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Abstract Time-resolved fluorescence on oligomers of the main
light-harvesting complex from higher plants indicate that
in vitro oligomerization leads to the formation of a weakly cou-
pled inter-trimer chlorophyll–chlorophyll (Chl) exciton state
which converts in tens of ps into a state which is spectrally broad
and has a strongly far-red enhanced fluorescence spectrum. Both
its lifetime and spectrum show striking similarity with a 400 ps
fluorescence component appearing in intact leaves of Arabidopsis
when non-photochemical quenching (NPQ) is induced. The fluo-
rescence components with high far-red/red ratio are thus a char-
acteristic marker for NPQ conditions in vivo. The far-red
emitting state is shown to be an emissive Chl–Chl charge transfer
state which plays a crucial part in the quenching.
� 2008 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.
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1. Introduction

The most abundant protein in the thylakoid membrane, the

light-harvesting complex of photosystem II (LHCII), plays a

crucial role in controlling the structure of the membrane and

in the adaptation to light changes. On the one hand light-energy

is absorbed by LHCII and transferred to the reaction center of

photosystem II (PSII), on the other hand Lhcb proteins are in-

volved in the non-photochemical quenching (NPQ) of excess

light-energy in order to protect PSII from photodamage. A

large part of NPQ is the so-called energy-dependent component

(qE) that is rapidly reversible (see e.g. [1–4] for recent reviews).

The energy-dependent NPQ is correlated with the lowering

of the thylakoid lumen pH [1,5], the conversion of violaxan-
Abbreviations: Chl, chlorophyll; cmc, critical micelle concentration;
CT, charge transfer; DAS, decay associated spectra; DM, dodecyl
maltoside; LHCI, light-harvesting complex of photosystem I; LHCII,
major light-harvesting complex of photosystem II; NPQ, non-photo-
chemical quenching; Nx, neoxanthin; PSI, photosystem I; PSII,
photosystem II; SAS, species-associated spectra; Vx, violaxanthin;
Zx, zeaxanthin
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thin (Vx) to zeaxanthin (Zx) via the xanthophyll cycle [6,7]

and the correlated action of the PsbS protein [8]. Following

earlier studies of in vitro LHCII oligomers [9–11] (for a review

see [12]) comparison studies of the excited state quenching in a

LHCII crystal [13] and of in vitro LHCII oligomers [14] have

led to the suggestion that oligomerization of LHCII and con-

formational changes [15] are responsible for the major part of

qE. The proposed mechanism involves an aggregation-induced

conformational change of the LHCII protein which then al-

lows energy transfer quenching by a lutein [14]. This interpre-

tation is discussed rather controversially in the literature

however. An alternative suggestion for both the localization

as well as the mechanism of qE quenching has been put for-

ward [16–18]. According to this suggestion qE involves Zx – lo-

cated in the minor antenna complexes of PSII – acting as a

direct quencher due to electron transfer resulting in the forma-

tion of a Zx+� radical cation and a Chl�� radical anion.

Elucidation of the detailed quenching mechanisms would be

largely facilitated by the presence of spectroscopic markers

which can be observed both in vivo under NPQ conditions

and in vitro experiments. One such marker is the change in a

neoxanthin Raman band occurring upon NPQ induction

in vivo [14] which is however difficult to detect. We have thus

started to search for other possible spectroscopic markers

which might provide further hints on the photochemical mech-

anism(s) involved in NPQ. We report here a study on the time-

resolved fluorescence of various in vitro LHCII oligomers

(aggregates) and comparison of their spectroscopic properties

to a characteristic fluorescence component that appears

in vivo in intact Arabidopsis leaves under high light irradiation

(NPQ) conditions. In both cases a characteristic far-red fluo-

rescence component of similar lifetime is observed. We suggest

that this far-red fluorescence is indicative of the formation of a

Chl–Chl charge transfer (CT) state in the LHCII oligomers

and that the strikingly similar far-red fluorescence under

NPQ conditions provides a spectroscopic marker for a similar

state in vivo in a NPQ mechanism.
2. Materials and methods

2.1. Isolation procedures
LHCII lamellar aggregates were isolated from spinach following the

procedure described earlier [19,20]. LHCII trimers were isolated from
the npq1 and npq2 mutants from Arabidopsis thaliana as described [21].
The npq1 mutant cannot convert Vx to Zx due to a lack of the enzyme
blished by Elsevier B.V. All rights reserved.

