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A dual gate transistor was fabricated using a self-assembled monolayer as the semiconductor. We
show the possibility of processing a dielectric on top of the self-assembled monolayer without
deteriorating the device performance. The two gates of the transistor accumulate charges in the
monomolecular transport layer and artifacts caused by the semiconductor thickness are negated. We
investigate the electrical transport in a dual gate self-assembled monolayer field-effect transistor and
present a detailed analysis of the importance of the contact geometry in monolayer field-effect
transistors. © 2010 American Institute of Physics. [d0i:10.1063/1.3379026]

Organic flexible integrated circuits are in development
for applications such as displays,1 sensors,2 and contactless
radio-frequency identification transponders.3 For unipolar or-
ganic circuits, the performance is severely limited by the
parameter spread inherent to organic semiconductors. The
important parameter is the threshold voltage (V) of the in-
dividual transistors, which is crucial to ensure low power
operation and an acceptable noise margin for the logic
gates.“’5 As a remedy, dual gate transistors are used to in-
crease the noise margin of logic gates by changing the
threshold voltage of organic transistors.® These dual gate
transistors can also be used to improve the current drive and
subthreshold slope.7 Other potential applications include
various types of sensors” and the integration of a logic gate
into a single transistor.®

Organic dual gate transistors generally have semicon-
ductor layers thicknesses in the order of tens of nanometers.
Charge transport in organic transistors takes place in the first
few nanometers from the dielectric interface in the
semiconductor.” Conventional dual gate transistors have two
conducting channels, one for the top and one for the bottom
gate. When the semiconductor is thicker than approximately
10 nm, the individual transport channels are spatially sepa-
rated. Only when the semiconductor is a single layer, the two
transport channels will have a spatial overlap and the charges
are confined to a single monolayer.

To study the interplay between the top and bottom chan-
nel of a dual gate transistor, an ultrathin semiconductor is
required. Up to now the fabrication of such a transistor was
hampered by the morphology of the first monolayers. Effec-
tive charge transport was hindered by the lack of in-plane
order of the ultrathin semiconductor on the dielectric inter-
face that prevented detailed study of the transport through
the first interface layer. In a self-assembled monolayer tran-
sistor (SAMFET) the semiconductor consists of only a single
sheet of molecules.'® The layer thickness is comparable to
that of the accumulation layer, i.e., ~3 nm. The electrical
transport is then by definition two-dimensional. By using a
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monolayer semiconductor in a dual gate transistor, it iS pos-
sible to simultaneously accumulate charges from the top and
bottom gate in one monomolecular charge transport layer. A
prerequisite is then that a dielectric can be processed on top
of a SAMFET without deteriorating the charge transport
through the monolayer. The additional advantage of mono-
layer dual gate transistors is that the capacitance of the de-
pleted semiconductor can be neglected for calculating the
effective threshold voltage shift. ! Here we investigate the
electrical transport in a dual gate SAMFET and present a
detailed analysis of the importance of the contact geometry.

Dual gate transistors were fabricated on heavily n-type
doped Si wafers as the bottom gate electrode. The bottom
gate dielectric was a 1.2 um thermally oxidized SiO, layer.
The Au source and drain electrodes were defined
by photolithography on a 5 nm Ti adhesion layer. The length
and width of the resulting finger transistors were 10 wm
and 10 mm, respectively. A 1% HF dip was used to acti-
vate the SiO, surface prior to applying the SAM molecule.
The semiconducting monolayer of chloro[11-(5"-ethyl-
2,2:5',2":5",2":5" 2" -quinquethien-5-yl)undecyl] di-
methylsilane was self-assembled from a toluene solution. On
the SAM-layer, the top gate insulator AF-1600 (amorphous
Teflon derivative, Sigma-Aldrich), was spincoated from the
fluorinated solvent FC-40 (3M). The resulting layer had a
thickness of approximately 350 nm. The top gate Au elec-
trode was evaporated through a shadow mask and had a
thickness of roughly 140 nm. After each step the bottom gate
transistors were measured to look for signs of degradation
but none were found. Hence we conclude that it is indeed
possible to process additional functional layers on top of a
self-assembled monolayer without affecting the transistor
performance. A schematic of the dual gate transistor layout is
presented in Fig. 1 together with a scanning electron micros-
copy (SEM) image of the actual device. From the bottom to
the top, the n™ doped Si, SiO,, Au source and drain contacts,
Teflon, Au top gate and a layer of sputtered Pt can be iden-
tified. The Teflon contains holes, which is an artifact in the
image due to damage caused by the focused ion beam (FIB)
milling. Since the holes are also present above the gold elec-

© 2010 American Institute of Physics
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FIG. 1. (Color online) A schematic of the dual gate SAMFET is provided
with a SEM image (20 000 X magnification) of a FIB cross section of the
actual device below. The holes in the Teflon layer in the SEM image are an
artifact caused by the high energy ions used for milling in the FIB process.
The chemical structure of the self-assembling molecule is shown on the
right.

trodes and at the top of the Teflon layer, dewetting can be
excluded as the origin of the irregularities.

