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How to assign probabilities if you must

C. J. Albers1 and W. Schaafsma

Department of Mathematics, University of Groningen, P.O. Box 800, NL-

9700 AV Groningen, the Netherlands

Empirical evidence can sometimes be incorporated in a probabilistic
analysis by conditioning with respect to the observations. Usually, the
underlying probability distribution and also the conditional distribution are
not completely known. The assignment of probabilities will then require a
compromise. The making of such a compromise goes beyond mathema-
tical theory: a statistical discussion is needed. It depends on the context
whether the result of such discussion is almost compelling, reasonable,
or not really agreeable. This is illustrated by means of a simple example
from the area of predictive distributional inference.

Key Words and Phrases: epistemic probabilities, Wald's decision func-
tions, proper loss functions.

1 Introduction

Most theories of probability, Bayesian statistics included, prescribe the incorporation

of empirical evidence by computing conditional distributions. The availability of

such prescriptions suggests that the approach is compelling. This may be the case if a

fair die is rolled once and somebody has been instructed to tell us, without lying,

whether the number of eyes y is even or odd, but the compellingness disappears if the

instructions are less speci®c. If somebody provides us with the information that y is

even, it can be very misleading to infer that the probabilities of the possibilities

y � 2, 4 and 6 are equal to 1=3.

The example. A fair die has been rolled once and the true number of eyes y has

been made available to some person (or Nature), henceforth referred to as Player I.

Player I has to provide Player II (the statistician) with true information x about y. He

has to choose one of the statements made in Table 1. Note that there is a dif®culty if

y � 6. In that case, Player I has to choose between x � 2 and x � 3.
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Table 1. The outcome space

x � 1: y is neither even, nor a triple

x � 2: y is even

x � 3: y is a triple



Question. Suppose Player I provides us with the information x (either 1, 2, or 3).

Which probabilities qx(ç) should be assigned to the theoretical possibilities ç for y?

Preliminary exploration. If x � 1, then the theoretical possibilities are 1 and 5 and

nobody will criticize the speci®cation q1(1) � q1(5) � 1=2 because the die is fair. If

x � 2 we are in trouble because if we assume that Player I chooses x � 2 in case

y � 6 (Strategy 1) then q2(2) � q2(4) � q2(6) � 1=3 is logical, but if we assume

that he would choose x � 3 (Strategy 0) then x � 2 implies that y � 6 is impossible

and that q2(2) � q2(4) � 1=2 is appropriate. If x � 3, a similar discussion can be

made.

2 Background information

The situation now obtained is characteristic for almost everything in statistics: the

solution depends on an unknown true value, here strategy number i 2 f0, 1g. We

shall discuss a logical approach, a Bayesian approach and we give a preview of the

Fisher±Neyman±Pearson±Wald approach we recommend. This section will be

concluded with some additional comments.

The situation at the end of Section 1 is such that it is logical to specify that, e.g.,

q2(6) 2 f0, 1=3g or, more precisely, that q2(6) is equal to 0 if i � 0 and equal to 1=3

if i � 1. The latter replacement is logically valid, but useless because we do not know

whether i � 0 or i � 1. (See, however, the end of this section.) Simply stating that

q2(6) is either 0 or 1=3 is a possibility which is in line with some theories in logic.

The interesting book CLEAVE (1991) starts with Carnap's statement that, in logic, the

science of valid inference, there are no morals. Indeed, if one refuses to choose

between 0 and 1=3 (or inbetween) then no moral principles will be needed. The

statistician, however, will accept the task of specifying a number q2(6) at least if a

reasonable compromise is possible.

The Bayesians adhere to the perspective that Player I chooses Strategy 1 with

probability r. As a consequence q2(6) will be chosen equal to P(Y � 6jX � 2)

� r=(2� r). The question now is `which r?'. In this problem, the choice r � 1=2

cannot be defended on the basis of symmetry arguments. The Bayesian might

continue by simply using r � 1=2 because this is in the middle of the interval [0, 1]

of possibilities, or he might continue by simply using r itself as the outcome of a

uniformly distributed random variable. Such constructions are not necessarily reason-

able. This is why we abandon the Bayesian approach and start from scratch in Section

3 with a `classical' statistical approach where i is regarded as an unknown number. In

Section 5 we accept the idea that i is the outcome of a random variable such that the

possibility 1 has probability r. The discussion leads to the conclusion that this does

not help much if one knows nothing about the true value of r.

