the space of
probability measures μ,μ′ ∈ P(E∞) by

d(μ,μ′)=
∞∑

i=1

2−i‖μ−μ′‖i (87)

where

‖μ−μ′‖i := 1

2

∑

ω1,...,ωi

|μ(ω1, . . . ,ωi)−μ′(ω1, . . . ,ωi)| (88)

is the total variation norm of the restriction of the measure to the first i coordinates.
The statement about the metastate promised in the main theorem implies in particular

that, for all ε > 0

lim
n↑∞P(d(μF,n[η], ext(G[η])) > ε)= 0 (89)

where

G[η] =
{
∑

ν̂∈M∗
pν̂μν̂[η],pν̂ ∈ P(πM∗)

}

(90)

and μν̂[η](·) =∏∞
i=1 γ [η(i)](·|πν̂). Throughout this section we identify μF,n[η] with the

infinite-volume measure which is obtained by tensorization with the equidistribution for
sites outside of {1, . . . , n}.

We will in fact prove that

lim
n↑∞ sup

η∈Hτ
i,n,0

d(μF,n[η],μν̂∗
i
[η])= 0 (91)

where Hτ
i,n,0 are the disorder sets ensuring the dominance of the i-th minimizer. Let us

remark that it can not be expected in general that limn↑∞ d(μF,n[η], ext(G[η])= 0 for P-a.e.
η holds, as already the example of the random field Ising model discussed in [13] shows, due
to the empirical distribution π̂n passing regions of “ties” outside of the good sets infinitely
often.
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So we are about to prove that the possible limiting distributions will be product measures
of a particular sort. These limiting measures will depend on which region of the disorder
variables we are restricting ourselves to.

Let us look at the k-marginal

μF,n[η](σ1, . . . , σk) =
∑

ωk+1,...,ωn

μF,n[η](σ1, . . . , σk,ωk+1, . . . ,ωn)

=
∑

ωk+1,...,ωn

e−nF(L
σ[1,k],ω[k+1,n]
n )

∏k

i=1 α[ηi](σi)
∏n

j=k+1 α[ηj ](ωj )
∑

σ̄∈En e−nF(Lσ̄
n )
∏n

i=1 α[ηi](σ̄i)
(92)

Let us now introduce the suitable decomposition of the empirical distribution, obtained by
dividing the volume {1, . . . , n} in two subvolumes {1, . . . , k} and {k + 1, . . . , n}, where k is
the size of the marginal we are considering; then we focus on the respective b-like sites for
both of the subvolumes.

L
σ[1,k],ω[k+1,n]
n = k

n

1

k

k∑

i=1

δσi
+ n− k

n

1

n− k

n∑

i=k+1

δωi

= k

n

∑

b∈E′
π̂[1,k](b)L̂[1,k](b)+ n− k

n

∑

b∈E′
π̂[k+1,n](b)L̂[k+1,n](b) (93)

In the process to carry out (93), we have also made use of the following definitions

	[1,k](b)= {i ∈ {1, . . . , k} : η(i)= b}
	[k+1,n](b)= {i ∈ {k+ 1, . . . , n} : η(i)= b}

π̂[1,k](b)= |	[1,k](b)|
k

, π̂[k+1,n](b)= |	[k+1,n](b)|
n− k

(94)

Proof of Theorem 1.7 Let us start providing the key result, namely the weak convergence of
the measure μF,n[η] to μj [η] =∏∞

i=1 γ [η(i)](·|πν̂j ) conditional on the suitable region of
the disorder.

The following lemma is the short view (local topology) version of Lemma 2.6.

Lemma 3.1 For any event A which depends only on the first k coordinates the following
holds

|μF,n[η](A)−μj [η](A)| ≤ r̃(n) ∀η ∈ Hτ
j,n,k (95)

where limn↑∞ r̃(n)= 0.

Proof It suffices to consider the event A which fixes the first k coordinates and write

μF,n[η](σ1, . . . , σk)

=
∑

ωk+1,...,ωn

e
−nF( k

n

∑
b∈E′ π̂[1,k](b)L̂σ[1,k](b)+ n−k

n

∑
b∈E′ π̂[k+1,n](b)L̂ω[k+1,n](b))∏k

i=1 α[ηi ](σi )
∏n

j=k+1 α[ηj ](ωj )
∑

σ̄∈En e−nF(Lσ̄
n )
∏n

i=1 α[ηi ](σ̄i )
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=
∑

ν̂∈M̂[k+1,n]
∑

ωk+1 ,...,ωn :
L̂ω̃[k+1,n](·)=ν̂(·)

e
−nF( k

n
〈π̂[1,k],L̂σ[1,k]〉+ n−k

n
〈π̂[k+1,n],ν̂〉)∏k

i=1 α[ηi ](σi )
∏n

j=k+1 α[ηj ](ωj )

