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Abstract

In mice, during early embryonic development UTF1 (undifferentiated embryonic cell transcription factor 1) is

expressed in the inner cell mass of blastocysts and in adult animals expression is restricted to the gonads. (Embryonic) Cells
expressing UTF1 are generally considered pluripotent, meaning they can differentiate into all cell types of the adult body. In
mouse it was shown that UTF1 is tightly associated with chromatin and that it is required for proper differentiation of embryonic
carcinoma and embryonic stem cells. In this study we functionally characterized the human UTF1 protein. We show with
localization, subnuclear fractionation, and strip-FRAP analyses that human UTF1 is a tightly DNA-associated protein with
transcriptional repressor activity. Our data identify human UTF1 as a pluripotency-associated chromatin component with core

histone-like characteristics.
© 2009 Elsevier B.V. All rights reserved.

Introduction

Embryonic stem (ES) cells are cell lines derived from the
inner cell mass of blastocyst embryos. ES cells have the
ability to undergo unlimited symmetric cell divisions (self-
renewal) and the capacity to differentiate into all fetal and

Abbreviations: ATF-2, activating transcription factor 2; BMP,
bone morphogenetic protein; CD, conserved domain; eGFP,
enhanced green fluorescent protein; EC, embryonic carcinoma; ES,
embryonic stem; FGF, fibroblast growth factor; FRAP, fluorescence
recovery after photobleaching; HDAC1, histone deacetylase 1; HRP,
horseradish peroxidase; ICM, inner cell mass; LIF, leukemia inhibitory
factor; NLS, nuclear localization signal; TFIID, transcription factor Il
D; TK, thymidine kinase; UAS, upstream activating sequence; UTF1,
undifferentiated embryonic cell transcription factor 1; hUTF1,
human UTF1; mUTF1, mouse UTF1.
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adult cell types (pluripotency). Especially their pluripotent
character has generated high expectations that they might
be used for cell replacement therapies. The molecular
mechanisms regulating ES cell self-renewal are relatively
well known, but how the transition from self-renewal to
differentiation is controlled is much less understood.

Several factors involved in pluripotency and/or the induc-
tion and regulation of differentiation have been identified. In
mice, these include external signals like leukemia inhibitory
factor (LIF) and bone morphogenetic protein (BMP) (Smith
et al., 1988; Williams et al., 1988; Ying et al., 2003). Self-
renewal of human ES cells is controlled extrinsically by basic
fibroblast growth factor (bFGF) and suppression of BMP
signaling (Xu et al., 2005).

In human and mouse ES cells, a core transcriptional regu-
latory circuit was identified (Boyer et al., 2005; Loh et al.,
2006) comprising the transcription factors OCT4, SOX2, and
NANOG. OCT4 and NANOG were the first proteins identified
that are required for normal embryonic development as well

1873-5061/$ — see front matter © 2009 Elsevier B.V. All rights reserved.
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as maintaining pluripotency in ES cells (Nichols et al., 1998;
Chambers et al., 2003; Mitsui et al., 2003). In human ES cells
these proteins were found to co-occupy, together with SOX2,
the promoter regions of genes involved in maintaining
pluripotency. Additionally, they were present on the promo-
ters of many developmentally important transcription factors,
thereby contributing to both self-renewal and pluripotency
(Boyer et al., 2005).

In addition to this network of transcription factors, also the
importance of epigenetic mechanisms has been recognized
(reviewed in (Spivakov and Fisher, 2007; Chen and Daley, 2008;
Bibikova et al., 2008; Pietersen and van Lohuizen, 2008)). It
has become clear that ES cells differ from their committed
progeny in abundance of modified histones, polycomb group
binding patterns, replication timing, and chromatin accessi-
bility (Azuara et al., 2006; Bernstein et al., 2006; Perry et al.,
2004; Hiratani et al., 2004; Meshorer et al., 2006), (reviewed
in (Spivakov and Fisher, 2007)).

Mouse ES cell chromatin has been reported to be in
general more accessible (Wiblin et al., 2005; Williams et al.,
2006; Keohane et al., 1996), or hyperdynamic, a property
thought not only relevant for maintaining pluripotency but
also essential in the early stages of ES cell differentiation for
reshaping the global architecture of the genome (Meshorer
et al., 2006).

Possibly, specific chromatin components are present in ES
cells that are responsible for maintaining a chromatin state
that allows for self-renewal while maintaining the capability
of differentiation. Recently we have shown that in mouse ES
cells the undifferentiated embryonic cell transcription
factor 1 (UTF1) protein might be such a factor.

UTF1 is expressed early during embryonic development in
the cells of the ICM and epiblast (Okuda et al., 1998). During
development its expression is rapidly down regulated (Okuda
etal., 1998), but it is maintained in the primordial germ cells
of the developing embryo (Chuva de Sousa Lopes et al.,
2005). In adults, expression of UTF1 could be detected in the
gonads (Okuda et al., 1998; Chuva de Sousa Lopes et al.,
2005; van Bragt et al., 2008; Kristensen et al., 2008).