The latter situation is not very realistic in the sense that if one knows that i is the

outcome of a random variable then one will usually also have some information

about r. Anyway, computations lead to r � 0:495 (and, hence q2(6) � 0:198) as the

Bayesian solution, which corresponds to the minimax regret procedure. The minimax
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risk procedure is characterized by r � 0:667 (and q2(6) � 0:250). A referee

remarked that, without moral information, the choice of principle cannot be

discussed. We agree to a certain extent: many statisticians have experienced the

Wald's minimax risk principle is often too conservative and that it may even lead to

degenerative results such that, e.g., the observations are completely ignored (see e.g.

SCHAAFSMA, 1969). Such experiences suggest that the choice of r `should be' closer

to 0.495 than to 0.667.

The reader may wonder why so much attention is paid to such an elementary and

impractical example. The reason is that we are interested in the foundations of

predictive (distributional) inference. The problem considered is a very simple

example of a problem where a predictive inference is required. The problem is

related to the well known quiz-master problem (see e.g. KOOI, 1999). The earliest

reference we found was SELVIN, 1975) and to the prisoner's dilemma (according to

RAPOPORT, 1974, the ®rst appearance of this problem was in 1952 by Flood). An

advantage of our problem is that it is less vexatious and more in line with what we

have to do in mathematical statistics at large and in distributional inference in

particular.

Note that the whole perspective may change drastically if additional information is

provided. If e.g. Player II observes that Player I ¯ips a coin before issuing the

statement x � 2 then he should not conclude that r � 1=2 and, hence q2(6) �
1
2
=(2� 1

2
) � 0:20 is appropriate. It is logical to conclude that Player I has seen a six,

and hence q2(6) � 1, because in any other case it makes no sense to ¯ip a coin.

With these preliminarities in mind, the reader will, hopefully, appreciate the

following discussions illustrating (i) Fisher's desire to create an inductive logic, (ii)

Popper's statement that induction is a myth, (iii) the fact from life that induction is a

must. EpisteÃmeÃ (infallible knowledge about the universe) is beyond reach but we can

do our best in providing `approximations'.

3 A Fisher±Neyman±Pearson±Wald approach

Fisher proposed methods of inference while Neyman and Pearson, and especially

Wald, tried to make comparative analyses of such methods in the hope that some

method comes out best (from certain perspectives). The ®rst and very essential step

in this approach is to shift the attention from the concrete situation with a given

statement x (either 1, 2 or 3) to that where probabilities qî(ç) have to be assigned for

each value î a priori possible for x. It seems reasonable to restrict the attention to the

class

D � fQa,bj13 < a < 1
2
, 1

2
< b < 1g

of procedures Qa,b de®ned in Table 2. One of the arguments behind this restriction is

that in a Bayesian context (Strategy 1 is chosen with probability r) the posterior

probabilities P(Y � çjX � î) are of this kind, with a � 1=(2� r) and b � 1=
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(2ÿ r). In this section we do not make the assumption that i is the outcome of a

random variable.

Note that simply choosing q2(2) � q2(4) � q2(6) � 1=3 and q3(3) � q3(6) � 1=2

is a possibility, but not a clever one. It corresponds to Q1
3
,1
2

and is represented by the

left-lower point A of the rectancle in the left graph of Figure 1. If Player I is known

to act according to Strategy 1 then Q1 � Q1
3
,1 is the procedure to choose. It is

represented as the left-upper point of the rectangle. If he would choose Strategy 0

then Q0 � Q1
2
,1
2

(the right-lower point) is `logically valid' from the probabilistic

viewpoint. As we are unaware of Player I's strategy and yet are forced to assign

probabilities, a compromise will be needed. Averaging the parameters of Q0 and Q1

we obtain Q 5
12

,3
4

(point E). This solution is not satisfactory from an intellectual

viewpoint: it is like cutting a Gordian knot without examining it. To improve this

situation, we adopt the perspective of the theory of statistical decision functions. In

Table 2. Procedures Qa,b

qî(ç) ç � 1 ç � 2 ç � 3 ç � 4 ç � 5 ç � 6

î � 1 1=2 0 0 0 1=2 0

î � 2 0 a 0 a 0 1ÿ 2a

î � 3 0 0 b 0 0 1ÿ b

0.33 0.4 0.5

0.4

0.5

0.67

1

0.33 0.4 0.5

0.4

0.5

0.67

1

0.05 0.1 0.15 0.2

0.05

0.1

0.15

0.2

D

CB

E

EC
B

D
A

A

S(0, Q)

S(1, Q)b

a

Fig. 1. Visualization of procedures in the (a, b)-plane (left) and the (S(0, Q), S(1, Q))-plane (right).