mailto:miloslaw@mpi-muelheim.mpg.de 
mailto:holzwarth@mpi-muelheim.mpg.de 


Fig. 1. Comparison of the DAS of selected lifetime components of
various in vitro oligomers and of lamellar aggregates. The spectrum of
the 400 ps in vivo lifetime component appearing under NPQ condi-
tions in intact Arabidopsis leaves is also shown (red circles). Note that
the latter spectrum has been corrected for self-absorption in the
optically dense plant leaf using a correction function that has been
obtained from a comparison of the total fluorescence spectra from the
leaf and that of isolated thylakoids from the same plant. All spectra are
normalized to the maximum.
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Vx-deepoxidase, while the npq2 mutant produces Zx already in the
dark due to a lack of Zx-epoxidase. The far-red fluorescence lifetime
component appearing after high light irradiation in vivo (cf. Fig. 1)
has been measured in intact Arabidopsis w.t. leaves after irradiation
with 600 lE/m2/s photon flux density for 45 min. Low-temperature
(77 K) fluorescence was measured in a cryostat with 60% glycerol
added.

2.2. Time-resolved fluorescence
Time-resolved fluorescence measurements were performed as de-

scribed in [22]. The fluorescence decays were recorded using a single-
photon-counting apparatus with a resolution of 1–2 ps. The excitation
wavelength was 645 nm and fluorescence was detected at different
wavelengths between 660 and 760 nm. The fluorescence decays were
analyzed by global lifetime analysis and by target analysis [23]. The
LHCII trimers were measured in a buffer containing 10 mM HEPES
pH 7.6, 0.06% b-dodecyl maltoside (DM). For the oligomers the buffer
contained 30 mM MgCl2 and 100 mM KCl instead of b-DM. All mea-
surements were carried out at room temperature in a sealed measuring
cuvette with an oxygen scavenging system added containing 1.36 mg/
ml glucose, 65 lg/ml glucose-oxidase and 65 lg/ml catalase.
3. Results

3.1. Global lifetime analysis of the fluorescence kinetics

The fluorescence kinetics of the various trimeric and oligo-

meric LHCII complexes were measured in the range from

�660 to �760 nm. The full decay associated spectra (DAS)

of the fluorescence lifetime measurements of the trimeric com-

plexes are given in the Supplementary Information (Fig. S1).

The kinetics of the trimers was characterized by either four

or five exponentials. The predominant amplitude component

has a long lifetime of 4.1 and 3.8 ns (spinach w.t. and npq1-

LHCII from Arabidopsis, respectively) whereas the npq2-

LHCII has a slightly shortened long lifetime of 3.5 ns. The

shortest-lived exponential of 7–8 ps arises from an excited state

equilibration.
Three different types of aggregated LHCII samples were

compared: oligomers obtained from isolated trimers of the

npq1 and npq2 Arabidopsis mutants and lamellar macroaggre-

gates isolated from spinach leaves. The latter type of prepara-

tion contains in addition minor antenna complexes and a

relatively high lipid amount [19]. The lamellar aggregates, or-

ganized in multilayer membrane-like sheets have been shown

to mimic features of the native thylakoid membranes [20,24].

The full set of fluorescence DAS for the oligomers is given in

Fig. S2 (Supplementary Information). The kinetics of these

LHCII oligomers required 4–5 exponentials for a good fit. In

the spectrum of the lamellar aggregates from spinach (Fig.

