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1. Introduction

Conformal supergravities have been constructed in various dimensions (for a review,

see [1]) but not yet in five dimensions. The five-dimensional case is of interest for

various reasons not least of all from a purely mathematical viewpoint since it is based

on the exceptional superalgebra F 2(4).
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By using conformal tensor calculus, conformal supergravities form an elegant

way to construct general couplings of Poincaré-supergravities to matter [2]. In the

five-dimensional case these matter coupled supergravities have recently attracted

renewed attention due to the important role they play in the Randall–Sundrum (RS)

scenario [3, 4] and the AdS6/CFT5 [5, 6] and AdS5/CFT4 [7] correspondences.

The form of the scalar potential in five-dimensional matter coupled supergravities

plays a crucial role in the possible supersymmetrisation of the RS-scenario. It turns

out that such a supersymmetrisation is non-trivial. With only vector multiplets and

no singular source insertions, a no-go theorem was established for smooth domain-

wall solutions [8, 9]. In view of this, general D = 5 supergravity/matter couplings

have been re-investigated [10], thereby generalizing the earlier results of [11, 12].

A modification of the theory allows solutions by inserting branes as singular inser-

tions [13]. The inclusion of hypermultiplets was first considered in [14], where even

generalizations of [10] were considered. However, this description has not been proven

to be consistent. Hypermultiplets were also considered in [15, 16]. The mixing of

vector and hypermultiplets [17] seems to circumvent all obstructions, though no ex-

ample of a good smooth solution has been found. However, it has been shown also

in [17] that N = 2, D = 5 matter couplings to supergravity can give rise to more

general possibilities for renormalization group flows between conformal theories in

ultraviolet and infrared than those known for N = 8.

With all these developments, it is clear that it is important that there is an inde-

pendent derivation of the most general matter couplings derived in [10]. Moreover, it

has turned out in the past that superconformal constructions lead to insights in the

structure of matter couplings. A recent example is the insight in relations between

hyper-Kähler cones and quaternionic manifolds, based on the study of superconfor-

mal invariant matter couplings with hypermultiplets [18]. For all these reasons a

superconformal construction of general matter couplings in N = 2, D = 5 is useful.

In this paper we take the first step in this investigation by constructing the

N = 2, D = 5 conformal supergravity theory. In our construction we use the

methods developed first for N = 1, D = 4 [19, 20]. They are based on gauging the

conformal superalgebra [21] which in our case is F 2(4).

The superconformal multiplet that contains all the (independent) gauge fields

of the superconformal algebra is called the Weyl multiplet. In general one needs

to include matter fields to have an equal number of bosons and fermions. We will

see that in five dimensions there are two possible sets of matter fields one can add,

yielding two versions of the Weyl multiplet: the Standard Weyl multiplet and the

Dilaton Weyl multiplet. This result is similar to what was found for (1, 0) D = 6

conformal supergravity theory [22]. Also in that case, two versions were found: a

multiplet containing a dilaton and one without a dilaton.

In [5], the field content and transformation rules for the Standard Weyl multi-

plet were constructed from the F (4)-gauged six-dimensional supergravity using the
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AdS6/CFT5 correspondence. The results, although not given in a manifestly super-

conformal notation, seem similar to ours. However, the full non-linear commutation

relations (see (4.3)) that we obtain were not given.

Another attempt was undertaken in [23] by reducing the known six-dimensional

result [22] to five dimensions. The authors of [23] already gauge-fixed some sym-

metries of the superconformal algebra during the reduction process in order to sim-

plify the matter multiplet coupling. In this way, they found a multiplet that is

larger than the Weyl multiplet that we will construct in this work, because they

do not aim to obtain superconformal symmetry in 5 dimensions. Our strategy is

to start from the basic building blocks of superconformal symmetry in 5 dimen-

sions.

We first construct the conformal supercurrent multiplet that contains the energy–

momentum tensor of the D = 5 vector multiplet. This is non-trivial because the

D = 5 vector multiplet is not conformal. At first sight this seems to prohibit the

construction of a conformal current multiplet, but we will show how the introduction

of a dilaton in the Weyl multiplet circumvents this obstacle. This is the origin of the

first of our two versions of 32+32 Weyl multiplets. The other one is a straightforward

extension of the one known in 4 dimensions.

We have organized the paper such that a reader who is interested in the main

results for the multiplets, i.e. their content, transformation laws and the algebra that

they satisfy can find everything in section 4. The rules found in this section will

be needed when one investigates matter couplings. However, this does not contain

all our results. The relation between the two versions is based on the use of the

(improved) vector multiplet, and this construction is also part of our main result.

This paper is organized as follows. In section 2, as the first step in our procedure,

we construct the supercurrent multiplet that contains the energy-momentum tensor

of the N = 2, D = 5 vector multiplet. It turns out that this supercurrent multiplet

has 32 + 32 components.

The coupling of the supercurrent multiplet to the fields of conformal supergravity

leads to the linearized superconformal transformation rules for the 32+32 component

Dilaton Weyl multiplet. We show that there exists another version of the linearized

Weyl multiplet (the Standard Weyl multiplet) that contains the same gauge fields

as the Dilaton Weyl multiplet, but differs in the matter field content. An important

difference between the Standard and Dilaton Weyl multiplet is that the scalar field

of the Standard Weyl multiplet has a non-zero mass dimension that cannot serve,

like the dilaton scalar field of the Dilaton Weyl multiplet, as a compensator for scale

transformations.

In section 3 we derive the full non-linear transformation rules for both Weyl mul-

tiplets by gauging the D = 5 superconformal algebra F 2(4) following the notations

on real forms as in [24]. For the convenience of the reader we give the final results

of the two Weyl multiplets, in a self-contained manner, in section 4.

3
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In section 5 we show that the Dilaton Weyl multiplet can be obtained by cou-

pling the Standard Weyl multiplet to an improved vector multiplet. This establishes

the precise connection between the two multiplets. We present our conclusions in

section 6.

We explain our notation and conventions in appendix A. The complete com-

mutation relations defining the D = 5 superconformal algebra F 2(4) are given in

appendix B. Finally, in appendix C we compare the 32 + 32 supercurrent multiplet

we construct in this paper with the 40 + 40 supercurrent multiplet constructed by

Howe and Lindström [25] some time ago. We show that their multiplet is reducible.

2. Linearized Weyl multiplets

In this section we obtain two linearized Weyl multiplets. After discussing the method

of the supercurrent (section 2.1) we will construct the currents of a rigid on-shell

vector multiplet (section 2.2), and define a Weyl multiplet as the fields that couple

to the currents (section 2.3). The comparison with known Weyl multiplets in 4 and

6 dimensions, tells us that there is also another Weyl multiplet, and we point out

that it can be obtained from the first one by redefining some fields (section 2.4).

2.1 The current multiplet method

The multiplet of currents in a superconformal context has been discussed before in

the literature, e.g. the current multiplet corresponding to the N = 1, D = 4 [20],

the N = 2, D = 4 [26, 27] and the N = 4, D = 4 vector multiplets [28] and to the

(self-dual) (2, 0) D = 6 tensor multiplet [29].

After adding local improvement terms one obtains a supercurrent multiplet con-

taining an energy-momentum tensor θµν = θνµ and a supercurrent J
i
µ which are both

conserved and (gamma-)traceless

∂µθµν = θ
µ
µ = ∂

µJ iµ = γ
µJ iµ = 0 . (2.1)

These improved current multiplets were used in the past to construct the linearized

transformation rules for the Weyl multiplet1 since a traceless energy-momentum ten-

sor is equivalent to scale-invariance of the kinetic terms in the action.

However, the standard kinetic term of the D = 5 vector field

L = −1
4
FµνF

µν (2.2)

is not scale invariant, i.e. the energy-momentum tensor is not traceless:

θµν = −FµλF λ
ν +

1

4
ηµνFρσF

ρσ , θµ
µ =
1

4
FµνF

µν 6= 0 . (2.3)

Moreover, there do not exist gauge-invariant local improvement terms.
1The Weyl multiplets of (1, 0) D = 6 [22] were derived without the use of a current multiplet,

although this is certainly possible in view of the reduction rules given in [29].
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There is a remedy for this problem. Whenever there is a compensating scalar

field present, i.e. a scalar with mass dimension zero but non-zero Weyl weight, then

the kinetic term (2.2) can be made scale invariant by introducing a scalar coupling

of the form

L = −1
4
eφFµνF

µν . (2.4)

This compensating scalar is called the dilaton. In general, there are three possible

origins for a dilaton coupling to a non-conformal matter multiplet: the dilaton is

part of

1. the matter multiplet itself (the multiplet is then called an ‘improved’ multiplet);

2. the conformal supergravity multiplet;

3. another matter multiplet.

The N = 2, D = 5 vector multiplet contains precisely such a scalar. We could

therefore use it to compensate the broken scale invariance of the kinetic terms. This

leads to the so-called improved vector multiplet. This is the first possibility, that

will be further discussed in section 5.

The second possibility will be considered here (the third possibility is included for

completeness). This possibility thus occurs when the Weyl multiplet itself contains

a dilaton. We will see that there indeed exists a version of the Weyl multiplet

containing a dilaton. This version is called the Dilaton Weyl multiplet. It turns out

that there exists another version of the Weyl multiplet without a dilaton. This other

version will be called the Standard Weyl multiplet.