In mouse, UTF1 is involved in maintaining the prolifera-
tion rate and teratoma formation of ES cells (Nishimoto
et al., 2005; van den Boom et al., 2007). In human ES cells,
UTF1 has also been implied to be important for their proli-
feration rate (Li et al., 2007). For mouse UTF1 we have
shown that it is a tightly chromatin-associated protein with
dynamics similar to those of core histones (van den Boom
et al., 2007). Although its expression is dispensable for self-
renewal, ES cells with reduced UTF1 levels failed to diffe-
rentiate properly. These data indicate a possible role for
UTF1 in the maintenance of a specific epigenetic profile that
is required for differentiation of mouse ES cells (van den
Boom et al., 2007). This is further supported by a recent
observation by Zhao and co-workers who reported that the
efficiency of induced pluripotent stem cell (iPS) generation
increased approximately 100-fold by the co-expression of
UTF1 and siRNAs against p53 with C-MYC, KLF-4, OCT4, and
SOX2. Remarkably, UTF1 could replace C-MYC and enhance
the efficiency of iPS generation by 10-fold (Zhao et al.,
2008).

In this report we describe the characterization of the
human UTF1 protein. The subcellular localization and sub-
nuclear fractionation of UTF1 in human EC cells, in com-

bination with strip-FRAP, indicated that human UTF1 is a
stably chromatin-associated protein with a mobility similar
to that of core histones. In luciferase reporter assays human
UTF1 displayed transcriptional repressor activity, for which a
conserved C-terminal domain is required.

Results

Human UTF1 is tightly associated to chromatin

From studies on the mouse protein, it has become clear that
mUTF1 is a nuclear protein with biochemical characteristics
similar to those of core histones (van den Boom et al., 2007).
NCCIT cells, a human teratocarcinoma cell line, were used to
study the localization of human UTF1 (hUTF1). RT-PCR con-
firmed expression of the hUTF1 gene in NCCIT cells whereas
expression was not detected in differentiated NCCIT cells (8
days of 10 uM retinoic acid) (Fig. 1C). Using immunofluores-
cence, the localization of hUTF1 was determined in NCCIT
cells (Fig. 1A). In these cells, hUTF1 has an inhomogeneous
nuclear localization, and it is excluded from the nucleoli. It
colocalizes with DNA (visualized by DAPI) in interphase cells,
but also during mitosis hUTF1 remains colocalized with chro-
matin (Fig. 1A). To study the association of hUTF1 with chro-
matin, hUTF1 was fused to enhanced GFP (GFP-hUTF1) and
stably expressed in P19CL6 embryonic carcinoma cells
(Habara-Ohkubo, 1996). GFP-hUTF1 in P19CL6 cells showed
a localization (Fig. 1B) similar to that of the endogenous
protein in NCCIT cells (Fig. 1A). GFP-hUTF1 localization in the
nucleus is inhomogeneous (Fig. 1B); it is excluded from the
nucleoli and associated with chromatin during mitosis (insets
Fig. 1B). This localization of GFP-hUTF1 was also observed in
living cells (Fig. 1D).

NCCIT cells were subjected to subnuclear fractionation
(Fig. 1E), during which free diffusing nuclear and cytoplasmic
proteins (F), weak (D) and strong (AS) DNA-associated pro-
teins, and nuclear matrix proteins (HS and M) are separated.
In this assay, the endogenous hUTF1 protein fractionated
almost exclusively to the ammonium sulfate fraction which
contains tightly DNA-associated proteins like core histone H2A
(Fig. 1E). In contrast, chromatin-modifying proteins like
HDAC1 and mSin3A primarily fractionated to the free diffusing
and weakly DNA-associated protein fractions. Moreover,
transcription factors Oct4, ATF-2, and TFIID were detected
mainly in the free diffusing protein fraction.

In mouse P19CL6 cells, a hUTF1-GFP fusion protein also
fractionated to the ammonium sulfate fraction (Fig. 1F). The
endogenously expressed mouse UTF1 protein was used as a
fractionation control and was exclusively detected in the
ammonium sulfate fraction.

Human UTF1 is a transcriptional repressor

To study the effect of hUTF1 on transcription we used a GAL4
reporter assay. In this assay hUTF1 is inserted C terminal of
the DNA-binding domain of GAL4. The effect on transcription
was measured on a luciferase reporter construct containing
a constitutively active thymidine Kinase (TK) promoter
under control of 5 copies of the GAL4 DNA-binding element,
the upstream activating sequence (UAS). A LacZ expression
plasmid, pDM2-LacZ, was cotransfected and used as an
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Human UTF1 is a strongly chromatin-associated protein. (A) Immunofluorescent analysis of endogenous hUTF1 in NCCIT