The solid curves correspond to the procedures Qr. Only the part inside the box in the ®gure to

the left deserves consideration. The dashed lines correspond to procedures Qa,1
2
, the dot-dashed

ones to Q1
3
,b. Explanation of the points A, B, C, D and E will be given in the text, especially at

the end of Section 3.
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its usual form this theory tries to prescribe how statements should be made about true

values of unknown parameters (here strategy number i). Our situation is different in

the sense that a predictive statement is required, namely about the true value of some

random variable Y . The distributional form of inference is more natural if such

predictive inference is required than in the classical situation. On the other hand, it is

more complicated to arrive at satisfactory results (unless a Bayesian approach is

adopted). We for example, do not know whether the fundamental Wald±Lehmann

minimal-complete class theorem is valid in predictive inference at large. In our

special example it will follow from the concrete analysis that the minimal complete

class corresponds to the class of all Bayes procedures. We, however, doubt whether

this holds in general. Anyway, given the observation x, we have to choose a

probability distribution Q � Q(x) on f1, . . . , 6g with probabilities qx(1), . . . , qx(6)

and think in terms of the loss L(y, Q) to be incurred if the true value y is revealed.

An important requirement is that the loss is proper: if y is the outcome of a random

variable Y with its probabilities p(ç) � P(Y � ç) known, then L is said to be proper

if

EL(Y , Q) �
X6

ç�1

L(ç, Q) p(ç)

is minimum as a function of Q if the corresponding probabilities satisfy q(ç) � p(ç).

In this paper the elaborations are restricted to the logarithmic loss function

L(y, P(x)) � ÿlogfqx(y)g
The properness of this loss function is an immediate consequence of the positiveness

of the Kullback±Leibler information number because if P denotes the true distribu-

tion of Y with P(Y � ç) � p(ç), and Q is any other distribution with Q(fçg) � q(ç),

then

EL(Y , Q)ÿ EL(Y , P) �
X6

ç�1

log
p(ç)

q(ç)

� �
p(ç)

is positive if P 6� Q (GOOD, 1952). Using this loss function we can determine the risk

(expected loss) of the procedure Qa,b. As the distribution of (X , Y ) depends on

whether Player I chooses Strategy 0 (saying x � 3 if y � 6) or Strategy 1 (saying

x � 2), there are two distributions involved. They are given in Table 3. We shall have

to consider the risks (expected losses):

R(0, Qa,b) � ÿ1
6

logf(1
2
�2a2b(1ÿ b)g (1)

R(1, Qa,b) � ÿ1
6

logf(1
2
�2a2b(1ÿ 2a)g, (2)

obtained from Tables 2 and 3. R(0, Qa,b) is minimum if both a2 and b(1ÿ b)

(a 2 [1
3
, 1

2
], b 2 [1

2
, 1]) are maximum, i.e. if Q0 � Q1

2
,1
2

is used. Similarly R(1, Qa,b) is

minimum if Q1 � Q1
3
,1 is used. The fact that the minimization of these risks as a

function of a can be separated from the minimization as a function of b indicates that
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our example is not representative for predictive inference at large. The minimum risk

achieved by using the best procedure is called the envelope risk. It depends on i and

is given by

R�(0) � R(0, Q0) � log 2 (3)

R�(1) � R(1, Q1) � 1
3

log 2� 1
2

log 3: (4)

The risk of any procedure Qa,b is larger than the envelope risk. The difference is

referred to as the regret or shortcoming. Using S(i, Qa,b) as notation, we have

S(0, Qa,b) � R(0, Qa,b)ÿ R�(0) � ÿ1
6

logf16a2b(1ÿ b)g
S(1, Qa,b) � R(1, Qa,b)ÿ R�(1) � ÿ1

6
logf27a2b(1ÿ 2a)g

Note that S(0, Qa,b) is a decreasing function of a and an increasing function of b if

(a, b) 2 [1
3
, 1

2
] 3 [1

2
, 1]. For S(1, Qa,b) the situation is reversed. In our example, the

minimal complete class of procedures corresponds to the class of Bayes procedures.