For matter multiplets having a traceless energy-momentum tensor, no compen-

sating scalar is needed. To see the difference between the various cases it is instructive

to consider (1, 0) D = 6 conformal supergravity theory [22] which was constructed

without the supercurrent method. In that case, two versions were found: a multiplet

containing a dilaton and one without a dilaton. We expect that both versions can

be constructed using the supercurrent method: the one without a dilaton starting

from the conformal (1, 0) tensor multiplet (being a truncation of the (2, 0) case), and

the version containing the dilaton by starting from the non-conformal D = 6 vector

multiplet (which upon reduction should produce our results in D = 5).

Thus, the current multiplet needs to be improved only when coupled to the Stan-

dard Weyl multiplet. In the case of the Dilaton Weyl multiplet it is not necessary to

do so, since in that case the dilaton of the Weyl multiplet can be used to compensate

for the lack of scale invariance. In particular, the dilaton will couple directly to the

trace of the energy-momentum tensor.

When coupling to the Standard Weyl multiplet one needs to add non-local im-

provement terms to the current multiplet which was done for the current multiplet

5
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Field Equation of motion SU(2) w # d.o.f.

Aµ ∂µF
µν = 0 1 0 3

σ �σ = 0 1 1 1

ψi /∂ψi = 0 2 3/2 4

Table 1: The 4 + 4 on-shell abelian vector multiplet.

coming from the D = 10 vector multiplet [30]. In that case the non-local improve-

ment terms that were added, required the use of auxiliary fields satisfying differential

constraints in order to make the transformation rules local.2

We did not analyse the addition of non-local counter terms. It would be interest-

ing to see if in this way a consistent coupling to the Standard Weyl multiplet can be

obtained. Instead, we will derive the linearized transformation rules for the Standard

Weyl multiplet via a field redefinition from those of the Dilaton Weyl multiplet.

2.2 Current multiplet of the N = 2, D = 5 vector multiplet

Our starting point is the on-shell D = 5 vector multiplet. Its field content is given by

a massless vector Aµ, a symplectic Majorana spinor ψ
i in the fundamental of SU(2)

and a real scalar σ. See table 1 for additional information. Our conventions are

given in appendix A.

The action for the D = 5 Maxwell multiplet is given by

L = −1
4
FµνF

µν − 1
2
ψ̄ /∂ψ − 1

2
(∂σ)2 . (2.5)

This action is invariant under the following supersymmetries

δQAµ =
1

2
ε̄γµψ ,

δQψ
i = −1

4
γ · Fεi − 1

2
i /∂σεi ,

δQσ =
1

2
i ε̄ψ , (2.6)

as well as under the standard gauge transformation

δΛAµ = ∂µΛ . (2.7)

The various symmetries of the lagrangian (2.5) lead to a number of Noether cur-

rents: the energy-momentum tensor θµν , the supercurrent J
i
µ and the SU(2)-current

vijµ . The supersymmetry variations of these currents lead to a closed multiplet of

2Note also that in D = 10 the trace-part and the traceless part of the energy-momentum tensor

are not contained in the same multiplet which necessitates the addition of the non-local improvement

terms to project out the trace-part.
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Current Noether SU(2) w # d.of.

θ(µν) ∂µθµν = 0 1 2 9

θµ
µ 1 4 1

v
(ij)
µ ∂µvijµ = 0 3 2 12

aµ ∂µaµ = 0 1 3 4

b[µν] ∂µbµν = 0 1 2 6

J iµ ∂µJ iµ = 0 2 5/2 24

ζ i ≡ i γ · J i 2 7/2 8

Table 2: The 32 + 32 current multiplet. The trace θµ
µ and the gamma-trace of J iµ form

separate currents, the latter is denoted by ζi.

32 + 32 degrees of freedom (see table 2). As discussed in the introduction, an un-

conventional feature, compared to the currents corresponding to a D = 4 vector

multiplet or a D = 6 tensor multiplet, is that the current multiplet cannot be im-

proved by local gauge-invariant terms, i.e. θµ
µ 6= 0 and γµJ iµ 6= 0. It is convenient to

include these trace parts as separate currents since, as it turns out, they couple to

independent fields of the Weyl multiplet.

We find the following expressions for the Noether currents and their supersym-

metric partners in terms of bilinears of the vector multiplet fields:

θµν = −∂µσ∂νσ + 1
2
ηµν (∂σ)

2 − FµλF λ
ν +

1

4
ηµνF

2 − 1
2
ψ̄γ(µ∂ν)ψ ,

J iµ = −
1

4
i γ · Fγµψi − 1

2
(/∂σ)γµψ

i ,

vijµ =
1

2
ψ̄iγµψ

j ,

aµ =
1

8
εµνλρσF

νλF ρσ + (∂νσ)Fνµ ,

bµν =
1

2
εµνλρσ(∂

λσ)F ρσ +
1

2
ψ̄γ[µ∂ν]ψ ,

ζ i = i γ · J i = 1
4
γ · Fψi + 3

2
i /∂σψi ,

θ µµ =
3

2
(∂σ)2 +

1

4
F 2 . (2.8)

From these expressions, using the Bianchi identities and equations of motion of the

vector multiplet fields, one can calculate the supersymmetry transformations of the

currents. A straightforward calculation yields:

δQθµν =
1

2
i ε̄γλ(µ∂

λJν) ,

δQJ
i
µ = −

1

2
i γνθµνε

i − i γ[λ∂λvijµ]εj −
1

2
aµε

i +
1

2
i γνbµνε

i ,

7
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δQv
ij
µ = i ε̄

(iJ j)µ ,

δQaµ = −ε̄∂λγ[λJµ] + 1
4
ε̄γρµγ

σ∂ρJσ +
1

4
i ε̄γρµ∂

ρζ ,

δQbµν =
3

4
i ε̄γ[λµ∂

λJν] − 1
8
i ε̄γρµνγ

λ∂ρJλ +
1

8
ε̄γρµν∂

ρζ ,

δQζ
i =
1

2
ρεi − 1

2
/∂/vijεj − 1

2
i /aεi − 1

2
γ · bεi ,

δQθ
µ
µ =

1

2
ε̄/∂ζ . (2.9)

Note that we have added to the transformation rules for aµ and bµν terms that are

identically zero: the first term at the r.h.s. contains the divergence of the supercurrent

and the last two terms are proportional to the combination (iγ ·J− ζ) which is zero.
Similarly, the second term in the variation of the supercurrent contains a term that

is proportional to the divergence of the SU(2) current.

The reason why we added these terms is that in this way we obtain below the

linearized Weyl multiplet in a conventional form. Alternatively, we could not have

added these terms and later have brought the Weyl multiplet into the same con-

ventional form by redefining the Q-transformations via a field-dependent S- and

SU(2)-transformation.

2.3 Linearized Dilaton Weyl multiplet

The linearized Q-supersymmetry transformations of the Weyl multiplet are deter-

mined by coupling every current to a field, and demanding invariance of the corre-

sponding action. The field-current action is given by:

S =

∫
d5x
(1
2
hµνθ

µν + i ψ̄µJ
µ + V ijµ v

µ
ij + Aµa

µ +Bµνb
µν + i ψ̄ζ + ϕ θ µµ

)
. (2.10)

In table 3 we give some properties of the Weyl multiplets. In particular of the one

just derived, which we call the Dilaton Weyl multiplet3. A similar Weyl multiplet

containing a dilaton exists in D = 6 [22].

Using the supersymmetry rules for the current multiplet, we find that the fol-

lowing transformations leave the action (2.10) invariant:

δQhµν = ε̄γ(µψν) ,

δQψ
i
µ = −

1

4
γλν∂λhνµε

i − V ijµ εj +
1

8
i
(
γ · F + 1

3
i γ ·H

)
γµε

i ,

δQV
ij
µ = −

1

2
ε̄(iγλψ

j)
λµ +

1

2
i ε̄(iγµ/∂ψ

j) ,

3Note that the Dilaton Weyl multiplet contains a vector Aµ, a spinor ψ
i and a scalar σ which, on

purpose, we have given the same names as the fields of the vector multiplet. The reason for doing

so will become clear in section 5 where we explain the connection between the two Weyl multiplets.

From now on, until section 5, we will be only dealing with the Weyl multiplets and not with the

vector multiplet. Therefore, our notation should not lead to confusion.

