

 University of Groningen

Modeling production configuration using nested colored object-oriented Petri-nets with
changeable structures
Zhang, Lianfeng (Linda); Jiao, Jianxin (Roger)

Published in:
Journal of Intelligent Manufacturing

DOI:
10.1007/s10845-008-0111-7

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2009

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Zhang, L. L., & Jiao, J. R. (2009). Modeling production configuration using nested colored object-oriented
Petri-nets with changeable structures. Journal of Intelligent Manufacturing, 20(4), 359-378.
https://doi.org/10.1007/s10845-008-0111-7

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

https://doi.org/10.1007/s10845-008-0111-7
https://research.rug.nl/en/publications/62e0f2e9-3e84-4b15-9d3c-6424621cf2ef
https://doi.org/10.1007/s10845-008-0111-7

J Intell Manuf (2009) 20:359–378
DOI 10.1007/s10845-008-0111-7

Modeling production configuration using nested colored object-oriented
Petri-nets with changeable structures

Lianfeng (Linda) Zhang · Jianxin (Roger) Jiao

Received: 9 October 2007 / Accepted: 7 May 2008 / Published online: 27 July 2008
© The Author(s) 2008

Abstract Configuring production processes based on
process platforms has been well recognized as an effective
means for companies to provide product variety while main-
taining mass production efficiency. The production processes
of product families involve diverse variations in manufac-
turing and assembly processes resulted from a large vari-
ety of component parts and assemblies. This paper develops
a multilevel system of nested colored object-oriented Petri
nets with changeable structures to model the configuration
of production processes. To capture the semantics associ-
ated with production configuration decisions, some unique
modeling mechanisms are employed, including colored Petri
nets, object-oriented Petri nets, changeable Petri net struc-
tures, and net nesting. The modeling formalism comprises
resource nets, manufacturing nets, assembly nets and pro-
cess nets. The paper demonstrates how these net definitions
are applied to the specification of production process vari-
ants at different levels of abstraction. Also reported is a case
study in an electronics company. The system model is fur-
ther analyzed with focus on conflict prevention and deadlock
detection.

Keywords Process platform · Production configuration ·
Colored Petri net · Object-oriented Petri net · Net nesting

L. Zhang
Department of Operations, University of Groningen,
Groningen, The Netherlands

J. Jiao (B)
School of Mechanical and Aerospace Engineering, Nanyang
Technological University, Singapore, Singapore
e-mail: jiao@ieee.org

Introduction

Developing product families and platforms has been well
recognized as a means for companies to provide sufficient
variety with mass production efficiency (Simpson 2004; Jiao
et al. 2007). While seeking technical solutions is the major
concern in design, it is at the production stage that product
costs are actually committed and product quality and lead
times are determined per se. For a given design, the actual
cost depends on how the production is planned and to what
extent the economy of scale can be realized within the exist-
ing manufacturing capabilities. This implies that the claimed
rationale of product family design can only be fulfilled at the
production stage (Jiao and Tseng 2004).

Product differentiation inevitably leads to an exponen-
tially increased number of process variations, involving
machines, tools, fixtures, setups, cycle times, and labor
(Wortmann et al. 1997). Nonetheless, the common com-
ponents and basic product structures embedded in product
variety inherently enable similarity and thus reusability in the
corresponding production processes (Martinez et al. 2000).
Therefore, companies are interested in configuring existing
operations and manufacturing processes to take advantage of
repetitions (Schierholt 2001). Besides leveraging the cost of
delivering variety, exploiting process families around process
platforms can reduce development risks by reusing proven
elements and knowledge in a firm’s activities (Sawhney 1998).

Production configuration entails a conceptual structure
and an overall logical organization of producing a family of
customized products. It provides a generic umbrella to cap-
ture and utilize commonality, within which each new product
fulfillment is instantiated and extended so as to anchor
production planning to a common process structure
(Martinez et al. 2000). The common process structure con-
tains such process elements as abstract process concepts for

123

360 J Intell Manuf (2009) 20:359–378

parts and assemblies in relation to product families, opera-
tions, estimated cycle times, as well as manufacturing
resources. Within a process platform, proper process
elements are selected and arranged to form an optimal pro-
duction process for each individual product in the family.
Decisions regarding production configuration are deemed to
be complicated. In particular, a number of fundamental issues
need to be addressed, as elaborated below.

Challenges for production configuration

Variety handling

Individual customer expectations lead to a large number of
product items, such as diverse parts and assemblies. These
product items are specified by various design parameters
in conjunction with particular value instances. On the shop
floor, producing such a variety of parts, assemblies and final
products necessitates distinct processes, operations and man-
ufacturing resources. It is imperative to deal with the large
number of product and process elements while leveraging
upon existing product families and process platforms.

Process change

In spite of similarity inherent in product and process families,
each product is fulfilled by using a unique production process.
Production processes of different products may differ from
one another in specific operations, manufacturing resources,
and process flows. In addition, within a company’s manufac-
turing capabilities, there may exist a number of alternative
production processes for producing one product. Such a wide
range of possible changes in production processes must be
explicitly considered in order to determine an optimal pro-
duction configuration.

Levels of abstraction

Prasad (1998) studies the product and process complexity
associated with providing variety and highlights the impor-
tance of determining the right amount of decomposition. This
leads to a granularity paradox, indicating tradeoffs associ-
ated with process details and product hierarchies. Production
configuration must support refinement of decision making
through decomposition at different levels of abstraction.

Constraint satisfaction

In general, production configuration involves four types of
constraints. Inclusion conditions specify the circumstances
under which a process concept and an operation are to be
included in a configuration. This type of constraints coin-
cides with the fact that not all of the processes and operations

in a process platform are necessary for producing each indi-
vidual product. The sequence or precedence relations among
operations/processes constitute another type of constraints.
Each sequence constraint is specified as a binary relation-
ship between two processes or operations in the form of a
predecessor and a successor. The third type of constraints is
commonly used to determine execution rules regarding oper-
ation details, for example, to specify machines and tools to
be used for a particular product. Finally, coordination con-
straints must be addressed in order to maintain the consis-
tency of product and process variety. More specifically, these
constraints control the granularity of variety derivation from
certain product hierarchies to proper process elements.

Production configuration modeling support

Stobaugh and Telesio (1983) represent early efforts to develop
configuration models for manufacturing. They purport to
list manufacturing tasks down to a few “generic tasks” and
then address major decisions through “choices within each
type”. Hill (1994) describes five generic process types across
25 dimensions with an intention to capture product and
market requirements, manufacturing characteristics, invest-
ment and cost issues, and infrastructure choices. Hayes and
Wheelwright (1984) develop a product–process matrix to
address internal fit at the process choice level. Bozarth and
McDermott (1998) examine the configuration research in the
broad area of manufacturing strategies and conclude that con-
figuration models are well suited to studying complex multi-
variate organizational phenomena. Siddique (2005) develops
a method to explicitly consider existing assembly plant con-
figuration and resources during selection of assembly pro-
cesses for new product family members. Benjaafar et al.
(2002) discuss the flexible, modular and reconfigure layout
configurations for meeting the needs of multiproduct enter-
prises. Jiao et al. (2004) study the modeling of process variety
using object-oriented Petri-Nets with changeable structures.

Existing research on production configuration mostly
emphasizes on analysis of basic rationale or discussion of iso-
lated empirical studies. There is limited attempt to explore
the modeling issues that support production configuration.
To solve configuration problems, many approaches such as
logic-based approaches, resource-based approaches,
constraint-based approaches, and case-based reasoning
approaches have been reported (Sabin and Weigel 1998).
Most modeling work deals with the synthesis issue, that is,
how a valid configuration is assembled from instances of a
fixed set of predefined component types (Mittal and Fray-
man 1989). While most reported work focuses on individual
products only, production configuration involves families of
both products and processes. In addition to the representation
of variety, understanding the underlying logic of product and

123

J Intell Manuf (2009) 20:359–378 361

process families and modeling the variant derivation process
are of primary importance.

Strategy for solution

Owing to their executability, graphical representation and
mathematic support, Petri nets (PNs) have been well recog-
nized as a powerful modeling, simulation and evaluation tool
for complex flows and processes (Peterson 1981). Among
many extensions, the colored PNs (CPNs) and the object-
oriented PNs (OPNs) are able to provide a concise, flexible
and manageable representation of large manufacturing sys-
tems (Jensen 1992), and to enhance the maintainability and
reusability of objects in modeling (Wang 1996). CPNs and
OPNs are further extended to consider changeable structures
(Jiang et al. 1999).

Aiming at modeling support, this paper applies PN tech-
niques to deal with the unique requirements posed by
fundamental issues of production configuration. More spe-
cifically, a formalism of nested colored object-oriented PNs
with changeable structures (NCOPNs-CSs) is developed for
production configuration modeling. The CPNs, OPNs and
changeable PNs are employed to define a set of nets that form
the modeling formalism. Configuration constraints are han-
dled by attaching various data regarding product items, pro-
cess elements and manufacturing resources to colored tokens.
In conjunction with OPNs, colored tokens are also used to
deal with product and process variety. A change handling
mechanism is incorporated into the modeling formalism to
cope with process variations. A multilevel modeling system
is further developed based on net nesting to tackle explicitly
the granularity issue.

Related work

To capture the hierarchical nature of assembly planning,
Thomas et al. (1996) propose a hierarchical PN framework,
where each control plan corresponding to an assembly robot
operation is viewed as a lower level representation of ass-
embly tasks at the higher level. Adamous et al. (1998)
introduce a hierarchical model of flexible assembly system
control using OPNs, which is built upon hierarchical decom-
position of the system via coordination among lower level
decomposed system elements. To accommodate qualitative
modeling of multiple mobile robot systems, Lopez-Mellado
and Almeyda-Canepa (2003) develop a three level scheme of
PNs, in which tokens themselves are defined as PNs as well.

For large and complex systems, Morandin et al. (2000)
combine PN techniques with a modular strategy by consid-
ering shared resources and alternative process plans. This
modular PN strategy is further extended to the concept of
virtual PNs (Morandin and Kato 2003). Sets of virtual places

and virtual transitions constitute a basis for connecting sep-
arated PN modules.

Li and Lara-Rosano (1999) develop a hybrid object-
oriented colored PNs (OOCPNs) by enhancing OOCPNs
with time delay and firing speed. The hybrid OOCPNs are
used to model batch-based electronic component manufac-
turing systems. To facilitate the automatic generation of PN
models for manufacturing system control and scheduling, He
et al. (2000) propose a decomposition methodology accord-
ing to the nesting mechanism inherent in IDEF3 modeling.
An IDEF3 model representing a manufacturing process is
first decomposed into sub IDEF3 models based on similarity
of resources. Then the decomposed IDEF3 models are trans-
formed into respective PN control models. Finally the sub
PN models are aggregated to form a complete system model.

