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Weyl multiplets of conformal supergravity in
five dimensions
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ABSTRACT: We construct the Weyl multiplets of N = 2 conformal supergravity
in five dimensions. We show that there exist two different versions of the Weyl
multiplet, which contain the same gauge fields but differ in the matter field content:
the Standard Weyl multiplet and the Dilaton Weyl multiplet. At the linearized level
we obtain the transformation rules for the Dilaton Weyl multiplet by coupling it to
the multiplet of currents corresponding to an on-shell vector multiplet. We construct
the full non-linear transformation rules for both multiplets by gauging the D = 5
superconformal algebra F'?(4). We show that the Dilaton Weyl multiplet can also be
obtained by solving the equations of motion for an improved vector multiplet coupled
to the Standard Weyl multiplet.
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1. Introduction

Conformal supergravities have been constructed in various dimensions (for a review,
see [1]) but not yet in five dimensions. The five-dimensional case is of interest for
various reasons not least of all from a purely mathematical viewpoint since it is based
on the exceptional superalgebra F%(4).



By using conformal tensor calculus, conformal supergravities form an elegant
way to construct general couplings of Poincaré-supergravities to matter [2]. In the
five-dimensional case these matter coupled supergravities have recently attracted
renewed attention due to the important role they play in the Randall-Sundrum (RS)
scenario [3, 4] and the AdSs/CFTs [B, 6] and AdSs/CFT, [] correspondences.

The form of the scalar potential in five-dimensional matter coupled supergravities
plays a crucial role in the possible supersymmetrisation of the RS-scenario. It turns
out that such a supersymmetrisation is non-trivial. With only vector multiplets and
no singular source insertions, a no-go theorem was established for smooth domain-
wall solutions [, H]. In view of this, general D = 5 supergravity/matter couplings
have been re-investigated [10l], thereby generalizing the earlier results of [11, i12].
A modification of the theory allows solutions by inserting branes as singular inser-
tions [13]. The inclusion of hypermultiplets was first considered in [I4], where even
generalizations of [10] were considered. However, this description has not been proven
to be consistent. Hypermultiplets were also considered in [15, 16]. The mixing of
vector and hypermultiplets [17] seems to circumvent all obstructions, though no ex-
ample of a good smooth solution has been found. However, it has been shown also
in [17] that N = 2, D = 5 matter couplings to supergravity can give rise to more
general possibilities for renormalization group flows between conformal theories in
ultraviolet and infrared than those known for N = 8.

With all these developments, it is clear that it is important that there is an inde-
pendent derivation of the most general matter couplings derived in [10]. Moreover, it
has turned out in the past that superconformal constructions lead to insights in the
structure of matter couplings. A recent example is the insight in relations between
hyper-Kahler cones and quaternionic manifolds, based on the study of superconfor-
mal invariant matter couplings with hypermultiplets [18]. For all these reasons a
superconformal construction of general matter couplings in N = 2, D = 5 is useful.

In this paper we take the first step in this investigation by constructing the
N = 2, D = 5 conformal supergravity theory. In our construction we use the
methods developed first for N = 1, D = 4 [19, 20]. They are based on gauging the
conformal superalgebra [21] which in our case is F?(4).

The superconformal multiplet that contains all the (independent) gauge fields
of the superconformal algebra is called the Weyl multiplet. In general one needs
to include matter fields to have an equal number of bosons and fermions. We will
see that in five dimensions there are two possible sets of matter fields one can add,
yielding two versions of the Weyl multiplet: the Standard Weyl multiplet and the
Dilaton Weyl multiplet. This result is similar to what was found for (1,0) D = 6
conformal supergravity theory [22]. Also in that case, two versions were found: a
multiplet containing a dilaton and one without a dilaton.

In [5], the field content and transformation rules for the Standard Weyl multi-
plet were constructed from the F'(4)-gauged six-dimensional supergravity using the



AdSg/CFTs correspondence. The results, although not given in a manifestly super-
conformal notation, seem similar to ours. However, the full non-linear commutation
relations (see (4.3)) that we obtain were not given.

Another attempt was undertaken in [23] by reducing the known six-dimensional
result [22] to five dimensions. The authors of [23] already gauge-fixed some sym-
metries of the superconformal algebra during the reduction process in order to sim-
plify the matter multiplet coupling. In this way, they found a multiplet that is
larger than the Weyl multiplet that we will construct in this work, because they
do not aim to obtain superconformal symmetry in 5 dimensions. Our strategy is
to start from the basic building blocks of superconformal symmetry in 5 dimen-
sions.

We first construct the conformal supercurrent multiplet that contains the energy—
momentum tensor of the D = 5 vector multiplet. This is non-trivial because the
D = 5 vector multiplet is not conformal. At first sight this seems to prohibit the
construction of a conformal current multiplet, but we will show how the introduction
of a dilaton in the Weyl multiplet circumvents this obstacle. This is the origin of the
first of our two versions of 32+32 Weyl multiplets. The other one is a straightforward
extension of the one known in 4 dimensions.

We have organized the paper such that a reader who is interested in the main
results for the multiplets, i.e. their content, transformation laws and the algebra that
they satisfy can find everything in section 4. The rules found in this section will
be needed when one investigates matter couplings. However, this does not contain
all our results. The relation between the two versions is based on the use of the
(improved) vector multiplet, and this construction is also part of our main result.

This paper is organized as follows. In section 2, as the first step in our procedure,
we construct the supercurrent multiplet that contains the energy-momentum tensor
of the N = 2, D = 5 vector multiplet. It turns out that this supercurrent multiplet
has 32 + 32 components.

The coupling of the supercurrent multiplet to the fields of conformal supergravity
leads to the linearized superconformal transformation rules for the 32+32 component
Dilaton Weyl multiplet. We show that there exists another version of the linearized
Weyl multiplet (the Standard Weyl multiplet) that contains the same gauge fields
as the Dilaton Weyl multiplet, but differs in the matter field content. An important
difference between the Standard and Dilaton Weyl multiplet is that the scalar field
of the Standard Weyl multiplet has a non-zero mass dimension that cannot serve,
like the dilaton scalar field of the Dilaton Weyl multiplet, as a compensator for scale
transformations.

In section d we derive the full non-linear transformation rules for both Weyl mul-
tiplets by gauging the D = 5 superconformal algebra F'?(4) following the notations
on real forms as in [24]. For the convenience of the reader we give the final results
of the two Weyl multiplets, in a self-contained manner, in section 4.



In section § we show that the Dilaton Weyl multiplet can be obtained by cou-
pling the Standard Weyl multiplet to an improved vector multiplet. This establishes
the precise connection between the two multiplets. We present our conclusions in
section G.

We explain our notation and conventions in appendix A. The complete com-
mutation relations defining the D = 5 superconformal algebra F?(4) are given in
appendix B. Finally, in appendix J we compare the 32 + 32 supercurrent multiplet
we construct in this paper with the 40 + 40 supercurrent multiplet constructed by
Howe and Lindstrom [25] some time ago. We show that their multiplet is reducible.

2. Linearized Weyl multiplets

In this section we obtain two linearized Weyl multiplets. After discussing the method
of the supercurrent (section 2.T) we will construct the currents of a rigid on-shell
vector multiplet (section 2.2), and define a Weyl multiplet as the fields that couple
to the currents (section 2.3). The comparison with known Weyl multiplets in 4 and
6 dimensions, tells us that there is also another Weyl multiplet, and we point out
that it can be obtained from the first one by redefining some fields (section 2.4).

2.1 The current multiplet method

The multiplet of currents in a superconformal context has been discussed before in
the literature, e.g. the current multiplet corresponding to the N = 1, D = 4 [20],
the N =2, D =4 [26, 27] and the N = 4, D = 4 vector multiplets [2§] and to the
(self-dual) (2,0) D = 6 tensor multiplet [29].

After adding local improvement terms one obtains a supercurrent multiplet con-
taining an energy-momentum tensor ¢,, = 0,,, and a supercurrent JfL which are both
conserved and (gamma-)traceless

00, = 010 = T =T =0, (2.1)

These improved current multiplets were used in the past to construct the linearized
transformation rules for the Weyl multiplet! since a traceless energy-momentum ten-
sor is equivalent to scale-invariance of the kinetic terms in the action.