∑
ν̄∈M̂n

∑
σ̄∈En :
L̂σ̄

n=ν̄

e−nF(Lσ̄
n )
∏n

i=1 α[ηi ](σ̄i )
(96)

where we have introduced the following space

M̂[k+1,n] :=
{
ν̂ ∈ P(E)E′ : ∃ω̃= (ω̃k+1, . . . , ω̃n) : L̂ω̃

[k+1,n](b)= ν̂(b),∀b ∈E′} (97)

Using the partition induced by the disorder variables η on the sub-volume {k + 1, . . . , n},
we have

∑

ωk+1,...,ωn :
L̂ω[k+1,n](·)=ν̂(·)

n∏

j=k+1

α[ηj ](ωj )=
∏

b∈E′
α[b]|	[k+1,n](b)|(�|	[k+1,n](b)|(ν̂(b))) (98)

and with this we obtain

μF,n[η](σ1, . . . , σk)

=
∏k

i=1 α[ηi ](σi )
∑

ν̂∈M̂[k+1,n] e
−nF( k

n
〈π̂[1,k],L̂σ[1,k]〉+ n−k

n
〈π̂[k+1,n],ν̂〉)∏

b∈E′ α[b]|	[k+1,n](b)|(�|	[k+1,n](b)|(ν̂(b)))

∑
ν′∈M̂[1,k]

∑
ν̂∈M̂[k+1,n]

∑
σ̄∈Ek :

L̂σ̄[1,k]=ν′
e
−nF( k

n
〈π̂[1,k],L̂σ̄[1,k]〉+ n−k

n
〈π̂[k+1,n],ν̂〉)∏k

i=1 α[ηi ](σ̄i )
∑

σ̃∈En−k :
L̂σ̃[k+1,n]=ν′

∏n
j=k+1 α[ηj ](σ̃j )

(99)

where naturally
∏

b∈E′ α[b]|	[k+1,n](b)|(�|	[k+1,n](b)|(ν̂(b)))=∑ σ̃∈En−k :
L̂σ̃[k+1,n]=ν′

∏n

j=k+1 α[ηj ](σ̃j ).

Now multiplying and dividing, both numerator and denominator, by e−nF(〈π̂[k+1,n],ν̂〉) we
arrive at:

μF,n[η](σ1, . . . , σk)

=
∏k

i=1 α[ηi ](σi )
∑

ν̂∈M̂[k+1,n] e
−n[F( k

n 〈π̂[1,k],L̂σ[1,k]〉+ n−k
n 〈π̂[k+1,n],ν̂〉)−F(〈π̂[k+1,n],ν̂〉)]ρF,n,k [η](ν̂)

∑
ν′∈M̂[1,k]

∑
ν̂∈M̂[k+1,n]

∑
σ̄∈Ek :

L̂σ̄[1,k]=ν′
e
−n[F( k

n 〈π̂[1,k],L̂σ̄[1,k]〉+ n−k
n 〈π̂[k+1,n],ν̂〉)−F(〈π̂[k+1,n],ν̂〉)]∏k

i=1 α[ηi ](σ̄i )ρF,n,k [η](ν̂)

(100)

where ρF,n,k[η] ∈ P(M̂[k+1,n]) is defined as

ρF,n,k[η](ν̂) := e−nF(〈π̂[k+1,n],ν̂〉)∏
b∈E′ α[b]|	[k+1,n](b)|(�|	[k+1,n](b)|(ν̂(b)))

∑
ν̃∈M̂[k+1,n] e

−nF(〈π̂[k+1,n],ν̂〉)∏
b∈E′ α[b]|	[k+1,n](b)|(�|	[k+1,n](b)|(ν̃(b)))

(101)

Note that the measure ρF,n,k[η] depends on the disorder variables just in the subvolume
{k+ 1, . . . , n}.

Recall that a function F : P(E)→R is differentiable if, for all α ∈ P(E) there is a linear
map dFα : T (P(E))→R on the tangent space such that

F(α′)= F(α)+ dFα(α
′ − α)+ ‖α′ − α‖r(α′, α) (102)

where α′ → r(α′, α) is continuous at α′ = α with r(α,α)= 0. Then uniformly in α,α′ we
have

sup
α,α′
|F(α + p(α′ − α))− F(α)− pdFα(α

′ − α)| ≤ Cpr(p) (103)
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where r(p) ↓ 0 with p ↓ 0. The uniformity in α,α′ follows by the compactness of P(E). In
our set up we will have

∣
∣
∣
∣F

(
k

n
L[1,k](σ )+ n− k

n
ν

)

− F(ν)− dFν

k

n
(L[1,k](σ )− ν)

∣
∣
∣
∣≤ C

k

n
r

(
k

n

)