With focus on the multiple alternative sequences of disas-
sembling a product at the end of its useful life, Kumar Singh
et al. (2003) present an expert enhanced high-level colored
disassembly Petri net (EEHLCDPN) to model optimal oper-
ations and paths of disassembly. In the EEHLCDPN, control
places together with other relevant net elements are intro-
duced to deal with the selection of disassembly operations.
Kumar et al. (2004) develop a formalism of extended neuro
fuzzy Petri nets (ENFPNs) to solve the machine-loading
problems in flexible manufacturing systems. Such major con-
cerns in machine-loading problems as determination of opti-
mal job sequences, job reallocation and operation-machine
allocation are judged based on multiple alternatives, for which
fuzzy AND/OR rules are introduced on the basis of neuron
networks in ENFPNs. Similarly, Kumar et al. (2005) dis-
cuss expert enhanced colored fuzzy Petri nets to model the
scheduling problems in reconfigurable manufacturing sys-
tems with focus on information delays. The selection of
optimal job flows is accomplished by incorporating control
places, inhibitor arcs and fuzzy truth values associated with
transitions.

Problem description

This study assumes that the production process of an end
product consists of a number of sequenced processes, each
of which is to produce either a component assembly or a
component part in the product hierarchy. Such a process, in
turn, is formed by several ordered operations. The relevant
definitions are elaborated below.

Definition 1 A process platform, �, consisting of a set of
production process variants, {Rr }N , for producing the set
of product variants in a family, is defined as a tuple, � =
〈�,→〉, where � = {Pi }n is a set of process classes, each
of which is for producing a family of product items, be it a

123

362 J Intell Manuf (2009) 20:359–378

part type or an assembly type; and → is the sequence relation
between two process classes in �.

Definition 2 The sequence relation → defines a binary rela-
tionship between two process classes, Pi and Pj ,∀i �= j ∈
[1, n], such that Pi → Pj , indicating that Pi should be com-
pleted before commencement of Pj . Furthermore, a transitive
closure of → is reflexive, so that with � the set of → forms
a tree.

Definition 3 With respect to various product item families,
� can be further classified into two sets, i.e., � = �M ∩�S ,
where �M = {

P M
i

}
a is a set of master process classes that

are compulsory to all process variants; �S = {
P S

i

}
b is a

set of selective process classes that are optional to process
variants; and a + b = n.

If Pi ∈ �M , Pi is said to produce a family of assemblies
or parts that are common to all variants in the product family.
If Pi ∈ �M , it means that assemblies or parts produced by
any instance of Pi are optional to the set of product variants.

Definition 4 Each Pi is defined as a tuple, Pi 〈ωi ,�〉, where
ωi = {

Oi j
}

m is a set of operations classes; and � is the pre-
cedence relation between two operations classes in ωi .

Definition 5 The precedence relation�defines a binary rela-
tionship between two operations classes, Ois and Oit ,∀s �=
t , such that Ois � Oit , meaning that Ois should be per-
formed before Oit . A transitive closure of � is reflexive, so
that with ωi the set of � forms a tree representing Pi .

Definition 6 Two sets are distinguished within ωi of Pi , i.e.,

ωi = ωM
i ∩ ωs

i , where ωM
i =

{
O M

i j

}

x
is a set of master

operations classes necessary to all {Rr }N ; ωs
i =

{
O S

i j

}

y
is

a set of selective operations classes optional to {Rr }N ; and
x + y = m. For each Oi j of Pi , if Oi j ∈ ωM

i , then Pi ∈ �M .
Likewise, if Pi ∈ �S , then either Oi j ∈ ωM

i or Oi j ∈ ωS
i .

Definition 7 A production process variant, Rr , consists of a
series of sequenced processes, i.e., Rr

〈
�∗

r ,→〉
, where �∗

r ={
P∗

ri

}
n is a set of specific processes, each of which is to pro-

duce a particular product item, be it a part or an assembly;
and → is the sequence relation between two processes, P∗

ra
and P∗

rb,∀a �= b, such that P∗
ra → P∗

rb, suggesting that pro-
cess P∗

ra for producing item Ia must be completed before
producing item Ib through P∗

rb.

Definition 8 Each P∗
ri of production process variant Rr con-

tains an operations set, i.e., P∗
ri = 〈

ω∗
ri ,�

〉
, where ω∗

ri ={
O∗

ri j

}
is a set of specific operations; and � is the prece-

dence relation between operations in
{

O∗
ri j

}

N×n×m
, such

that O∗
ris � O∗

ri t ,∀s �= t , denoting that O∗
ris must be per-

formed before O∗
ri t .

A process class Pi belongs to one of these types: (1) A type
of manufacturing processes consisting of a series of machin-
ing operations and non-machining operations for manufac-
turing a part family, e.g., material transfer; (2) A type of
assembly processes involving a series of assembly opera-
tions and non-assembly operations for producing an assem-
bly family; and (3) A mixed type of processes involving
machining operations, assembly operations, and/or
non-machining/assembly operations for forming an assem-
bly family. If P∗

ri is to produce a part, then its corresponding{
O∗

ri j

}

N×n×m
comprises all machining operations. If P∗

ri is

to form an assembly, then O∗
ri j may be a machining operation

or an assembly operation.

Both manufacturing and assembly processes employ a
number of material handling devices, a number of buffers,
and a set of machine classes. Each machine class, in turn,
exhibits a number of similar machines. These machines are
either necessary or optional for producing a product family.
Material handlers such as AGVs, robots, and human opera-
tors may be used to transfer materials, semi-finished items
(i.e., WIP), and finished items from one location to another.
A number of buffers, including input buffers, WIP buffers
and output buffers, are also used to store materials, WIP and
finished items or products, respectively. Figure 1 summarizes
the process elements and relationships involved in produc-
tion configuration.

Net definitions in NCOPNs-CSs

Resource net

A production system comprises a set of input and output buf-
fers, WIP buffers, machining and assembly machines, and
material handlers. Each of them performs certain function-
ality that is achieved through the internal activities, and thus
can be modeled as OPNs from an object-oriented perspective.

Definition 9 A resource net is defined as a tuple, RNet =(
GOPN , ω

)
, where RNet is a resource net, be it an input

buffer, output buffer, WIP buffer, machining machine, assem-
bly machine, or material handler. GOPN is a structure of OPN,
such that,

GOPN = (
SP, IM, OM, AT , CSP, CIM , COM , CAT ,

I id , Oid
)

.

where SP = {spi }N S P is a finite set of state places; IM =
{imk}N I M is a finite set of input message places, SP ∩ IM =
φ, sp ∪ I M �= φ; O M = {oml}N O M is a finite set of
output message places, I M ∩ O M = φ, S P ∩ O M =
φ, S P ∩ I M ∩ O M = φ; and AT = {

at j
}

N AT is a finite
set of activity transitions.

123

J Intell Manuf (2009) 20:359–378 363

Fig. 1 Process elements and
relationships in production
configuration

Family A number of classes A number of single entities

A type ofxxx Association Instance of Generalization Composition

Legend

End
ProductProcess of

End Product

AGV

Robot

Operator

Input Buffer

Output Buffer

WIP Buffer

Process Platform

Master
Process

Selective
Process

Operation

Item

Manufacturing
Process

Assembly

Part

Assembly
Process

Assembly
Process

Manufacturing
Process

Common
Item

Optional
Item

Resources

M
achine

Necessary
Machine

Selective
Machine

Operation

M
aterial

H
andler

B
uf fer

A
 type of

Process of
Item Family Sequence

Selective
Sequence

Master
Sequence

Precedence

Master
Operation

Selective
Operation

Precedence

Process of
Specific

Item

A
 type of

Use

Produce

Family A number of classes A number of single entities

A type ofAssociation Instance of Generalization Composition

End
ProductProcess of

End Product

AGV

Robot

Operator

Input Buffer

Output Buffer

WIP Buffer

Process Platform

Master
Process

Selective
Process

Operation

Item

Manufacturing
Process

Assembly

Part

Assembly
Process

Assembly
Process

Manufacturing
Process

Common
Item

Optional
Item

Resources

M
achine

Necessary
Machine

Selective
Machine

Operation

M
aterial

H
andler

B
uf fer

Configure

Process of
Item Family Sequence

Selective
Sequence

Master
Sequence

Precedence

Master
Operation

Selective
Operation

Precedence

Process of
Specific

Item

Produce

Produce

CSP(i) =
{

cspi
j

}

N spi
is a set of colored tokens associ-

ated with a state place, spi . CIM(k) =
{

cimk
j

}

Nimk
is a set of

colored tokens associated with an input message place, imk .

COM(l) =
{

coml
j

}

N oml
is a set of colored tokens associated

with an output message place, oml . CAT (j) =
{

c
atj
i

}
is a

set of colored tokens associated with an activity transition,
at j . Moreover, CSP(i), CIM(k), COM(l), and CAT (j) are
determined by the items that resource objects can process.

I id
(
SP, AT/cat j

) : CSP × CAT → CSP ∪ φ or I id
(
I M, AT/cat j

) : CIM × C AT → C I M ∪φ is an input iden-
tity function for arcs that connect state places SP or input
message places IM to activity transitions AT with a firing
colored token, cat j ∈ CAT (j), ∃ j ∈ [

1, N AT
]
.

Oid
(
SP, AT/cat j

) : CSP × CAT → CSP ∪ φ or Oid
(
OM, AT/cat j

) : COM × CAT → COM ∪ φ is an output
identity function for arcs that connect activity transitions AT
with a firing colored token, cat j , to state places SP or output
message places OM.

ω :
(

SP → MCSP
, I M → MCIM

, OM → MCOM
)

is a

marking function, such that ω (SP) = MCSP
, ω (IM) =

MCIM
, ω (OM) = MCOM

, where MCSP
, MCIM

and MCOM

are the families of all multisets over CSP, CIM and COM ,
respectively.