However, the standard kinetic term of the D = 5 vector field

1

L= 2 Y (2.2)
is not scale invariant, i.e. the energy-momentum tensor is not traceless:
1 1
0 = —FnF  + T FpeF O’ = JEw ™ #0. (2.3)

Moreover, there do not exist gauge-invariant local improvement terms.

1The Weyl multiplets of (1,0) D = 6 [22] were derived without the use of a current multiplet,
although this is certainly possible in view of the reduction rules given in [2-9']



There is a remedy for this problem. Whenever there is a compensating scalar
field present, i.e. a scalar with mass dimension zero but non-zero Weyl weight, then
the kinetic term (2.3) can be made scale invariant by introducing a scalar coupling
of the form

1
L= —Zed’Fw,F’“’ : (2.4)

This compensating scalar is called the dilaton. In general, there are three possible
origins for a dilaton coupling to a non-conformal matter multiplet: the dilaton is
part of

1. the matter multiplet itself (the multiplet is then called an ‘improved’ multiplet);
2. the conformal supergravity multiplet;
3. another matter multiplet.

The N = 2, D = 5 vector multiplet contains precisely such a scalar. We could
therefore use it to compensate the broken scale invariance of the kinetic terms. This
leads to the so-called improved vector multiplet. This is the first possibility, that
will be further discussed in section 8.

The second possibility will be considered here (the third possibility is included for
completeness). This possibility thus occurs when the Weyl multiplet itself contains
a dilaton. We will see that there indeed exists a version of the Weyl multiplet
containing a dilaton. This version is called the Dilaton Weyl multiplet. It turns out
that there exists another version of the Weyl multiplet without a dilaton. This other
version will be called the Standard Weyl multiplet.

For matter multiplets having a traceless energy-momentum tensor, no compen-
sating scalar is needed. To see the difference between the various cases it is instructive
to consider (1,0) D = 6 conformal supergravity theory [22] which was constructed
without the supercurrent method. In that case, two versions were found: a multiplet
containing a dilaton and one without a dilaton. We expect that both versions can
be constructed using the supercurrent method: the one without a dilaton starting
from the conformal (1,0) tensor multiplet (being a truncation of the (2,0) case), and
the version containing the dilaton by starting from the non-conformal D = 6 vector
multiplet (which upon reduction should produce our results in D = 5).

Thus, the current multiplet needs to be improved only when coupled to the Stan-
dard Weyl multiplet. In the case of the Dilaton Weyl multiplet it is not necessary to
do so, since in that case the dilaton of the Weyl multiplet can be used to compensate
for the lack of scale invariance. In particular, the dilaton will couple directly to the
trace of the energy-momentum tensor.

When coupling to the Standard Weyl multiplet one needs to add non-local im-
provement terms to the current multiplet which was done for the current multiplet



Field | Equation of motion | SU(2) | w | # d.o.f.
A, B, Fm =0 1|0 3
o Uo =0 1 1 1
P M =0 2 |3/2 4

Table 1: The 4 + 4 on-shell abelian vector multiplet.

coming from the D = 10 vector multiplet [30]. In that case the non-local improve-
ment terms that were added, required the use of auxiliary fields satisfying differential
constraints in order to make the transformation rules local.?

We did not analyse the addition of non-local counter terms. It would be interest-
ing to see if in this way a consistent coupling to the Standard Weyl multiplet can be
obtained. Instead, we will derive the linearized transformation rules for the Standard
Weyl multiplet via a field redefinition from those of the Dilaton Weyl multiplet.

2.2 Current multiplet of the N =2, D =5 vector multiplet

Our starting point is the on-shell D = 5 vector multiplet. Its field content is given by
a massless vector A, a symplectic Majorana spinor ¢ in the fundamental of SU(2)
and a real scalar 0. See table 1 for additional information. Our conventions are
given in appendix Al

The action for the D = 5 Maxwell multiplet is given by

— 1 MV_li _1 2
‘C__Z W F 2¢aw 2(80). (2.5)

This action is invariant under the following supersymmetries

5QAN = igfylﬂ'b’
Q' = -1 Fe — §iaael,
1
dgo = 3 iey, (2.6)

as well as under the standard gauge transformation
OnNA, = O\ (2.7)

The various symmetries of the lagrangian (2.5) lead to a number of Noether cur-
rents: the energy-momentum tensor 6, the supercurrent th and the SU(2)-current
vf] The supersymmetry variations of these currents lead to a closed multiplet of

2Note also that in D = 10 the trace-part and the traceless part of the energy-momentum tensor
are not contained in the same multiplet which necessitates the addition of the non-local improvement
terms to project out the trace-part.



Current Noether | SU(2) | w | # d.of.

O (yu) 0"0,, =0 1 2 9
0,4 1| 4 1
v =0 3 | 2| 12

a, o*a, =0 1 3

by | b =0| 1 | 2
Ji Ii=0| 2 |5/2|
=iy J 2 7/2 8

Table 2: The 32 + 32 current multiplet. The trace 6,* and the gamma-trace of Jﬁ form
separate currents, the latter is denoted by (*.

32 + 32 degrees of freedom (see table ). As discussed in the introduction, an un-
conventional feature, compared to the currents corresponding to a D = 4 vector
multiplet or a D = 6 tensor multiplet, is that the current multiplet cannot be im-
proved by local gauge-invariant terms, i.e. 8,* # 0 and 'y“Ji # 0. It is convenient to
include these trace parts as separate currents since, as it turns out, they couple to
independent fields of the Weyl multiplet.

We find the following expressions for the Noether currents and their supersym-
metric partners in terms of bilinears of the vector multiplet fields:

1 1 1-
0, = —0,00,0 + 3 v (80)2 - FIJ)\FVA + ZUWFQ - 57#’7(#81’)7#’

‘ 1. ;1 i
J, = ——iy- Fya' - 5((2’0)%1& ,

4
i 1 R J
,Up, = §¢ ’}//J‘/llb Y
1
a, = gSuy)\ngV)\FpU -+ (8”0')}7,/“,

1 1_
b,uu = igyu)\po(a)\o-)FpU + §¢7[uau]w7

) . 1 . 3 .
¢ =iy J = gy Py + Sidoy

4
3, 1.,
w2 -
(9“ i (00)” + 4F ) (2.8)

From these expressions, using the Bianchi identities and equations of motion of the
vector multiplet fields, one can calculate the supersymmetry transformations of the
currents. A straightforward calculation yields:

1.
5@(9“,, = 5 16%(“8AJ,,) s

; 1., i ij IS T
6qd, = —3 iv70,,€¢ — 1’y[>\8>‘vﬂj}€j — 56@6 + 51’7 b€,



bguil = 1€

1 1.
dga, = —EBAfy[,\J,L] + =€, 0" Iy + 1 1€v,,0°C,

4
3 . ’ 1 : = Aqp 1* 4
dgb = 1 Y0 Jy — gle%mﬁ 0°Jy + ée%ﬂyﬁ ¢,
i L, 1. 1., 1 i
5QC = §p€ —§aﬁjﬁj—§1¢€ —5"}/[)6 s
1_
0o} = 56(?(. (2.9)

Note that we have added to the transformation rules for a, and b,, terms that are
identically zero: the first term at the r.h.s. contains the divergence of the supercurrent
and the last two terms are proportional to the combination (i - J — ¢) which is zero.
Similarly, the second term in the variation of the supercurrent contains a term that
is proportional to the divergence of the SU(2) current.

The reason why we added these terms is that in this way we obtain below the
linearized Weyl multiplet in a conventional form. Alternatively, we could not have
added these terms and later have brought the Weyl multiplet into the same con-
ventional form by redefining the ()-transformations via a field-dependent S- and
SU(2)-transformation.