(104)

where we have set ν = 〈π̂[k+1,n], ν̂〉. This gives, recognizing that 〈π̂[1,k], L̂σ
[1,k]〉 and ν are

both elements in P(E), the upper bound

μF,n[η](σ1, . . . , σk)

≤
e2Ckr( k

n )
∏k

i=1 α[ηi](σi)
∑

ν̂∈M̂[k+1,n]
∏k

i=1 e
−dF〈π̂[k+1,n],ν̂〉(δσi

−〈π̂[k+1,n],ν̂〉)ρF,n,k[η](ν̂)

∑
ν̂∈M̂[k+1,n] ρF,n,k[η](ν̂)

∏k

i=1

∑
σ̄i∈E α[ηi](σ̄i)e

−dF〈π̂[k+1,n],ν̂〉(δσ̄i
−〈π̂[k+1,n],ν̂〉)

(105)

and the corresponding lower bound which is obtained from the last r.h.s. by replacing C > 0
by −C. The measure ρF,n,k[η] can be written in the form

ρF,n,k[η](ν̂)= ρF,n−k[η](ν̂)e−kF(〈π̂[k+1,n],ν̂〉)
∑

ν̄∈M̂[k+1,n] ρF,n−k[η](ν̄)e−kF(〈π̂[k+1,n],ν̄〉) (106)

where we have recovered the proper random mean-field measure on the empirical distribu-
tion of size n− k. Note once again that 〈π̂[k+1,n], ν̂〉 ∈ P(E), and when ν̂ moves in M̂[k+1,n]
the corresponding measure 〈π̂[k+1,n], ν̂〉 is moving among the possible empirical measures of
size n− k. Let us write C(A,ε) := {ν ∈ P(E)E′ : d(ν,A)≤ ε}, for the ε-ball of a set A. By
definition ρF,n[η] is said to concentrate on the set A iff ρF,n[η](C(A, ε)c) ↓ 0, ∀ε > 0. So
whenever ρF,n[η] concentrates on a finite set, so does ρF,n,k[η], by the boundedness of F .

We remark that ρF,n−k[η](ν̂) = μF,n−k[η](L[k+1,n] = 〈π̂[k+1,n], ν̂〉) has the property of
concentrating around the minimizers, as we know from the analysis of the previous chapter.

To study the bound (105) and the corresponding lower bound let’s introduce the quantities

ξN =
∑

ν̂∈M̂[k+1,n]

ρF,n,k[η](ν̂)

k∏

i=1

α[ηi](σi)

k∏

i=1

e
−dF〈π̂[k+1,n],ν̂〉(δσi

−〈π̂[k+1,n],ν̂〉)

ξD =
∑

ν̂∈M̂[k+1,n]

ρF,n,k[η](ν̂)

k∏

i=1

∑

σ̃i∈E

α[ηi](σ̃i)

k∏

i=1

e
−dF〈π̂[k+1,n],ν̂〉(δσ̃i

−〈π̂[k+1,n],ν̂〉)
(107)

Let us decompose the
∑

ν̂∈M̂[k+1,n] over C(M∗, ε) and its complement, and compare the terms
with their values at the midpoints:

ξN =
∑

ν̂∗∈M∗

∑

ν̂∈
B(ε,ν̂∗)∩M̂[k+1,n]

ρF,n,k[η](ν̂)

k∏

i=1

α[ηi](σi)

k∏

i=1

e−dFπν̂∗ (δσi
−πν̂∗)

+
∑

ν̂∗∈M∗

∑

ν̂∈
B(ε,ν̂∗)∩M̂k+1,n

ρF,n,k[η](ν̂)

k∏

i=1

α[ηi](σi)
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×
[

k∏

i=1

e
−dF〈π̂[k+1,n],ν̂〉(δσi

−〈π̂[k+1,n],ν̂〉) −
k∏

i=1

e−dFπν̂∗ (δσi
−πν̂∗)

]

+
∑

ν̂∈
C(M∗,ε)c∩M̂[k+1,n]

ρF,n,k[η](ν̂)

k∏

i=1

α[ηi](σi)

k∏

i=1

e
−dF〈π̂[k+1,n],ν̂〉(δσi

−〈π̂[k+1,n],ν̂〉) (108)

The sum in the last line is bounded by a function rcp(ε, n), where limn↑∞ rcp(ε, n)= 0, when
η is in the union of the good-sets. This holds by the concentration property of the empirical
distribution given in (51) applied to the measure for sites ≥ k, using the boundedness of the
first derivative of F .

The second line is bounded in modulus by a function γ (ε) where limε↓0 γ (ε)= 0 by the
twice continuous differentiability of F .