The set of state places, {Spi }N SP , specify all possible states
that a resource object may possess. As shown in Fig. 2 and
Table 1, a machine has 3 states, namely idle, setting up and
processing. A material handler possesses 3 states as well,
i.e., idle, transferring parts from buffers to machines, and
transferring parts from machines to buffers. All types of buf-
fers assume two states: idle vs. capacity available for load-
ing parts. The AND relations among input arcs indicate that
tokens in the input places must appear at the same time to

1im 1om

2im

RNet for a Buffer

RNet for a Machine RNet for a Material Handler

Input or output message place

Activity transition

State place Colored token

Arc

1sp 2at
1at

3sp3at 4at

2sp

1im

1sp 2at1at

2sp

2om

1om

2im

1sp 2at
1at

3sp3at 4at

2sp

1im

2om

1om

Input AND Output AND

idI

idOidI

idO

idI
idO

idI

idOidI

idO

idOidI
idO

idI
idO

idI

idOidI

idOidI

idO

idI idO

idIidO

idI idO

idI

idOidI
1im 1om

2im

RNet for a Buffer

Input or output message place

Activity transition

State place Colored token

Arc

1sp 2at
1at

3sp3at 4at

2sp

1im

1sp 2at1at

2sp

2om

1om

2im

1sp 2at
1at

3sp3at 4at

2sp

1im

2om

1om

Input AND Output AND

idI

idOidI

idO

idI
idO

idI

idOidI

idO

idOidI
idO

idI
idO

idI

idOidI

idOidI

idO

idI idO

idIidO

idI idO

idI

idOidI

Fig. 2 States and activities of resource objects

enable activity transitions with certain colored tokens. After
transition firing, tokens should be simultaneously added into
places with AND relation arcs.

To enable communication among objects, input message
places IM and output message places OM are defined as
the interface for objects to send and receive messages (i.e.,
tokens). For example, in Fig. 2, imi of the RNet for a material
handler is used for receiving those messages sent by machines
with request for loading parts. om j holds the messages to be
sent to other machines about the completion of part transfer-
ring. AT describes all activities that a resource object can per-
form. Input identity functions I id

(
SP, AT/cat j

)
and

I id
(
IM, AT/cat j

)
specify the set of pre-conditions for

enabling AT with a colored token, cat j , whilst output identity
functions Oid

(
SP, AT/cat j

)
and Oid

(
OM, AT/cat j

)
regu-

late the set of post-conditions of the firing of AT . ω repre-
sents the marking of the resource object after each transition
firing.

123

364 J Intell Manuf (2009) 20:359–378

Table 1 States and activities of resource objects

Place Material handler (MH) RNet Machine RNet Buffer RNet

im1 A request (from machine) for transferring part in A request (from buffer) for setting up A message (from MH) of
parts ready to be moved
in

im2 A request (from machine) for transferring part out A request (from MH) for loading parts
om1 A message of part transferring completion A message of completing setup A message of parts ready

to be moved out
om2 A message of part transferring completion A message of completing part unloading
sp1 Transferring parts into machine Setting up Part loaded in buffer
sp2 Idle Idle Idle and capacity available
sp3 Transferring parts out of machine Processing parts
at1 Start transferring parts into machine Start setting up Loading part into buffer
at2 End transferring parts End setting up Unloading part from buffer
at3 Start transferring parts out of machine Start loading parts
at4 End transferring parts out End part unloading

The dynamic behavior of a resource object is character-
ized by the set of state places, {Spi }N SP , and the set of activity
transitions,

{
at j

}
N AT . Only when the connected input state

place SPi and message place imk hold the colored tokens
as specified by the input identity functions, i.e., ω (spi) ≥
I id

(
spi , at j/cat j

)
and ω (imk) ≥ I id

(
imk, at j/cat j

)
, can

an activity of at j be carried out, that is, activity transition at j

is activated. The firing of at j results in the removal of tokens
from the set of input places as specified by the input iden-
tity functions and the addition of colored tokens to the set
of connected output places as specified in the output identify
functions.

Manufacturing net

Definition 10 A manufacturing net is defined as a tuple,
M Net = (

GOPNs−cs , µ
)
, where MNet is a manufacturing

net representing the processes of manufacturing a part fam-
ily. GOPNs−cs is a system of OPNs with changeable structures,
such that,

GOPNs−cs =
(

P, T, C P , CT , I, O
)

,

where P = {Pi }N P is a finite set of places, representing the
set of resource objects involved in the manufacturing process;
T = {

t j
}

N T is a finite set of transitions, P∪T �= φ, P∩T =
φ, T = T1 ∪ T2, where T1 is a set of input OR relation tran-
sition (i.e., transitions with input arcs bearing OR relations),

and T2 is a set of ordinary transitions; C P (i) =
{

cpi
j

}

N Pi
is

a finite set of colored tokens associated with a place, Pi ; and

CT (j) =
{

c
t j
j

}

N t j
is a finite set of colored tokens associated

with a transition, t j .
I
(

pi , t j/ct j
) : C P (i) × CT (j) → C P (i) ∪ φ is an input

transform function for an arc,
(

p j , t j
)
, ∀pi ∈ ◦t j , that con-

nects a place to a transition with a firing colored token, ct j .

Likewise, O
(

pi , t j/ct j
) : C P (i) × CT (j) → C P (i) ∪ φ is

an output transform function for an arc,
(

p j , t j
)
, ∀pi ∈ ◦t j ,

that connects a transition with a firing colored token, ct j , to
a place. Moreover, µ : P → MC P

is a marking function,
µ(P) = MC P

, where MC P
is the family of all multisets

over C P .

To accommodate process variations, e.g., adding or remov-
ing resources, or changing the execution order of two machin-
ing or non-machining operations, the OPNs with changeable
structures (OPNs-cs) in Jiang et al. (1999) is adopted to define
the net structure GOPNs−cs of an MNet. The set of places,
{pi }N P , are defined for the set of resource objects. Each
place pi carries out either a machining operation or a non-
machining operation. Therefore, the set of colored tokens,{

cpi
j

}

N Pi
, associated with each place pi are used to repre-

sent the operations, the employed resource objects, as well
as the corresponding product items.

Furthermore, the set of transitions
{
t j

}
N T specify the start-

ing or ending of the relevant operations. The colored token
of each transition t j is defined exactly the same as that of its
input place. The input and output transform functions specify
the type and number of colored tokens to be removed/added
from/to the relevant input and output places. In other words,

each transition t j , colored token set
{

c
t j
i

}

N t j
, and the asso-

ciated input and output transform functions determine the
message passing relationship between two places, pa and
pb, in accordance with the flow of a part’s manufacturing
process. If a transition, t j , is to be activated with respect to a
firing colored token, ct j , each of its input place pi must con-
tain colored tokens, the type and number of which should be
greater or equal to the one specified by the input transform
function, i.e., µ (pi) ≥ I

(
pi , t j/ct j

)
, pi ∈ ◦t j .

123

J Intell Manuf (2009) 20:359–378 365

Assembly net

Definition 11 An assembly net is defined as a tuple, ANet =(
GOPNs−cs , µ

)
, where ANet is an assembly net representing

the assembly processes of an assembly family. GOPNs−cs is
a system of OPNs with changeable structures, GOPNs−cs =(
P, T, C P , CT , I, O

)
, where T, CT , I, O, and µ carry

the same meaning as that for an MNet.

P is a finite set of places, {pi }N P , P = P1 ∪ P2, where
P1 = {

p1
i

}
N P1 is a set of places corresponding to MNets

and/or lower level ANets of child assemblies; P2 = {
p2

i

}
N P2

is a set of places representing the resource objects and the
performed subassembly processes; and P1 ∩ P2 = φ, N P1 +
N P2 = N P .

C P is a finite set of colored tokens associated with all

places, C P = C P1 ∪C P2
, where each C P1

(i) =
{

c
p1

i
j

}

N
IF

p1
i

is a set of colored tokens associated with a place, p1
i , indi-

cating the set of part or assembly variants of a family pro-
duced by the nested MNet or ANet at the lower level; and

C p2
(i) =

{
c

p2
i

j

}

N
p2

j
is a set of colored tokens associated

with a resource object p2
j .

An ANet is defined to represent the processes of produc-
ing a family of assemblies. Changes to component items that
form assembly variants cause variations in the correspond-
ing assembly processes. To deal with such process changes,
the structural change handling mechanism is introduced to
the ANet. Unlike those places in an MNet, the places in an
ANet may not be always related to the resource objects. They
are also defined for the child parts and child assemblies pro-
duced by the MNets or ANets. If a place, pi , is defined for
MNets or ANet at a lower level, the set of colored tokens,{

c
p1

i
j

}

N
IF

p1
i

, are specified to indicate the set of similar item

variants (either parts or assemblies), which are produced by
the processes nested in the places. If it represents a resource
object, the set of colored tokens are assigned according to
the process flow of the assembly and used to indicate the
assembly operations or non-assembly operations along with
the associated resource objects.

Process net

Definition 12 A process net is defined as a tuple, PNet =(
GOPNs−cs , µ

)
, where PNet is a process net representing the

conceptual production processes of producing a family of
end products. GOPNs−cs is a system of OPNs with changeable
structures, such that GOPNs−cs = (

P, T, C P , CT , I, O
)
,

where T, CT , I, O, and µ carry the same meaning as that
for MNet.

Fig. 3 Transition decomposition

P = {pi }N P is a finite set of places, P = P M ∪ P A ∪ P R ,
where P M = {

pM
i

}
N P M is a set of places corresponding

to MNets; P A = {
pA

i

}
N P A is a set of places representing

ANets; P R = {
pR

i

}
N P R is a set of places indicating resource

objects and operations performed; and P M ∩ P A ∩ P R = φ,
N P M + N P A + N P R = N P .

C P is a finite set of colored tokens associated with all
places, C P = C P M ∪ C P A ∪ C P R

, where each C P M
(i) ={

c
pM

i
j

}

N
PF

pM
i

is a set of colored tokens associated with a place,

pM
i , and indicates the set of similar part variants produced

by the represented MNet; C P A
(i) =

{
c

pA
i

j

}

N
AF

p A
i

is a set of

colored tokens associated with a place, pA
i , and indicates the

set of assembly variants produced by the represented ANet;

and C P R
(i) =

{
c

pR
i

j

}

N pR
i

is the set of colored tokens associ-

ated with the set of resource objects along with the performed
operations.

A P Net is defined for the abstract processes of producing
a family of end products. Similar to an ANet, the structural
change handling mechanism is employed in PNet to handle
process variations. The places in a PNet are specified to repre-
sent either resource objects carrying out certain operations,
or MNets manufacturing parts, or ANets producing assem-
blies. If a place, pi , is defined for an MNet or ANet, the set of

colored tokens,

{
c

pM
i

j

}

N
PF

pM
i

or

{
c

pA
i

j

}

N
AF

p A
i

, are specified

to indicate the set of part or assembly variants in a family. If
a place, pi , is specified to represent a resource object, the set
of colored tokens are used to indicate the operations carried
out by the objects.