S2A) the main lifetime component is 650 ps whereas the lon-

gest component is 1.1 ns with relative amplitude of 26% (at

the spectral maximum near 685 nm). The 140 ps component

shows an enhanced far-red/red amplitude ratio (as compared

to the ratio in LHC II trimers). The DAS of the LHCII-npq2

complex (Fig. S2B) revealed a different profile. Instead of

one major lifetime component, two fast lifetimes of 400 and

150 ps have similarly high amplitudes around 685 nm. Only

one of them, the 400 ps component, shows a high far-red/red

amplitude ratio. Similar to the spinach lamellar aggregates,

the longest lifetime was found to be 1.2 ns, but with a much

smaller amplitude. The average lifetime is the shortest-lived

among all the oligomers, i.e. 284 ps. Fig. S2C shows the

DAS of the LHCII-npq1 oligomers. The main lifetime compo-

nent is 835 ps with a substantially higher far-red/red amplitude

ratio than the other components. Fig. 1 shows the DAS of the

main lifetime components from the different oligomers and tri-

mers, selected to compare their different far-red to red ratios

(for the full set of DAS see Figs. S1 and S2). It illustrates that

some lifetime components in the oligomers have a pro-

nouncedly enhanced far-red (710–740 nm) to red (680–

690 nm) amplitude ratio, both in relation to the other compo-

nents in the oligomers, but in particular in comparison to the

DAS of the long-lived (ns) trimer fluorescence. The most

strongly enhanced far-red fluorescence is observed in LHCII-

npq2 oligomers in their 400 ps component. Fig. 1 also shows

for comparison the DAS of an approx. 400 ps lifetime compo-

nent that appears in vivo in intact Arabidopsis leaves upon irra-

diation with high light (NPQ conditions). Such a red-shifted

and strongly far-red-enhanced (far-red to red amplitude ratio)

fluorescence lifetime component is absent in dark-adapted

leaves. Overall the oligomers are strongly quenched as

compared to the trimers, as can be seen in their much shorter

average fluorescence lifetimes (cf. Figs. S1 and S2).

3.2. Target analysis of the kinetics

A close inspection of the kinetic data from the oligomers re-

veals that in particular in oligomers of LHCII-npq1 and

LHCII-npq2 the far-red enhanced fluorescence components

are formed within a few tens of ps from some of the lifetime

component(s) that have spectra which are more similar to

those of the trimeric species. We have thus performed a kinetic

model analysis (so-called target analysis, [23]) where two

emitting species are connected by a reversible process, which

could either be an energy transfer process or some other pro-

cess leading to a new emitting state (cf. Fig. 2). This target

analysis allows us to determine the rate constants of the for-

ward and backward reactions, the decay rate of the second

state, and the corresponding species-associated spectra
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Fig. 2. Two-state model of the fluorescence kinetics of LHCII
oligomers. The rate constants k1, k�1, and kq were determined by
global target analysis (cf. Table 1). The rate constant kF has been
varied parametrically over a range of values from which 0.3–0.4 ns�1

gave the best fitting results. The states E* and P* are proposed to be a
Chl–Chl exciton state formed between LHCII trimers and a Chl–Chl
charge transfer (CT) state with a dominant excited state character,
respectively.

Table 1
Rate constants ki [ns�1] (cf. model in Fig. 2) and lifetimes si [ps]
resulting from the analysis of a homogeneous oligomer model

k1 k�1 kq s1
a s2 s3 s4

LHCII-npq1 oligomers 47 56 3.0 10 675 220 1200
LHCII-npq2 oligomers 16 18 4.8 27 445 180 800

aThe two lifetimes indicated in bold in each case are those that result
from the two-state model shown in Fig. 2. The other two lifetimes
(indicating components with small amplitudes) are required as addi-
tional independent components for a good fit.

Y. Miloslavina et al. / FEBS Letters 582 (2008) 3625–3631 3627
(SAS). Indeed the fluorescence kinetics of the oligomers –

