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for Ordinary Differential Subspaces
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Mathematisch Instituut, Rijksuniversiteit Groningen, Nederland

Received October 20, 1974

1. INTRODUCTION

Let L be an ordinary differential expression of order # on an open real
interval « = (a, b),

L=73 pD* D =ddx,
' k=0
where p; € C¥(1), and p,(x) = 0, x €. Its Lagrange adjoint is L*, where

L+ =Y (—1)*D*,.
k=0

Naturally associated with L in the Hilbert space $ = £%:) are two closed
operators, the minimal operator T, and the maximal operator 7. We shall
identify operators with their graphs in the Hilbert space $2 = H D 9.
Thus T, can be described as the closure in $2 of the set of all {f, Lf} with
Je Cg*(v), the functions of class C*(:) with compact support. If we denote
the minimal and maximal operators for L* by T,+, T+, then we have the
relations Ty C T, Ty* C T+, and Ty* = T+, (TyH)* = T, where To*, (T,1)*
are the adjoints of T, T,*, respectively. In order to be more specific, let
us suppose we are in the regular case where a, b are finite, p, € C*(i), and
Pa(®) # 0, x €, where ¢ is the closure of «. Then T is the set of all {f, Lf}
such that fe C*(¢), f"V is absolutely continuous on t, and Lfe . The
minimal operator T, is given by

Ty = {f,Lf}e T |f(a) = f(b) = O},

where f(x) is the n X 1 matrix with rows f(x), f'(x),..., f™(x). A typical
boundary value problem associated with L in § is one of finding solutions
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f of the equation Lf = k, where h is given in §, and f is required to satisfy
a finite set of boundary conditions:

n

Lf = h, b{(f) = ) muf*N(a) + npf* V(@) =0, j=1..,p (L)

k=1

where m;;, , n; are given complex constants. Similarly, a typical eigenvalue
problem for L is given by:

Lf =X, b(f)=0, j=L1,.p (1.2)

Associated with these two problems is the operator 4, defined by

4, ={f T fe DT, b(f) = 0,5 = L..., P,

where D(T') is the domain of 7. It clearly satisfies 7, C 4; C T. The problem
(1.1) is just the problem of computing A7(k), and (1.2) is the problem of
determining the eigenvalues and eigenfunctions of the operator A4, .

The boundary functionals b; are examples of continuous linear functionals
on T, considered as a subspace of 92 Therefore there exist elements
{oj, 7}, = L., p, in H? such that

b(fy = (/. Tf} o, 7)) = (£, 3) + (Tf, ), f & D(T).
If B is the subspace in $? spanned by {0y, 7},..., {0, , 7}, then we see that
A, = TAB = {{f, Tf} | Fe D(T), (f, o) + (Tf, ) = 0, all {o, 7} € B}.

The boundary functionals b, are not the only type of continuous linear
functionals on 7. For example, if y,,...,u, are functions of bounded
variation on i, then the linear functional b given by

W) = 3. [ 1400 di)

is continuous on 7. Of course, the most general finite set of continuous
linear functionals on 7 is prescribed by a finite-dimensional subspace B
of $2, and it is natural to consider the operator 4, = T'n B' which is
associated with 7 and such a subspace B. Clearly T, B-C 4, C T. Now,
since A, need not be densely defined, its adjoint,

A* = {{h, B e D | (g, h) = (f, k), all {f, g} € Au),
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need not be (the graph of) an operator (single-valued function), and, even
if A4, is densely defined, 4,* need no longer be a differential operator. From
Section 2 it follows that 4, * is an algebraic sum:

A% = Tgr - (—=BY = {f + 7, To'f — o} | fe D(Ty"), {o, 7} € B}.

More generally, for the given finite-dimensional B, we can study subspaces
(closed linear manifolds) 4 C $? satisfying

Ty B-C AC(Ty+ N BY* = T -+ (—BY).

Such subspaces 4 can be described as restrictions of T -+ (—B-1), namely
as the intersection of the null spaces of a finite number of continuous linear
functionals on 7"+ (—B-1) which vanish on T, N B*. These functionals,
which might be called generalized boundary values, involve not only the
boundary values at a and b, but integral terms as well. The results of Section 2
imply that

Ty* O\ B+ C A* C (T, N BY* = T+ -+ (—B).