cells counterstained with DAPI. (B) Images of GFP-hUTF1 expressing P19CL6 cells counterstained with DAPI. (C) RT-PCR analysis of
hUTF1 expression in NCCIT cells. NCCIT cells were grown without (—) or with (+) 10 uM retinoic acid for 8 days. GAPDH expression was
used as a control. In the -RT lanes, reverse transcriptase was omitted from the RT reactions to control for genomic DNA contamination;
-RT samples were amplified with hUTF1 primers. (D) Confocal image of living P19CL6 cells expressing GFP-hUTF1. (E) Subnuclear
fractionation of human NCCIT cells. Fractions were analyzed with antibodies against hUTF1, histone H2A, HDAC1, mSin3A, ATF-2, Oct4,
and TFIID. Fractionation abbreviations: F, free diffusing/cytoplasmic fraction; D, DNasel released fraction; AS, ammonium sulfate
fraction; HS, high salt fraction; M, nuclear matrix fraction. (F) Subnuclear fractionation of P19CL6 cells expressing (endogenous)

mouse UTF1 and GFP-hUTF1.

internal standard. Repression by mUTF1 and hUTF1 is indi-
cated relative to the luciferase activity in the presence of
the GAL4 DNA-binding domain alone. In this assay, mUTF1
fused to GAL4 (m1-339) repressed transcription 8.7 +/—0.9-
fold whereas hUTF1 (h2-341) repressed transcription
approximately 6.4 +/— 0.4-fold (Fig. 2).

hUTF1 contains two evolutionary conserved domains: CD1
which contains high homology to Myb/SANT domains (aa52—
167) and CD2 which contains a putative leucine zipper
(aa271-334) (Fukushima et al., 1998). To study the role of
both these domains in the observed repressor activity, a
series of C- and N-terminal deletion mutants was generated
(Fig. 2).

A double leucine to proline point mutation in the putative
leucine zipper, L293P and L300P, did not affect repressor
activity (6.7 +/— 0.9-fold compared to 6.4 +/— 0.4-fold of
wild-type hUTF1). Deletion of the CD2 domain (constructs h2—
178 and h2-126) resulted in drastically reduced repressor
activity (2.2-fold +/— 0.2). When both CD1 and CD2 were
deleted (h2-26) the luciferase activity was identical to that of
GAL4 alone.

C-terminal deletion of CD1 (constructs h141-341 and
h256-341) did not result in decreased repressor activity.
These data indicate that hUTF1 can act as a transcriptional
repressor and that the CD2 domain is sufficient and required
for transcriptional repression. Furthermore, the leucine
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Figure2 Human UTF1 acts as a transcriptional repressor. A schematic overview of the GAL4-UTF1 constructs used in reporter assays.
The CD1 and CD2 domains are indicated to scale by black and gray boxes, respectively. HepG2 cells were transfected with a
constitutively active luciferase reporter with 5 GAL4-binding sites (UAS-TK-Luc) together with the indicated GAL4-UTF1 fusions and a
LacZ expression plasmid as an internal standard. The amino acids present in the mouse and human UTF1 constructs are indicated. Data

are depicted as mean fold repression with standard deviations, with respect to GAL4 alone.

residues at positions 293 and 300 do not seem to be involved
in the repressor activity of hUTF1.

Dynamics of human UTF1 and the role of its
conserved domains

To study the localization and dynamic behavior of hUTF1 and
the role of both conserved domains, GFP-NLS, GFP-hUTF1 2—
341, GFP-NLS-hUTF1 141—341, and GFP-hUTF1 2—41 L293P
L300P fusion constructs (Fig. 3A; the CD1 and CD2 domains
are indicated with black and gray boxes, respectively) were
generated and stably expressed in P19CL6 cells.

Deletions in the CD1 domain led to cytoplasmic misloca-
lization of the protein (data not shown). To induce nuclear
targeting, we fused amino acids 141 to 341 of hUTF1 to an
NLS sequence (PPKKKRKYV). To investigate the localization
and biochemical properties of the mutants, confocal imaging
and subnuclear fractionations were performed (Fig. 3B,
Fig. 3C).

GFP-NLS, as a control, was detected in the free diffusing
fraction (F) and the full-length GFP-hUTF1 fractionated to
the strongly DNA-associated fraction (AS). Confocal imaging
of N-terminal deletion mutant GFP-NLS-UTF1 141-341
showed a more dispersed nuclear localization than GFP-
hUTF1 2-341 and a fair amount GFP-NLS-UTF1 141-341

localized to the nucleoli (Fig. 3C). Despite this partly nuc-
leolar localization, GFP-NLS-hUTF1 141-341 was exclusively
detected in the tightly DNA-associated fraction (AS). Adouble
point mutation in the putative leucine zipper in CD2, GFP-
hUTF1 2-341 L293P L300P, resulted in a complete shift to the
free diffusing protein fraction. This is reflected by a more
diffuse localization in the nucleus of interphase cells. How-
ever, during cell division GFP-hUTF1 2—341 L293P L300P was
detected at mitotic chromosomes (Fig. 3C). In all fractiona-
tion experiments, the endogenous mUTF1 protein served as
an internal control and localized to the AS fraction (data not
shown).