To specify firing conditions for transitions with respect
to firing colored tokens, each of these transitions, i.e., T1 in
an MNet, ANet or PNet, is decomposed into several input
transitions, a state place and an output transition. As shown
in Fig. 3, the decomposed input and output transform

123

366 J Intell Manuf (2009) 20:359–378

functions as well as the state place are assigned with the same
colored tokens as those associated with the input places of
the original transition.

For a single resource object, whose number is one, there
may exist more than one input arc. Therefore, conflict may
occur when multiple objects or subprocesses require a single
object to perform multiple operations at the same time. To
maintain a 1-bounded property and the safeness of an object
place, inhibitor arcs, I nh

(
pi , t j

)
,∀t j ∈ ◦ pi , are introduced

to these objects (Wang and Wu 1998). The inhibitor arcs of
a resource object are drawn from the set of input transitions
to the single object. Different from those general input arcs,
inhibitor arcs are indicated as dotted lines with circles at the
transition ends. If I nh

(
pi , t j

) = 1, it implies that no oper-
ation request can be passed to the object represented by the
place unless the object is not occupied, that is, there is no
token in the place.

Nested net system for production configuration

Net nesting

Definition 13 A multilevel nested net system is defined as a
tuple, NNSys = (PNet, R, M, A, PP, SP, ϕ), where
NNSys is the multilevel nested net system for modeling pro-
duction configuration; PNet is the process net describing
conceptual production processes of a product family; and
ϕ (ppi) : P P → S P is a port place assignment function. It
is defined from PP to SP, establishing a binary relationship
between them.

R = {ri }N R is a finite set of RNets, R = R1∪ R2 · · ·∪ RO ,
where each RO = {

r O
i

}
N RO ,∀O ∈ [1, O], is a finite set

of RNets representing the behaviors of the objects that are
in the same MNets and ANets, or the PNet. M = {mi }N M

is a finite set of MNets, M = M1 ∪ M2 · · · ∪ M P , where
each M P = {

m p
i

}
N M P ,∀p ∈ [1, P], is a finite set of MNets

nested in such places that are in the same nets at the immediate
higher levels. Likewise, A = {ai }N A is a finite set of ANets,

A = A1 ∪ A2 · · · ∪ AQ , where each Aq = {
aq

i

}Aq

N ,∀q ∈
[1, Q] represents the set of ANets that are nested in the same
nets at the immediate higher levels.

PP = {ppi }N PP is a finite set of port places representing
resource objects in A and M . The messages in the output
message places of each ppi will be sent to the input mes-
sage places of such resource objects that are connected with
those places representing MNets or ANets, of which these
port places belong to. In other words, the places representing
message receiving objects and the places that nest MNets or
ANets of port places belong to the same nets.

S P = {spi }S P
N is a finite set of socket places indicating

resource objects in A and the PNet. The input message places

of each sp j will receive messages sent from resource objects
of the associated ppi that belong to the lower level MNets or
ANets, which are represented by the places connected to spi

in the same ANets or the PNet.
Performing as an abstraction mechanism, NNSys facili-

tates the selection of conceptual processes with right amount
of details. Within NNSys, the highest level is the PNet, while a
number of RNets, MNets and ANets are located at the second
level. Each of these nets provides more details for the respec-
tive places in the PNet. The nets at any lower level provide
detailed descriptions of the assembly and manufacturing pro-
cesses nested in the places of the nets at its immediate higher
level. At the lowest level of each path, all nets become RNets,
whilst a mixture of RNets, MNets and ANets can be found at
any arbitrary level. Figure 4 demonstrates an N + 2 level net
system with nested MNets and ANets, as well as encapsu-
lated RNets. Table 2 summarizes descriptions of places and
transitions of different nets at each level.

Message exchange among objects between two nets at
adjacent levels is implemented through the port places at the
lower level nested nets and the socket places at the higher-
level host nets. Both port and socket places are only defined
for resource objects. Figure 5 illustrates such a mechanism.
When a token representing a part is produced in the MNet at
level i + 1, which is nested in place p2 in the ANet at level
i , it is loaded into the output buffer represented by place p6.
Then a token with the same color appears in place p2 in the
ANet at level i . Meanwhile, a message requesting machine
setup from the output buffer p6 in the nested MNet is sent to
the place p3, representing an assembly machine, in the ANet
at level i .

Support to production configuration

Consistent with the hierarchical structure of a product, pro-
duction configuration can be regarded as a recursive process
of configuring process elements through various levels of
abstraction. For a product variant with an N level hierarchy,
production configuration is carried out for various product
items at each level. Figure 6 draws an analogy of decision
making among the product hierarchy, production configura-
tion and the nested net system model. For a product with an
N level hierarchy, the iterative process refinement will form a
process hierarchy with N +1 levels, wherein the processes at
the (N +1)-th level are the detailed manufacturing processes
for parts at the N -th level of the product hierarchy. Since parts
can be at each level of the product hierarchy, detailed man-
ufacturing processes can thus be found at each level of the
N + 1 process hierarchy except the first level. In relation to
the detailed manufacturing processes at the (N + 1)-th level
of the process hierarchy, MNets are constructed at level N +1
of the nested net system model. RNets representing internal

123

J Intell Manuf (2009) 20:359–378 367

Fig. 4 An example of nested net system

behaviors of resource objects in the MNets at level N +1 are
established at level N + 2 of the production configuration
model. Therefore, the production configuration model for a
product with an N level product hierarchy will assume N +2
levels.

Case study

The NCOPNs-CSs formalism is tested using an industrial
case of vibration motor production. Figure 7(a) shows the

major product items of motors and Fig. 7(b) shows the hier-
archies of two motor variants, VM1 and VM2. Descriptions
of the product items are given in Table 3. The motor pro-
cess platform has been constructed a priori, including sets of
master and selective processes and various process elements
regarding operations, precedence, manufacturing resources,
and product items. In addition, execution rules for operation
details, inclusion conditions for selective process elements
and other constraints regulating execution orders of processes
and operations have been identified by domain experts.

123

368 J Intell Manuf (2009) 20:359–378

Table 2 An example of nested net system

Place Level 1 Level 2 Level N+1

p1 Part a1 & its manufacturing
process

Part a1 p1 of A1& its
manufacturing process

Input buffer in a part’s MNet

p2 Assembly A1 & its assembly
process

Part a1 p2 of A1& its
manufacturing process

A machining machine & its
machining operation

p3 An assembly machine & its
operation

An assembly machine & its
operation in A1’s ANet

A material handler in a part’s
MNet

p4 A material handler & its
operation

A material handler & its
operation in A1’s ANet

WIP buffer in a part’s MNet

p5 Output buffer in the final
product’s PNet

WIP buffer in A1’s ANet A machining machine & its
machining operation

p6 Part a1 p3 of A1 & its
manufacturing process

A machining machine & its
machining operation

p7 An assembly machine & its
operation in A1’s ANet

A machining machine & its
machining operation

p8 Output buffer in A1’s ANet Output buffer of a part’s MNet
dp1 Decomposed state place of

transition t1 in A1’s ANet
Decomposed state place of

transition t1 in the MNet
dp2 Decomposed state place of

transition t2 in A1’s ANet
Decomposed state place of

transition t2 in the MNet
dp4 Decomposed state place of

transition t4 in A1’s ANet
Decomposed state place of

transition t4 in the MNet
dt11/12/13 Decomposed transitions of t1

in A1’s ANet
Decomposed transitions of t1

in the MNet
dt21/22/23/24/25 Decomposed transitions of t2

in A1’s ANet
Decomposed transitions of t2

in the MNet
t3 A transition in the PNet A transition

in A1’s ANet
A transition in a part’s MNet

dt41/42/43/44/45 Decomposed transitions of t4
in A1’s ANet

Decomposed transitions of t4
in the MNet

t5 A transition in the PNet A transition in A1’s ANet A transition in a part’s MNet

5p

3t

3p

4p

5t
1p

2p

6p

21dt
22dt

23dt

41dt 42dt

43dt

4dp

2dp

11dt

12dt

13dt

1dp

3t

4p

5p

5t

1p

2p

3p

1t
4t

2t

Level i

ANetAn

5p

3t

3p

4p

5t
1p

2p

6p

21dt
22dt

23dt

41dt 42dt

43dt

4dp

2dp

11dt

12dt

13dt

1dpLevel i+1
A nested MNet

3t

4p

5p

5t

1p

2p

3p

1t
4t

2t

Message sending & receiving
between port and socket places

Fig. 5 Communication between nets at two adjacent levels through
port and socket places

Specification of PNet

In accordance with the specifications of three child items at
the first level of the product hierarchies, two conceptual pro-
duction processes are determined for VM1 and VM2, respec-
tively. A conceptual production process reflects the assembly

flow of a number of items (parts and/or assemblies) rather
than the detailed processes of manufacturing a part. Both the
two processes require machine (Wc M1), whereas the produc-
tion of VM1 needs another assembly machine RhI1. The pro-
cess flows for VM1 and VM2 are detailed in Table 4, together
with the required manufacturing resources.

The PNet is then constructed according to the process
flows of the configured conceptual processes, as shown in
Fig. 8. The places representing operations and resource
objects and their relevant colored tokens are defined, as shown
in Table 4. In Fig. 8, dtxx and dpxx denote the decomposed
transitions and state places of three transitions, T1, T2 and T3,
whose input arcs bear OR relations. In addition, the inhibi-
tor arcs have been applied to three single resources, includ-
ing a material handler (p4) and two assembly machines,
Wc Ml(p3) and RhII (p7). The colored token in place p8 (i.e.,
the output buffer) indicates that one VM1 or VM2 has been
produced. To deal with process changes, e.g., removal RhI1

of VM1 from production process, the structural change han-
dling mechanism is enacted to modify the input/output trans-
form functions through the message sending and receiving
relations in the PNet.