The case when L is formally symmetric, L = L+, is important, and we
concentrate our attention on this case. Then we write S;, Sy* instead of
Ty = Ty*, T =T+, where S, is now a symmetric operator, S, C Sp*.
We consider the general (not necessarily regular) case of an arbitrary open
interval ¢, and study the possible self-adjoint subspace extensions H = H*
of § = S§;N BL. When such H exist in $? they can be characterized by
corresponding generalized boundary values. Self-adjoint extensions H
always exist in an appropriate larger Hilbert space Q% where $ C & We
show how each such extension H gives rise to an eigenfunction expansion
result.

We briefly summarize the contents of the subsequent sections. In Section 2
we consider a general subspace T, in the sum X @ Y of two Banach spaces
X, Y, and a finite-dimensional subspace B of the dual space X* @ Y*,
and compute the adjoint of Ty N +B, where

B={/geX®Y|(0,f)+ (,8) =0, all {o, 7} € B}.

We then specialize to the case when X = ¥ = §, a Hilbert space, *B =
B-=9$>OB, and T, =S, is a densely defined symmetric operator
in §. The adjoint of the symmetric operator S = S, N B is then just
S* = S* + (—B-1). In [4] was considered the special case where B
has the form B = §, @ {0}, with $, being a finite-dimensional subspace
of . In Theorem 2.3 we indicate how S may be represented as S =
S$1 N (He D {0D*+ for an appropriate densely defined symmetric operator
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S; and a subspace $, of H. Thus, in a certain sense, the general case for S
is reduced to the special case. We show in Section 3 that the symmetric
operator S = Sy N B has self-adjoint extensions in $? if and only if S,
does, that is, if and only if S; has equal deficiency indices. Then, assuming
S, does have self-adjoint extensions in $Z all self-adjoint extensions of S
in $? are characterized in Theorem 3.3. In Section 4 it is shown how this
result applies to the case of an S, which is the minimal operator for a
formally symmetric ordinary differential expression L in § = £2(:). The
regular case is considered in detail in Theorem 4.1. We show that problems
involving multipoint boundary conditions, and, more generally, problems
involving measures (Stieltjes boundary conditions), can be considered as
special cases of Theorem 4.1. Moreover, certain singular problems involving
measures can be considered as special cases of the general result Theorem 3.3.
Facts about self-adjoint extensions of S = S, N B* in larger spaces K2,
$ C K, are summarized in Section 5. For an .S, which is the minimal operator
for a formally symmetric L in $ = £%), and each self-adjoint subspace
extension of 5 in K% H C K, we give an eigenfunction expansion result.
Two proofs are presented. One, in Section 6, follows the general scheme
in [5], where the special case B = §, @ {0} was treated. It depends upon
an analysis of the generalized resolvent corresponding to H. The other
proof is given in Section 7; it follows the ideas in [6], and makes use of the
Riesz representation theorem. In deducing the eigenfunction expansion
we obtain a map ¥ of § into a transform space § which is in general a con-
traction. It is an isometry on a certain subspace of § which has finite codi-
mension. We show that this isometry is surjective if and only if the generalized
spectral family for S corresponding to H is the spectral family for a self-
adjoint subspace extension of S in $H? itself.

Our results carry over to the case of systems of ordinary differential
operators. In fact, only a minor reinterpretation of the symbols is required
in order to obtain the results for a system of 7 first-order operators.

The real and complex numbers are denoted by R and C, respectively,
and we let C+ ={leC|Im!/=0}, Cy = C+uUC-. For any interval
¢« C R we denote by C*(:) the set of all complex-valued functions on ¢ having
continuous derivatives there, and Cy"(:) is the set of all those fe C™(:) with
compact support. Although we denote by ¢ the closure of an interval ,
for other sets D in a Hilbert space § the closure is denoted by D°. The
identity operator is denoted by I. The j X k zero matrix is designated by
0,%, and the n x = identity matrix is represented by I, . The transpose of
the matrix A4 is denoted by A!, and the conjugate transpose of A is A*.
If A, B are two matrices with the same number of rows, then (4 : B) denotes
the matrix obtained by placing the columns of B next to those of A in the
order indicated. If f is a one-rowed matrix-valued function whose elements
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have n—1 derivatives, then f(x) is the matrix with rows f(x), f'(x),..., f *~1(x).
If F = (Fy;), G = (Gy;), are matrices, with elements in a Hilbert space $
over C, and which have the same number of rows, we define the matrix
inner product (F, G) to be the matrix whose (z, f)th element is