This class can be obtained by minimizing the convex combination

(1ÿ r)S(0, Qa,b)� rS1, Qa,b)

� ÿ1
6
[2 log a� r log(1ÿ 2a)� log b� (1ÿ r)log(1ÿ b)

�(1ÿ r)log 24 � r log 33]

of both shortcomings. With elementary calculus it can be seen that this linear

combination is minimum as a function of a and b if a � (2� r)ÿ1 and b �
(2ÿ r)ÿ1. This is expressed by b � a=(4aÿ 1) and by the boldfaced curve in Figure

1 (left). Henceforth we use the notation

Qr � Q 1
2�r,

1
2ÿr

to denote the procedure of the form Qa,b which minimizes (1ÿ r)S(0, Qa,b)

� rS(1, Qa,b). Note that Q0 � Q1
2
,1
2

and Q1 � Q1
3
,1 are as before. Looking for a

compromise Qa,b between Q0 and Q1, one should not go (too far) beyond the

boldfaced curve in Figure 1 (left) which characterizes the procedures which are

`admissible' in the sense of Wald's theory. For the general case we have

S(0, Qr) � ÿ1
6

log 16
1ÿ r

(2� r)2(2ÿ r)2

� �

Table 3. Distributions Pi

Pi(X � î, Y � ç) ç � 1 ç � 2 ç � 3 ç � 4 ç � 5 ç � 6

î � 1 1=6 0 0 0 1=6 0

î � 2 0 1=6 0 1=6 0 i=6

î � 3 0 0 1=6 0 0 (1ÿ i)=6
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S(1, Qr) � ÿ1
6

log 27
r

(2� r)3(2ÿ r)

� �
:

The corresponding points constitute the left-lower bound of the regret set

S � f(S(0, Qa,b), S(1, Qa,b))j1
3

< a < 1
2
, 1

2
< b < 1g

which is, of course, nothing but the risk set when the origin is shifted to

(R�(0), R�(1)). In this example the minimal complete class corresponds to the class

of all admissible procedures as well as to the class of all Bayes procedures.

4 Detailed discussion of Figure 1 and Table 4

Figure 1 provides visualizations of the parameters (a, b) of the procedures Qa,b (left)

and of the corresponding points S((0, Qa,b), S(1, Qa,b)) (right). Table 4 gives details

about some speci®c points, namely the following:

Point A. The naive procedure Q1
3
,1
2

has already been discussed at the beginning of the

previous section. It corresponds to the idea that the probabilities q2(2) � q2(4)

� q2(6) � 1=3 have to be assigned if x � 2 (because 2, 4 and 6 are equiprobable if

Strategy 1 is chosen) and that the probabilities q3(3) � q3(6) � 1=2 have to be

assigned if x � 3 (because 3 and 6 are possible and equiprobable if Strategy 0 is

used). The snake in the grass is that if x � 2, and Strategy 0 would have been chosen

in the case y � 6, then 2, 4 and 6 are not equiprobable at all, because y � 6 is

impossible. A similar argument holds for x � 3, if Strategy 1 would have been

chosen in the case y � 6. It is very dif®cult for probabilists to accept that the

information `the die is fair, the number of eyes is even' does not imply that the

outcomes 2, 4 and 6 are equiprobable. In the present context they will be less

unwilling to deviate from that which they regard as the foundations of Probability

Theory than in, e.g., the quiz-master's problem. The reason is that we can present a

precise analysis of the situation. The crux is, of course, that the source of the

information (`the number of eyes is even') has to be made part of the probabilistic

model. In the present Fisher±Neyman±Pearson±Wald approach this is done by

referring to the true but unknown number i of the strategy which Player I would

Table 4. Specialization of some regret points

Procedure Name S(0, Q) S(1, Q)

Q1
3
,1
2

naive conditional probabilities A 0.135 0.116

Q0:495 � Q0:4007,0:6648 minimax regret B 0.093 0.093

Q1
2
� Q0:4000,0:6667 minimum average regret C 0.094 0.092

Q2
3
� Q3

8
,3
4

minimax risk D 0.144 0.057

Q 5
12

,3
4

naive compromise E 0.109 0.089

Q2
5
� Q 5

12
,5
8

0.072 0.119

Q0:55 � Q0:3922,0:6897 0.107 0.080
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apply if he would have been confronted by y � 6. It follows from the discussion that

the naive procedure Q1
3
,1
2

represented by A is not appropriate: a should be larger than

1=3 and b larger than 1=2; how much larger, that is the question.