8
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Field # Gauge SU(2) w Field # Gauge SU(2) w

Elementary gauge fields Dependent gauge fields

eµ
a 9 P a 1 −1 ω

[ab]
µ − M [ab] 1 0

bµ 0 D 1 0 fµ
a − Ka 1 1

V
(ij)
µ 12 SU(2) 3 0

ψiµ 24 Qiα 2 −1/2 φiµ − Siα 2 1/2

Dilaton Weyl multiplet Standard Weyl multiplet

Aµ 4 δAµ = ∂µΛ 1 0 T[ab] 10 1 1

B[µν] 6 δBµν = 2∂[µΛν] 1 0

ϕ 1 1 1 D 1 1 2

ψi 8 2 3/2 χi 8 2 3/2

Table 3: Fields of the Weyl multiplets, and their roles. The upper half contains the fields

that are present in all versions. They are the gauge fields of the superconformal algebra

(see section 3). The fields at the right-hand side of the upper half are dependent fields,

and are not visible in the linearized theories. The symbol # indicates the off-shell degrees

of freedom. The gauge degrees of freedom corresponding to the gauge invariances of the

right half are subtracted from the fields at the left on the same row. In the lower half

are the extra matter fields that appear in the two versions of the Weyl multiplet. In the

left half are those of the Dilaton Weyl multiplet, at the right are those of the Standard

Weyl multiplet. We also indicated the (generalized) gauge symmetries of the fields Aµ and

Bµν . (The linearized fields, corresponding to eµ
a and σ ≡ eφ are denoted by hµ

a and ϕ,

respectively.)

δQAµ = −1
2
i ε̄ψµ +

1

2
ε̄γµψ ,

δQBµν =
1

2
ε̄γ[µψν] +

1

2
i ε̄γµνψ ,

δQψ
i = −1

8
γ · Fεi − 1

2
i /∂ϕεi +

1

24
i γ ·Hεi ,

δQϕ =
1

2
i ε̄ψ , (2.11)

where we have defined

Fµν = 2∂[µAν], Hµνλ = 3∂[µBνλ], ψµν = 2∂[µψν] . (2.12)

2.4 Linearized Standard Weyl multiplet

It turns out that there exists a second formulation of the Weyl multiplet in which

the fields Aµ and Bµν are replaced by an anti-symmetric tensor Tab and where also

the spinor and the scalar are redefined. It is the multiplet we should have expected

9
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if we compare it with the Weyl multiplets of the D = 4 and D = 6 theories with 8

supercharges. This can be seen in table 4.

This second Weyl multiplet is called the
Field d = 4 d = 5 d = 6

eµ
a 5 9 14

bµ 0 0 0

ωµ
ab − − −

fµ
a − − −

Vµi
j 9 12 15

Aµ 3 − −
ψµ
i 16 24 32

φµ
i − − −

Tab, T
−
abc 6 10 10

D 1 1 1

χi 8 8 8

TOTAL 24 + 24 32 + 32 40 + 40

Table 4: Number of components in

the fields of the Standard Weyl mul-

tiplet. The dependent fields have no

number. The field T is a two rank

tensor in 4 dimensions and a self-dual

three rank tensor in 6 dimensions. In

5 dimensions we can choose between

a two-rank or a three-rank tensor as

these are dual to each other.

Standard Weyl multiplet. More information

about the component fields can be found in ta-

ble 3. The Standard Weyl multiplet cannot be

obtained from the same current multiplet pro-

cedure we applied to get the Dilaton Weyl mul-

tiplet, unless we would consider an ‘improved’

current multiplet. The reason is that the Stan-

dard Weyl multiplet contains no dilaton scalar

with a zero mass dimension that can be used

as a compensating scalar. Therefore it can not

define a conformal coupling to a non-improved

current multiplet.

In 5 dimensions the full superconformal al-

gebra cannot be realized on a matter multiplet

without ‘improvement’ by a dilaton. In sec-

tion 5 we will explain how the two Weyl multi-

plets can be related to each other via the cou-

pling of the Standard Weyl multiplet to an im-

proved vector multiplet.

The connection between the two versions

of the Weyl multiplet at the linearized level is

given by algebraic relations. First of all we de-

note some particular terms in the transforma-

tions of ψiµ and V
ij
µ by Tab and χ

i. Then we

compute the variations of these expressions under supersymmetry, finding one more

object called D. We find

Tab =
1

8

(
Fab − 1

6
εabcdeH

edc
)
,

χi =
1

8
i /∂ψi +

1

64
γabψab ,

D =
1

4
�ϕ− 1

32
∂µ∂νhµν +

1

32
�hµµ . (2.13)

The resulting supersymmetry transformations are those of what we call the linearized

Standard Weyl multiplet. They are given by

δQhµν = ε̄γ(µψν) ,

δQψ
i
µ = −

1

4
γλν∂λhνµε

i − V ijµ εj + i γ · Tγµεi ,
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Generators Pa Mab D Ka Uij Qαi Sαi
Fields eµ

a ωabµ bµ fµ
a V ijµ ψiµ φiµ

Parameters ξa λab ΛD ΛaK Λij εi ηi

Table 5: The gauge fields and parameters of the superconformal algebra F 2(4).

δQV
ij
µ = −

1

8
ε̄(i
(
γabγµ − 1

2
γµγ

ab
)
ψ
j)
ab + 4ε̄

(iγµχ
j) ,

δQTab =
1

2
i ε̄γabχ− 3

32
i ε̄
(
ψab − 1

12
γabγ

cdψcd +
2

3
γ[aγ

cψb]c

)
,

δQχ
i =
1

4
Dεi − 1

64
γµνV ijµνεj +

3

32
i γ · T←−/∂ εi + 1

32
i /∂γ · Tεi ,

δQD = ε̄/∂χ , (2.14)

where we have defined

V ijµν = 2∂[µV
ij
ν] . (2.15)

This concludes our discussion of the linearized Weyl multiplets.

3. Gauging the superconformal algebra

We now proceed with the construction of the full Weyl multiplets, of which we have

shown so far the linearized structure. We apply the methods developed first forN = 1

in 4 dimensions [20]. They are based on gauging the conformal superalgebra [21],

which, in our case, is F 2(4). The commutation relations defining the F 2(4) algebra

are given in appendix B. We first discuss the general method, and then apply this

to construct the full (non-linear) Weyl multiplets for both versions that we found

at the linearized level in section 2. For clarity, we have collected the final results in

section 4.

3.1 The gauge fields and their curvatures

The D = 5 conformal supergravity theory is based on the superconformal algebra

F 2(4) whose generators are those in table 5, where a, b, . . . are Lorentz indices, α is a

spinor index and i = 1, 2 is an SU(2) index. Mab and Pa are the Poincaré generators,

Ka is the special conformal transformation, D the dilatation, Qiα and Siα are the

supersymmetry and the special supersymmetry generators, respectively, which are

symplectic Majorana spinors, 8 real components in total. Finally, U ij = U ji are the

SU(2) generators. For more details on the F 2(4) algebra and the rigid superconformal

transformations, see [24]. The commutation relations of the generators are given in

appendix B.

As a first step we assign to every generator of the superconformal algebra a gauge

field. These gauge fields and the names of the corresponding gauge parameters are

given in table 5.

11



J
H
E
P
0
6
(
2
0
0
1
)
0
5
1

The transformations are generated by operators according to

δ = ξaPa + λ
abMab + ΛDD + Λ

a
KK

a + ΛijUij + i ε̄Q+ i η̄S . (3.1)

The i factors in the last two terms appear due to the reality properties, as explained

in appendix A.

We can read off the transformation rules for the gauge fields from the alge-

bra (B.1) using the general rules for gauge theories. We find

δeµ
a = Dµξa − λabeµb − ΛDeµa + 1

2
ε̄γaψµ ,

δωµ
ab = Dµλab − 4ξ[afµb] − 4Λ[aKeµb]+

1

2
i ε̄γabφµ−1

2
i η̄γabψµ ,

δbµ = ∂µΛD − 2ξafµa + 2ΛaKeµa+
1

2
i ε̄φµ +

1

2
i η̄ψµ ,

δfµ
a = DµΛaK − λabfµb + ΛDfµa+

1

2
η̄γaφµ ,

δV ijµ = ∂µΛ
ij − 2Λ(i`V j)`µ −

3

2
i ε̄(iφj)µ +

3

2
i η̄(iψj)µ ,

δψiµ = Dµεi+ i ξaγaφiµ −
1

4
λabγabψ

i
µ −
1

2
ΛDψ

i
µ − Λijψjµ− i eaµγaηi , (3.2)

δφiµ = Dµηi −
1

4
λabγabφ

i
µ +
1

2
ΛDφ

i
µ − Λijφjµ − i ΛaKγaψiµ + i faµγaεi ,

where Dµ is the covariant derivative with respect to dilatations, Lorentz rotations
and SU(2) transformations:

Dµξa = ∂µξ
a + bµξ

a + ωµ
abξb ,

Dµλab = ∂µλ
ab + 2ωµc

[aλb]c ,

DµΛaK = ∂µΛ
a
K − bµΛaK + ωµabΛKb ,

Dµεi = ∂µε
i +
1

2
bµε
i +
1

4
ωabµ γabε

i − V ijµ εj ,

Dµηi = ∂µη
i − 1
2
bµη

i +
1

4
ωabµ γabη

i − V ijµ ηj . (3.3)

Using the commutator expressions (B.1) we obtain the following expressions for the

curvatures (terms proportional to vielbeins are underlined for later use):

R a
µν (P ) = 2∂[µeν]

a + 2ω[µ
abeν]b + 2b[µeν]

a−1
2
ψ̄[µγ

aψν] ,

Rµν
ab(M) = 2∂[µων]

ab + 2ω[µ
acων]c

b + 8f[µ
[aeν]

b] + i φ̄[µγ
abψν] ,

Rµν(D) = 2∂[µbν] − 4f[µaeν]a− i φ̄[µψν] ,
R a
µν (K) = 2∂[µfν]

a + 2ω[µ
abfν]b − 2b[µfν]a−1

2
φ̄[µγ

aφν] ,

Rµν
ij(V ) = 2∂[µVν]

ij − 2V[µk(iVν] kj)−3 i φ̄(i[µψj)ν] , (3.4)

12



J
H
E
P
0
6
(
2
0
0
1
)
0
5
1

Rµν
i(Q) = 2∂[µψ

i
ν] +
1

2
ω[µ
abγabψ

i
ν] + b[µψ

i
ν] − 2V[µijψν] j + 2 i γaφi[µeν]a ,

Rµν
i(S) = 2∂[µφ

i
ν] +
1

2
ω[µ
abγabφ

i
ν] − b[µφiν] − 2V[µijφν] j − 2 i γaψi[µfν]a .