(F, G)y; = Z (Frs » Gra)-

k

For example, if the elements of F, G are in § == C, then (F, G) = G*F,
and if the elements of F, G are in $ = L%1), + = (a, b), then (F, G) =
_[Z G*F. This matrix inner product has the properties:
(F,F) =0, and (F,F)=0 if and only if F = 0,
(G, F) =(F, G)*,
(F1 +Fy, G) = (Fy, G) + (F, G),
(FC,G) = (F,G)C, (F,GD) = DXF,G),

where C, D are matrices with elements in C. A true inner product is given by
F : G = trace(F, G), and hence a norm is given via || F|? = trace(F, F).

2. THE ADJOINT OF A SUBSPACE

We extend some of the definitions given in [3] to Banach spaces. Let
X and Y be Banach spaces over the complex field C. We denote by X @ Y
the Banach space of all pairs {f, g}, fe X and g € ¥, with a linear structure
defined component-wise and with the norm defined by

Kf 8 = (Lf 15 + 11 g 1),

where || [y and || ||y are the norms of the spaces X and Y. A subspace T
in X @ Y is a closed linear manifold T'in X @ Y. We treat such a subspace
T as a linear relation and define the domain D(T") and the range R(T') of T by

D(T)={feX|{f,gle T forsomege Y},

R(T) = {ge Y|{f g} €T for some fe X}.
Let T and S be subspaces in X @ Y. We define the sets «T («€ C),
T+SinX@®Yand T'in YO X by

ol ={{f, g} |{f. g} T},
T+S={fge+RI{f.gdeT,{f,k}eS},
T'={gf}{fgeT}
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For fe B(T) we let
I(f) ={geY|{/ g e T}

If T is a subspace in X @ Y satisfying 7(0) = {0}, then T is the graph
of a closed operator, that is, a closed linear function, from X into Y. We
shall frequently identify this operator with its graph, denote it by T and
replace T'(f) by the usual 77, f€ D(T). Conversely, if T is a closed operator
from X into Y we shall often identify it with its graph which is a subspace
in X @ Y. The null space of the subspace T'in X @ Y is the set

UT) = {fe X |{f,0te T} = T70).

The algebraic sum T + S in X @ Y of the subspaces T, S in X DY is
the linear manifold

T+S={f+hg+r{fgeT {hkeS

It is called a direct algebraic sum if TN S = {{0,0}}. If TN S = {{0, 0}}
then each {u, v} € T -+ S has a unique decomposition

{u, ‘Z)} :{frg}_“{h’ k}: {f’g}ET’ {h, k}ES'

The dual space Z* of a Banach space Z is the Banach space of all con-
tinuous conjugate linear functionals on Z. If ke Z* then its value at g€ Z
will be denoted by (%, g). Let X, Y be Banach spaces. Then the dual of
XOPY, (X@Y)* is isometrically isomorphic to the Banach spaces
X* @ Y*and Y* @ X*. With the subspaces Tin X @ Yand Sin X* @ Y*
we associate the subspaces 7% in X* @ Y* 45 in X@Y and T* in
Y* @ X* given by

T ={{h k}e X* @ Y*|(h f) + (kg) = Oforall {f, g} e T},
S ={f, e XDY|(hf)+ (kg) = 0forall {4 k}e S}
T* = {{h, k€ Y* @ X* | (h, g) — (k, f) = O for all {f, g} € T}.

T* is called the adjoint of T, and, clearly, T* = (—T-1)*%.

Let T, be a subspace in X @ Y and let B be a finite dimensional subspace
of X*@PY* Let T = Tyn*B. Then T is a subspace in X @ Y and
its adjoint is given by the following theorem.