The electrical transport was determined in vacuum
(~5X10™* mbar) at room temperature using an HP-4155C
semiconductor parameter analyzer. The resulting bottom and
top gate transfer curves are presented in Figs. 2(a) and 2(b),
respectively. For both gates the opposite gate was fixed at
—6, —3, 0, 3, and 6 V bias, yielding a linear shift in the
threshold voltage according to, as follows:

G
AVy=—V,, 1
th Cl g2 ()

where C; and C, are the dielectric capacitances per unit area
for the swept gate and the opposite gate, respectively, and
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FIG. 2. (Color online) Transfer characteristics for the top (above) and bot-
tom (below) gate are presented for a drain bias of —2 V. The channel length
and width are 10 wm and 10 000 wm, respectively. For both gate sweeps,
the opposite gate is varied in steps of 3 V from —6 to +6 V. The inset
shows the resulting threshold voltage shift vs the applied bias on the oppo-
site gate.
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FIG. 3. (Color online) (a) The drain current of the transistor is plotted vs the
accumulated charge (Q) for both the bottom (solid line) and top (dashed
line) gate. For the linear regime, at —2 V (the two lower curves) drain bias,
the top gate yields a lower current than the bottom gate for the same induced
charge. In the saturated regime, at —20 V (upper curves), both gates show
the same current for equivalent charge. (b) Output curves of the top and
bottom gate. For both gates, the gate voltage was varied in 5V steps from 5V
to =20 V. For the top gate drain sweeps, the bottom gate bias was at =5 V
and for the bottom gate drain sweeps the top gate bias was —10 V. The out
curves for both gates are presented for similar drain currents by tuning the
opposing gate’s bias, to ease comparing the two measurements.

Vg, is the applied bias to the opposite gate. The transfer
curves of the bottom gate shift more than the top gate, be-
cause the top gate capacitance is larger than the capacitance
of the bottom gate. From the threshold voltage shift as de-
picted in the inset of Fig. 2 and Eq. (1), we extract a value of
4.6 nF/cm? for C,, given the known value of 2.8 nF/cm?
for C,. The latter value was calculated from the layer thick-
ness and dielectric constant of SiO,. The capacitance of the
top gate is in agreement with the capacitance derived from
the measured thickness of the Teflon layer. Figure 2 shows
that the shape of the transfer curves does not change with the
variation in the top gate. The main effect of the top gate bias
is a shift in the threshold voltage. The transfer curves are
parallel. In a SAMFET the semiconductor capacitance can be
disregarded and, therefore, the transfer curves show an equi-
distant shift.>""

The top gate yields a higher current and steeper sub-
threshold slope, both associated with the higher gate capaci-
tance. However, the top gate also shows a higher contact
resistance than the bottom gate. This is illustrated in Fig. 3(a)
by plotting the I'V-characteristics versus the total accumu-
lated charge calculated by multiplying the capacitance of the
gate dielectric with the applied gate bias. For the linear re-
gime, at a drain bias of —2 V, the top gate shows a signifi-
cantly lower current than the bottom gate for the same accu-
mulated charge. In the saturated regime, where the drain bias
is —20 V, the two gates show the same normalized transfer
curves. The converging currents for the top and bottom gate
for higher drain bias are indicative for a contact resistance.
To confirm the presence of a contact resistance, the output
curves for both gates were measured, as shown in Fig. 3(b).
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FIG. 4. ATEM image of a cross section of the dual gate SAMFET. The dark
field image depicts the electrode as a black line protruding from the left side
of the picture. The Teflon has varying shades of gray because of the damage
it received from the focused ion beam used to drill the slice from the sub-
strate. The two arrows in the inset indicate the SAM layer, which is visible
as a faint gray line on the surface of the SiO, dielectric. The layer has a
thickness of (3 1)nm, which is in good agreement with the calculated
length of the molecule. The injection region for the top gate is shielded by
the overhanging part of the electrode, hampering charge accumulation.

The output curves for both gates are presented for similar
drain currents by tuning the opposing gate’s bias, to ease
comparing the two measurements. The top gate drain sweep
shows a clear s-shape in the output curve, indicating a larger
contact resistance for the top gate transistor than for the bot-
tom gate transistor.'> We note that this is highly remarkable
since the charges are injected in both cases from the same
electrode into the same charge transport layer. Even more
striking is that for previously reported organic field-effect
transistors,>'* a top gate—bottom contact layout generally
shows a lower contact resistance than a bottom gate—bottom
contact design. This is because for transistors with the gate
and electrodes on opposite sides of the semiconductor, the
effective injection region is orders of magnitude larger than
for devices with the gate and contact on the same side of the
semiconductor, where the injection region is only the side of
the contact next to the nanometer-scale transport channel."”
In the device reported here, we counterintuitively ob-
serve a higher contact resistance for the top gate. To eluci-
date the controversy, we imaged the contact using transmis-
sion electron microscopy (TEM) as depicted in Fig. 4 and its
magnification in the inset. A cross section of the dual gate
SAMEFET is presented near a contact. It shows that the elec-
trode is under-etched as reported previously.16 The injection
region for the top gate is then shielded by the overhanging
part of the electrode, preventing field-enhanced injection.
The depleted region of the semiconductor near the electrode

Appl. Phys. Lett. 96, 143304 (2010)

causes an additional resistance for the charges accumulated
by the top gate, as evidenced by the transport measurements.

Concluding, we demonstrate a dual gate transistor where
the semiconductor is only as thick as the charge transport
channel. Previous dual gate transistors contain two channels
which are spatially separated and are tuned independently. In
a dual gate SAMFET the accumulated charge carriers spa-
tially overlap and form a single conduction channel. We
show that the transistor behaves electrically as a single chan-
nel OFET where the effective charge accumulation is a su-
perposition of the two gate biases modified by their capaci-
tances. Distinct evidence of electrostatic interplay between
the top and bottom channel of the dual gate transistor was
not observed. Additionally, we demonstrated that for mono-
layer transistors, a bottom contact—top gate layout is disad-
vantageous because the contacts screen the gate field of the
top gate.
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