2.3 Linearized Dilaton Weyl multiplet

The linearized @)-supersymmetry transformations of the Weyl multiplet are deter-
mined by coupling every current to a field, and demanding invariance of the corre-
sponding action. The field-current action is given by:

1 _ . _
g — / d%(ihwe’“’ + i " 4 Vil + A, + Bub + i9¢ + ¢ e;) . (2.10)

In table B we give some properties of the Weyl multiplets. In particular of the one
just derived, which we call the Dilaton Weyl multiplet®. A similar Weyl multiplet
containing a dilaton exists in D = 6 [22].

Using the supersymmetry rules for the current multiplet, we find that the fol-
lowing transformations leave the action (2:10) invariant:

0@l = €Yutn)

. 1 . g 1 1 .
o, = —Zy’\”a,\h,,ueZ — Ve + gl (7-F+ §17~H)’yue ,

g 1y 1. .
5QV;J - _56( '7A¢3\L + 516( %ﬁqﬁ)’

3Note that the Dilaton Weyl multiplet contains a vector A, a spinor 1" and a scalar o which, on
purpose, we have given the same names as the fields of the vector multiplet. The reason for doing

so will become clear in section E5: where we explain the connection between the two Weyl multiplets.
From now on, until section ﬁ, we will be only dealing with the Weyl multiplets and not with the
vector multiplet. Therefore, our notation should not lead to confusion.



Field| # Gauge SU(2) w ||Field|# Gauge SU(2) w
Elementary gauge fields Dependent gauge fields
e, | 9 pe 1 -1 | = Ml 0
b, |0 D 1 0 || fu*|— K¢ 1 1
vz su(2) 30
;DL 24 Q' 2 —1/2 gbi - S 2 1/2
Dilaton Weyl multiplet Standard Weyl multiplet
A, |4 0A,=0,A 1 0 || Tiay (10 1 1
By | 6 0B, =20,A, 1
v |1 1 1 D |1 1 2
Pt 8 2 3/2| X' |8 2 3/2

Table 3: Fields of the Weyl multiplets, and their roles. The upper half contains the fields
that are present in all versions. They are the gauge fields of the superconformal algebra
(see section ). The fields at the right-hand side of the upper half are dependent fields,
and are not visible in the linearized theories. The symbol # indicates the off-shell degrees
of freedom. The gauge degrees of freedom corresponding to the gauge invariances of the
right half are subtracted from the fields at the left on the same row. In the lower half
are the extra matter fields that appear in the two versions of the Weyl multiplet. In the
left half are those of the Dilaton Weyl multiplet, at the right are those of the Standard
Weyl multiplet. We also indicated the (generalized) gauge symmetries of the fields A, and

a

B,y. (The linearized fields, corresponding to e,® and o = e? are denoted by h,* and ¢,

respectively.)

1. 1
0QA, = —3 iey, + ie%ﬂb,

1_ L. _
6QB;W = 56’7[/;7#1/} =+ 5 1 GPYMI/w )

A 1 1 ) 1 :
dqut = =gy - Fe = Sidpe + iy - He
1
O = i€y, (2.11)
where we have defined
Fo = 20,A,,  Hun = 30,By, G = 20,0 - (2.12)

2.4 Linearized Standard Weyl multiplet

It turns out that there exists a second formulation of the Weyl multiplet in which
the fields A, and B, are replaced by an anti-symmetric tensor T, and where also
the spinor and the scalar are redefined. It is the multiplet we should have expected



if we compare it with the Weyl multiplets of the D = 4 and D = 6 theories with 8
supercharges. This can be seen in table 4.
This second Weyl multiplet is called the

Standard Weyl multiplet. More information ‘Fleld ‘ d=4 d=5 d=6
about the component fields can be found in ta- €u’ 5 9 14
ble 8. The Standard Weyl multiplet cannot be by , 0 0 0
obtained from the same current multiplet pro- wy* - - -
cedure we applied to get the Dilaton Weyl mul- f NaA - - —

Vi’ 9 12 15

tiplet, unless we would consider an ‘improved’
current multiplet. The reason is that the Stan- Ay 3 _ _
dard Weyl multiplet contains no dilaton scalar |1, 16 24 32
with a zero mass dimension that can be used o _ _ _

as a compensating scalar. Therefore it can not

Tw, T, 6 10 10

define a conformal coupling to a non-improved Db abe ] ] 1
current multiplet.

In 5 dimensions the full superconformal al- |X’ 8 8 8

gebra cannot be realized on a matter multiplet ‘TOTAL‘24 + 924 32 + 32 40 + 40
without ‘improvement’ by a dilaton. In sec-

Table 4: Number of components in
the fields of the Standard Weyl mul-
tiplet. The dependent fields have no
number. The field T is a two rank

tion § we will explain how the two Weyl multi-
plets can be related to each other via the cou-
pling of the Standard Weyl multiplet to an im-
proved vector multiplet.

tensor in 4 dimensions and a self-dual

The connection between the two versions three rank tensor in 6 dimensions. In

of the Weyl multiplet at the linearized level is 5 Jimensions we can choose between
given by algebraic relations. First of all we de- , two-rank or a three-rank tensor as
note some particular terms in the transforma- these are dual to each other.

tions of ¢/ and V¥ by Ty, and x*. Then we

compute the variations of these expressions under supersymmetry, finding one more
object called D. We find

1 1
Tab - g(Fab_égabcdeHEdc>u
i 1 ) 1 ab
X = 815/91/1 _'_647 waln
D= top- Lowarn, + Lop (2.13)
VD) w3 ‘

The resulting supersymmetry transformations are those of what we call the linearized
Standard Weyl multiplet. They are given by

5Qh,uu = Efy(uwu) )

. 1 o . .
5Q¢L = —17’\”8>\hwez — V/j]ej + iy Ty,

10



Generators | P, | My, | D | K, | Ui | Qai | Sai
Fields e, wzb by | fu° V:j %ZL ¢L
Parameters | €% | A% | Ap | A% | AY | & | o

Table 5: The gauge fields and parameters of the superconformal algebra F?(4).

ij 1—1’ a 1 a j —(4 j
SV = —ge( (7 Y= 5y b) 4 4l )
1 3 1 2
5T‘a:_'ia __'7(11__& Cdc _ac c)y
oTw = iEVmX — 55 1€ Yap 13t ¢d+37[7¢b}
P TR S 3. - R i
dox' = ZDe —6—47“ Vw{ej+§1fy-Tae +§1(}97~T6 ,
SoD = &Py, (2.14)
where we have defined
Vi =20V, . (2.15)

This concludes our discussion of the linearized Weyl multiplets.

3. Gauging the superconformal algebra

We now proceed with the construction of the full Weyl multiplets, of which we have
shown so far the linearized structure. We apply the methods developed first for N =1
in 4 dimensions [2(]. They are based on gauging the conformal superalgebra [21],
which, in our case, is F?(4). The commutation relations defining the F?(4) algebra
are given in appendix B. We first discuss the general method, and then apply this
to construct the full (non-linear) Weyl multiplets for both versions that we found
at the linearized level in section 2. For clarity, we have collected the final results in
section 4.

3.1 The gauge fields and their curvatures

The D = 5 conformal supergravity theory is based on the superconformal algebra
F?2(4) whose generators are those in table &, where a, b, ... are Lorentz indices, « is a
spinor index and i = 1,2 is an SU(2) index. M, and P, are the Poincaré generators,
K, is the special conformal transformation, D the dilatation, Q;, and S;, are the
supersymmetry and the special supersymmetry generators, respectively, which are
symplectic Majorana spinors, 8 real components in total. Finally, U¥ = U7" are the
SU(2) generators. For more details on the F?(4) algebra and the rigid superconformal
transformations, see [24]. The commutation relations of the generators are given in
appendix B.

As a first step we assign to every generator of the superconformal algebra a gauge
field. These gauge fields and the names of the corresponding gauge parameters are
given in table B

11



The transformations are generated by operators according to
§ = &Py + A" My, + ApD + AL K* + AU + i€Q + i7S. (3.1)
The i factors in the last two terms appear due to the reality properties, as explained
in appendix A.