Point B. We are attracted by the idea of minimizing the maximum regret (see Section

2). This can be achieved by looking for the Bayes procedure Qr that satis®es

S(0, Qr) � S(1, Qr). The computations provide r � 0:495, etc. See Table 4 and

Figure 1 (Point B) and notice that both regrets 0.093 are smaller than those of the

naive procedure.

Point C. The Bayesian approach has a considerable appeal but it requires the choice

of the prior probability r which, in the context of this section, is a ®ctitious construct

(see Section 5 for a different possibility). We can ignore probabilistic terminology by

simple stating that we want to minimize some weighted average of the risks, or,

equivalently, of the regrets, 1
2
S(0, Qa,b)� 1

2
S(1, Qa,b). This is then achieved by the

procedure Q1
2

represented by the point C. Note that one coordinate of the correspond-

ing regret point is larger, and one is smaller than that of B.

Point D. Wald was fascinated by the theory of games as presented in Von Neumann±

Morgenstern (see WALD, 1947). This leads to minimizing the maximum risk proce-

dure, which is obtained by equating the two risks. This provides b � 2a and

corresponds to point D.

Point E. At the beginning of this section we argued that a compromise will be needed

and we suggested the algebraically natural candidate Q 5
12

,3
4

is not satisfactory from an

intellectual viewpoint. Indeed, ( 5
12

, 3
4
) is beyond the boldfaced curve in Figure 1 (left)

which corresponds to the admissible procedures. This generates the task to construct

a procedure with both regrets decreased. Our ®rst try was to solve 1=(2� r) � 5=12

which provides r � 2=5, the regret S(1, Q 2
5
) being larger than that of the naive

compromise. Solving 1=(2ÿ r) � 3=4 leads to the minimax risk procedure. Our ®nal

try was to take r � 0:55, which indeed has smaller regrets than the naive compro-

mise.

A vexed issue at the end. The parameter r was used as a technical device to generate

the minimal complete class fQrj0 < r < 1g of Bayes procedures. The procedure

Q1
3
,1
2

was much too naive in the sense that it assumes that Strategy 1 has been chosen

if x � 2 and Strategy 0 if x � 3. This does not correspond to the facts. Nevertheless

it cannot be denied that the outcome x contains some information with respect to

Player I's choice of strategy. If we try to exploit this information by choosing r
depending on x, then the procedure obtained may be reasonable but it will not be

admissible in the sense of Wald discussed, the admissibility requires that the

procedure is in the class fQrj0 < r < 1g.
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5 What if Player I uses a randomized strategy?

As complete consensus can obviously not be achieved, `additional knowledge' would

be welcome. In this section we restrict the attention to the idea that Player 1 chooses

Strategy 1 with probability r, this `physical' probability being either fully known

(Situation 1) or fully unknown (Situation 2). See Section 6 for the other possibility.

Situation 1 may appear if we really are involved in a two-person zero-sum game.

Knowledge of the pay-off matrix will then not only affect the choice of r but also the

restriction to the class D � fQa,bj13 < a < 1
2
, 1

2
< b < 1g. This makes it clear that

the `solutions' presented at the end of Section 3 are only reasonable if further

information is absent.

Henceforth the attention is concentrated on Situation 2: the randomization

probability r will then appear as the unknown true value of the parameter è 2 È �
[0, 1], and the factual pair (x, y) is the outcome of a pair (X , Y ) of random variables

with distribution uniquely determined by r. As nothing is known about r, it is

intuitively clear that the additional information is not worth much. We introduce

random variables (Xè, Yè) having the distribution Pè which (X , Y ) would have had,

given r � è. If i is replaced by r in Table 3 then one obtains a table of P(Xè � î,

Yè � ç) values.

The risk ÿE log(qX (Y )) depends on the true value r of è. In general we have

R(è, Qa,b) � ÿE logfqXè(Yè)g

� ÿ1
6
[log(2ÿ2a2b)ÿ è log(1ÿ 2a)ÿ (1ÿ è)log(1ÿ b)]:

Note that this risk is equal to (1ÿ è)R(0, Qa,b)� èR(1, Qa,b) and, hence, is given by

(1) and (2) in the end points.

For ®xed è, the risk R(è, Qa,b) is minimum if (a, b) � (1=(2� è), b � 1=(2ÿ è)).