To study the dynamics of the interaction of hUTF1 with
the chromatin in living cells, fluorescent recovery after
photobleaching (FRAP) analysis (Phair et al., 2004) was
performed by bleaching fluorescent molecules in a 10 pM
strip spanning the nucleus. Subsequent fluorescent recovery
in the strip was measured every 20 ms. As a control expe-
riment, FRAP analysis was performed on GFP-NLS (Fig. 3D)
showing that the recovery curves of GFP and GFP-NLS are
almost identical. Fusion of full-length hUTF1 to GFP results in
a highly immobilized protein (slope of curve Fig. 3E), similar
to what was previously observed for mouse UTF1 (van den
Boom et al., 2007).

To study the role of the CD1 and CD2 domains in the
dynamic behavior of hUTF1, strip-FRAP analysis was per-

Figure 3

The role of conserved domains in localization and mobility of hUTF1. (A) A schematic representation of the GFP-hUTF1

mutants used in subnuclear fractionations and strip-FRAP assays. Leucine to proline mutations are indicated by asterisks. (B)
Subnuclear fractionations of P19CL6 cells stably expressing GFP fusion proteins detected with an a-GFP antibody. F, free diffusing/
cytoplasmic fraction; D, DNasel released fraction; AS, ammonium sulfate fraction; HS, high salt fraction; M, nuclear matrix fraction.
(C) Confocal images of living P19CL6 cells stably expressing GFP-hUTF1 2—341, GFP-NLS-hUTF1 141-341, and GFP-hUTF1 2—-341 L293P
L300P, respectively. (D) FRAP analysis of P19CL6 cells expressing GFP (green line) or GFP-NLS (red line). (E) FRAP analysis of P19CL6
cells expressing GFP (green line) or GFP-hUTF1 2—-341 (blue line). (F) FRAP analysis of P19CL6 cells expressing GFP-NLS (red line) or
GFP-NLS-hUTF1 141-341 (blue line). (G) FRAP analysis of P19CL6 cells expressing GFP (green line) or GFPhUTF1 2—-341 L243P L300P
(blue line).
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formed on GFP-NLS-hUTF1 141-341 and GFP-hUTF1 2-341
L293P L300P, respectively. In the case of the GFP-NLS-hUTF1
141-341 construct, only nuclear (and not nucleolar) loca-
lized molecules were bleached. The GFP-NLS-hUTF1 141-341
fusion protein was highly immobilized with dynamics similar
to full-length hUTF1 (Fig. 3F), indicating that the CD1
domain is dispensable for long-term immobilization. In cont-
rast, FRAP analysis of GFP-hUTF1 2—341 L293P L300P showed
a highly mobile protein (Fig. 3G), indicating that an intact
CD2 domain is necessary for stable interaction of hUTF1 with
sites of affinity.

Discussion

Recently we have shown that mUTF1 is strongly associated
with chromatin in mouse ES cells and that it is capable of
transcriptional repression. In addition, both ES and EC cells
with severely reduced levels of mUTF1 failed to differentiate
properly while their self-renewing capacity was not
affected. The histone-like characteristics of mUTF1 and its
repressor activity implicate a role in maintaining a specific
epigenetic profile required for differentiation either by
attracting chromatin-modifying proteins or by compacting
chromatin by itself (van den Boom et al., 2007). In humans,
UTF1 has an expression pattern similar to that in mice, it is
expressed by EC and ES cells, and is rapidly down regulated
during differentiation (Fukushima et al., 1998; Phair et al.,
2004; Ginis et al., 2004; Carpenter et al., 2004). During
embryonic development, UTF1 expression is maintained in
PGCs and in spermatogonial stem cells, where it is possibly
involved in spermatogonial differentiation (van Bragt et al.,
2008; Kristensen et al., 2008).

The aim of this study was to characterize the repressor
activity, localization, and dynamic behavior of the human
UTF1 protein. Immunofluorescent analysis of hUTF1 shows
that it is a nuclear protein that colocalizes with DNA during
all stages of the cell cycle, including mitosis. Cotransfection
with a luciferase reporter indicates that hUTF1 is capable of
transcriptional repression, and both subnuclear fractiona-
tions and strip-FRAP analyses show that hUTF1 is a strongly
chromatin-associated protein.

Additional analysis of deletion mutants has shown the
contribution of the two conserved domains to the biochem-
ical properties of hUTF1. Whereas the CD1 domain appears to
be responsible for proper nuclear targeting of the protein,
the CD2 domain is involved in the histone-like association to
chromatin and the repressor activity of hUTF1.

In mouse UTF1, the CD1 domain is also required for
nuclear localization and proper targeting to sites of affinity
and the CD2 domain for long-term immobilization. The
localization of the domains with repressor activity in the
hUTF1 protein differs from mUTF1. In hUTF1, repressor
activity can almost completely be abolished by deletion of
the CD2 domain whereas in mUTF1 each of the two conserved
domains is responsible for approximately half of the re-
pressor activity.