We can read off the transformation rules for the gauge fields from the alge-
bra (B.1) using the general rules for gauge theories. We find

1
de,* =D,E" — )\“beub — Ape,* + —E’ya’g[)u,
1 1
dw,® = D AP —aglaf,¥ — 4Alte b]+2 i evab% CRANTS
0b, = 0uAp — 28 fra + 2AK6MG+ 160, + ”7¢u )

1
0fu" = Dulfe = A fip + Apfu" 451" Gu

y y 3 3
SV = 0,AY — 20l VD — = 16(2¢J) + 5 intyl),
SY! = Dy +i€%y,9, — Z/\“b%b% - §AD'¢JL — Nl —iesyan’, (3.2)

' ;1 1 ‘ i 0§ s NG i s opa. i
06y = Dun’ = A", + 5Ap9), — A6 — IAGYatl, + 1 fi%ae

where D, is the covariant derivative with respect to dilatations, Lorentz rotations
and SU(2) transformations:

,Duga = auga + buga + wuabgb )
Dﬁ)\ab _ 8“)\0,17 + 2wuc[a)\b}c 7
D, A = 0, A% — b, A% +w, Ay,

A o1 .1
D, = 9, + 51)“61 + 4‘% YabE — V ej ,

1 ]
=b.n" + - 1Y aby mt — V”m (3.3)

Duni = Buni ~ 3

Using the commutator expressions (B.1) we obtain the following expressions for the
curvatures (terms proportional to vielbeins are underlined for later use):

R,,*(P) = 206" + 2w, e,y + 2bjue,)° %”@W“’%}a
Ruvab(M) = 2(9[Mw,,}a + 2w[uacwl/]c + 8f[u[aev}b} + i(ﬁ[ﬁﬁabwv} )
Ry (D) = 201,by) — 4 fju a1 Gty
Ry, “(K) = 20,ufu" + 20, fy — 2b[ufy 5,
)

= 20,V — 2V,F 0V, )~ 31 ) W) (3.4)
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. . 1 . . . . i a
RMVZ(Q) = 26[“¢IZI} + iw[uab'}/ab’(b},} + b[,ulpzz/} - 2‘/[;/]1#1/” +2 l’yaqb[ueu} y

R/ (8) = 2046y + 5 vty — bty — V39015 — 2l fur
Since the transformation laws given above satisfy the F?(4) superalgebra, we
have a gauge theory of F?(4), but we do not have a gauge theory of diffeomorphisms
of spacetime. This can only be realized if we take the spin connection as a composite
field that depends on the vielbein. So far, we have it as an independent field.*
Furthermore, we see that the number of bosonic and fermionic degrees of freedom
do not match. The gauge fields together have 96 4+ 64 degrees of freedom. There-
fore, we can not have a supersymmetric theory with invertible general coordinate
transformations generated by the square of supersymmetry operations.

3.2 Constraints and their solutions

The solution to the problems described above is well known. In order to convert
the P-gauge transformations into general coordinate transformations and to obtain
irreducibility we need to impose curvature constraints and we have to introduce extra
matter fields in the multiplet.

The constraints will define some gauge fields as dependent fields. The extra
matter fields will also change the transformations of the gauge fields. In fact, we will
have for the transformation (apart from the general coordinate transformations) of
a general gauge field hi:

5,(e")hl = 0, + €' h A fas" + €/ My, (3.5)

where we use the index I to denote all gauge transformations apart from general
coordinate transformations, and an index A includes the translations.

The last term depends on the matter fields, and its explicit form has to be
determined below. But also the second term has contributions from matter fields.
This is due to the fact that the structure ‘functions’ of the final algebra f;;% are
modified from those of the F?(4) algebra which was used for (8.2). These extra terms
lead also to modified curvatures

Ry =20, + hPhA fag’ — 20,7 Myy," (3.6)

The commutator of two supersymmetry-transformations will also change. In
particular we will find transformations with field-dependent parameters. They can

4One might think that the field equations can determine the spin connection as a dependent
gauge field. This can indeed be done for the spin connection, but it is not known how to generalize
this for the gauge fields of special (super)conformal symmetries, which we also want to be dependent
gauge fields.
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be conveniently written as so-called covariant general coordinate transformations
which are defined as

5cgct(€) = 5gct(€) - 51(€Mhu1) ) (37)

namely a combination of general coordinate transformations and all the other trans-

1

formations whose parameter €’ is replaced by &h,’. This takes a simpler form on

fields of various types:

5cgct(€)ena = (au + bu)fa + Wuabfb )
5cgct(£)hi = _é_VR,uz/I - é-yhiMuJI - é_yhiegfaJI )
Oeget(§)® = €"D,® . (3.8)

The last terms for B, are similar to the M-term for usual gauge fields in the second
line. The last line holds for all covariant matter fields, including their covariant
derivatives D,, or covariant curvature tensors after changing the indices to local
Lorentz indices.

We will consider the fiinfbein as an invertible field. Then some of the curvatures
in (3.4) are linear in some gauge fields. This is shown by the underlined terms in (3.4).
Therefore, we can impose constraints on these curvatures that are solvable for these
gauge fields. Such constraints are called conventional constraints, and imposing them
reduces the Weyl multiplet, such that we get closer to an irreducible multiplet. The

conventional constraints are®

R,,*(P) =0 (50),
e’y R (M) =0 (25),
V'R, (Q) =0 (40). (3.9)

In brackets we denoted the number of restrictions each constraint imposes. These
constraints are similar to those for other Weyl multiplets in 4 dimensions with N =
119, 21], N =2 [31] or N =4 [2§], or in 6 dimensions for the (1,0) [22] or (2,0) [29]
Weyl multiplets.

In general one can add extra terms to the constraints (8.9), which just amount to
redefinitions of the composite fields. By choosing suitable terms simplifications were
obtained in 4 and 6 dimensions. In this case one could e.g. add a term 7,, 7% to the
second constraint rendering all the constraints invariant under S-supersymmetry, but
in 5 dimensions this turns out to be impossible. Therefore we keep the constraints
as written above.

Due to these constraints the fields w,®, f,* and ¢L are no longer independent,
but can be expressed in terms of the other fields. In order to write down the explicit

®Note that the third constraint implies that 'y[wﬁpg]i(Q) =0.
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solutions of these constraints, it is useful to extract the terms which have been
underlined in (3.4). We define R’ as the curvatures without these terms. Formally,
oI _p I J I
R:‘V :Rul/ +2h[ueg]faj s (310)
where f,;! are the structure constants in the F'?(4) algebra that define commuta-

tors of translations with other gauge transformations. Then the solutions to the
constraints are

1- 1-
a via b via o c a a a
w? = 2¢1 G[Mey]] —e’le7e,.0,e, + 2eu[ ¥ — §¢[b'y I, — Zwb%d) :

i Lo az L. ab i
O = 317" B (Q) = 57177 Ba'(Q)

a 1 a 1 a — D a J—
fi =GR = g R Ruw =R, (Meles,, R=R./M.  (3.11)
The constraints imply through Bianchi identities further relations between the cur-
vatures. The Bianchi identities for R(P) imply

Ruw = Ry e’ Ry (D) = R[qu}a(M) ) R.(D)=0. (3.12)

3.3 Adding matter fields

After imposing the constraints we are left with 21 bosonic and 24 fermionic degrees
of freedom. The independent fields are those in the left upper part of table 8. These
have to be completed with matter fields to obtain the full Weyl multiplet. We have
already seen that there are two possibilities for a D = 5 Weyl multiplet with each
32 + 32 degrees of freedom.

These are obtained by adding either the left lower corner or right lower corner
of table 8. To obtain all the extra transformations we imposed the superconformal
algebra, but at the same time allowing modifications of the algebra by field-dependent
quantities. The techniques are the same as already used in 4 and 6 dimensions
in [B1, 28], and were described in detail in [22].