This implies the bounds

∣
∣
∣
∣
∣
ξN −

∑

ν̂∗∈M∗
ρF,n,k[η](B̃(ε, ν̂∗))

k∏

i=1

α[ηi](σi)e
−dFπν̂∗ (δσi

−πν̂∗)
∣
∣
∣
∣
∣
≤ γ (ε)+ rcp(ε, n) (109)

assuming that η is in the union of the good-sets.
Summing over the finitely many values of σ1, . . . , σk we obtain the same type of bounds

(with possibly worse functions γ (ε), rcp(ε, n)) for ξD .
Recall the definition of the kernels (10) and choose the disorder variable η ∈ Hτ

i,n,k in the
part of the union of the good-sets which ensures the dominance of the i-th minimizer. This
gives that

∣
∣
∣
∣
∣
μF,n[η](σ1, . . . , σk)−

k∏

j=1

γ [ηj ](σj |πν̂∗i )

∣
∣
∣
∣
∣
≤ ζ(ε)+ χ(ε,n) (110)

where limn↑∞ χ(ε,n) = 0 and limε↓0 ζ(ε) = 0. This proves the lemma and also the state-
ment (91).

Lemma 3.2 Let 
 be a continuous real-valued function on P(E∞)× (E′)∞. Then under
the non-degeneracy assumptions (1) and (2) the following holds:

lim
n↑∞

∫

Hδn
i,n

Pπ (dη)
(μF,n[η], η)=wi

∫

Pπ (dη)(dη)
(μi[η], η) (111)

wi = Pπ (G ∈Ri).

The proof of this lemma, thanks to the continuity of 
 which allows finite dimensional
approximation and to Lemma 3.1, follows the trail drawn by the proof of Lemma 2.10.

Using all the tools we have provided, we find

lim
n↑∞

∫

Pπ (η)
(μF,n[η], η)=
k∑

j=1

∫

Pπ (η)
(μ,η)wjδμj [η](dμ) (112)
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where we can identify

J (dμ,dη)=
k∑

j=1

Pπ (dη)wjδμj [η](dμ)

=⇒ J (dμ|η)=
k∑

j=1

wjδμj [η](dμ)

(113)

This finishes the proof of the Main Theorem 1.7 and concludes the paper. �
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11. van Enter, A., Netočný, K., Schaap, H.G.: Incoherent boundary conditions and metastates. In: Dynamics
& Stochastics. IMS Lecture Notes Monogr. Ser., vol. 48, pp. 144–153. Inst. Math. Statist., Beachwood
(2006)

12. Dai Pra, P., den Hollander, F.: McKean-Vlasov limit for interacting random processes in random media.
J. Stat. Phys. 84, 735–772 (1996)

13. Külske, C.: Metastates in disordered mean-field models: Random field and Hopfield models. J. Stat.
Phys. 88, 1257–1293 (1997)

14. Külske, C.: Metastates in disordered mean-field models. II. The superstates. J. Stat. Phys. 91, 155–176
(1998)

15. Külske, C.: Limiting behavior of random Gibbs measures: Metastates in some disordered mean field
models. In: Mathematical Aspects of Spin Glasses and Neural Networks. Progr. Probab., vol. 41, pp.
151–160. Birkhäuser, Boston (1998)

16. Külske, C., LeNy, A.: Spin-flip dynamics of the Curie-Weiss model: Loss of Gibbsianness with possibly
broken symmetry. Commun. Math. Phys. 271, 431–454 (2007)

17. Matoušek, J.: Lectures on Discrete Geometry. Graduate Texts in Mathematics, vol. 212. Springer-Verlag,
New York (2002)

http://arxiv.org/abs/arXiv:0911.4201


Metastates in Finite-type Mean-field Models: Visibility, Invisibility 55

18. Newman, C.M., Stein, D.L.: Are there incongruent ground states in 2D Edwards-Anderson spin glasses?
Commun. Math. Phys. 224, 205–218 (2001)

19. Newman, C.M.: Topics in Disordered Systems. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag,
Basel (1997)

20. Newman, C.M., Stein, D.L.: Metastate approach to thermodynamic chaos. Phys. Rev. E 55, 5194–5211
(1997)

21. Newman, C.M., Stein, D.L.: The state(s) of replica symmetry breaking: mean field theories vs. short-
ranged spin glasses J. Stat. Phys. 106(1–2), 213–244 (2002)


	Metastates in Finite-type Mean-field Models: Visibility, Invisibility, and Random Restoration of Symmetry
	Abstract
	Introduction
	The Models: Mean-field Models with Local Disorder 
	The Metastate on the Level of the States
	Main Theorem
	Exploiting the Mean-field Equation

	Ising Random-field Examples
	Potts Random Field Examples
	Strategy of Proof, Non-degeneracy Assumption and Concentration

	The Metastate on the Level of the Empirical Spin-distribution
	The Metastate on the Level of States
	Acknowledgements
	Open Access
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