except for the small amounts of very long-lived components

– could be fitted very well with such a model containing two

connected emitting species. If the second species was assumed

to be non-emitting in the analysis, no reasonable fit to the data

could be obtained. The resulting spectra are shown in Fig. 3

and the rate constants in Table 1. We have ignored in this anal-

ysis some small amplitude component(s) with lifetimes of a few

ps. The two connected emitting states show quite different

SAS. The initially excited state has a spectrum that peaks

slightly to the red (by 2–5 nm) and is slightly broader than

the DAS of the long-lived component in LHCII trimers. This

points to the formation of an initial emitting state in the olig-

omers that is different from the trimers. The far-red fluores-

cence intensity of this initial component (E*) – as compared

to the red fluorescence amplitude – and its spectral shape are
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Fig. 3. DAS (A and B) and SAS (C and D), resulting from a homogeneous C
and D) LHCII. The DAS of the long (ns) lifetime component of the correspon
a better fit can be obtained by a heterogeneous model having two exciton an
Figure S5 in the Supplementary Information.
quite similar to that of the long-lived (ns) component in LHCII

trimers. In contrast the fluorescence spectrum of the product

state (P* in Fig. 2) is further red-shifted in its peak to about

685 nm. The most striking feature is however a very broad

and pronounced far-red tail (710–760 nm) that is responsible

for the far-red enhanced steady state fluorescence of the oligo-

mers (Fig. S3). The SAS of the target model are quite similar

for the corresponding components of the oligomers of the

npq1 and npq2 trimers. However, the rate constants of equili-

bration between the two emitting states as well as the deactiva-

tion rate of the P* state differ for the two oligomers.
4. Discussion

In the present work we analyze the combined effect of the

LHCII aggregation and the Zx presence on the fluorescence

lifetime of LHCII. In contrast to previous fluorescence kinetic
680 700 720 740 760

E*
P*
LHCII -npq2 trimers, 3.5ns

09.11.2006 11:05:48

B

D

27
446
179 add.
799 add.

LHCII-npq2 oligomers

LHCII-npq2 oligomers

Wavelength, nm

T model for the oligomers (cf. Fig. 2) of npq1 (A and C) and npq2 (C
ding LHCII trimers is also shown for comparison in red. In some cases
d charge-transfer states. The results of such fit are shown for npq2 in
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studies on LHCII complexes, the V1 site, which is supposed to

be involved in the NPQ mechanism, is fully occupied. Thus the

complexes accommodate Vx and lutein in LHCII-w.t. and

LHCII-npq1, and Zx and lutein in LHCII-npq2, allowing us

to directly address the question of the role of Zx bound to

its physiologically relevant site (Note that in npq2 a very small

amount of Zx is found additionally in the L1 site [25]).

At the level of trimeric LHCII the binding of Zx leads to a

slight shortening of the long (nanosecond) Chl lifetime. Be-

cause in this complex V1 is fully occupied with Zx and a small

amount of Zx also binds to L1, this represents the maximal

possible effect of Zx in the V1 site. This direct quenching effect

of Zx is however much too small to account for the large NPQ

observed in vivo. We do not exclude that it may enhance

slightly the major part of quenching which must be due to a

different effect however.

The data on LHCII in vitro oligomers confirm that the Chl

fluorescence lifetime is drastically quenched after aggregation

of the LHCII trimers. It has been reported in several different

studies [11,26–28] that the longest lifetime of 3–4 ns for the tri-

meric LHCII is reduced to about 1 ns within the oligomers.

This is in agreement with our results on the oligomers from

npq1 (which contain no Zx as did all previous LHCII aggre-

gates) and from lamellar aggregates. The LHCII-npq2 oligo-

mers containing Zx were more quenched than previously

reported aggregates (average lifetime of 280 ps). Furthermore,

in our data the major amplitude component(s) in these oligo-

mers have generally shorter lifetimes than in previous studies.

However, it should be noted that the mean lifetimes varied

slightly between preparations, as well as measurement condi-

tions, e.g. sample concentration (data not shown). Also, a

small amount of unquenched trimers could largely affect the

mean lifetime. Such variations are well-known for aggregated

LHC II preparations. More important than the overall life-

times/yields in the oligomers are the spectral features of the

lifetime components.