For the fields in the upper left corner, we now have to specify the extra parts M
in (8.5). This will in fact only apply to Q-supersymmetry. The other transformations
are as in (8.2). The extra terms we can read already from the linearized rules in (2.11)

and (2.14). The full supersymmetry transformations of these fields are

1* a
dge,” = 5€ Yy,
5Q¢Z =D, + iy Ty, ,

.y 3. i . , i
%mﬂz_yéwhqéwT%HAA%v%

1. _
Saby = 5160, — 267X (3.13)
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where D¢ is given in (B.3). The fields T, and x*, and a further field D that appears
in their transformation laws (see below) are independent fields in the Standard Weyl
multiplet, but not in the Dilaton Weyl multiplet. There, they are given by expressions
that are the non-linear extensions of (2.13):

Tay = %02 (Uﬁab - égabcdeﬁedc + ii”@%b’df) ’
X = RioT Dyt 4 e i0  Powt — o~y Py
+io‘1v Ty + 3% A UUEAS
D = %O'IDCO' + %02(Da0)(Daa) — 1_1602ﬁ2 _

2D — o Y — dio Ty +

+ (—Q—fb +207 Fy + %io—%@w) T, (3.14)
where the conformal d’alembertian is defined by
0 = D*D,o = (0 — 2b° + w,**) Dyo — %wapw — 209y X +
+%”@a’y“’y T+ %éa’y“’df +2f. 0, (3.15)

and where the underlining indicates that these terms are dependent fields. We have
not substituted these terms in the expression for D for reasons of brevity.

The modification M in (3.5) is the last term of the transformations of ¢, V7 and
b, The second term in the transformation of V;;? on the other hand is due to the fact
that the structure constants have become structure functions, and in particular there
appears a new T-dependent SU(2) transformation in the anti-commutator of two
supersymmetries. We will give the full new algebra in section 4. The transformation
rules for the matter fields® of the Weyl multiplets are as follows. For the Standard
Weyl multiplet we have (@Q and S supersymmetry)

1 3. 5
5Tab = 5 ig’yabx - 5 IERab(Q) )
A 1 o~ 1. PR NG
I ZGD—6—4’V'R (V)fj"'_gl'Y DT e — g7 D Tape’ —
L abed RPN ‘
_ —~abedp i T2 —~ T
47 abd cd€ + 6 € "‘4'7 n,
5}

6As we have already seen, two of the extra fields in the Dilaton Weyl multiplet are actually
gauge fields, rather than matter fields. However, we use uniformly ‘matter fields’ for them in this
context to indicate that they are not gauging a symmetry of the superconformal algebra.
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There are no explicit gauge fields here, as should be the case for ‘matter’, i.e. non-
gauge fields. These are all hidden in the covariant derivatives and covariant curva-
tures. The covariant derivatives are for any matter field given by the rule

D,® = et (8, — or(h))) . (3.17)

The last term represents thus a sum over all transformations except general coordi-
nate transformations, with parameters replaced by the corresponding gauge fields.
In practice, the Lorentz transformations and SU(2) transformations follow directly
from the index structure and lead to additions similar to those in (8:3). For the
Weyl transformations there is a term —wb,®, where w is the Weyl weight of the
field that can be found in table B, and then there remain the terms for Q and S
supersymmetry. There are no K transformations for any matter field in this paper.
The covariant curvatures are given by the general rule (B.6), e.g.

R (V) = R, (V) — 8 yx?) — iy - T (3.18)
where R,,'(Q) and R,," (V) are those given in (34). Note that for R(V) there are
corrections from modified structure functions as well as from M-dependent terms.

Having all the matter field dependence, we can obtain further consequences of the
curvature constraints. E.g. the Bianchi identity on R(Q) gives:

Ve R(S) = ST R@),
Bl S) = 31D Buul@) + 0T BQ) + 4T Run(Q)

Ruo(S) = 1DRw(Q) — 1D Ru(Q) + 5T R(Q) -

_167prb7[M§V]p(Q) +37- Tﬁu,,(@) +

1677, R,,(Q) - (3.19)
Given these transformation rules, we can calculate the transformations of the
dependent fields. Their transformation rules are now determined by their definition
due to the constraints. An equivalent way of expressing this is that their transfor-
mation rules are modified w.r.t. (8:2), due to the non-invariance of the constraints
under these transformations. We have chosen the constraints to be invariant un-
der all bosonic symmetries without modifications. Therefore, only the (- and S-
supersymmetries of the dependent fields are modified to get invariant constraints.
The new transformation of the spin connection is
, 1

1
s —ab s —_ab
=5iey %—51777 (I

— 1 gr)/[afy . Tr)/b]/l/]u —
1_ ap 1_ Da az
_557[ Rub](Q) - ZG'VMR Q) - 4%[ eyl . (3.20)

al
dw,
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The first line is the transformation as implied from the F%(4) algebra, see (3.3). The
second line is due to the modification of the anti-commutator of two supersymmetries
by a T-dependent Lorentz rotation. Finally, the last line contains the terms that go
into the M of (873). We give here for ¢/, just the latter type of terms

% 1 : a 1 a D i j
5¢U = —El {’7 br}/‘u_gfyufy b}Rabj(V)6J+

+% [Py Ty = Dy - T+ 70° DT € +

+1 [—fy“(fy . T)2 + 4y T, - T + 16'ycTCdT“d — 4’yuT2] e +

b2 (89T~ T) (3.21)
We will not need the transformations for the field f,?, except the transformation of
fo® under S, since this term appears in the conformal d’alembertian. We only give

its M-dependent S-transformation
dsfa = —bHinx. (3.22)

We also used the transformation of the following curvatures:

0Ra'(Q) = A (’Vade e §%b’70d> Reg'j(V)e + ZRade(M )Yed€' +

) 1
+2i (Dm Ty = 3Dy - T =

1 1 |
= 3Py Ty - g%chfydT“‘> ¢, (3.23)

~ . 3 o~ . . . ~
SRa!(V) = ~ 5180 R)(S) - 80y Dy + 18 TRa(Q) +
. —(3 ; 3 - —(iD i (3 ]
+8i¢ VaY - T%]X]) + 3 i 7 Rab])(Q) + 817 yapx? .

The Q- and S-supersymmetry variations of the matter fields in the Dilaton Weyl
multiplet are

1. 1_
0A, = —ilaewu—i-ie’yu’d},

1 5 1. _
5B,u1/ = _0267[M¢V} =+ 5 1 Ue’yﬂVw + A[Nd(e)AV} ?

2
St = —iv . Feé — %ilDaei +oy-Te — iia_leﬂz%j +on',
0o = %ia[). (3.24)
The gauge fields A, and B, have the additional symmetries
0A, = O\,
0B, = 20, — %AFW. (3.25)
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Note that the dependence of the transformation rules for A, and B,, on 1, and
A, signal new terms in the algebra of supersymmetries and U(1) transformations’.
This algebra will be written in section 4. On the other hand, the F-term in 6B,
should be interpreted as an M term according to (8.5), and modifies the field strength

accordingly. This leads to the following field strengths of these gauge fields

~

1. -
F,uu = 2(9[“14,/} + 5 1 Uw[,u’l/JV] - dj[u’)/z/]w )
3.
—1
2

For the convenience of the reader we give their transformation rules:

N 3 .- _ 3
Hywp = 301, By — 1021#[“%%1 — 5 1oV + S A Ey, (3.26)

~ 1. =~ _ . .
0Fy = —3 10€R,(Q) — &aDytp + 1€y - Tym® + 1M7a?
~ 3, = 3. _ 3. _
0Hgpe = _ZUZGV[aRbc](Q) +t3 i€y Do + 3 1 Doy —

3 3. A 3 _
_506’7[11’7 : I’ch]¢ - 56’7[an0]¢ - 50-77’7abc¢ . (327)

Finally, we give the Bianchi identities for these two curvatures

R 1. -
D[anc] = §¢7[aRbc](Q) )
~ 3~ o~
D[aHbcd] = ZF[achd} . (328)
This finishes our discussion of the Standard and Dilaton Weyl multiplets. The
final results for these multiplets have been collected in section . In the next section
we will explain the connection between the two multiplets.

4. Results for the two Weyl multiplets

For the convenience of the reader we collect in this section the essential results of
the previous sections, and give the supersymmetry algebra, which is modified by
field-dependent terms. The transformation under dilatation is for each field p® =
wAp®, where the Weyl weight w can be found in table (8). The Lorentz, and SU(2)
transformations are evident from the index structure, and our normalizations can be
found in (3.9).