Turorem 2.1. Let T,CX @Y and BCX* @ Y* be subspaces with
dim B < oo, and let T = TyN\*B. Then T* = Ty* + —B-1, and the
algebraic sum is direct if and only if Ty* N B = {0, 0}}.
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Proof. If M and N are linear manifolds in a Banach space such that
M* 4+ N+ is closed in the dual space then M* 4 Nt = (M N N)* (cf.
[9, p. 221]).Set M = —Tyand N = —(*B)~L. Then M and N are subspaces
in Y@ X, M+ = T,* and, since dim B < o0, N* = —((*B)*)"1 = —B-!
(cf. [12, p. 227, Problem 2]). Again since B is finite dimensional, M+ + N+
is closed in Y* @ X* (cf. [9, p. 130]). Hence,

Ty* 4+ —B1 = M* + N* = (M 0 Nyt = (—(T, 0 *B))*
= (—TH)t = T*.

The equality T* N —B— = —(T,* N B)~! shows that 7% - —B-1 is a
direct sum if and only if 73t N B = {{0, 0}}.

We now set X = Y = §), where § is a Hilbert space. Then 2 = H D $
is a Hilbert space also, with inner product

{fighih k) =+ (8 k), {figh{hked

We identify § with its dual in the usual manner. Then all the above defini-
tions coincide with the ones in [3]. In particular, if T is a subspace in $?
then T and *T coincide and are equal to the orthogonal complement
of T in %, which we denote by T~ If S'is a subspace in §? which is orthogonal

-to T then T - S is a direct algebraic sum which is denoted by T @ S and
called the orthogonal sum. If S C T then the orthogonal complement of S
in T will be denoted by T © S.

For any subspace 7 in $? let T, be the set of all elements of the form
{0, in T. Then T, ={0} D T(0). Let Ty, =TS 7T,. Then T, is an
operator in §), called the operator part of T, with D(T,) = D(T) dense
in (T%(0))* and R(T,) C (T(0))*.

A symmetric subspace S in $? is one satisfying S C S*, and a self-adjoint
subspace H in $? is one for which H = H*. If H = H, © H,, is a self-
adjoint subspace in $?% then H, is a densely defined self-adjoint operator
in the Hilbert space (H(0))*.

Let S, be a symmetric subspace in $? and let B be a subspace in 2 with
dim B = p < o0 and Sg* N B = {{0, 0}}. Let S = S, N B*. The following
result is an immediate consequence of Theorem 2.1.

CoROLLARY 2.2. S is a symmetric subspace in $H? and S* = Sy* + —B-1,
where the algebraic sum is direct.

We remark here that Sg- N B = {{0, 0}} is not a real restriction. For,
without this condition, S = S, N B+ =S,N[B O (S;* N B)]* and
Sy~ N [B O (Se* N B)] = {{0, O}
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From now on we shall assume that D(S,) is dense in §. Then S, is a
densely defined symmetric operator in 9, for Sy 0) = (D(S,*)*+ = {0}.
We decompose B into two subspaces B, and B, , where

By = {{o, 7} € B | 7€ D(S,*)},
B, =B©®B,.

Thus B = B, @ B,, and, since B, contains all elements of B of the form
{0, 0} we see that B! is an operator. Let m = dim B, , and, consequently,
dim B; = p — m. We define

Ho ={‘P65l¢ = S0*7+°"{‘7’T}€B2}’

and S; = S, N B~ In the following theorem we list some of the properties
of the subspaces defined above.

THeoREM 2.3. (i) S, #s a densely defined symmetric operator in H and

Sy * = Sg* -+ — B!, where the algebraic sum is direct,

(i) dim Hy = m,

(ili) (S*)o ={{0, ¢} | 9 € He} = {0} D Do ,

(iv) S =S80B* =8 nN(H ®{OH*

(V) S*=S8*+ —By' = S1* + ({0} @ Do) = So* + —Br* + (5%,
where the algebraic sums are direct.

Proof. (i) Since S;C S,, S, is an operator. Since Sy* N B, = {{0, 0}},
Corollary 2.2 with S, B replaced by S, , B, , implies that S is a symmetric
subspace in $? and that S,* = Sy* -+ — By}, where the algebraic sum
is direct. To show that S is densely defined it suffices to prove that S, *(0) =
{0}, for D(S,) is dense in (S;*(0))t. Let g€ S;*(0). Then {0, g} e S;* =
Sp* + —B7* and there exists a unique decomposition

0.8 ={mk+{r,—a}, {hAeS* {o7eB,.