123

J Intell Manuf (2009) 20:359–378 369

Fig. 6 Analogy of decision making for granularity

Fig. 7 Hierarchies of motor
variants

(a)

Bracket
assembly

Weight

Armature
assembly

Frame
assembly

1FA

1Ba 1Bb 1Tl

2VM

2Wt 2MB

2AA

2St
2CA

2Cl

2BA

2Ba 2Bb

2Tp

2FA

2Fm 1Mt

1VM

1Wt 1MB 1Rh

1BA

1Fm 1Mt

1AA

1St 1CA

1Cl 1Tp

(b)

Bracket
assembly

Weight

Armature
assembly

Frame
assembly

1FA

1Ba 1Bb 1Tl

2VM

2Wt 2MB

2AA

2St
2CA

2Cl

2BA

2Ba 2Bb

2Tp

2FA

2Fm 1Mt

1VM

1Wt 1MB 1Rh

1BA

1Fm 1Mt

1AA

1St 1CA

1Cl 1Tp

Table 3 Specific product items

Abbreviations Items

VM1/VM2 Vibration motor variants 1 and 2
Wt1/Wt2 Weight variants 1 and 2
Rh1/Rh2 Rubber holder variants 1 and 2
MB1/MB2 Mainbody variants 1 and 2
FA1/FA2 Frame assembly variants 1 and 2
AA1/AA2 Armatrure assembly variants 1 and 2
BA1/BA2 Bracket assembly variants 1 and 2
CA1/CA2 Coil assembly variants 1 and 2
Fm1/Fm2 Frame variants 1 and 2
Mt1 Magnet variant 1
St1/St2 Shaft variants 1 and 2
Ba1/Ba2 Bracket a variants 1 and 2
Bb1/Bb2 Bracket b variants 1 and 2
Tl1/Tl2 Terminal variants 1 and 2
Cl1/Cl2 Coil variants 1 and 2
Tp1/Tp2 Tape variants 1 and 2

123

370 J Intell Manuf (2009) 20:359–378

Table 4 Process flows of VM1 and VM2

Process flow of VM1 Process flow of VM2

Operations Resource (or
process)/place

Colored token Operations Resource (or
process)/place

Colored token

Part W t1 is produced Manufacturing
process/p1

W t1 Part W t2 is produced Manufacturing pro-
cess/p1

W t2

Assembly M B1 is
produced

Assembly
process/p2

M B1 Assembly M B2 is
produced

Assembly
process/p2

M B2

W cM1 setting up W cM1/p3 V M1 · 0 W cM1setting up W cM1/p3 V M2 · 0
Being transferred Material handler/p4 V M1 · 1 Being transferred Material handler/

p4

V M2 · 1

Being assembled W cM1/p3 V M1 · 2 Being assembled W cM1/p3 V M2 · 2
Being transferred Material handler/p4 V M1 · 3 Being transferred Material handler/p4 V M2 · 3
Staying in buffer WIP buffer/p5 V M1 · 4 Staying in buffer Output buffer/p8 V M2
Part Rh1 is produced Manufacturing

process/p6

Rh1

RhI1setting up RhI1/p7 V M1 · 5
Being transferred Material handler/p4 V M1 · 6
Being assembled RhI1/p7 V M1 · 7
Being transferred Material handler/p4 V M1 · 8
Staying in buffer Output buffer/p8 V M1

7p

3t

4p

5p

5t6p

1p

2p

3p

8p

11dt

12dt

13dt

21dt
22dt

23dt

41dt
42dt

43dt

4dp

2dp
1dp

7p

3t

4p

5p

5t6p

1p

2p

3p

8p

11dt

12dt

13dt

21dt
22dt

23dt

41dt
42dt

43dt

4dp

2dp
1dp

Fig. 8 The PNet for VM1 and VM2

Table 5 shows the detailed list of colored tokens assigned
to the places and transitions (including those decomposed
transitions and state places), as well as the input and output
transform functions. Generalizing the two variant case to the
whole motor family, the colored tokens assigned to places
p1, p2 and p6 indicate all the family members that are pro-
duced by the nested processes. The tokens assigned to place
p8 (the output buffer) thus represent the entire motor family.

MNet for part family

Figure 9 illustrates the MNet for a part family, consisting of
two variants, W t1 and W t2. Their respective manufacturing
processes are configured as shown in Table 6, where the col-
ored tokens are specified to represent both the operations and
the employed manufacturing resources. While both of them
employ the same machine (WMM1 and WMM2), the man-
ufacturing processes differ from one another in their flows.
The places associated with the net are defined, as shown in

Table 7. Table 8 summarizes specifications of all the places,
transitions, colored tokens, input and output arcs and trans-
form functions defined for the MNet. The colored tokens
are assigned to different places, thus differentiating specific
operations related to individual part variants of the family,

ANet for assembly family

As shown in Fig. 10, the ANet for assembly variants MB1 and
MB2 is constructed according to the configured conceptual
process flows in Table 9. The colored tokens in relation to the
respective manufacturing resources and the performed oper-
ations are shown in Table 9. The mechanism for handling
process changes is adopted in the ANet to describe that fact
that assembly machine FCM1 is required for producing MB1,
but not for MB2. Table 10 summarizes specifications of all the
places, transitions, colored tokens, input and output arcs and
transform functions defined for the ANet. Places p1, p2 and
p6 represent the respective assembly processes of three fam-
ilies: AAs, BAs and FAs. The tokens are specified for each of
the places, denoting specific assembly variants of a family.

Specification of RNet

The MNet, ANet and PNet are constructed to model the man-
ufacturing and assembly processes of parts, assemblies and
final products, respectively. The internal behavior of each
resource object is modeled by constructing an RNet. Fig-
ure 11 shows an example of the RNet for the final product
assembly machine WcM1 in the PNet (Fig. 8).

123

J Intell Manuf (2009) 20:359–378 371

Table 5 Descriptions of the PNet in Fig. 8

Place Colored token Transition Colored token Input arc Input arc Output arc Output arc
transform function transform

function

p1 {W t1, W t2} dt11 {W t1MB1, W t2MB2} (p1, dt11) {W t1MB1, W t2MB2} (dp1, dt11)
{
W t1MB1,

p2 {MB1, MB2} (p2, dt11) {W t1MB1, W t2MB2} W t2MB2
}

p3

{
VM1 · 0, VM1 · 2
VM2 · 0, VM2 · 2

}
dt12 {VM1 · 4Rh1} (p5, dt12) {VM1 · 4Rh1} (dp1, dt12) {VM1 · 4Rh1}

p4

⎧
⎨

⎩

VM1 · 1, VM1 · 3,

VM2 · 1, VM2 · 3,

VM1 · 6, VM1 · 8

⎫
⎬

⎭
(p6, dt12) {VM1 · 4Rh1}

dt13

{
VM1 · 4Rh1,

W t1MB1, W t2MB2

}
(dp1, dt13)

⎧
⎨

⎩

V M1 · 4Rh1,

W t1MB1,

W t2MB2

⎫
⎬

⎭
(p3, dt13)

{
VM1 · 0,
VM2 · 0

}

(p7, dt13) {VM1 · 5}
p5 {VM1 · 4} dt21 {VM1 · 0, VM2 · 0} (p3, dt21) {VM1 · 0, VM2 · 0} (dp2, dt21)

{
VM1 · 0,
VM2 · 0

}

p6 {Rh1} dt22 {VM1 · 5} (p7, dt22) {VM1 · 5} (dp2, dt22) {VM1 · 5}
p7 {VM1 · 5, VM1 · 7} dt23 {V M2 · 0, VM1 · 0, (dp2, dt23)

{
VM2 · 0, VM1 · 0, (p4, dt23) {VM2 · 1,

VM1 · 5} VM1 · 5
}

VM1 · 1,

VM1 · 6}
p8

{
VM1, VM2

}
t3

{
VM2 · 1, VM1 · 1, (p4, t3)

{
VM2 · 1, VM1 · 1, (p3, t3)

{
VM1 · 2,

VM1 · 6
}

VM1 · 6
}

VM2 · 2
}

dp1

{
VM1 · 4Rh1,

W t1MB1, W t2MB2

}
(p7, t3) {VM1 · 7}

dt41 {VM1 · 2, VM2 · 2} (p3, dt41) {VM1 · 2, VM2 · 2} (dp4, dt41)
{
VM1 · 2,
VM2 · 2

}

dp2

{
VM2 · 0,

VM1 · 0, VM1 · 5

}
dt42 {VM1 · 7} (p7, dt42) {VM1 · 7} (dp4, dt42) {VM1 · 7}
dt43

{
VM2 · 2, VM1 · 2,

(
dp4, dt43

) {
VM2 · 2, VM1 · 2, (p4, dt43)

{
VM2 · 3,

VM1 · 7
}

VM1 · 7
}

VM1 · 3,
VM1 · 8

}

dp4

{
VM2 · 2,

VM1 · 2, VM1 · 7

}
t5

{
VM2 · 3, VM1 · 3, (p4, t5)

{
VM2 · 3, VM1 · 3, (p5, t5) {VM1 · 4}

VM1 · 8
}

VM1 · 8
}

(p8, t5)
{
VM1 · 2,
VM2 · 2

}

Nested net system model

In accordance with the product hierarchies in Fig. 7, a num-
ber of RNets, MNets and ANets are constructed for all the
parts, assemblies and manufacturing resources contained in

5p

3t

3p

4p

5t
1p

2p

6p

21dt 22dt

23dt

41dt 42dt

43dt

4dp

2dp

11dt

12dt

13dt

1dp

5p

3t

3p

4p

5t
1p

2p

6p

21dt 22dt

23dt

41dt 42dt

43dt

4dp

2dp

11dt

12dt

13dt

1dp

Fig. 9 The MNet for part variants Wt1 and W t2

the process platform. Then the system model for production
configuration is composed based on net nesting, as shown in
Fig. 12. For illustrative simplicity, not all the RNets, MNets
and ANets are shown in the figure. Also not included is level
6 for the RNets.

On completion of producing a particular item, the objects
represented by port places start to send messages that request
for certain operations to the objects represented by socket
places. For example, when one MB2 is produced in the ANet
at level 2 and loaded into output buffer p8 (also a port place),
a message requesting machine setup from p8 is sent to socket
place (representing machine W cM1) within the PNet . Mean-
while, place p2(nesting the ANet) holds the same colored
token as that of M B2. The inhibitor arcs are then applied to
those single resource objects, for example, machine W cM1

(p3) and the material handler (p4) within the PNet . As a
consequence, each time objects are guaranteed to perform
one task only.