Since the transformation laws given above satisfy the F 2(4) superalgebra, we

have a gauge theory of F 2(4), but we do not have a gauge theory of diffeomorphisms

of spacetime. This can only be realized if we take the spin connection as a composite

field that depends on the vielbein. So far, we have it as an independent field.4

Furthermore, we see that the number of bosonic and fermionic degrees of freedom

do not match. The gauge fields together have 96 + 64 degrees of freedom. There-

fore, we can not have a supersymmetric theory with invertible general coordinate

transformations generated by the square of supersymmetry operations.

3.2 Constraints and their solutions

The solution to the problems described above is well known. In order to convert

the P -gauge transformations into general coordinate transformations and to obtain

irreducibility we need to impose curvature constraints and we have to introduce extra

matter fields in the multiplet.

The constraints will define some gauge fields as dependent fields. The extra

matter fields will also change the transformations of the gauge fields. In fact, we will

have for the transformation (apart from the general coordinate transformations) of

a general gauge field hIµ:

δJ (ε
J)hIµ = ∂µε

I + εJhµ
AfAJ

I + εJMµJ
I , (3.5)

where we use the index I to denote all gauge transformations apart from general

coordinate transformations, and an index A includes the translations.

The last term depends on the matter fields, and its explicit form has to be

determined below. But also the second term has contributions from matter fields.

This is due to the fact that the structure ‘functions’ of the final algebra fIJ
K are

modified from those of the F 2(4) algebra which was used for (3.2). These extra terms

lead also to modified curvatures

R̂µν
I = 2∂[µhν]

I + hν
Bhµ

AfAB
I − 2h[µJMν]J I . (3.6)

The commutator of two supersymmetry-transformations will also change. In

particular we will find transformations with field-dependent parameters. They can

4One might think that the field equations can determine the spin connection as a dependent

gauge field. This can indeed be done for the spin connection, but it is not known how to generalize

this for the gauge fields of special (super)conformal symmetries, which we also want to be dependent

gauge fields.
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be conveniently written as so-called covariant general coordinate transformations

which are defined as

δcgct(ξ) = δgct(ξ)− δI(ξµhµI) , (3.7)

namely a combination of general coordinate transformations and all the other trans-

formations whose parameter εI is replaced by ξµhµ
I . This takes a simpler form on

fields of various types:

δcgct(ξ)eµ
a = (∂µ + bµ)ξ

a + ωµ
abξb ,

δcgct(ξ)h
I
µ = −ξνR̂µνI − ξνhJµMνJ I − ξνhJµeaνfaJ I ,

δcgct(ξ)Φ = ξµDµΦ . (3.8)

The last terms for Bµν are similar to the M-term for usual gauge fields in the second

line. The last line holds for all covariant matter fields, including their covariant

derivatives Da, or covariant curvature tensors after changing the indices to local

Lorentz indices.

We will consider the fünfbein as an invertible field. Then some of the curvatures

in (3.4) are linear in some gauge fields. This is shown by the underlined terms in (3.4).

Therefore, we can impose constraints on these curvatures that are solvable for these

gauge fields. Such constraints are called conventional constraints, and imposing them

reduces the Weyl multiplet, such that we get closer to an irreducible multiplet. The

conventional constraints are5

Rµν
a(P ) = 0 (50) ,

eνbR̂µν
ab(M) = 0 (25) ,

γµR̂µν
i(Q) = 0 (40) . (3.9)

In brackets we denoted the number of restrictions each constraint imposes. These

constraints are similar to those for other Weyl multiplets in 4 dimensions with N =

1 [19, 21], N = 2 [31] or N = 4 [28], or in 6 dimensions for the (1, 0) [22] or (2, 0) [29]

Weyl multiplets.

In general one can add extra terms to the constraints (3.9), which just amount to

redefinitions of the composite fields. By choosing suitable terms simplifications were

obtained in 4 and 6 dimensions. In this case one could e.g. add a term TµaT
ab to the

second constraint rendering all the constraints invariant under S-supersymmetry, but

in 5 dimensions this turns out to be impossible. Therefore we keep the constraints

as written above.

Due to these constraints the fields ωµ
ab, fµ

a and φiµ are no longer independent,

but can be expressed in terms of the other fields. In order to write down the explicit

5Note that the third constraint implies that γ[µνR̂ρσ]
i(Q) = 0.
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solutions of these constraints, it is useful to extract the terms which have been

underlined in (3.4). We define R̂′ as the curvatures without these terms. Formally,

R̂′µν
I = R̂µν

I + 2hJ[µe
a
ν]faJ

I , (3.10)

where faJ
I are the structure constants in the F 2(4) algebra that define commuta-

tors of translations with other gauge transformations. Then the solutions to the

constraints are

ωabµ = 2e
ν[a∂[µe

b]
ν] − eν[aeb]σeµc∂νe cσ + 2e [a

µ bb] − 1
2
ψ̄[bγa]ψµ − 1

4
ψ̄bγµψ

a ,

φiµ =
1

3
i γaR̂′µa

i(Q)− 1
24
i γµγ

abR̂′ab
i(Q) ,

faµ =
1

6
Rµa − 1

48
eµ
aR , Rµν ≡ R̂′ abµρ (M)ea

ρeνb , R ≡ Rµµ . (3.11)

The constraints imply through Bianchi identities further relations between the cur-

vatures. The Bianchi identities for R(P ) imply

Rµν = Rνµ , e[µ
aR̂νρ](D) = R̂[µνρ]

a(M) , R̂µν(D) = 0 . (3.12)

3.3 Adding matter fields

After imposing the constraints we are left with 21 bosonic and 24 fermionic degrees

of freedom. The independent fields are those in the left upper part of table 3. These

have to be completed with matter fields to obtain the full Weyl multiplet. We have

already seen that there are two possibilities for a D = 5 Weyl multiplet with each

32 + 32 degrees of freedom.

These are obtained by adding either the left lower corner or right lower corner

of table 3. To obtain all the extra transformations we imposed the superconformal

algebra, but at the same time allowing modifications of the algebra by field-dependent

quantities. The techniques are the same as already used in 4 and 6 dimensions

in [31, 28], and were described in detail in [22].

For the fields in the upper left corner, we now have to specify the extra partsM

in (3.5). This will in fact only apply to Q-supersymmetry. The other transformations

are as in (3.2). The extra terms we can read already from the linearized rules in (2.11)

and (2.14). The full supersymmetry transformations of these fields are

δQeµ
a =
1

2
ε̄γaψµ ,

δQψ
i
µ = Dµεi + i γ · Tγµεi ,

δQVµ
ij = −3

2
i ε̄(iφj)µ + i ε̄

(iγ · Tψj)µ + 4ε̄(iγµχj) ,

δQbµ =
1

2
i ε̄φµ − 2ε̄γµχ , (3.13)
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where Dµε is given in (3.3). The fields Tab and χi, and a further field D that appears
in their transformation laws (see below) are independent fields in the Standard Weyl

multiplet, but not in the DilatonWeyl multiplet. There, they are given by expressions

that are the non-linear extensions of (2.13):

Tab =
1

8
σ−2
(
σF̂ab − 1

6
εabcdeĤ

edc +
1

4
i ψ̄γabψ

)
,

χi =
1

8
iσ−1 /Dψi +

1

16
i σ−2 /Dσψi − 1

32
σ−2γ · F̂ψi +

+
1

4
σ−1γ · Tψi + 1

32
i σ−3ψjψ̄iψj ,

D =
1

4
σ−1�cσ + 1

8
σ−2(Daσ)(Daσ)− 1

16
σ−2F̂ 2 −

−1
8
σ−2ψ̄ /Dψ − 1

64
σ−4ψ̄iψjψ̄iψj − 4 iσ−1ψ̄χ+

+

(
−26
3
Tab + 2σ

−1F̂ab +
1

4
i σ−2ψ̄γabψ

)
T ab , (3.14)

where the conformal d’alembertian is defined by

�cσ ≡ DaDaσ =
(
∂a − 2ba + ω bab

)
Daσ − 1

2
i ψ̄aD

aψ − 2σψ̄aγaχ+

+
1

2
ψ̄aγ

aγ · Tψ + 1
2
φ̄aγ

aψ + 2fa
aσ , (3.15)

and where the underlining indicates that these terms are dependent fields. We have

not substituted these terms in the expression for D for reasons of brevity.