4.1 The Standard Weyl multiplet

The @- and S-supersymmetry and K-transformation rules for the independent fields
of the Standard Weyl multiplet are

a 17 a
de,” = 56’}/ Yy,

"The A[uy) term in 6By, is an extension of (5:3) that occurs for antisymmetric tensor gauge
fields.
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5¢L =D, + iy - Ty.e — iy,

woo

- 3 oo ) . ) . 3 o
5V, = -3 ig(z(%) + 45(1%)(]) + ieliny . TW) + 5 i 77(ap7)

1 3. 5
5Tab = 5 ig’yabx - 5 1€Rab(Q) )
.1 1 o~ 1. R DUy
I ZeD—@’V'R (V)fj"'_gl'Y DToe — g7 D Tape —
L abed L L '
— AT Toge' + =T + =~ - T,
17 b dE-F6 €-F47 n

5
0D = elpx — giey-Tx — ifx,
1 1
6b, = 516% 26Xt 5 7Y+ 20k - (4.1)

The covariant derivative D,e is given in (B.3). For other covariant derivatives, see
the general rule (8.17%), with more explanation below that equation. The covariant
curvatures R(Q) and R(V) are given explicitly in (3:18). The expressions for the
dependent fields are given in (3:11), where the prime indicates the omission of the
underlined terms in (8.4).

4.2 The Dilaton Weyl multiplet
The Dilaton Weyl multiplet contains two extra gauge transformations: the gauge
transformations of A, with parameter A and those of B, with parameter A,. The
transformation of the fields are given by:
1 —_a
de,” = 57 Yy,
51/’; = Duei + ify : I’Yuei - i%ﬁi’
ij 3. (i (i, o d) o 2 ) LS (i

1 1
6A, = —5 108, + SEnd + 0,A,

2
1, 1. _ 1
0B, = 50267[u¢,4 + 5 ioeyY + Ajd(e) Ay + 20,0, — EAF“”’
- 1 ~. 1 . 1 - .
' = 17 Fe' — ) i Doe' + oy - Te — 1 io ey + o',
1
5o — Lic
o= giep,
1. _ L.
o, = 5 1€ M—2ewx—|—§1mﬁﬁ+2AKu. (4.2)

The covariant curvature of A, and B, can be found in (3.26). The transformation
of the dependent fields and the curvatures have been given in the previous section.
We have underlined the fields T, and x* to indicate that they are not independent
fields but merely short-hand notations. The explicit expression for these fields in
terms of fields of the Dilaton Weyl multiplet are given in (3.14).
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4.3 Modified superconformal algebra

Finally, we present the ‘soft’ algebra that these Weyl multiplets realize. This is the
algebra that all matter multiplets will have to satisfy, apart from possibly additional
transformations under which the fields of the Weyl multiplets do not transform, and
possibly field equations if these matter multiplets are on-shell.

The full commutator of two supersymmetry transformations is

[0 (e1), 6q(€2)] = eget (L) + ar(A") + 65(m3) + 0 (AF) +
+0k (M%) + o) (As) + 5 (Asy) - (4.3)

The covariant general coordinate transformations have been defined in (8.7). The
last two terms appear obviously only in the Dilaton Weyl multiplet formulation. The
parameters appearing in (4.3) are

1

®o_
53 = Z€Yu€1,

2
AP = —ieyyly - Tylle
N = iély-Te),

)

9-— ) 7-— [y
Ny = ——1€€1X +Zl €717 X +

4
Lo i ea L g
hidad (v + LR 0))
o 1_ a 1 i abc i
Ny = —5@" D + 587" e Rucis (V) +
1
tolie (=57 DyToq + 9D, T™) € +
2
1
A3 = —5i0'€261,
1, 1
Az, = 57 Eap — §A“A3. (4.4)

For the ), S commutators we find the following algebra:

1 s 1 ! 3 s (2,7 a
[65(n), dq(€)] = 5D(§167I) +5M(§ iey"n) +5U(—§1€( 1) + 0k (M%),

1
[05(m), 05 (n2)] = 0xe (527" m) - (4.5)
with
“ 1_ 1
Ay = &€ (’y Ty — 3% T) n. (4.6)
The commutator of ) and U(1) transformations is given by
1
5(0,3(0)) = s (—A5(0)4, ) (47)

This concludes our description of the Standard and Dilaton Weyl multiplets.
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5. Connection between the Weyl multiplets

In the previous section we have shown that the Standard and Dilaton Weyl multiplets
can be related to each other by expressing the fields of the Standard Weyl multiplet
in terms of those of the Dilaton Weyl multiplet (see (B.14)). It is known that in
6 dimensions the coupling of an on-shell selfdual tensor multiplet to the D = 6
Standard Weyl multiplet leads to a D = 6 Dilaton Weyl multiplet [22]. Since in 5
dimensions a tensor multiplet is dual to a vector multiplet, it is natural to consider
the coupling of a vector multiplet to the Standard Weyl multiplet. Since the Standard
Weyl multiplet has no dilaton we must consider the improved vector multiplet. We
will take the vector multiplet off-shell to simplify the higher-order fermion terms.

5.1 The improved vector multiplet

We will first consider the improved vector multiplet in a flat background, i.e. no cou-
pling to conformal supergravity. Our starting point is the lagrangian corresponding
to an off-shell vector multiplet:

1 1- 1 g
L= ~1 L FH — 5’4&% — 5(80)2 + Y. (5.1)
The action corresponding to this lagrangian is invariant under the off-shell super-
symmetries
1_
0A, = 56%@,
- 1 .. .
SYi — _§g(13¢3)’
= —37 Fe —5idoe €5
1
oo = §i€¢. (5.2)

The action has the wrong Weyl weight to be scale invariant. We therefore improve
it by multiplying all terms with the dilaton. This requires additional cubic terms in
the action to keep it invariant under supersymmetry. We thus obtain the lagrangian
for the improved vector multiplet:

1 1 - 1 iy
L= —ZJFWF“” - 501/;@1# - 50(80)2 +oYVY;; —

1. - 1 1. - .
-3 iy - Fap — ﬁeump(,A“F”AF”" -3 1Y . (5.3)

If we define the following

. . 1 - .
S = 20V — Zii,
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) ) 1 ) 1 . .
I = iody' + S idoy' — 37 Fy +Y%j,

1
C = —qFwF" - —ww +olo + 5 (80) + Y,
1 < 7
Gabc = 8[anC] ’ (54)

then the equations of motion and the Bianchi identity corresponding to this la-
grangian are given by

0=87=T"=C=H, = G- (5.5)
5.2 Coupling to the Standard Weyl multiplet

Next, we consider the coupling of the improved vector multiplet to the Standard Weyl
multiplet. The transformation rules for the fields of the off-shell vector multiplet can
be found by imposing the superconformal algebra (4.3). We thus find the following
- and S-transformation rules:

1 1
0A, = —-ioey, + —E’yuw,

2
oYY = ——E(Zqub] —16 by T — 4igeliy?) 4 3 1707
Mt = 27 Feé — iilDael +oy-Te =YY +0on',
1

where the covariant curvature is

~

F;w = 28[ V] +3 10¢ u¢u] 1/};/71/ ¢ (57)

The supercovariant extension of the Bianchi identity reads

~ 1- =~
0= Gape = D[anc] - §¢7[aRbC](Q) . (58)

The first term in the transformation of A,,, reflected also in the curvature, signals
a modification of the supersymmetry algebra, as can be seen by comparing with the
general rule (8.5):

5(ex), 8(e2)] = - -+ uy (A3 - ia€261> , (5.9)

where the dots indicate all the terms present for the fields of the Standard Weyl
multiplet and where the last term is the gauge transformation of A,. This U(1) is
not part of the superconformal algebra and has no effect on the fields of the Standard
Weyl multiplet. This is similar to the central charge induced in vector multiplets in
4 dimensions.
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Our next goal is to find the equations of motion for the improved vector multiplet.
These equations of motion should be an extension of the flat spacetime results given
in (.4). One way to proceed is to first find the curved background extension of the
flat spacetime action defined by (5.3) and next derive the equations of motion from
this action. However, for our present purposes, it is sufficient to find the equations
of motion only.