123

372 J Intell Manuf (2009) 20:359–378

Table 6 Process flows and colored tokens for part variants W t1 and W t2

Process flow of W t1 Process flow of W t2

Operations Resource/place Colored token Operations Resource/place Colored token

Staying in buffer Input buffer/p1 W t1 · 0 Staying in buffer Input buffer/p1 W t2 · 0
W M M1setting up W M M1/p2 W t1 · 1 setting up W M M2/p5 W t2 · 1
Being transferred Material handler/ p3 W t1 · 2 Being transferred Material handler/p3 W t2 · 2
Being machined W M M1/p2 W t1 · 3 Being machined W M M2/p5 W t2 · 3
Being transferred Material handler/p3 W t1 · 4 Being transferred Material handler/p3 W t2 · 4
Staying in buffer WIP buffer/p4 W t1 · 5 Staying in buffer WIP buffer/p4 W t2 · 5
W M M2setting up W M M2/p5 W t1 · 6 W M M1setting up W M M1/p2 W t2 · 6
Being transferred Material handler/p3 W t1 · 7 Being transferred Material handler/p3 W t2 · 7
Being machined W M M2/p5 W t1 · 8 Being machined W M M1/p2 W t2 · 8
Being transferred Material handler/p3 W t1 · 9 Being transferred Material handler/p3 W t2 · 9
Staying in buffer Output buffer/p6 W t1 Staying in buffer Output buffer/p6 W t2

Table 7 Resources and operations associated with the MNet and the ANet

Place MNet for parts W t1 & W t2 ANet for assemblies MB1 & MB2

p1 Input buffer Assembly processes of assemblies AA1&AA2
p2 Machining machine WMM1 Assembly processes of assemblies BA1&BA2
p3 Material handler Assembly machine AIM1
p4 WIP buffer Material handler
p5 Machining machine WMM2 WIP buffer
p6 Output buffer Assembly process of assembly FA1
p7 Assembly machine FCM1
p8 Output buffer

Table 8 Colored tokens, input and output transform functions for the MNet

Place Colored token Transition Colored token Input arc Input arc Output arc Output arc
transform function transform function

p1 {W t1 · 0, W t2 · 0} dt11 {W t1 · 0, W t2 · 0} (p1, dt11) {W t1 · 0, W t2 · 0} (dp1, dt11) {W t1 · 0, W t2 · 0}
p2

{
W t1 · 1, W t2 · 3,

W t2 · 6, W t2 · 8

}
dt12 {W t1 · 5, W t2 · 5} (p4, dt12) {W t1 · 5, W t2 · 5} (dp1, dt12) {W t1 · 5, W t2 · 5}

dt13

{
W t1 · 0, W t1 · 5,

W t2 · 0, W t2 · 5

}
(dp1, dt13)

{
W t1 · 0, W t1 · 5
W t2 · 0, W t2 · 5

}
(p2, dt13) {W t1 · 1, W t2 · 6}
(p5, dt13) {W t1 · 6, W t2 · 1}

p3

⎧
⎨

⎩

W t1 · 2, W t1 · 4, W t1 · 7,

W t1 · 9, W t2 · 2, W t2 · 4,

W t2 · 7, W t2 · 9

⎫
⎬

⎭
dt21 {W t1 · 1, W t2 · 6} (p2, dt21) {W t1 · 1, W t2 · 6} (dp2, dt21) {W t1 · 1, W t2 · 6}

dt22 {W t1 · 6, W t2 · 1} (p5, dt22) {W t1 · 6, W t2 · 1} (dp2, dt22) {W t1 · 6, W t2 · 1}
p4 {W t1 · 5, W t2 · 5} dt23

{
W t1 · 1, W t1 · 6,

W t2 · 1, W t2 · 6

}
(dp2, dt23)

{
W t1 · 1, W t1 · 6,

W t2 · 1, W t2 · 6

}
(p3, dt23)

{
W t1 · 2, W t1 · 7,

W t2 · 2, W t2 · 7

}

p5

{
W t1 · 6, W t1 · 8,

W t2 · 1, W t2 · 3

}
t3

{
W t1 · 2, W t1 · 7,

W t2 · 2, W t2 · 7

}
(p3, t3)

{
W t1 · 2, W t1 · 7,

W t2 · 2, W t2 · 7

}
(p2, t3) {W t1 · 3, W t2 · 8}
(p5, t3) {W t1 · 8, W t2 · 3}

p6 {W t1, W t2} dt41 {W t1 · 3, W t2 · 8} (p2, dt41) {W t1 · 3, W t2 · 8} (dp4, dt41) {W t1 · 3, W t2 · 8}
dp1

{
W t1 · 0, W t1 · 5,

W t2 · 0, W t2 · 5

}
dt42 {W t1 · 8, W t2 · 3} (p5, dt42) {W t1 · 8, W t2 · 3} (dp4, dt42) {W t1 · 8, W t2 · 3}

dp2

{
W t1 · 1, W t1 · 6,

W t2 · 1, W t2 · 6

}
dt43

{
W t1 · 3, W t1 · 8,

W t2 · 3, W t2 · 8

}
(dp4, dt43)

{
W t1 · 3, W t1 · 8,

W t2 · 3, W t2 · 8

}
(p3, dt43)

{
W t1 · 4, W t1 · 9,

W t2 · 4, W t2 · 9

}

dp4

{
W t1 · 3, W t1 · 8,

W t2 · 3, W t2 · 8

}
t5

{
W t1 · 4, W t1 · 9,

W t2 · 4, W t2 · 9

}
(p3, t5)

{
W t1 · 4, W t1 · 9,

W t2 · 4, W t2 · 9

}
(p4, t5) {W t1 · 5, W t2 · 5}
(p6, t5) {W t1, W t2}

123

J Intell Manuf (2009) 20:359–378 373

7p

3t

4p

5p

5t
6p

1p

2p

3p

8p

11dt

12dt

13dt

21dt
22dt

23dt

41dt
42dt

43dt

4dp

2dp
1dp

7p

3t

4p

5p

5t
6p

1p

2p

3p

8p

11dt

12dt

13dt

21dt
22dt

23dt

41dt
42dt

43dt

4dp

2dp
1dp

Fig. 10 The ANet for assembly variants MB1 and MB2

System analysis and evaluation

Deadlock detection and conflict prevention are widely
adopted as performance indicators for testing a built sys-
tem model (Wang 1996; Wang and Wu 1998). This section
adopts these criteria for performance evaluation of the nested
net system model. The focus is on the MNet for W t1 and
W t2.

Generally there are two types of input conflicts and one
type of output conflicts (Wang 1996). Type I input conflicts
involve more than one output transition to be connected to
one output place. Type II conflicts involve two or more than
two input places to be connected to one transition via an
OR relation. Whenever a transition possesses more than one
output place that is connected through an OR relation, an
output conflict may occur.

Figure 13 shows the MNet for part family Wt . It contains
no type I input conflict, as all of them are removed by tran-
sition decomposition. A type II input conflict may occur at
places p2 and p5, since both of them are connected to two out-
put transitions. An output conflict may occur at transitions

dt13, t3 and t5, since all of them exhibit two output places
with OR relations. Through assignment of colored tokens
to places and transitions and in conjunction with input and
output transform functions, the decisions regarding which
transition to fire and which place to add tokens to can be
determined according to the colors. Therefore, output con-
flicts are resolved by assigning different colors.

The deadlock detection algorithm in Wang and Wu (1998)
is applied to the MNet in Fig. 13, as elaborated below.

(1) The initial state is set as that raw materials of two parts
are in the input buffer. And the goal state is set as that both
two parts are produced and loaded into the output buffer. The
initial marking M0 and the goal state marking Mg become
the following,

M0 = (µ(p1), µ(p2), µ(p3), µ(p4), µ(p5), µ(p6),

µ(dp1), µ(dp2), µ(dp4),)

= (W t1 · 0 + W t2 · 0, 0, 0, 0, 0, 0, 0, 0, 0)

Mg = (0, 0, 0, 0, 0, W t1 + W t2, 0, 0, 0).

(2) Construct an incidence matrix, W , such that,

W + =
[
w+

i j

]

m×n
, where w+

i j = O
(

pi , t j/Ct j
)
,

∀i ∈ [1, m] , j ∈ [1, n] ; and

W − =
[
w−

i j

]

m×n
, where w−

i j = I
(

pi , t j/ct j
)
,

∀i ∈ [1, m] , j ∈ [1, n] .

Set m = 9 (the total number of places in the MNet) and
n = 11 (the total number of transitions in the MNet). Then,

Table 9 Process flows for assembly variants M B1 and M B2

Process flow of M B1 Process flow of M B2

Operation Resource (or process)/ Colored Operation Resource (or process)/ Colored
place token place token

Assembly AA1is produced Assembly process/p1 AA1 AssemblyAA2is produced Assembly process/p1 AA2
AssemblyB A1is produced Assembly process/p2 B A1 Assembly B A2is produced Assembly process/p2 B A2
AI M1setting up AI M1/p3 M B1 · 0 AI M1setting up AI M1/p3 M B2 · 0
Being transferred Material handler/p4 M B1 · 1 Being transferred Material handler/p4 M B2 · 1
Being assembled AI M1/p3 M B1 · 2 Being assembled AI M1/p3 M B2 · 2
Being transferred Material handler/p4 M B1 · 3 Being transferred Material handler/p4 M B2 · 3
Staying in buffer WIP buffer/p5 M B1 · 4 Staying in buffer Output buffer/p8 M B2
AssemblyF A1is produced Assembly process/p6 F A1
FC M1setting up FC M1/p7 M B1 · 5
Being transferred Material handler/p4 M B1 · 6
Being assembled FC M1/p7 M B1 · 7
Being transferred Material handler/p4 M B1 · 8
Staying in buffer Output buffer/p8 M B1

123

374 J Intell Manuf (2009) 20:359–378

Table 10 Colored tokens, input and output transform functions for the ANet

Place Colored token Transition Colored token Input arc Input arc Output arc Output arc
transform function transform function

p1 {AA1, AA2} dt11 {AA1BA1, AA2BA2} (p1, dt11) {AA1BA1, AA2BA2} (dp1, dt11) {AA1BA1,

p2 {BA1, BA2} (p2, dt11) {AA1BA1, AA2BA2} AA2BA2}
p3

{
MB1 · 0, MB1 · 2,

MB2 · 0, MB2 · 2

}
dt12 {MB1 · 4FA1} (p5, dt12) {MB1 · 4FA1} (dp1, dt12) {MB1 · 4FA1}

(p6, dt12) {MB1 · 4FA1}

p4

⎧
⎨

⎩

MB1 · 1, MB1 · 3,

MB2 · 1, MB2 · 3,

MB1 · 6, MB1 · 8

⎫
⎬

⎭
dt13

{
MB1 · 4FA1,

AA1BA1, AA2BA2

}
(dp1, dt13)

{
MB1 · 4FA1,

AA1BA1, AA2BA2

}
(p3, dt13) {MB1 · 0, MB2 · 0}

(p7, dt13) {MB1 · 5}
p5 {MB1 · 4} dt21 {MB1 · 0, MB2 · 0} (p3, dt21) {MB1 · 0, MB2 · 0} (dp2, dt21) {MB1 · 0, MB2 · 0}
p6 {F A1} dt22 {MB1 · 5} (p7, dt22) {MB1 · 5} (dp2, dt22) {MB1 · 5}
p7 {MB1 · 5, MB2 · 7} dt23