The modificationM in (3.5) is the last term of the transformations of ψiµ, V
ij
µ and

bµ. The second term in the transformation of V
ij
µ on the other hand is due to the fact

that the structure constants have become structure functions, and in particular there

appears a new T -dependent SU(2) transformation in the anti-commutator of two

supersymmetries. We will give the full new algebra in section 4. The transformation

rules for the matter fields6 of the Weyl multiplets are as follows. For the Standard

Weyl multiplet we have (Q and S supersymmetry)

δTab =
1

2
i ε̄γabχ− 3

32
i ε̄R̂ab(Q) ,

δχi =
1

4
εiD − 1

64
γ · R̂ij(V )εj + 1

8
i γab /DTabε

i − 1
8
i γaDbTabε

i −

−1
4
γabcdTabTcdε

i +
1

6
T 2εi +

1

4
γ · Tηi ,

δD = ε̄ /Dχ− 5
3
i ε̄γ · Tχ− i η̄χ . (3.16)

6As we have already seen, two of the extra fields in the Dilaton Weyl multiplet are actually

gauge fields, rather than matter fields. However, we use uniformly ‘matter fields’ for them in this

context to indicate that they are not gauging a symmetry of the superconformal algebra.
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There are no explicit gauge fields here, as should be the case for ‘matter’, i.e. non-

gauge fields. These are all hidden in the covariant derivatives and covariant curva-

tures. The covariant derivatives are for any matter field given by the rule

DaΦ = e
µ
a

(
∂µ − δI(hIµ)

)
Φ . (3.17)

The last term represents thus a sum over all transformations except general coordi-

nate transformations, with parameters replaced by the corresponding gauge fields.

In practice, the Lorentz transformations and SU(2) transformations follow directly

from the index structure and lead to additions similar to those in (3.3). For the

Weyl transformations there is a term −w bµΦ, where w is the Weyl weight of the
field that can be found in table 3, and then there remain the terms for Q and S

supersymmetry. There are no K transformations for any matter field in this paper.

The covariant curvatures are given by the general rule (3.6), e.g.

R̂µν
i(Q) = Rµν

i(Q) + 2 i γ · Tγ[µψiν] ,
R̂µν

ij(V ) = Rµν
ij(V )− 8ψ̄(i[µγν]χj) − i ψ̄(i[µγ · Tψj)ν] , (3.18)

where Rµν
i(Q) and Rµν

ij(V ) are those given in (3.4). Note that for R̂(V ) there are

corrections from modified structure functions as well as from M-dependent terms.

Having all the matter field dependence, we can obtain further consequences of the

curvature constraints. E.g. the Bianchi identity on R̂(Q) gives:

γ · R̂(S) = 16
3
T · R̂(Q) ,

γµR̂µν(S) =
1

2
iDµR̂µν(Q) +

8

3
γνT · R̂(Q) + 4γbT µbR̂νµ(Q) ,

R̂µν(S) = i /DR̂µν(Q)− i γ[µDρR̂ν]ρ(Q) + 16
3
γµνT · R̂(Q)−

−16γbT ρbγ[µR̂ν]ρ(Q) + 3γ · TR̂µν(Q) +
+16T ρ[µR̂ν]ρ(Q) . (3.19)

Given these transformation rules, we can calculate the transformations of the

dependent fields. Their transformation rules are now determined by their definition

due to the constraints. An equivalent way of expressing this is that their transfor-

mation rules are modified w.r.t. (3.2), due to the non-invariance of the constraints

under these transformations. We have chosen the constraints to be invariant un-

der all bosonic symmetries without modifications. Therefore, only the Q- and S-

supersymmetries of the dependent fields are modified to get invariant constraints.

The new transformation of the spin connection is

δωµ
ab =

1

2
i ε̄γabφµ − 1

2
i η̄γabψµ −

− i ε̄γ[aγ · Tγb]ψµ −
−1
2
ε̄γ[aR̂µ

b](Q)− 1
4
ε̄γµR̂

ab(Q)− 4eµ[aε̄γb]χ . (3.20)
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The first line is the transformation as implied from the F 2(4) algebra, see (3.2). The

second line is due to the modification of the anti-commutator of two supersymmetries

by a T -dependent Lorentz rotation. Finally, the last line contains the terms that go

into the M of (3.5). We give here for φiµ just the latter type of terms

δφiµ = . . .− 1
12
i

{
γabγµ − 1

2
γµγ

ab

}
R̂ab

i
j(V )ε

j +

+
1

3

[
/Dγ · Tγµ −Dµγ · T + γµγcDaTac

]
εi +

+ i
[−γµ(γ · T )2 + 4γcTµcγ · T + 16γcT cdTµd − 4γµT 2] εi +

+
1

3
i
(
8γbTµb − γµγ · T

)
ηi . (3.21)

We will not need the transformations for the field fµ
a, except the transformation of

fa
a under S, since this term appears in the conformal d’alembertian. We only give

its M-dependent S-transformation

δSfa
a = −5 i η̄χ . (3.22)

We also used the transformation of the following curvatures:

δR̂ab
i(Q) =

1

6

(
γab
cd − γcdγab − 1

2
γabγ

cd

)
R̂cd

i
j(V )ε

j +
1

4
R̂ab

cd(M)γcdε
i +

+2 i

(
D[aγ · Tγb] − 1

3
D[aγb]γ · T −

− 1
3
γ[a /Dγ · Tγb] − 1

3
γabDcγdT

cd

)
εi , (3.23)

δR̂ab
ij(V ) = −3

2
i ε̄(iR̂ab

j)(S)− 8ε̄(iγ[aDb]χj) + i ε̄iγ · TR̂abj)(Q) +

+8 i ε̄(iγ[aγ · Tγb]χj) + 3
2
i η̄(iR̂ab

j)(Q) + 8 i η̄(iγabχ
j) .

The Q- and S-supersymmetry variations of the matter fields in the Dilaton Weyl

multiplet are

δAµ = −1
2
i σε̄ψµ +

1

2
ε̄γµψ ,

δBµν =
1

2
σ2ε̄γ[µψν] +

1

2
i σε̄γµνψ + A[µδ(ε)Aν] ,

δψi = −1
4
γ · F̂ εi − 1

2
i /Dσεi + σγ · Tεi − 1

4
i σ−1εjψ̄iψj + σηi ,

δσ =
1

2
i ε̄ψ . (3.24)

The gauge fields Aµ and Bµν have the additional symmetries

δAµ = ∂µΛ ,

δBµν = 2∂[µΛν] − 1
2
ΛFµν . (3.25)
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Note that the dependence of the transformation rules for Aµ and Bµν on ψµ and

Aµ signal new terms in the algebra of supersymmetries and U(1) transformations
7.

This algebra will be written in section 4. On the other hand, the F -term in δBµν
should be interpreted as anM term according to (3.5), and modifies the field strength

accordingly. This leads to the following field strengths of these gauge fields

F̂µν = 2∂[µAν] +
1

2
i σψ̄[µψν] − ψ̄[µγν]ψ ,

Ĥµνρ = 3∂[µBνρ] − 3
4
σ2ψ̄[µγνψρ] − 3

2
i σψ̄[µγνρ]ψ +

3

2
A[µFνρ] . (3.26)

For the convenience of the reader we give their transformation rules:

δF̂ab = −1
2
i σε̄R̂ab(Q)− ε̄γ[aDb]ψ + i ε̄γ[aγ · Tγb]ψ + i η̄γabψ ,

δĤabc = −3
4
σ2ε̄γ[aR̂bc](Q) +

3

2
i ε̄γ[abDc]ψ +

3

2
iD[aσε̄γbc]ψ −

−3
2
σε̄γ[aγ · Tγbc]ψ − 3

2
ε̄γ[aF̂bc]ψ − 3

2
ση̄γabcψ . (3.27)

Finally, we give the Bianchi identities for these two curvatures

D[aF̂bc] =
1

2
ψ̄γ[aR̂bc](Q) ,

D[aĤbcd] =
3

4
F̂[abF̂cd] . (3.28)

This finishes our discussion of the Standard and Dilaton Weyl multiplets. The

final results for these multiplets have been collected in section 4. In the next section

we will explain the connection between the two multiplets.

4. Results for the two Weyl multiplets

For the convenience of the reader we collect in this section the essential results of

the previous sections, and give the supersymmetry algebra, which is modified by

field-dependent terms. The transformation under dilatation is for each field δDΦ =

wΛDΦ, where the Weyl weight w can be found in table (3). The Lorentz, and SU(2)

transformations are evident from the index structure, and our normalizations can be

found in (3.2).