In earlier studies it was reported that mUTF1 represses
TATA-containing promoter constructs. This mUTF1 repressor
activity was dependent on its CD2 domain, as deletion of the
42 carboxy-terminal amino acids resulted in a complete loss
of repressor activity and even potentiated reporter activity

(Fukushima et al., 1999). Similar studies using the human
UTF1 protein yielded different results. Fukushima and co-
workers reported that hUTF1 can interact with the ATF-2
protein and activate transcription. This coactivator activity
is dependent on intact CD1 and CD2 domains as deletion
of either one resulted in a loss of coactivator activity
(Fukushima et al., 1998). Summarizing, these and our
observations show that there are differences in function
between mouse and human UTF1 CD2 domains, which in view
of their ~87% sequence identity was unexpected.

Interestingly, although mutation of leucines at positions
293 and 300 into prolines in hUTF1 did not result in decreased
repressor activity, it did result in a completely different
dynamic behavior. This suggests that the leucine zipper in
CD2 is required for immobilization of hUTF1 where repressor
activity depends on a different domain within CD2.

The fact that the biochemical and histone-like properties
are conserved between both mouse and human UTF1
indicates that UTF1 is a chromatin component of mammalian
embryonic stem cells. Presumably, the presence of UTF1 on
the chromatin in stem cells is involved in creating or main-
taining an ES cell-specific chromatin structure that is re-
quired for pluripotency.

Materials and methods

Plasmids

pSG424 (GAL4-DNA-binding domain) plasmids
pSG424-mUTF1 1-339 was described previously (van den
Boom et al., 2007). pCEP4-FLAG-hUTF1 2-341 and pCEP4-
FLAG-hUTF1 2—-341 L293P L300P were provided by A. Okuda.
pSG424-hUTF1 2—341 L293P L300P was generated by ligating
a Kpnl (Klenow) and Xbal fragment from pcDNA3-flag-hUTF1
2-341 L293P L300P into pSG424 digested with Smal and Xbal.
pSG424-hUTF1 2-341 was generated by Acclll-BamHI diges-
tion of pCEP4-hUTF1 and ligation into pSG424-hUTF1 2—-341
L243P L300P that was digested with Acclll and BamHI.
pSG424-hUTF1 2—-178 was generated by ligating the EcoRI-
Nael fragment of pSG424-hUTF1 2—-341 into pSG424-hUTF1
2-341 digested with Xbal (Klenow) and EcoRI. pSG424-hUTF1
2-126 was generated by digestion of pSG424-hUTF1 2—-341
with BamHI (Klenow)-Nrul and subsequent ligation. pSG424-
hUTF1 2-26 was generated by digestion of pSG424-hUTF1 2—
431 with BamHI (T4 polymerase) and Sacll (T4 polymerase)
followed by ligation. pSG424-hUTF1 141-341 was generated
by ligation of the EcoRI-Acclll (Klenow) fragment from
pSG424-hUTF1 2-341 into pSG424-hUTF1 2-341 digested
with EcoRI (Klenow). pSG424-hUTF1 256—341 was generated
by digestion of pSG424-hUTF1 2-341 with Bbsl (Klenow) and
Xbal followed by ligation in pSG424-hUTF1 2-341 that was
digested with EcoRI (Klenow) and Xbal.

peGFP plasmids

peGFP-HA-hUTF1 2-341 L293P L300P was generated by
ligation of a Sall fragment from pcDNA3-HA-hUTF1 2-341
L293P L300P into Sall-digested peGFP-C1 (CLONTECH Labo-
ratories, Inc.). peGFP-HA-hUTF1 2-341 was generated by
ligation of the Hindlll-Xbal fragment of pcDNA3-HA-hUTF1
into peGFP-HA-hUTF1 2-341 L293P L300P digested with
Hindlll-Xbal. peGFP-HA-hUTF1 2-256 was generated by di-



Human UTF1: a chromatin-associated transcriptional repressor

217

gesting peGFP-HA-hUTF1 2-341 with Bbsl (Klenow) and Kpnl
(Klenow) followed by self-ligation. peGFP-HA-NLS was gene-
rated by PCR on peGFP-C1 using the following primers: F, GTT
TAG TGA ACC GTC AGATCC; R, ATA GCC GGC GAT ATC TAACCT
TCC TCT TCT TCT TAG GAG GAG CGT AAT CTG GAA CAT CG
The PCR product was ligated into pBluescript Il SK* digested
with EcoRYV, resulting in pBluescript Il SK*-GFP-HA-NLS. Sub-
sequently the Nhel-Nael fragment from pBluescript Il SK*-
GFP-HA-NLS was ligated into peGFP-C1 digested with Nhel
and Smal. peGFP-HA-NLS-hUTF1 141-341 was generated by
digesting pBluescript Il SK*-GFP-HA-NLS with Nhel and
NgoMIV followed by ligation into peGFP-HA-hUTF1 2—-341 di-
gested with Nhel and Kpn2I.

Cell culture

NCCIT cells were grown in RPMI 1640 medium containing
10% FBS (PAA), 100 U/ml penicillin, 100 pg/ml streptomycin
(Invitrogen). NCCIT cells were differentiated with 10 pM
retinoic acid. HepG2 and P19CL6 cells were cultured as
described in (van den Boom et al., 2007).