We want to identify the spinor v of the vector multiplet with the spinor v’ of the
Dilaton Weyl multiplet. This is why we have given these two spinors the same name
in the first place (see the footnote in subsection 2.3). Comparing the SU(2) triplet
term in the supersymmetry transformations of the two spinors, see (8.24) and (5.6),
we deduce that the constraint S% does not get any corrections and we must have

. - 1 - .
89 =20Y" — Sy (5.10)

There are now two ways to proceed. One way is to make the transition to an on-
shell vector multiplet by using (5.I0) to eliminate the auxiliary field Y% from the
transformation rules (5:6') The commutator of two supersymmetry transformations
would then only close modulo the equations of motion.

A more elegant way is to note that the equations of motion must transform into
each other. By varying (5.10) under (5.6) we find

657 = ity (5.11)
where the supercovariant extension of I'? is now given by
) ) 1 . 1 ~ . .
' = iocPy' + 5ilDaW -1V Fy"+Y"y; +
+20y - TY" — 80%x". (5.12)

Varying this expression under (5.6) and using (5.8) leads to the other equations of
motion. We find:

- 1 . 1 1 g
(5FZ:—iiﬁsmq—§i7~Hel+§Cez—fy-TS”ej, (5.13)
where the supercovariant generalizations of (5.4) are given by
15 ~p 1- 1 .
C = ~2 wF Y — §¢lD¢ + ol + §D“0Daa +YYY;; +

. ~ 104 .
+ity - Tep — 16i0thy — 70—2TabT“b + 80 F,T® — 402D,

1 PN 5o _ 1.7
H, = —gaabcderche - D" (802Tba — ok, — 1 i’ﬁlf’ybaw) . (5.14)

The supercovariant equations of motion and Bianchi identity are then given by

0=5Y=T"=C=H, = Ga. (5.15)
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5.3 Solving the equations of motion

In 6 dimensions, the equations of motion for an on-shell tensor multiplet coupled
to the Standard Weyl multiplet can be used to eliminate the matter fields of the
latter in terms of the matter fields of the Dilaton Weyl multiplet. Precisely the same
happens here. First of all the equations of motion for Y% can be used to eliminate
this auxiliary field. Next, the equations of motion for 1)¢ and o can be used to solve
for the fields x* and D, respectively. The expressions for these fields exactly coincide
with the ones we found in (3.14).

The solution for the matter field T,; in terms of the fields of the Dilaton Weyl
multiplet is more subtle. It requires that we first reinterpret the equation of motion
for the vector field as the Bianchi identity for a two-form antisymmetric tensor gauge
field B,,. To be precise, we rewrite H, = 0 from (5.14) as a Bianchi identity

~ 3~ o~
D[aHbcd} = ZF[achd} ) (516)
where the three-form curvature ffabc is defined by
1 = ~ 1 —
—égabcdeHedc =80Ty, — oFy — 1 1yt . (5.17)

Note that the latter equation is just a rewriting of the relation (8:14) we found in
section 3.

The Bianchi identity (5.16) can be solved in terms of an antisymmetric two-
form gauge field B,,. The superconformal algebra (5.9) imposes that such a field
transforms under supersymmetry as follows:

1 5 1. _
doBu, = 50'267[M¢V] + 3 ioey,,Y + Ajd(e) Ay . (5.18)

In addition one finds that the field B, transforms under a U(1) and a vector gauge
transformation as follows
1

6By, = 20, — SAF . (5.19)

Furthermore, the commutator of two Q-transformations picks up a vector gauge
transformation dp for the field B,,:

[6(€1),0(e2)] = ... + dun) (As) + 05 (Asy)
1
A3 = _% i(7%261 y A3# = —20'262’)%61 — §AHA3 . (520)

From the transformation rules (5.19) for B, it follows that the supercovariant field
strength H,,, is given by

~ 3 5 - 3. - 3
H,p = 30Byy) — ZUZ?D[;/VV”@DP] ) LoV ¥ + §A[uFVp] . (5.21)

This field strength indeed satisfies the Bianchi identity (5.16).
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Dimension D | # d.o.f. | Standard Weyl | Dilaton Weyl
6 10 Th. B,
5 10 Tab A,u ) B;w
4 6 Tab A,u ) B,u

Table 6: The two different formulations of the Weyl multiplet in D = 4,5, 6.

We conclude that the connection between the Standard and Dilaton Weyl multi-
plets can be obtained by first coupling an improved vector multiplet to the Standard
Weyl multiplet and, next, solving the equations of motion. To solve for the equation
of motion for the vector field in terms of the matter field T, one must first reinterpret
this equation of motion as the Bianchi identity for an antisymmetric two-form gauge
field.

6. Conclusions

In this work we have taken the first step in the superconformal tensor calculus by
constructing the Weyl multiplets for N = 2 conformal supergravity theory in 5
dimensions.

First, we have applied the standard current multiplet procedure to the case of
the D = 5 vector multiplet. An unconventional feature is that the corresponding
energy-momentum tensor is neither traceless nor improvable to a traceless current.
However, since one version of the Weyl multiplet contains a dilaton we could construct
this linearized 32 + 32 Dilaton Weyl multiplet from the current multiplet. We also
pointed out that there exists a second (‘Standard’) Weyl multiplet without a dilaton,
by comparing with similar Weyl multiplets in D =4 and D = 6.

Next, we explained how the non-linear multiplets could be obtained by gauging
the superconformal algebra F(4). Finally, we discussed the relation between the two
Weyl multiplets. We showed that the coupling of the Standard Weyl multiplet to an
improved vector multiplet leads to the non-linear relation between the Standard and
Dilaton Weyl multiplets.

The fact that there exist two different versions of conformal supergravity has
been encountered before in 6 dimensions [22]. Table § suggests that the same feature
might also occur in 4 dimensions. It seems plausible that in this case the coupling of
a vector multiplet to the Standard Weyl multiplet will give a Dilaton Weyl multiplet
containing two vectors. It would be interesting to see whether the Dilaton Weyl
multiplet in 4 dimensions indeed exists, and how it can be used in matter couplings.

It is known, from the AdS/CFT correspondence, that there is a relation between
(1,1), D = 6 gauged supergravity with 16 supercharges and the N = 2, D = 5
conformal supergravity with 8 supercharges. In fact, the precise relation between the
Standard Weyl multiplet and the (1,1), D = 6, or F'(4)-gauged, supergravity [32] has
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been given in [8]. The F(4)-gauged supergravity contains a massive antisymmetric
two-form tensor which, according to [5], corresponds to the T, matter field of the
Standard Weyl multiplet. It would be interesting to see whether the work of [f] can
be extended such that the F'(4)-gauged supergravity theory also gives rise to the
Dilaton Weyl multiplet. One possibility is that, in order to achieve this, one should
first replace the massive two-form of gauged supergravity by a massless one-form and
two-form gauge field.

Finally, the results of this work will be our starting point for the construction
of general supergravity /matter couplings in 5 dimensions. We hope to report about
this in the nearby future.

Note added: A few days after we sent this paper to the bulletin board an inter-
esting paper appeared on conformal supergravity in five dimensions [41] that has
some overlap with our work. The authors of [41] also discuss the two versions of the
Weyl multiplet. In addition they discuss the superconformal tensor calculus in five
dimensions.
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A. Notations and Conventions

The metric is (—++++), and we use the following indices (spinor indices are always
omitted)

w1 0,...,4 local spacetime,
a 0,...,4 tangent spacetime,
i 1,2 SU(2). (A.1)
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The generators U;; of the R-symmetry group SU(2) are defined to be anti-
hermitian and symmetric, i.e.