4.1 The Standard Weyl multiplet

The Q- and S-supersymmetry and K-transformation rules for the independent fields

of the Standard Weyl multiplet are

δeµ
a =
1

2
ε̄γaψµ ,

7The A[µψν] term in δBµν is an extension of (3.5) that occurs for antisymmetric tensor gauge

fields.
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δψiµ = Dµεi + i γ · Tγµεi − i γµηi ,
δVµ

ij = −3
2
i ε̄(iφj)µ + 4ε̄

(iγµχ
j) + i ε̄(iγ · Tψj)µ +

3

2
i η̄(iψj)µ ,

δTab =
1

2
i ε̄γabχ− 3

32
i ε̄R̂ab(Q) ,

δχi =
1

4
εiD − 1

64
γ · R̂ij(V )εj + 1

8
i γab /DTabε

i − 1
8
i γaDbTabε

i −

−1
4
γabcdTabTcdε

i +
1

6
T 2εi +

1

4
γ · Tηi ,

δD = ε̄ /Dχ− 5
3
i ε̄γ · Tχ− i η̄χ ,

δbµ =
1

2
i ε̄φµ − 2ε̄γµχ+ 1

2
i η̄ψµ + 2ΛKµ . (4.1)

The covariant derivative Dµε is given in (3.3). For other covariant derivatives, see
the general rule (3.17), with more explanation below that equation. The covariant

curvatures R̂(Q) and R̂(V ) are given explicitly in (3.18). The expressions for the

dependent fields are given in (3.11), where the prime indicates the omission of the

underlined terms in (3.4).

4.2 The Dilaton Weyl multiplet

The Dilaton Weyl multiplet contains two extra gauge transformations: the gauge

transformations of Aµ with parameter Λ and those of Bµν with parameter Λµ. The

transformation of the fields are given by:

δeµ
a =
1

2
ε̄γaψµ ,

δψiµ = Dµεi + i γ · Tγµεi − i γµηi ,
δVµ

ij = −3
2
i ε̄(iφj)µ + 4ε̄

(iγµχ
j) + i ε̄(iγ · Tψj)µ +

3

2
i η̄(iψj)µ ,

δAµ = −1
2
iσε̄ψµ +

1

2
ε̄γµψ + ∂µΛ ,

δBµν =
1

2
σ2ε̄γ[µψν] +

1

2
iσε̄γµνψ + A[µδ(ε)Aν] + 2∂[µΛν] − 1

2
ΛFµν ,

δψi = −1
4
γ · F̂ εi − 1

2
i /Dσεi + σγ · Tεi − 1

4
iσ−1εjψ̄iψj + σηi ,

δσ =
1

2
i ε̄ψ ,

δbµ =
1

2
i ε̄φµ − 2ε̄γµχ+ 1

2
i η̄ψµ + 2ΛKµ . (4.2)

The covariant curvature of Aµ and Bµν can be found in (3.26). The transformation

of the dependent fields and the curvatures have been given in the previous section.

We have underlined the fields Tab and χ
i to indicate that they are not independent

fields but merely short-hand notations. The explicit expression for these fields in

terms of fields of the Dilaton Weyl multiplet are given in (3.14).
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4.3 Modified superconformal algebra

Finally, we present the ‘soft’ algebra that these Weyl multiplets realize. This is the

algebra that all matter multiplets will have to satisfy, apart from possibly additional

transformations under which the fields of the Weyl multiplets do not transform, and

possibly field equations if these matter multiplets are on-shell.

The full commutator of two supersymmetry transformations is

[δQ(ε1), δQ(ε2)] = δcgct(ξ
µ
3 ) + δM(λ

ab
3 ) + δS(η3) + δU (λ

ij
3 ) +

+δK(Λ
a
K3) + δU(1)(Λ3) + δB(Λ3µ) . (4.3)

The covariant general coordinate transformations have been defined in (3.7). The

last two terms appear obviously only in the Dilaton Weyl multiplet formulation. The

parameters appearing in (4.3) are

ξµ3 =
1

2
ε̄2γµε1 ,

λab3 = − i ε̄2γ[aγ · Tγb]ε1 ,
λij3 = i ε̄

(i
2 γ · Tεj)1 ,

ηi3 = −
9

4
i ε̄2ε1χ

i +
7

4
i ε̄2γcε1γ

cχi +

+
1

4
i ε̄
(i
2 γcdε

j)
1

(
γcdχj +

1

4
R̂cdj(Q)

)
,

ΛaK3 = −
1

2
ε̄2γ

aε1D +
1

96
ε̄i2γ

abcεj1R̂bcij(V ) +

+
1

12
i ε̄2
(−5γabcdDbTcd + 9DbT ba) ε1 +

+ε̄2

(
γabcdeTbcTde − 4γcTcdT ad + 2

3
γaT 2

)
ε1 ,

Λ3 = −1
2
iσε̄2ε1 ,

Λ3µ = −1
2
σ2ξ3µ − 1

2
AµΛ3 . (4.4)

For the Q, S commutators we find the following algebra:

[δS(η), δQ(ε)] = δD(
1

2
i ε̄η) + δM(

1

2
i ε̄γabη) + δU (−3

2
i ε̄(iηj)) + δK(Λ

a
3K) ,

[δS(η1), δS(η2)] = δK(
1

2
η̄2γ

aη1) . (4.5)

with

Λa3K =
1

6
ε̄

(
γ · Tγa − 1

2
γaγ · T

)
η . (4.6)

The commutator of Q and U(1) transformations is given by

[δ(ε), δ(Λ)] = δB

(
−1
2
Λδ(ε)Aµ

)
. (4.7)

This concludes our description of the Standard and Dilaton Weyl multiplets.
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5. Connection between the Weyl multiplets

In the previous section we have shown that the Standard and Dilaton Weyl multiplets

can be related to each other by expressing the fields of the Standard Weyl multiplet

in terms of those of the Dilaton Weyl multiplet (see (3.14)). It is known that in

6 dimensions the coupling of an on-shell selfdual tensor multiplet to the D = 6

Standard Weyl multiplet leads to a D = 6 Dilaton Weyl multiplet [22]. Since in 5

dimensions a tensor multiplet is dual to a vector multiplet, it is natural to consider

the coupling of a vector multiplet to the Standard Weyl multiplet. Since the Standard

Weyl multiplet has no dilaton we must consider the improved vector multiplet. We

will take the vector multiplet off-shell to simplify the higher-order fermion terms.

5.1 The improved vector multiplet

We will first consider the improved vector multiplet in a flat background, i.e. no cou-

pling to conformal supergravity. Our starting point is the lagrangian corresponding

to an off-shell vector multiplet:

L = −1
4
FµνF

µν − 1
2
ψ̄ /∂ψ − 1

2
(∂σ)2 + Y ijYij . (5.1)

The action corresponding to this lagrangian is invariant under the off-shell super-

symmetries

δAµ =
1

2
ε̄γµψ ,

δY ij = −1
2
ε̄(i /∂ψj) ,

δψi = −1
4
γ · Fεi − 1

2
i /∂σεi − Y ijεj ,

δσ =
1

2
i ε̄ψ . (5.2)

The action has the wrong Weyl weight to be scale invariant. We therefore improve

it by multiplying all terms with the dilaton. This requires additional cubic terms in

the action to keep it invariant under supersymmetry. We thus obtain the lagrangian

for the improved vector multiplet:

L = −1
4
σFµνF

µν − 1
2
σψ̄/∂ψ − 1

2
σ(∂σ)2 + σY ijYij −

−1
8
i ψ̄γ · Fψ − 1

24
εµνλρσA

µF νλF ρσ − 1
2
i ψ̄iψjYij . (5.3)

If we define the following

Sij = 2σY ij − 1
2
i ψ̄iψj ,
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Γi = i σ/∂ψi +
1

2
i /∂σψi − 1

4
γ · Fψi + Y ijψj ,

C = −1
4
FµνF

µν − 1
2
ψ̄ /∂ψ + σ�σ + 1

2
(∂σ)2 + Y ijYij ,

Ha = −1
8
εabcdeF

bcF de − ∂b
(
−σFba − 1

4
i ψ̄γbaψ

)
,

Gabc = ∂[aFbc] , (5.4)

then the equations of motion and the Bianchi identity corresponding to this la-

grangian are given by

0 = Sij = Γi = C = Ha = Gabc . (5.5)

5.2 Coupling to the Standard Weyl multiplet

Next, we consider the coupling of the improved vector multiplet to the Standard Weyl

multiplet. The transformation rules for the fields of the off-shell vector multiplet can

be found by imposing the superconformal algebra (4.3). We thus find the following

Q- and S-transformation rules:

δAµ = −1
2
i σε̄ψµ +

1

2
ε̄γµψ ,

δY ij = −1
2
ε̄(i /Dψj) +

1

2
i ε̄(iγ · Tψj) − 4 iσε̄(iχj) + 1

2
i η̄(iψj) ,

δψi = −1
4
γ · F̂ εi − 1

2
i /Dσεi + σγ · Tεi − Y ijεj + σηi ,

δσ =
1

2
i ε̄ψ , (5.6)

where the covariant curvature is

F̂µν = 2∂[µAν] +
1

2
i σψ̄[µψν] − ψ̄[µγν]ψ . (5.7)

The supercovariant extension of the Bianchi identity reads

0 = Gabc = D[aF̂bc] − 1
2
ψ̄γ[aR̂bc](Q) . (5.8)

The first term in the transformation of Aµ, reflected also in the curvature, signals

a modification of the supersymmetry algebra, as can be seen by comparing with the

general rule (3.5):

[δ(ε1), δ(ε2)] = . . .+ δU(1)

(
Λ3 = −1

2
i σε̄2ε1

)
, (5.9)

where the dots indicate all the terms present for the fields of the Standard Weyl

multiplet and where the last term is the gauge transformation of Aµ. This U(1) is

not part of the superconformal algebra and has no effect on the fields of the Standard

Weyl multiplet. This is similar to the central charge induced in vector multiplets in

4 dimensions.
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Our next goal is to find the equations of motion for the improved vector multiplet.