It follows that » = —h € D(Sy*). Hence {a, 7} € B, N B, = {{0, 0}}. There-
fore h = 0 and, since S,* is an operator, g = k = Sy*4 = 0, that is
S1%(0) = {0}

(ii) Let «: B, > 9, be defined by «({o,r}) = Sp*r 4 0. Clearly
x is linear and surjective. We show that « is also injective. If Sg*7 4 ¢ = 0,
{0, 7} € B, , then ¢ = —Sy*r and by Corollary 2.2

{r, —o} = {r, So*r} € Sy* " —B;*C Sg* n —B™' = {{0, 0}}.

Hence {0, 7} = {0, 0}. Consequently dim §, = dim B, = m.
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(iii) Let {0, ¢} € (S*) C Sp* -+ —B-L. Then {0, ¢} can be written as

{0, ¢} = {h, k} + {7, —a}, {h, k} € Sy*, {o, 7} € B.

As in (i) this implies that {s, 7} € B, and T = —h. Hence ¢ =k — ¢ =
So*h — 0 = —(Sy*r + 0)€Hy. Thus (5*),C{0} DH,. Conversely if
¢ €D, , then p = Sy*r + o for some {o, 7} € B, . It follows that

{0, ¢} = {r, So*r} + {—7, 0} € Sp* + —B1 = S¥,

and so {0, ¢} € (S*),, . This proves (iii).

(iv) Since BY = B\t N B4, S = Sy N B+ = S; N Byt To prove the
second equality, let {f, g} €S, N B, = S and let {p, 0} € H, @ {0}. Then
by (iii) {0, ¢} € S* and hence (f, @) = 0. Thus {f, g} €5, N (H, P {0}
Conversely, let {f, g} € S; N (H, @ {0})* and let {0, 7} € B, . Then g = S,f,
o = S*r+o0ePH,, and

(i) + (& 7) = (fio) + (f, So*r) = (i ¢) = 0.

Hence {f, g} € S, N B,*.
(v) Let {o,7}€S1 N B,. Then for all {f, Syf}€S; = Sg N By* we
have

0 = ({f, Sof}:{os ) = (f, 0) + (Sof, 7) = (f o + Sy*7).
Since D(S;) is dense in §, this implies ¢ = — S *r and consequently
{r, —o} = {1, Sy*r} € Sy* " —B-1 = {0, 0}}.

Thus S, N B, = {{0, 0}}, and similarly S;* N (H; @ {0}) = {{0, 0}}. The
equalities in (v) now follow from Corollary 2.2(i), (iii), and (iv).

3. SELF-ADJOINT SUBSPACE EXTENSIONS IN $?

For any subspace S in $? and /€ C we define
M(l) = {{f, g e S* g = If}.
If S is symmetric and [ € C+, then
S* = S 4+ My(l) + M),

where the algebraic sums are direct. A symmetric subspace S in $? always
has self-adjoint extensions in suitably chosen Hilbert spaces K2, § C R,
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but there exist self-adjoint extensions of S in $? if and only if for some
I'e C* (and hence for all /e Ct) dim My(l) = dim Mg(I).

Let Sy, Band S = S, N B* be as in Section 2. We shall write M(l), M(l)
instead of M (I), Ms(l).

Tueorem 3.1. For le C,
dim M(l) = dim M(l) + dim B.

Proof. Let leC,. Each {f,If}e M(I)C S* = Sy* + —B-1 can be

uniquely decomposed into
{Fify ={u v} +{r,—0}, {u,0}eSy*  {o,7}€B.
We define the linear map «: M(I) = B by «({f, If}) == {o, v}. Let {0, 7} € B.
Since R(Sy* — ) = H, there exists a u € D(Sy*) such that (Sg* — Mu =
o+ Ir. If f = u + 7, then
£} = {u, So*u} + {r, —o} e S*.

Thus {f, If} e M(I) and «({f, If}) = {0, 7}, that is, « is surjective. It is easy
to see that My(I) is the null space of «. It follows that « restricted to
M(l)© My(l) is a linear bijection onto B. Hence dim(M(l) & Myl)) =
dim B, which proves the theorem.

CoroLLARY 3.2. S has self-adjoint extensions in H? if and only if S,
has self-adjoint extensions in $H2.