Reporter assays

Luciferase reporter assays were performed as described pre-
viously (van den Boom et al., 2007).

Immunofluorescence and microscopy

UTF1 was detected in NCCIT cells with a monoclonal anti-
UTF1 antibody, clone 5G10.2 (MAB 4337, Millipore). Goat
anti-mouse IgG Alexa Fluor 488 (Molecular Probes) was used
for visualization. For technical details on procedures and
microscopy see (van den Boom et al., 2007).

RT-PCR

Total RNA was extracted using TRizol reagent (Invitrogen).
One microgram of RNA was treated with RNase-free DNasel
(Fermentas) at 37 °C for 30 min and reverse-transcribed with
MMuLV reverse transcriptase (Fermentas) using random
hexamer primers. PCRs were performed on 1 ul of cDNA
with the following primer sets: GAPDH F, CAT CCT GCA CCA
CCA ACT GCT TAG; R, GCC TGC TTC ACC ACC TTC TTG ATG
with annealing at 60 °C for 30 cycles and UTFT; F, ACC AGC
TGC TGA CCT TGA ACC; R, TTG AAC GTA CCC AAG AAC GA
with annealing at 50 °C for 35 cycles. PCR products were run
on 2% agarose gels and stained with ethidium bromide.

Subnuclear fractionation

Subnuclear fractionations were performed as previously des-
cribed (Citterio et al., 2004). Fractions were analyzed by
immunoblotting using the following primary antibodies:
hUTF1 (AF3958; R&D systems), TFIID (SI-1; Santa Cruz
Biotechnology, Inc.) , mSin3A (K-20; Santa Cruz Biotechnol-
ogy, Inc.), Oct4 (H-134; Santa Cruz Biotechnology, Inc.),
HDAC1 (H-51; Santa Cruz Biotechnology, Inc.), H2A (acidic
patch, Upstate Biotechnology), ATF-2 (C19; Santa Cruz Bio-
technology, Inc.), mUTF1 (Eurogentec, (van den Boom et al.,
2007)), and GFP (B-2; Santa Cruz Biotechnology, Inc.).

Secondary antibodies used are donkey anti-goat IgG-HRP
(Santa Cruz Biotechnology, Inc.), donkey anti-rabbit IgG-HRP
(GE healthcare), and goat anti-mouse IgG-HRP (Santa Cruz
Biotechnology, Inc.).

Strip-FRAP

Strip-FRAP experiments were performed as decribed pre-
viously (van den Boom et al., 2007).

Acknowledgments

We thank Dr. A. Okuda (Division of Developmental Biology,
Saitama Medical School, Saitama, Japan) for supplying hu-
man UTF1 constructs, Dr. L.H.J. Looijenga (Dept. of Path-
ology, Erasmus MC, Rotterdam, the Netherlands) for NCCIT
cells, L. Drenth-Diephuis for technical assistance, and Dr. V.
van den Boom for assistance with the Strip-FRAP experi-
ments. This work was supported by the Groningen Bio-
molecular Sciences and Biotechnology Institute.

References

Azuara, V., Perry, P., Sauer, S., Spivakov, M., Jorgensen, H.F., John,
R.M., Gouti, M., Casanova, M., Warnes, G., Merkenschlager, M.,
Fisher, A.G., 2006. Chromatin signatures of pluripotent cell lines.
Nat. Cell Biol. 8, 532-538.

Bernstein, B.E., Mikkelsen, T.S., Xie, X., Kamal, M., Huebert, D.J.,
Cuff, J., Fry, B., Meissner, A., Wernig, M., Plath, K., Jaenisch, R.,
Wagschal, A., Feil, R., Schreiber, S.L., Lander, E.S., 2006. A
bivalent chromatin structure marks key developmental genes in
embryonic stem cells. Cell 125, 315-326.

Bibikova, M., Laurent, L.C., Ren, B., Loring, J.F., Fan, J.B., 2008.
Unraveling epigenetic regulation in embryonic stem cells. Cell
Stem Cell 2, 123-134.

Boyer, L.A., Lee, T.l., Cole, M.F., Johnstone, S.E., Levine, S.S.,
Zucker, J.P., Guenther, M.G., Kumar, R.M., Murray, H.L., Jenner,
R.G., Gifford, D.K., Melton, D.A., Jaenisch, R., Young, R.A.,
2005. Core transcriptional regulatory circuitry in human embryo-
nic stem cells. Cell 122, 947-956.

Carpenter, M.K., Rosler, E.S., Fisk, G.J., Brandenberger, R., Ares, X.,
Miura, T., Lucero, M., Rao, M.S., 2004. Properties of four human
embryonic stem cell lines maintained in a feeder-free culture
system. Dev. Dyn. 229, 243-258.

Chambers, I., Colby, D., Robertson, M., Nichols, J., Lee, S., Tweedie,
S., Smith, A., 2003. Functional expression cloning of Nanog, a
pluripotency sustaining factor in embryonic stem cells. Cell 113,
643-655.