The procedure Qè thus obtained is Bayes with respect to all prior distributions ô on

[0, 1] which have è as their expectation. The envelope risk

R�(è) � R(è, Qè)

� (1ÿ è)R(0, Qè)� èR(1, Qè)

where R(0, Qè) is obtained from (1) by substituting (a, b) � (1=(2� è), 1=(2ÿ è))

and R(1, Qè) follows from (2). The envelope risk displayed in Figure 2, is such that

R�(0) and R�(1) correspond to (3) and (4). The maximum is reached for è � 2=3,

the minimax risk procedure. The shortcoming S(è, Qa,b) � R(è, Qa,b)ÿ R�(è) is a

convex function of è because R�(è) is concave and R(è, Qa,b) is linear in è. As a

consequence the minimax regret and the minimax procedure are exactly the same as

in Section 3. The area under the regret function is minimized by using Q1
2
� Q2

5
,2
3

which, thus, is the minimal average regret procedure. The main difference with

Figure 1 is that shortcoming functions are now visualized as functions of è.
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6 Discussion

Section 5 suggests that nothing is gained if we know that Player I chooses Strategy 1

with some completely unknown probability r. One might argue that this state of

ignorance changes as soon as the outcome x is available. The underlying random

variable X assumes the values 1, 2, or 3 with probabilities 1
3
, 1

3
� 1

6
r, 1

3
ÿ 1

6
r respec-

tively. Shouldn't this information be used to replace the a priori choice of r � 1=2

and a � 2=5, b � 2=3 by an a posteriori choice of r � 1
2
, 1

2
� E, 1

2
ÿ E if x � 1, 2, 3?

In practice, Bayesian statisticians adapt their prior if it is in con¯ict with actual data.

In the present example it is easy to see that this approach leads to a procedure that is

`inadmissible' from a theoretical viewpoint: the x-dependent choice of r suggested

corresponds to a Qa,b with (a, b) � ((5
2
� E)ÿ1, (3

2
� E)ÿ1) not in the arc of admissible

procedures.

In practice, the additional information will not be of the form of the two extremes

(`r fully known' or `r completely unknown') suggested in the beginning of Section

5. A con®dence interval or distributional inference about r may be available. This

will affect the conclusion that Qa,b with (a, b) � (0:40, 0:67) is the rule to choose.

That a compromise solution is affected if additional information is provided, is

completely natural though it illustrates the hazards involved in any discussion of the

types presented.

Our theory started from the class D of procedures and concentrated the attention

on risks and regrets based on logarithmic loss. It resulted in the opinion that (a, b)

should be close to the arc f(a, b)j(aÿ 1
4
)(bÿ 1

4
) � 1

16
g because these points generate

Fig. 2. The randomized strategy game. On the left: envelope risk R�(è) (curve), minimax risk

procedure (dashed line) and minimax regret procedure (solid line). On the right, the same

procedures, but now with the regret along the vertical axis.
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the class fQrj0 < r < 1g of all Bayes procedures which corresponds to the minimal

complete class. An extensive discussion suggested that the procedure to be chosen

should be of the form Qr where r is not too much different from 1=2. The agreement

among the probabilities actually assigned is such that none of these probabilities is

completely compelling in the cases x � 2 or x � 3. They, however, are all very

reasonable because the agreement between, e.g., q2(6) � 0:198 (minimax average

risk or regret) and q2(6) � 0:25 (minimax risk) is quite satisfactory.

The question arises whether the agreement will be affected if the class of

procedures is extended or the loss function is replaced by another one, e.g. that due

to BRIER (1950) or that due to EPSTEIN (1969). The answer is easy: if the loss

function is proper, then the class fQrjr : 0 < r < 1g will not be affected, Q1
2

will

minimize the average risk or regret (if Section 5 is considered, integration should be

with respect to the Lebesgue measure). The position of the r values corresponding to

the minimax regret or the minimax risk procedures will become somewhat different

(see ALBERS, 2000).

7 Epilogue

This paper illustrates that straightforward conditioning to incorporate empirical

evidence can be misleading. This phenomenon is well-known from other problems,

such as the quiz-master paradox and the prisoners' dilemma. The source of the

information should be formalized and made part of the probabilistic model, which

will then become `statistical' in the sense that the unknown true value of a parameter

appears. Similar issues are involved elsewhere though they often go unnoticed. The

following problem is ill-posed because information is neither provided about the

player's set of alternatives nor about the rules he has to obey: Example `A bridge

player announces that his hand (of 13 cards) contains (i) an ace (that is, at least 1

ace), (ii) the ace of hearts. What is the probability that it will contain another ace?'

(PARZEN 1960, page 75).
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