As a new feature that has not been reported so far, some

short lifetime components in oligomers show a strongly en-

hanced far-red/red amplitude ratio (Fig. 3 and Fig. S2) as com-

pared to LHCII trimers. This far-red enhancement occurs both

in npq1 and npq2 mutants, but is most pronounced in npq2. A

similar far-red fluorescence has also been observed in LHCII

crystals [13]. It was interpreted as indicating a change in Chl

configuration within a trimer in the crystal leading to different

emitting species. LHCII has a large fraction of Chls that are

located at or close to the surface of the protein [29,30]. While

we cannot exclude the possibility of a change in the Chl–Chl

interaction within a trimer upon oligomerization, we believe

that it is much more likely that oligomerization leads to new

Chl–Chl interactions among close-lying Chl molecules in dif-

ferent trimers. This is for example clearly the case in the crys-

tals where, depending upon the crystal form, Chl pairs are

created with shortest p–p (edge-to-edge) distances of about

6 Å [29] and 15 Å [30]. While in vitro oligomers are clearly ex-

pected to be much less ordered and are likely somewhat heter-

ogeneous in their relative arrangement, it is reasonable to

assume that Chl–Chl pairs of similar or even shorter distances

as found in crystals can be formed in such oligomers (Note

that the decay lifetimes have relatively narrow distributions

(Fig. S4) signifying a small heterogeneity of the oligomers).

These new inter-trimer Chl–Chl pairs form weakly coupled

exciton states, as is indicated by the slight bathochromic shift
and a slight broadening of the short-lived DAS in the oligo-

mers relative to the spectra of the trimers. Such spectral fea-

tures are typical of Chl–Chl exciton states. However, the

very broad and far-red enhanced fluorescence component

can not be explained by a Chl–Chl exciton state alone. Strong

excitonic coupling in aggregates has been excluded based on

the fact that apart from a small (1–2 nm) red shift the absorp-

tion spectrum remains the same as compared to isolated tri-

mers [31]. Even if we assumed formation of strongly-coupled

excitonic states, this could not explain the very broad shape

of the spectra in the far-red range since excitonic interactions

generally lead to spectral narrowing rather than broadening

[32]. Rather the broad spectral shape and the far-red enhance-

ment are characteristic of the formation of a charge transfer

(CT) state that still maintains a pronounced excited state char-

acter, i.e. the charge is – on average – only partially translo-

cated from the donor to the acceptor Chl. In contrast,

formation of a complete radical pair state can be confidently

ruled out since Chl radicals are non-fluorescent quenchers

and would thus not be detected as emitting species in the

time-resolved spectra. However, our analysis shows clearly

an emissive state, albeit with lower oscillator strength (this

can be estimated from the area under the SAS) than a typical

Chl excited state, pointing to its mixed exciton/CT state char-

acter.

Mixing of CT states with Chl–Chl exciton states leads to a

drastic change in their spectroscopic properties including a

large Stokes shift, very strong broadening, and strong vibra-

tional tails [33–35]. All these effects are due to the very strong

electron–phonon-coupling of these states. Such effects have

been observed earlier and were shown to originate from bacte-

riochlorophyll and Chl excited states having strong CT charac-

ter in bacterial antenna systems, PSI cores from cyanobacteria

[36–38] and in LHCI [34,39,40]. In fact the so-called ‘‘red chlo-

rophylls’’ in the PSI antenna that were proven to have strong

CT character, share striking common spectroscopic features

with the far-red emission spectra of the LHCII oligomers.

The extremely low efficiency of hole-burning of these Chls

[34] has been related to the large electron-phonon coupling

[33]. Interestingly, in a hole-burning study of LHCII oligo-

mers, Pieper et al. [41] have suggested that the low hole-burn-

ing efficiency beyond 683 nm has the same origin, i.e. strong

electron-phonon coupling due to CT state character.