These equations of motion should be an extension of the flat spacetime results given

in (5.4). One way to proceed is to first find the curved background extension of the

flat spacetime action defined by (5.3) and next derive the equations of motion from

this action. However, for our present purposes, it is sufficient to find the equations

of motion only.

We want to identify the spinor ψi of the vector multiplet with the spinor ψi of the

Dilaton Weyl multiplet. This is why we have given these two spinors the same name

in the first place (see the footnote in subsection 2.3). Comparing the SU(2) triplet

term in the supersymmetry transformations of the two spinors, see (3.24) and (5.6),

we deduce that the constraint Sij does not get any corrections and we must have

Sij = 2σY ij − 1
2
i ψ̄iψj . (5.10)

There are now two ways to proceed. One way is to make the transition to an on-

shell vector multiplet by using (5.10) to eliminate the auxiliary field Y ij from the

transformation rules (5.6). The commutator of two supersymmetry transformations

would then only close modulo the equations of motion.

A more elegant way is to note that the equations of motion must transform into

each other. By varying (5.10) under (5.6) we find

δSij = i ε̄(iΓj) , (5.11)

where the supercovariant extension of Γi is now given by

Γi = i σ /Dψi +
1

2
i /Dσψi − 1

4
γ · F̂ψi + Y ijψj +

+2σγ · Tψi − 8σ2χi . (5.12)

Varying this expression under (5.6) and using (5.8) leads to the other equations of

motion. We find:

δΓi = −1
2
i /DSijεj − 1

2
i γ ·Hεi + 1

2
Cεi − γ · TSijεj , (5.13)

where the supercovariant generalizations of (5.4) are given by

C = −1
4
F̂abF̂

ab − 1
2
ψ̄ /Dψ + σ�cσ + 1

2
DaσDaσ + Y

ijYij +

+ i ψ̄γ · Tψ − 16 iσψ̄χ− 104
3
σ2TabT

ab + 8σF̂abT
ab − 4σ2D ,

Ha = −1
8
εabcdeF̂

bcF̂ de −Db
(
8σ2Tba − σF̂ba − 1

4
i ψ̄γbaψ

)
. (5.14)

The supercovariant equations of motion and Bianchi identity are then given by

0 = Sij = Γi = C = Ha = Gabc . (5.15)
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5.3 Solving the equations of motion

In 6 dimensions, the equations of motion for an on-shell tensor multiplet coupled

to the Standard Weyl multiplet can be used to eliminate the matter fields of the

latter in terms of the matter fields of the Dilaton Weyl multiplet. Precisely the same

happens here. First of all the equations of motion for Y ij can be used to eliminate

this auxiliary field. Next, the equations of motion for ψi and σ can be used to solve

for the fields χi and D, respectively. The expressions for these fields exactly coincide

with the ones we found in (3.14).

The solution for the matter field Tab in terms of the fields of the Dilaton Weyl

multiplet is more subtle. It requires that we first reinterpret the equation of motion

for the vector field as the Bianchi identity for a two-form antisymmetric tensor gauge

field Bµν . To be precise, we rewrite Ha = 0 from (5.14) as a Bianchi identity

D[aĤbcd] =
3

4
F̂[abF̂cd] , (5.16)

where the three-form curvature Ĥabc is defined by

−1
6
εabcdeĤ

edc = 8σ2Tab − σF̂ab − 1
4
i ψ̄γabψ . (5.17)

Note that the latter equation is just a rewriting of the relation (3.14) we found in

section 3.

The Bianchi identity (5.16) can be solved in terms of an antisymmetric two-

form gauge field Bµν . The superconformal algebra (5.9) imposes that such a field

transforms under supersymmetry as follows:

δQBµν =
1

2
σ2ε̄γ[µψν] +

1

2
i σε̄γµνψ + A[µδ(ε)Aν] . (5.18)

In addition one finds that the field Bµν transforms under a U(1) and a vector gauge

transformation as follows

δBµν = 2∂[µΛν] − 1
2
ΛFµν . (5.19)

Furthermore, the commutator of two Q-transformations picks up a vector gauge

transformation δB for the field Bµν :

[δ(ε1), δ(ε2)] = . . .+ δU(1) (Λ3) + δB (Λ3µ) ,

Λ3 = −1
2
iσε̄2ε1 , Λ3µ = −1

4
σ2ε̄2γµε1 − 1

2
AµΛ3 . (5.20)

From the transformation rules (5.19) for Bµν it follows that the supercovariant field

strength Ĥµνρ is given by

Ĥµνρ = 3∂[µBνρ] − 3
4
σ2ψ̄[µγνψρ] − 3

2
i σψ̄[µγνρ]ψ +

3

2
A[µFνρ] . (5.21)

This field strength indeed satisfies the Bianchi identity (5.16).
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Dimension D # d.o.f. Standard Weyl Dilaton Weyl

6 10 T+abc Bµν
5 10 Tab Aµ , Bµν
4 6 Tab Aµ , Bµ

Table 6: The two different formulations of the Weyl multiplet in D = 4, 5, 6.

We conclude that the connection between the Standard and Dilaton Weyl multi-

plets can be obtained by first coupling an improved vector multiplet to the Standard

Weyl multiplet and, next, solving the equations of motion. To solve for the equation

of motion for the vector field in terms of the matter field Tab one must first reinterpret

this equation of motion as the Bianchi identity for an antisymmetric two-form gauge

field.

6. Conclusions

In this work we have taken the first step in the superconformal tensor calculus by

constructing the Weyl multiplets for N = 2 conformal supergravity theory in 5

dimensions.

First, we have applied the standard current multiplet procedure to the case of

the D = 5 vector multiplet. An unconventional feature is that the corresponding

energy-momentum tensor is neither traceless nor improvable to a traceless current.

However, since one version of theWeyl multiplet contains a dilaton we could construct

this linearized 32 + 32 Dilaton Weyl multiplet from the current multiplet. We also

pointed out that there exists a second (‘Standard’) Weyl multiplet without a dilaton,

by comparing with similar Weyl multiplets in D = 4 and D = 6.

Next, we explained how the non-linear multiplets could be obtained by gauging

the superconformal algebra F 2(4). Finally, we discussed the relation between the two

Weyl multiplets. We showed that the coupling of the Standard Weyl multiplet to an

improved vector multiplet leads to the non-linear relation between the Standard and

Dilaton Weyl multiplets.

The fact that there exist two different versions of conformal supergravity has

been encountered before in 6 dimensions [22]. Table 6 suggests that the same feature

might also occur in 4 dimensions. It seems plausible that in this case the coupling of

a vector multiplet to the Standard Weyl multiplet will give a Dilaton Weyl multiplet

containing two vectors. It would be interesting to see whether the Dilaton Weyl

multiplet in 4 dimensions indeed exists, and how it can be used in matter couplings.

It is known, from the AdS/CFT correspondence, that there is a relation between

(1, 1), D = 6 gauged supergravity with 16 supercharges and the N = 2, D = 5

conformal supergravity with 8 supercharges. In fact, the precise relation between the

Standard Weyl multiplet and the (1, 1), D = 6, or F (4)-gauged, supergravity [32] has
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been given in [5]. The F (4)-gauged supergravity contains a massive antisymmetric

two-form tensor which, according to [5], corresponds to the Tab matter field of the

Standard Weyl multiplet. It would be interesting to see whether the work of [5] can

be extended such that the F (4)-gauged supergravity theory also gives rise to the

Dilaton Weyl multiplet. One possibility is that, in order to achieve this, one should

first replace the massive two-form of gauged supergravity by a massless one-form and

two-form gauge field.

Finally, the results of this work will be our starting point for the construction

of general supergravity/matter couplings in 5 dimensions. We hope to report about

this in the nearby future.

Note added: A few days after we sent this paper to the bulletin board an inter-

esting paper appeared on conformal supergravity in five dimensions [41] that has

some overlap with our work. The authors of [41] also discuss the two versions of the

Weyl multiplet. In addition they discuss the superconformal tensor calculus in five

dimensions.
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A. Notations and Conventions

The metric is (−++++), and we use the following indices (spinor indices are always
omitted)

µ 0, . . . , 4 local spacetime ,

a 0, . . . , 4 tangent spacetime ,

i 1, 2 SU(2) . (A.1)
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The generators Uij of the R-symmetry group SU(2) are defined to be anti-

hermitian and symmetric, i.e.

(Ui
j)∗ = −Uj i , Uij = Uji . (A.2)

A symmetric traceless Ui
j corresponds to a symmetric U ij since we lower or raise

SU(2) indices using the ε-symbol, in NW–SE convention:

X i = εijXj , Xi = X
jεji , ε12 = −ε21 = ε12 = 1 . (A.3)

The actual value of ε is here given as an example. It is in fact arbitrary as long as

it is antisymmetric, εij = (εij)
∗ and εjkεik = δji.