{
MB1 · 0, MB2 · 0, (dp2, dt23)

{
MB1 · 0, MB2 · 0, (p4, dt23) {MB1 · 0, MB2 · 0,

MB1 · 5
}

MB1 · 5
}

MB1 · 5}
p8 {MB1, MB2} t3

{
MB1 · 1, MB2 · 1, (p4, t3)

{
MB1 · 1, MB2 · 1, (p3, t3) {MB1 · 2, MB2 · 2}

MB1 · 6
}

MB1 · 6
}

(p7, t3) {MB1 · 7}
dp1

{
MB1 · 4FA1,

AA1BA1, AA2BA2

}
dt41 {MB1 · 2, MB2 · 2} (p3, dt41) {MB1 · 2, MB2 · 2} (dp4, dt41) {MB1 · 2, MB2 · 2}

dp2

{
MB2 · 0,

MB1 · 0, MB1 · 5

}
dt42 {MB1 · 7} (p7, dt42) {MB1 · 7} (dp4, dt42) {MB1 · 7}
dt43

{
MB1 · 2, MB2 · 2, (dp4, dt43)

{
MB1 · 2, MB2 · 2, (p4, dt43) {MB1 · 2, MB2 · 2,

MB1 · 7
}

MB1 · 7
}

MB1 · 7}
dp4

{
MB2 · 2,

MB1 · 2, MB1 · 7

}
t5

{
MB1 · 3, MB2 · 3,

MB1 · 8
} (p4, t5)

{
MB1 · 3, MB2 · 3,

MB1 · 8
} (p5, t5)

(p8, t5)
{MB1 · 4}
{MB1, M B2}

Fig. 11 Specification of
internal behavior of assembly
machine W cM1

dt11 dt12 dt13 dt21 dt22 dt23 t3 dt41 dt42 dt43 t5

W+ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 0 0 0 0 0
0 0 O1 0 0 0 O2 0 0 0 0
0 0 0 0 0 O3 0 0 0 O4 0
0 0 0 0 0 0 0 0 0 0 O5
0 0 O6 0 0 0 O7 0 0 0 0
0 0 0 0 0 0 0 0 0 0 O8
id id 0 0 0 0 0 0 0 0 0
0 0 0 id id 0 0 0 0 0 0
0 0 0 0 0 0 0 id id 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

p1
p2
p3
p4
p5
p6
dp1
dp2
dp3

W − =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

id 0 0 0 0 0 0 0 0 0 0
0 0 0 id 0 0 0 id 0 0 0
0 0 0 0 0 0 id 0 0 0 id
0 id 0 0 0 0 0 0 0 0 0
0 0 0 0 id 0 0 0 id 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 id 0 0 0 0 0 0 0 0
0 0 0 0 0 id 0 0 0 0 0
0 0 0 0 0 0 0 0 0 id 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

123

J Intell Manuf (2009) 20:359–378 375

5p

3t

3p

4p

5t
1p

2p

6p

21dt
22dt

23dt

41dt 42dt

43dt

4dp

2dp

11dt

12dt

13dt
1dp

7p

3t

4p

5p

5t
6p

1p

2p

3p

8p

11dt

12dt

13dt

21dt
22dt

23dt

41dt 42dt

43dt

4dp

2dp
1dp

5p

3t

3p

4p

5t
1p

2p

6p

21dt
22dt

23dt

41dt 42dt

43dt

4dp

2dp

11dt

12dt

13dt
1dp

7p

3t

4p

5p

5t6p

1p

2p

3p

8p

11dt

12dt

13dt

21dt
22dt

23dt

41dt
42dt

43dt

4dp

2dp
1dp

1sp
2at1at

3sp
3at 4at

2sp

2im 2om

1om1im id id id id

id id id id

∗id

∗id
∗id

∗id

3t

4p

5p

5t

1p

2p

3p

1t
4t

2t

7p

3t

4p

5p

5t
6p

1p

2p

3p

8p

11dt

12dt

13dt

21dt
22dt

23dt

41dt 42dt

43dt

4dp

2dp
1dp

3p

4p

5t
1p

8p

21dt

22dt 23dt

41dt

42dt 43dt

4dp

2dp 44dt
25dt

24dt

2p

5p

6p

7p

11dt

12dt

13dt

1dp

3p

4p

5t
1p

8p

21dt

22dt 23dt

41dt

42dt 43dt

4dp

2dp
44dt25dt

24dt

2p

5p

6p

7p

11dt

12dt

13dt
1dp

1sp
2at1at

3sp
3at 4at

2sp

2im 2om

1om1im
id id id id

id id id id

∗id

∗id
∗id

∗id

7p

3t

4p

5p

5t
6p

1p

2p

3p

8p

11dt

12dt

13dt

21dt
22dt

23dt

41dt

42dt

43dt

4dp

2dp
1dp

Level 1

Level 5

Level 4

Level 3

Level 2

45dt

45dt

5p

3t

3p

4p

5t
1p

2p

6p

21dt
22dt

23dt

41dt 42dt

43dt

4dp

2dp

11dt

12dt

13dt
1dp

7p

3t

4p

5p

5t
6p

1p

2p

3p

8p

11dt

12dt

13dt

21dt
22dt

23dt

41dt 42dt

43dt

4dp

2dp
1dp

5p

3t

3p

4p

5t
1p

2p

6p

21dt
22dt

23dt

41dt 42dt

43dt

4dp

2dp

11dt

12dt

13dt
1dp

7p

3t

4p

5p

5t6p

1p

2p

3p

8p

11dt

12dt

13dt

21dt
22dt

23dt

41dt
42dt

43dt

4dp

2dp
1dp

1sp
2at1at

3sp
3at 4at

2sp

2im 2om

1om1im id id id id

id id id id

∗id

∗id
∗id

∗id

3t

4p

5p

5t

1p

2p

3p

1t
4t

2t

7p

3t

4p

5p

5t
6p

1p

2p

3p

8p

11dt

12dt

13dt

21dt
22dt

23dt

41dt 42dt

43dt

4dp

2dp
1dp

3p

4p

5t
1p

8p

21dt

22dt 23dt

41dt

42dt 43dt

4dp

2dp 44dt
25dt

24dt

2p

5p

6p

7p

11dt

12dt

13dt

1dp

3p

4p

5t
1p

8p

21dt

22dt 23dt

41dt

42dt 43dt

4dp

2dp
44dt25dt

24dt

2p

5p

6p

7p

11dt

12dt

13dt
1dp

1sp
2at1at

3sp
3at 4at

2sp

2im 2om

1om1im
id id id id

id id id id

∗id

∗id
∗id

∗id

7p

3t

4p

5p

5t
6p

1p

2p

3p

8p

11dt

12dt

13dt

21dt
22dt

23dt

41dt

42dt

43dt

4dp

2dp
1dp

Level 1

Level 5

Level 4

Level 3

Level 2

45dt

45dt

Fig. 12 Nested net system model for VM1 and VM2

123

376 J Intell Manuf (2009) 20:359–378

W = W+ − W−

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−id 0 0 0 0 0 0 0 0 0 0

0 0 O1 −id 0 0 O2 −id 0 0 0

0 0 0 0 0 O3 −id 0 0 O4 −id

0 −id 0 0 0 0 0 0 0 0 O5

0 0 O6 0 −id 0 O7 0 −id 0 0

0 0 0 0 0 0 0 0 0 0 O8

id id −id 0 0 0 0 0 0 0 0

0 0 0 id id −id 0 0 0 0 0

0 0 0 0 0 0 0 id id −id 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(3) At the initial marking M0 (i.e., k = 0), the set of
enabled transitions, Tenable−0, are related to their firing col-
ored tokens ct j , that is, Tenable−0 = {

dt11/W t1 · 0, dt11/

W t2 · 0
}
.

(4) Transition dt11/W t1 · 0 is selected to fire.
(5) The characteristic vector Sk of a firing sequence S is

set to have entry ct j for the transition selected to fire and 0
for all others. Hence,

S0 = (dt11, dt12, dt13, dt21, dt22, dt23, t3, dt41, dt42,

dt43, t5)
−1

= (W t1 · 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)−1

(6) The following state marking, Mk+1 = M0+1 = M1,
after firing the transition dt11/W t1 ·0 is computed according
to M−1

k+1 = M−1
k + W Sk . Thereby, M1 = (W t2 · 0, 0, 0, 0,

0, 0, W t1 · 0, 0, 0). As M1 �= Mg , k is set to be k + 1 (i.e.,
k=0+1 = 1). Then go to step (3).

As for marking M1, it is true that Tenable−1 = {dt13/W t1 ·
0, dt11/W t2 · 0}. Thus transition dt11/W t2 · 0 is selected to
fire. Then S1 = (W t2 · 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)−1.
Therefore Mk+1 = M2 is computed as M2 = (0, 0, 0,

0, 0, 0, W t1 · 0 + W t2 · 0, 0, 0). Since M2 �= Mg , k is
set to 2. Go to step (3).

Since Tenable−2 = {dt13/W t1 · 0, dt13/W t2 · 0}, dt13/

W t1 · 0 is selected to fire. As a result, S2 = (0, 0, W t1 · 0,
0, 0, 0, 0, 0, 0, 0, 0)−1, and thus M3 is computed as M−1

3 =
M−1

2 + W S2. According to the output functions of the MNet
(Fig. 12), it can infer that O6(W t1 ·0) = 0 and O6(W t1 ·0) =
W t1 · 1. Considering the input identity function defined for
the MNet, we have −id(W t1 · 0) = −W t1 · 0. Furthermore,

M−1
3 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0
0
0
0

W t1 · 0 + W t2 · 0
0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−id 0 0 0 0 0 0 0 0 0 0
0 0 O1 −id 0 0 O2 −id 0 0 0
0 0 0 0 0 O3 −id 0 0 O4 −id
0 −id 0 0 0 0 0 0 0 0 O5
0 0 O6 0 −id 0 O7 0 −id 0 0
0 0 0 0 0 0 0 0 0 0 O8
id id −id 0 0 0 0 0 0 0 0
0 0 0 id id −id 0 0 0 0 0
0 0 0 0 0 0 0 id id −id 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

×

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0

W t1
0
0
0
0
0
0
0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0
0
0
0

W t1 · 0 + W t2 · 0
0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
O1(W t1 · 0)

0
0

O6(W t1 · 0)

0
−id(W t1 · 0)

0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0
0
0
0

W t1 · 0 + W t2 · 0
0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
W t1 · 1

0
0
0
0

−W t1 · 1
0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
W t1 · 1

0
0
0
0

W t2 · 0
0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Since M3 �= Mg , the deadlock detection process is contin-
ued. On completion, the deadlock analysis reaches the final
goal marking, Mg = (0, 0, 0, 0, 0, W t1 + W t2, 0, 0, 0).
Figure 14 shows an example of feasible sequence that leads
to the final goal state. Accordingly, it concludes that the MNet
for W t1 and W t2 is live and deadlock free.