A comparison of the 77 K fluorescence spectra of LHCII tri-

mers and oligomers shows two new bands relative to the

682 nm fluorescence of LHCII trimers (Fig. 4): (i) the exciton

emission band located at 683–684 nm and (ii) the very broad

far-red fluorescence peaking at 701 nm. According to the

Gaussian fits of the spectra (shown as dotted curves in

Fig. 4), the bandwidth of the first component is similar to that

in isolated trimers – 200 cm�1 – whereas the second compo-

nent, which reflects the mixed exciton/CT state emission, has

a bandwidth of about 600 cm�1 and a long tail extending to

the far-red. Detailed comparison reveals that this bandwidth

is even larger than the width of the ‘‘red LHCI chlorophylls’’

of 400 cm�1 [40]. Although part of the extreme broadening

may be due to inhomogeneous broadening, i.e. a heterogeneity

in the spectra, this could clearly not explain the full extent of

the broadening. Thus this extremely broad low temperature

spectrum provides the strongest and clearest evidence that this

state has CT character. The broad fluorescence component dis-

tinctly appears in LHCII with or without Zx – both at room



Fig. 4. Fluorescence emission spectra of npq1- and npq2-LHCII
oligomers and trimeric npq2-LHCII, registered at 77 K. Note the
formation of two new emission bands upon oligomerization vs. the
single 681 nm emission peak of the trimer. The dotted curves represent
Gaussian fit of the short and long wavelength bands in the oligomeric
spectra. Peak positions are 682 nm and 696 nm for npq1 and 684 nm
and 700 nm for npq2 (red). Bandwidths (FWHM) are 200 cm�1 and
610 cm�1 for the short and long wavelength bands, respectively.
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temperature and at low temperature – but it is most pro-

nounced in Zx-containing samples (npq2), possibly because

Zx favours particular LHCII interactions.

The emissive character of the CT state implies a relatively

moderate coupling of the Chl pairs (probably in the order of

a few tens of cm�1) and also a not very pronounced asymmetry

between the two Chl components. This CT state is formed

within 10 ps (npq1 oligomers) or 27 ps (npq2 oligomers) from

the initial Chl–Chl exciton state at room temperature and

the two states are in equilibrium with each other, implying that

the energy of the CT state is in the vicinity of the exciton state

energy. The CT state itself is strongly quenched with decay

rates between 3 and 5 ns�1 (cf. Table 1). Fluorescence data

alone cannot provide the final fate of the CT state. The

quenching could be caused either by a pronounced coupling

of the CT state to the ground state, a situation that would

be quite typical for CT states, or it could be quenched by en-

ergy transfer to another low-lying state.

The far-red enhanced fluorescence of the LHCII oligomers

in vitro derives from the emitting CT state which is the lowest

energy emitting state in the system. It is striking that a nearly

identical emission spectrum and lifetime (ca. 400 ps) are ob-

served in vivo under NPQ conditions (cf. Fig. 1) as is found

in the npq2-LHCII oligomers. We note here that Gilmore

et al. also resolved a ca. 400 ps component appearing under

NPQ conditions in spinach thylakoids but did not resolve it

spectrally [42]. We observed this 400 ps fluorescence compo-

nent in intact Arabidopsis leaves only under NPQ conditions

while it is missing in dark-adapted leaves. Its lifetime and spec-

tral shape differ pronouncedly from the properties of any other

known higher plant antenna complex [43]. Thus it can be

clearly correlated with the formation of a new state character-

istic for NPQ. We thus propose that the far-red-enhanced

400 ps fluorescence in vivo under NPQ conditions reflects the

formation of a LHCII oligomer giving rise to an emitting

CT state. This CT state plays a crucial role in the NPQ process
either as a direct quencher or as a quenching intermediate. Our

data suggest that Zx has a supporting effect on the formation

of the quenched oligomeric state but is not strictly required. It

has been shown earlier that Zx can stimulate the formation of

LHCII oligomers whereas Vx functions as an inhibitor for

oligomerization [44].

From the similarity of the in vitro CT state properties to the

properties of the far-red fluorescence component observed in

intact leaves in NPQ we suggest that it provides a direct spec-

troscopic marker for the induction of the LHCII oligomer

quenching state in vivo. The arrangement and interactions be-

tween LHCII trimers in NPQ in vivo and in the in vitro olig-

omers do not need to be – and likely are not – identical. Yet

the resulting spectral effects which are due to the formation

of the CT state caused by the trimer–trimer interaction, and

the quenching intermediates appear to be very similar. This

can be understood based on the not very critical orientation

dependence of the CT state. The CT state formation and prop-

erties will be controlled much more by the polarity of the envi-

ronment rather than the orientation dependence.
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