The charge conjugation matrix C and Cγa are antisymmetric. The matrix C is
unitary and γa is hermitian apart from the timelike one, which is anti-hermitian.

The bar is the Majorana bar:

λ̄i = (λi)TC . (A.4)

We define the charge conjugation operation on spinors as

(λi)C ≡ α−1B−1εij(λj)∗ , λ̄iC ≡ (λi)C = α−1 (λ̄k)∗Bεki , (A.5)

where B = Cγ0, and α = ±1 when one uses the convention that complex conjugation
does not interchange the order of spinors, or α = ± i when it does. Symplectic
Majorana spinors satisfy λ = λC . Charge conjugation acts on gamma matrices as

(γa)
C = −γa, does not change the order of matrices, and works on matrices in SU(2)

space as MC = σ2M
∗σ2. Complex conjugation can then be replaced by charge

conjugation, if for every bispinor one inserts a factor −1. Then, e.g. the expressions
λ̄iγµλ

j , i λ̄iλi (A.6)

are real for symplectic Majorana spinors. For more details, see e.g. [24].

When the SU(2) indices on spinors are omitted, northwest-southeast contraction

is understood, e.g.

λ̄γ(n)ψ = λ̄iγ(n)ψi , (A.7)

where we have used the following notation

γ(n) = γa1···an = γ[a1γa2 · · · γan] . (A.8)

The anti-symmetrizations are always with unit strength. Changing the order of

spinors in a bilinear leads to the following signs

ψ̄(1)γ(n)χ
(2) = tn χ̄

(2)γ(n)ψ
(1) ,

{
tn = −1 for n = 2, 3
tn = +1 for n = 0, 1

(A.9)

where the labels (1) and (2) denote any SU(2) representation.

We frequently use the following Fierz rearrangement formulae

ψjλ̄
i = −1

4
λ̄iψj − 1

4
λ̄iγaψjγa +

1

8
λ̄iγabψjγab , ψ̄[iλj] = −1

2
ψ̄λεij . (A.10)
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When one multiplies three spinor doublets, one
d = 5 m = 1 m = 2

n = 0 5 −20
n = 1 −3 −4
n = 2 1 4

n = 3 1 4

Table 7: The coefficients

cn,m in (A.17).

should be able to write the result in terms of (8× 7×
6)/3! = 56 independent structures. From analyzing the

representations, one can obtain that these are in the

(4, 2)+(4, 4)+(16, 2) representations of SO(5)×SU(2).
They are

ξj ξ̄
jξi = γaξj ξ̄

jγaξ
i =
1

8
γabξiξ̄γabξ ,

ξ(kξ̄iξj) ,

ξj ξ̄
jγaξ

i . (A.11)

The Levi–Civita tensor is real and satisfies

εa1...anb1...bpε
a1...anc1...cp = −n!p!δ[c1[b1 . . . δ

cp]

bp]
, εµνρστ = eeµae

ν
b · · · eτeεabcde . (A.12)

We introduce the dual of a tensor as

Ãa1...a5−n =
1

n!
i εa1...a5−nb1...bnA

bn...b1 , (A.13)

with the properties

˜̃
A = A ,

1

n!
Aa1...anBa1...an =

1

n!
A · B = 1

(n− 5)!Ã · B̃ , (A.14)

where we have introduced the notation A · B that we use throughout the paper.
The product of all gamma matrices is proportional to the unit matrix in odd

dimensions. We use

γabcde = i εabcde . (A.15)

This implies that the dual of a (5 − n)-antisymmetric gamma matrix is the n-

antisymmetric gamma matrix given by

γa1...an =
1

(5− n)! i εa1...anb1...b5−nγ
b5−n...b1 . (A.16)

For convenience we will give a rule for calculating gamma-contractions like

γ(m)γ(n)γ(m) = cn,mγ(n) , (A.17)

where the constants cn,m are given for the most frequently used cases in table 7.

B. The D = 5 superconformal algebra F 2(4)

There exist many varieties of superconformal algebras, when one allows for central

charges [33, 34]. However, so far a suitable superconformal Weyl multiplet has only
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been constructed from those superconformal algebras8 that appear in the Nahm’s

classification [36]. In that classification appears one exceptional algebra, which is

F (4). The particular real form that we need here is denoted by F 2(4), see tables 5

and 6 in [24].

The commutation relations defining the F 2(4) algebra are given by

[Pa,Mbc] = ηa[bPc] , [Ka,Mbc] = ηa[bKc] ,

[D,Pa] = Pa , [D,Ka] = −Ka ,[
Mab,M

cd
]
= −2δ[a[cMb]d] , [Pa, Kb] = 2(ηabD + 2Mab) ,

[Mab, Qiα] = −1
4
(γabQi)α , [Mab, Siα] = −1

4
(γabSi)α ,

[D,Qiα] =
1

2
Qiα , [D,Siα] = −1

2
Siα ,

[Ka, Qiα] = i (γaSi)α , [Pa, Siα] = − i (γaQi)α ,

{Qiα, Qjβ} = −1
2
εij(γ

a)αβPa , {Siα, Sjβ} = −1
2
εij(γ

a)αβKa ,

{Qiα, Sjβ} = −1
2
i
(
εijCαβD + εij(γ

ab)αβMab + 3CαβUij
)
,

[Qiα, Ukl] = εi(kQl)α , [Siα, Ukl] = εi(kSl)α ,[
Uij, U

kl
]
= 2δ(i

(kUj)
l) . (B.1)

The first six commutation relations define the bosonic conformal algebra SO(5, 2).

C. The current multiplet of Howe-Lindström

The supercurrent in 5 dimensions has been discussed before in the literature [25, 37].

The authors of [25] found a 40 + 40 current multiplet that couples to a (32 + 32)

plus (8 + 8) reducible field multiplet. It turns out that also the current multiplet

itself is reducible. More precisely, the 40+40 multiplet of [25] reduces to our 32+32

multiplet and an additional 8 + 8 multiplet.

The 40 + 40 multiplet has all the currents of the 32 + 32 multiplet in table 2,

except the current bµν . In addition it contains the currents which we present in

table 8.

The multiplet of [25] is generated by varying σ2 under supersymmetry until

closure is reached and in this way it produces 40+ 40 components. In particular, we

find that the transformations of the fields in table 8 are given by:

δQc = i ε̄χ ,

δQχ
i = −1

4
i /∂cεi +

1

4
yijεj +

1

4
i γµvijµ εj −

1

4
γ · nεi ,

8One notable case is the 10 dimensional Weyl multiplet [35], that is not based on a known

algebra.
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Current SU(2) w # d.o.f. Expression Redefined w

c 1 2 1 σ2 ĉ 4

y(ij) 3 3 3 1
2
i ψ̄iψj yij 3

n[µν] 1 1 10 σFµν +
1
8
i ψ̄γµνψ b[µν] + âµ 3

χi 2 5/2 8 σψi χ̂i 7/2

Table 8: The extra fields of the 40 + 40 current multiplet. The column “Redefined”

indicates the currents after the field redefinitions (C.4). The field nµν is not a Noether

current, but after the field redefinition (C.4) it gives the Noether currents b[µν] and âµ.

δQy
ij = i ε̄(i i γ · J j) + 2ε̄(i /∂χj) ,

δQnµν =
1

4
ε̄γµνλJ

λ + ε̄∂[µγν]χ . (C.1)

In addition the transformation of the supercurrent is also slightly changed w.r.t. (2.9)

since it does not contain bµν but nµν :

δQJ
i
µ = −

1

2
i γνθνµε

i − i γ[λ∂λvijµ]εj −
1

2
aµε

i +
1

4
i εµνλρσγ

ν∂λnρσεi . (C.2)

Comparing this with (2.9) we see that the relation between bµν and nµν is given by

bµν =
1

2
εµνλρσ∂

λnρσ . (C.3)

The 32 + 32 components now transform only among themselves according to (2.9).

To demonstrate full reducibility of the 40 + 40 multiplet we make the following field

redefinitions:

ĉ = θµ
µ −�c ,

χ̂i = i γ · J i − 2 i /∂χi ,
âµ = aµ − 2∂νnνµ . (C.4)

Together with the field yij these fields form an 8 + 8 multiplet, see table 8, trans-

forming only among themselves according to

δQĉ =
1

2
ε̄/∂χ̂ ,

δQχ̂
i =
1

2
ĉεi − 1

2
i /∂yijεj − 1

2
i /̂aεi ,

δQy
ij = i ε̄(iχ̂j) ,

δQâµ = −1
2
i ε̄γµν∂

ν χ̂ . (C.5)

As one would suspect from the field content, the 8+ 8 current multiplet (C.5) is

conjugate to the off-shell vector multiplet (5.2), in the same way as the 32+32 current

multiplet (2.9) is conjugate to the Dilaton Weyl multiplet (2.11). We expect that

this multiplet can be used as one of the compensating multiplets in the construction

of the 48 + 48 off-shell [38, 37] (= 8 + 8 on-shell [39]) D = 5 Poincaré multiplet.
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