Conclusions

The multilevel system of nested colored object-oriented PNs
with changeable structures excels in modeling details of pro-
duction configuration at different levels of abstraction. The
differentiation mechanism inherent in CPNs and OPNs facil-
itates the representation of various process elements in rela-
tion to diverse product items. Attaching data to tokens to
form colored tokens helps track the manufacturing resources,
performed operations and product items throughout configu-
ration, and thus leads to efficiency in handling multiple con-
figuration constraints. Net nesting alleviates the complexity
of production configuration though decomposition. Through

123

J Intell Manuf (2009) 20:359–378 377

Fig. 13 The MNet of part
variants Wt1 and Wt2

Fig. 14 A feasible firing
sequence leading to the goal
marking

specifying port places, socket places and message exchange,
the continuity of model execution can be maintained from
the lowest level to the highest level.

Comparing with existing PN tools for either manufactur-
ing of parts or assembly processes, the proposed nested PNs
demonstrate an advantage in elucidating the entire production

process from part manufacturing to final product assembly.
It contributes to the consensus on a holistic view of product
differentiation and process variation. The executability of
PNs allows the possibility of developing simulation, mathe-
matical analysis and real-time control models for managing
product and process variety while leveraging upon existing

123

378 J Intell Manuf (2009) 20:359–378

product families and process platforms. Decision support
to production configuration also paves an avenue for future
research.

Open Access This article is distributed under the terms of the Creative
Commons Attribution Noncommercial License which permits any
noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

Adamou, M., Zerhouni, S. N., & Bourjault, A. (1998). Hierarchical
modeling and control of flexible assembly systems using object-
oriented Petri nets. International Journal of Computer Integrated
Manufacturing, 11(1), 18–33. doi:10.1080/095119298130949.

Benjaafar, S., Heragu, S. S., & Irani, S. A. (2002). Next generation fac-
tory layouts: Research challenges and recent progress. Interfaces,
32(6), 58–76. doi:10.1287/inte.32.6.58.6473.

Bozarth, C., & McDermott, C. (1998). Configurations in manufactur-
ing strategy: A review and directions for future research. Journal
of Operations Management, 16(3), 427–439. doi:10.1016/S0272-
6963(98)00022-9.

Hayes, R., & Wheelwright, S. (1984). Restoring our Competitive Edge.
New York, NY: Wiley.

He, D. W., Strege, B., Tolle, H., & Kusiak, A. (2000). Decomposition
in automatic generation of Petri nets for manufacturing system con-
trol and scheduling. International Journal of Production Research,
38(6), 1437–1457. doi:10.1080/002075400188942.

Hill, T. (1994). Manufacturing strategy: Text and cases. Homewood,
IL: Irwin.

Jensen, K. (1992). Colored Petri Nets: Basic concepts, analysis methods
and practical use. Berlin: Springer-Verlag.

Jiang, Z., Zuo, M. J., Tu, P. Y., & Fung, R. Y. K. (1999). Object-oriented
Petri Nets with changeable structure (OPNs-CS) for production sys-
tem modeling, International Journal of Advanced Manufacturing
Technology, 15(6), 445–458. doi:10.1007/s001700050089.

Jiao, J., Simpson, T. W., & Siddique, Z. (2007). Product family design
and platform-based product development: A start-of-the-art review.
Journal of Intelligent Manufacturing, 18(1), 5–29. doi:10.1007/
s10845-007-0003-2.

Jiao, J., Tseng, M. M. (2004). Customizability analysis in design
for mass customization. Computer-Aided Design, 36(8), 745–757.
doi:10.1016/j.cad.2003.09.012.

Jiao, J., Zhang, L., & Prasanna, K. (2004). Process variety modeling for
process configuration in mass customization: An approach based on
object-oriented Petri-Nets with changeable structures. International
Journal of Flexible Manufacturing Systems, 16(4), 335–361. doi:10.
1007/s10696-005-5171-9.

Kumar, R., Kumar, S., & Tiwari, M.K. (2005). An expert enhanced
coloured fuzzy Petri net approach to reconfigurable manufactur-
ing systems involving information delays. International Journal of
Advanced Manufacturing Technology, 26, 922–933. doi:10.1007/
s00170-003-1890-9.

Kumar, R. R., Kumar Singh, A., & Tiwari, M. K. (2004). A fuzzy
based algorithm to solve the machine-loading problems of a FMS and
its neuro fuzzy Petri net model. International Journal of Advanced
Manufacturing Technology, 23, 318–341. doi:10.1007/s00170-002-
1499-4.

Kumar Singh, A., Tiwari, M. K., & Mukhopadhyay, S. K. (2003). Mod-
elling and planning of the disassembly processes using an enhanced
expert Petri net. Iinternational Journal of Production Research,
41(16), 3761–3792. doi:10.1080/0020754031000109125.

Li, X. O., & Lara-Rosano. (1999). Modeling an electronic component
manufacturing system using object oriented colored Petri nets. In
Proceedings of the 6th IEEE International Conference on Electron-
ics, Circuits, and Systems, Pafos, Cyprus.

Lopez-Mellado, E., & Almeyda-Canepa, H. (2003). A three-level net
formalism for the modeling of multiple mobile robot systems. Inter-
national Journal of Computer Integrated Manufacturing, 18(2–3),
122–136.

Martinez, M. T., Favrel, J., & Ghodous, P. (2000). Product family man-
ufacturing plan generation and classification. Concurrent Engineer-
ing: Research and Applications, 8(1), 12–22.

Mittal, S., & Frayman, F. (1989). Towards a generic model of configura-
tion tasks. In Proceedings of the 11th International Joint Conference
on Artificial Intelligence (pp. 1395–1401). San Francisco: Morgan
Kaufmann.

Morandin Junior, O., & Kato, E. R. R. (2003). Virtual Petri nets as a
modular modeling method for planning and control tasks of FMS.
International Journal of Computer Integrated Manufacturing, 18(2–
3), 100–106.

Morandin Junior, O., Kato, E. R. R., Politano, P. R., Camargo,
H. A., Porto, A. J. V., & Inamasu, R. Y. (2000). A modular model-
ing approach for automated manufacturing systems based on shared
resources and process planning using Petri nets. In Proceedings of
IEEE International Conference on Systems, Man, and Cybernetics,
Nashville, TN.

Peterson, J. L. (1981). Petri Net theory and the modeling of systems.
Englewood Cliffs, NJ: Prentice-Hall.

Prasad, B. (1998) Designing products for variety and how to manage
complexity. Journal of Product & Brand Management, 7(3), 208–
222. doi:10.1108/10610429810222840.

Sabin, D., & Weigel, R. (1998) Product configuration frameworks — a
survey. IEEE Intelligent Systems & Their Applications, 13(4), 42–49.

Sawhney, M. S. (1998). Leveraged high-variety strategies: From port-
folio thinking to platform thinking. Journal of the Academy of Mar-
keting Science, 26(1), 54–61. doi:10.1177/0092070398261006.

Schierholt, K. (2001). Process configuration: Combining the princi-
ples of product configuration and process planning. AIEDAM, 15(5),
411–424.

Siddique, Z. (2005). Assembly process selection to minimize exist-
ing assembly system modification cost during new product family
member design Proceedings of ASME Design Engineering Technical
Conferences DETC2005-85016, Long Beach, CA.

Simpson, T. W. (2004). Product platform design and customization:
Status and promise. AIEDAM, 18(1), 3–20.

Stobaugh, R., & Telesio, P. (1983). Match manufacturing policies and
product strategy. Harvard Business Review, 61(2), 113–120.

Thomas, J. P., Nissanke, N., Baker, K. D. (1996). A hierarchical Petri
net framework for the representation and analysis of assembly, IEEE
Transactions of Robotics and Automation, 12(2), 268–279. doi:10.
1109/70.488946.

Wang, L.C. (1996). Object-oriented Petri nets for modeling and analysis
of automated manufacturing systems. Computer Integrated
Manufacturing Systems, 26(2), 111–125. doi:10.1016/0951-
5240(95)00032-1.

Wang, L. C., & Wu, S.Y. (1998). Modeling with colored timed object-
oriented Petri nets for automated manufacturing systems. Computers
and Industrial Engineering, 34(2), 463–480. doi:10.1016/S0360-
8352(97)00145-9.

Wortmann, J. C., Muntslag, D. R., & Timmermans, P. J. M. (1997).
Customer Driven Manufacturing, London: Chapman & Hall.

123

http://dx.doi.org/10.1080/095119298130949
http://dx.doi.org/10.1287/inte.32.6.58.6473
http://dx.doi.org/10.1016/S0272-6963(98)00022-9
http://dx.doi.org/10.1016/S0272-6963(98)00022-9
http://dx.doi.org/10.1080/002075400188942
http://dx.doi.org/10.1007/s001700050089
http://dx.doi.org/10.1007/s10845-007-0003-2
http://dx.doi.org/10.1007/s10845-007-0003-2
http://dx.doi.org/10.1016/j.cad.2003.09.012
http://dx.doi.org/10.1007/s10696-005-5171-9
http://dx.doi.org/10.1007/s10696-005-5171-9
http://dx.doi.org/10.1007/s00170-003-1890-9
http://dx.doi.org/10.1007/s00170-003-1890-9
http://dx.doi.org/10.1007/s00170-002-1499-4
http://dx.doi.org/10.1007/s00170-002-1499-4
http://dx.doi.org/10.1080/0020754031000109125
http://dx.doi.org/10.1108/10610429810222840
http://dx.doi.org/10.1177/0092070398261006
http://dx.doi.org/10.1109/70.488946
http://dx.doi.org/10.1109/70.488946
http://dx.doi.org/10.1016/0951-5240(95)00032-1
http://dx.doi.org/10.1016/0951-5240(95)00032-1
http://dx.doi.org/10.1016/S0360-8352(97)00145-9
http://dx.doi.org/10.1016/S0360-8352(97)00145-9

	Modeling production configuration using nested colored object-orientedPetri-nets with changeable structures
	Abstract
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