Chen, L., Daley, G.Q., 2008. Molecular basis of pluripotency. Hum.
Mol. Genet. 17, R23-R27.

Chuva de Sousa Lopes, S.M., van den, D.S., Carvalho, R.L., Larsson,
J., Eggen, B., Surani, M.A., Mummery, C.L., 2005. Altered
primordial germ cell migration in the absence of transforming
growth factor beta signaling via ALK5. Dev. Biol. 284, 194-203.

Citterio, E., Papait, R., Nicassio, F., Vecchi, M., Gomiero, P.,
Mantovani, R., Di Fiore, P.P., Bonapace, I.M., 2004. Np95 is a
histone-binding protein endowed with ubiquitin ligase activity.
Mol. Cell. Biol. 24, 2526-2535.

Fukushima, A., Okuda, A., Nishimoto, M., Seki, N., Hori, T.A.,
Muramatsu, M., 1998. Characterization of functional domains of
an embryonic stem cell coactivator UTF1 which are conserved
and essential for potentiation of ATF-2 activity. J. Biol. Chem.
273, 25840-25849.

Fukushima, A., Nishimoto, M., Okuda, A., Muramatsu, M., 1999.



218

S.M. Kooistra et al.

Carboxy-terminally truncated form of a coactivator UTF1
stimulates transcription from a variety of gene promoters
through the TATA Box. Biochem. Biophys. Res. Commun. 258,
519-523.

Ginis, I., Luo, Y., Miura, T., Thies, S., Brandenberger, R., Gerecht-
Nir, S., Amit, M., Hoke, A., Carpenter, M.K., Itskovitz-Eldor, J.,
Rao, M.S., 2004. Differences between human and mouse
embryonic stem cells. Dev. Biol. 269, 360-380.

Habara-Ohkubo, A., 1996. Differentiation of beating cardiac muscle
cells from a derivative of P19 embryonal carcinoma cells. Cell
Struct. Funct. 21, 101-110.

Hiratani, 1., Leskovar, A., Gilbert, D.M., 2004. Differentiation-
induced replication-timing changes are restricted to AT-rich/long
interspersed nuclear element (LINE)-rich isochores. Proc. Natl.
Acad. Sci. U. S. A. 101, 16861-16866.

Keohane, A.M., O'Neill, L.P., Belyaev, N.D., Lavender, J.S., Turner,
B.M., 1996. X-Inactivation and histone H4 acetylation in
embryonic stem cells. Dev. Biol. 180, 618-630.

Kristensen, D.M., Nielsen, J.E., Skakkebaek, N.E., Graem, N.,
Jacobsen, G.K., Rajpert-De, M.E., Leffers, H., 2008. Presumed
pluripotency markers UTF-1 and REX-1 are expressed in human
adult testes and germ cell neoplasms. Hum. Reprod. 23,
775-782.

Li, O., Li, J., Droge, P., 2007. DNA architectural factor and proto-
oncogene HMGA2 regulates key developmental genes in plur-
ipotent human embryonic stem cells. FEBS Lett. 581, 3533-3537.

Loh, Y.H., Wu, Q., Chew, J.L., Vega, V.B., Zhang, W., Chen, X.,
Bourque, G., George, J., Leong, B., Liu, J., Wong, K.Y., Sung,
K.W., Lee, C.W., Zhao, X.D., Chiu, K.P., Lipovich, L.,
Kuznetsov, V.A., Robson, P., Stanton, L.W., Wei, C.L., Ruan, Y.,
Lim, B., Ng, H.H., 2006. The Oct4 and Nanog transcription net-
work regulates pluripotency in mouse embryonic stem cells. Nat.
Genet. 38, 431-440.

Meshorer, E., Yellajoshula, D., George, E., Scambler, P.J., Brown,
D.T., Misteli, T., 2006. Hyperdynamic plasticity of chromatin
proteins in pluripotent embryonic stem cells. Dev. Cell 10,
105-116.

Mitsui, K., Tokuzawa, Y., Itoh, H., Segawa, K., Murakami, M.,
Takahashi, K., Maruyama, M., Maeda, M., Yamanaka, S., 2003.
The homeoprotein Nanog is required for maintenance of
pluripotency in mouse epiblast and ES cells. Cell 113, 631-642.

Nichols, J., Zevnik, B., Anastassiadis, K., Niwa, H., Klewe-Nebenius,
D., Chambers, I., Scholer, H., Smith, A., 1998. Formation of
pluripotent stem cells in the mammalian embryo depends on the
POU transcription factor Oct4. Cell 95, 379-391.

Nishimoto, M., Miyagi, S., Yamagishi, T., Sakaguchi, T., Niwa, H.,
Muramatsu, M., Okuda, A., 2005. Oct-3/4 maintains the proli-
ferative embryonic stem cell state via specific binding to a
variant octamer sequence in the regulatory region of the UTF1
locus. Mol. Cell. Biol. 25, 5084-5094.