(U =-U;", Ui = Uy (A.2)

A symmetric traceless U7 corresponds to a symmetric U¥ since we lower or raise
SU(2) indices using the e-symbol, in NW-SE convention:

Xi = ?Sinj, Xz = Xjé'ji, E19 = —€91 = 812 =1. (Ag)

The actual value of € is here given as an example. It is in fact arbitrary as long as
it is antisymmetric, €9 = (g;;)* and g, = §;°.

The charge conjugation matrix C and Cv, are antisymmetric. The matrix C is
unitary and 7, is hermitian apart from the timelike one, which is anti-hermitian.
The bar is the Majorana bar:

M= ()Te. (A.4)
We define the charge conjugation operation on spinors as
()\i)c = a_lB_laij()\j)* , \C = W =a ! (Xk)* Bekt (A.5)

where B = C7p, and a = +1 when one uses the convention that complex conjugation
does not interchange the order of spinors, or a = +1i when it does. Symplectic
Majorana spinors satisfy A = A¢. Charge conjugation acts on gamma matrices as

(7a)®
space as MY = o,M*0,. Complex conjugation can then be replaced by charge

= —,, does not change the order of matrices, and works on matrices in SU(2)

conjugation, if for every bispinor one inserts a factor —1. Then, e.g. the expressions
ANy i) (A.6)

are real for symplectic Majorana spinors. For more details, see e.g. [24].
When the SU(2) indices on spinors are omitted, northwest-southeast contraction
is understood, e.g.

My = Xy, (A7)
where we have used the following notation
Y = o = glige .yl (A8)

The anti-symmetrizations are always with unit strength. Changing the order of
spinors in a bilinear leads to the following signs

t,=—1forn=2,3

A9
t,=+1forn=0,1 (4.9)

where the labels (1) and (2) denote any SU(2) representation.
We frequently use the following Fierz rearrangement formulae

. 1-, 1. 1
YA = —Z)\Z"%' - ZAZ’Y%/JJ'% + 3

_ N 1- .
NV, PN = ot (A0)
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When one multiplies three spinor doublets, one

should be able to write the result in terms of (8 x 7 x d= m=1 m=2
6)/3! = 56 independent structures. From analyzing the "= o —20
representations, one can obtain that these are in the n=1 -3 —4
(4,2)+(4,4) + (16, 2) representations of SO(5) x SU(2). "= L 4
They are n= 4
1 Table 7: The coefficients

§E = VG = 290 Erat, o in (AITD).

ghgie,

EE7at" (A.11)

The Levi—Civita tensor is real and satisfies

gMPIT — eelel - . el (A12)

ai...anci..Cp __ [c1 cp)
Eay.canby. b€ TP = —nlpléy ... 6 T

bp]

We introduce the dual of a tensor as

~ 1
Adtomn = _' i8(11...a5—nbl...bwm’élbnmb1 ) (A13)
n!
with the properties
= 1 ai...a 1 1 A D
A=A, — A By ., =—A-B= A-B, (A.14)
n! n! (n—5)!

where we have introduced the notation A - B that we use throughout the paper.
The product of all gamma matrices is proportional to the unit matrix in odd
dimensions. We use

,yabcde — iéEadee ) (A15)

This implies that the dual of a (5 — n)-antisymmetric gamma matrix is the n-
antisymmetric gamma matrix given by

Yai...an, — (57 i5a1...anb1...b5_n7b5_nmbl . (A16)

—n)!
For convenience we will give a rule for calculating gamma-contractions like

(m)

Y™ V@) Vim) = CrmY(n) 5 (A.17)

where the constants ¢, ., are given for the most frequently used cases in table 7.

B. The D = 5 superconformal algebra F?(4)

There exist many varieties of superconformal algebras, when one allows for central
charges [B3, B4]. However, so far a suitable superconformal Weyl multiplet has only
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been constructed from those superconformal algebras® that appear in the Nahm’s
classification [86]. In that classification appears one exceptional algebra, which is
F(4). The particular real form that we need here is denoted by F?(4), see tables 5
and 6 in [24].

The commutation relations defining the F'?(4) algebra are given by

[Paa Mbc] = na[ch} ) [Km Mbc] = na[ch] )
[D?Pa]:Pa) [DaKa]:_Kaa
[Mab) MCd] = _25[a[CMb]d] ) [Pa) Kb] = 2(nabD =+ 2Mab) )
1 1
[Maba Qia] = _Z(’yabQi)a ) [Maby Sioz] = _Z(’yabsi)a )
1 1
[Dv Qia] = §Qia ) [D7 Sioz] = _isia )
[Kaa Qia] = i(’yasi)a ) [Pay Sioz] = —1 (’YaQi)a y
1 a 1 a
{Qia, Qis} = —5/(1")apPas  {5ias Sjs} = —5€3(1")apKa,

1, .
{Qia, Sjp} = —51 (2ijCapD + €i;(Y*")apMap + 3CasUs;)

[Qia; Ukl] = 5i(le)a; [Siaa Ukl] = €i(kSl)a7

The first six commutation relations define the bosonic conformal algebra SO(5, 2).

C. The current multiplet of Howe-Lindstrom

The supercurrent in 5 dimensions has been discussed before in the literature [25, 37).
The authors of [25] found a 40 4 40 current multiplet that couples to a (32 + 32)
plus (8 + 8) reducible field multiplet. It turns out that also the current multiplet
itself is reducible. More precisely, the 40 + 40 multiplet of [25] reduces to our 32 + 32
multiplet and an additional 8 + 8 multiplet.

The 40 + 40 multiplet has all the currents of the 32 + 32 multiplet in table 2

(=

except the current b,,. In addition it contains the currents which we present in
table 8.

The multiplet of [25] is generated by varying o2

under supersymmetry until
closure is reached and in this way it produces 40 + 40 components. In particular, we
find that the transformations of the fields in table § are given by:

dgc = i€y,

11 1.1
dX' = —7idee + 2y + 2ivvie; — o7 e,

80ne notable case is the 10 dimensional Weyl multiplet I:_gﬁ], that is not based on a known
algebra.
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Current | SU(2) | w | # d.of. Expression Redefined | w
c 1 2 1 o? c 4
y(9) 3 3 3 siviyd y' 3
o 1 1 10 oFu + 2107, || by +a, | 3
Y 2 |5/2] 8 o o 772

Table 8: The extra fields of the 40 + 40 current multiplet. The column “Redefined”
indicates the currents after the field redefinitions (C.4). The field n,, is not a Noether
current, but after the field redefinition (C.4) it gives the Noether currents by, and @,,.

5Qyij = ielin. J9 4+ 2E(zﬁxj) ,

1_ _
5Qn,uu = ZGPY;U//\J)\ + eﬁ[M’Yu]X . (Cl)

In addition the transformation of the supercurrent is also slightly changed w.r.t. (2.9)
since it does not contain b,, but n,,:

4 1 ) i . id 1 i 1 . v o i
oqd, = —51v 0, — 1'7[,\8)‘1):]6]' ~ 5 aue + 7 FEupo Pnfoe . (C.2)
Comparing this with (2.9) we see that the relation between b, and n,, is given by
1
by = isw,\paﬁ’\np". (C.3)

The 32 + 32 components now transform only among themselves according to (2.9).
To demonstrate full reducibility of the 40 + 40 multiplet we make the following field
redefinitions:

¢=6,"—0c,
X =iy J =219,
a, = a, —20"n,, . (C.4)

Together with the field y¥ these fields form an 8 4+ 8 multiplet, see table 8, trans-
forming only among themselves according to

. 1__
6QC = 5&3)(7

1., 1 y 1 A
5Q§€L = 5/0\62 — 5 i@y”ej — 5 i%ez,
6Qyij — ig(ijzj)’
~ L. -
doa, = ~3 1€7,,0"X - (C.5)

As one would suspect from the field content, the 8 + 8 current multiplet (C.5) is
conjugate to the off-shell vector multiplet (5.2), in the same way as the 32+32 current
multiplet (2.9) is conjugate to the Dilaton Weyl multiplet (2.11). We expect that
this multiplet can be used as one of the compensating multiplets in the construction
of the 48 + 48 off-shell [38, B87] (= 8 + 8 on-shell [89]) D = 5 Poincaré multiplet.
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