Okuda, A., Fukushima, A., Nishimoto, M., Orimo, A., Yamagishi, T.,
Nabeshima, Y., Kuro-o, M., Nabeshima, Y., Boon, K., Keaveney,
M., Stunnenberg, H.G., Muramatsu, M., 1998. UTF1, a novel
transcriptional coactivator expressed in pluripotent embryonic
stem cells and extra-embryonic cells. EMBO J. 17, 2019-2032.

Perry, P., Sauer, S., Billon, N., Richardson, W.D., Spivakov, M.,
Warnes, G., Livesey, F.J., Merkenschlager, M., Fisher, A.G.,
Azuara, V., 2004. A dynamic switch in the replication timing of
key regulator genes in embryonic stem cells upon neural
induction. Cell Cycle 3, 1645-1650.

Phair, R.D., Gorski, S.A., Misteli, T., 2004. Measurement of dynamic
protein binding to chromatin in vivo, using photobleaching
microscopy. Methods Enzymol.375, 393-414.

Pietersen, A.M., van Lohuizen M., 2008. Stem cell regulation by
polycomb repressors: postponing commitment. Curr. Opin. Cell
Biol. 20, 201-207.

Smith, A.G., Heath, J.K., Donaldson, D.D., Wong, G.G., Moreau, J.,
Stahl, M., Rogers, D., 1988. Inhibition of pluripotential embryo-
nic stem cell differentiation by purified polypeptides. Nature
336, 688—690.

Spivakov, M., Fisher, A.G., 2007. Epigenetic signatures of stem-cell
identity. Nat. Rev., Genet. 8, 263-271.

van Bragt, M.P., Roepers-Gajadien, H.L., Korver, C.M., Bogerd, J.,
Okuda, A., Eggen, B.J., de Rooij, D.G., van Pelt, A.M., 2008.
Expression of the pluripotency marker UTF1 is restricted to a
subpopulation of early A spermatogonia in rat testis. Reproduc-
tion 136, 33-40.

van den Boom, V., Kooistra, S.M., Boesjes, M., Geverts, B.,
Houtsmuller, A.B., Monzen, K., Komuro, I., Essers, J., Drenth-
Diephuis, L.J., Eggen, B.J.L., 2007. UTF1 is a chromatin-associated
protein involved in ES cell differentiation. J. Cell Biol. 178,
913-924.

Wiblin, A.E., Cui, W., Clark, A.J., Bickmore, W.A., 2005. Distinctive
nuclear organisation of centromeres and regions involved in
pluripotency in human embryonic stem cells. J. Cell. Sci. 118,
3861-3868.

Williams, R.L., Hilton, D.J., Pease, S., Willson, T.A., Stewart, C.L.,
Gearing, D.P., Wagner, E.F., Metcalf, D., Nicola, N.A., Gough,
N.M., 1988. Myeloid leukaemia inhibitory factor maintains the
developmental potential of embryonic stem cells. Nature 336,
684-687.

Williams, R.R., Azuara, V., Perry, P., Sauer, S., Dvorkina, M.,
Jorgensen, H., Roix, J., McQueen, P., Misteli, T., Merkenschlager,
M., Fisher, A.G., 2006. Neural induction promotes large-scale
chromatin reorganisation of the Mash1 locus. J. Cell Sci. 119,
132-140.

Xu, R.H., Peck, R.M., Li, D.S., Feng, X., Ludwig, T., Thomson, J.A.,
2005. Basic FGF and suppression of BMP signaling sustain undif-
ferentiated proliferation of human ES cells. Nat. Methods 2,
185-190.

Ying, Q.L., Nichols, J., Chambers, I., Smith, A., 2003. BMP induction
of Id proteins suppresses differentiation and sustains embryonic
stem cell self-renewal in collaboration with STAT3. Cell 115,
281-292.

Zhao, Y., Yin, X., Qin, H., Zhu, F., Liu, H., Yang, W., Zhang, Q., Xiang,
C., Hou, P, Song, Z., Liu, Y., Yong, J., Zhang, P, Cai, J., Liu, M.,
Li, H., Li, Y., Qu, X., Cui, K., Zhang, W., Xiang, T., Wu, Y., Zhao,
Y., Liu, C., Yu, C., Yuan, K., Lou, J., Ding, M., Deng, H., 2008. Two
supporting factors greatly improve the efficiency of human iPSC
generation. Cell Stem Cell 3, 475-479.



	Characterization of human UTF1, a chromatin-associated �protein with repressor activity express.....
	Introduction
	Results
	Human UTF1 is tightly associated to chromatin
	Human UTF1 is a transcriptional repressor
	Dynamics of human UTF1 and the role of its �conserved domains

	Discussion
	Materials and methods
	Plasmids
	pSG424 (GAL4-DNA-binding domain) plasmids
	peGFP plasmids

	Cell culture
	Reporter assays
	Immunofluorescence and microscopy
	RT-PCR
	Subnuclear fractionation
	Strip-FRAP

	Acknowledgments
	References