In the remainder of Section 3 we assume that dim My(l) = dim M,(l) < o
forle Cy,and we putw = dim M(l),q = o + p = dim My(l) 4+ dim B =
dim M(l). Then S, has self-adjoint extensions in $? and so do S; and S.
By Theorem 3.1

dim Mg(l) = dim My(l) + dim B; = w - p — m,
and
dim M(l) = dim Mg () + dim $Hy = +p —m 4+ m = q.
We can now apply [4, Theorem 3] and describe all self-adjoint extensions
H of S =S5,Nn(H D{0H)* in H% We shall use the following notation.
For h, f € D(S,*), {0, 7}, {p, $} € By,

<htrf+Hd0 = (S A7), f+4) — (b -+ SN+ )
=(So*h — o, f+¢) — (b + 7, S — ¢)
= <h, > + ({h, So*h} {9, 4})
— (o, 714, So™f}) — < s, 3.
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where

Chyf> = (So*h, f) — (B, So*f),
{r, >, = (By'r, ¥) — (v, B{Y) = (o, 4) — (7, 9)-

TueorReEM 3.3. Let H be a self-adjoint subspace extension of S in H* with
dim H(0) = s. Let @y ..., @, be an orthonormal basis for H(0), and ¢, ,..., @ ,
Poi1 5o P an orthonormal basis for ©,. Then there exist yg .y sy Y »
Bpnia seees 8g 11 D(Sp™), Torg 5000y TqER(BY) and E e C, r, k=54 1,...,m,
such that

8mi1 T+ Tmad oees O + 74 are linearly independent mod D(S;), (3.2)

Gt m, 8+ =0, jl=m+1L..qg (3.3)
Ey=E,, rk=s+1,..,m, (3.4)
and if
th = % (B — 3<vi + 557 T 701 @1 s k=s-+1,.,m,
i (3.5
Zl:“él B+ 7Y 7L Prs =m-+ 1,..,q,

then

H is the set of all {k + 7, Sy*h — o + ¢}, he®D(Sy*), {o, 71 € By, €Dy
(3.6)
such that
(h+ 7,9;) =0, j=1l,.,s
<h+7’ 8l+7l>1_(h+7) ll) :Oy :m+ 1;---, q’
¢ =ap s
+ Z [(B 4, ) — <B+ 7, 9% + 7e01] 21 ¢;eC,

k=s+1
and the operator part H of H is given by
$

Hyh + 7) = Sg*h — 0 — Z (So*h — o, 9;) @;
=1

4 (b — Gt rodes. ()

Fe=s+1
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Conversely, if @1 ,.c., @5y Pgy1 e, P 1 an orthomormal basts for ©,, vi,
8, € D(Sy*), 7, € R(B,) and Ey, € C exist satisfying (3.2), (3.3) and (3.4),
and iy, , §;, are defined by (3.5), then H defined by (3.6) is a self-adjoint extension
of S such that H(0) = span{g, ,..., p,} and H, is given by (3.7).

We observe that if B; = {{0, 0}} then Theorem 3.3 coincides with
[4, Theorem 3]. We refer to [4] for comments about other special cases
of Theorem 3.3.

4. ProBLEMS INVOLVING ORDINARY DIFFERENTIAL OPERATORS

Let L be a formally symmetric ordinary differential operator of order n,
L=Y pD*=73 (—1D¥,, D =djdx,
k=0 =0

where p,€ C*(1), + = (4, ) CR and p,(x) % O for all xe:.. We consider
the Hilbert space = 2%), and define S to be the closure in $?2 of the set
of all {f, Lf} with fe Cy*(1). Then S, is a closed densely defined symmetric
operator in §), called the minimal operator for L in §. Its adjoint Sy* is the
set of all {f, Lf} where fe C*1(:) N §, f»-V is locally absolutely continuous
on:and Lf€ . Sy* is called the maximal operator for L in §. The operator
S, satisfies the conditions set in the previous sections and we define B, S,
B,, B, and $, as in those sections. Let #, v € D(S,*). Then, as is well
known, the limits of

[uv](*) = Z 2 (1) uP(x)(pn?) " (x)

m=1 j+k=m—1
exist as x tends to @ or b and
u, v) = [uv}(d) — [wv](a).

Thus {u, v)> represents boundary terms, and in Theorem 3.3 we see that
the domain D(H) is prescribed by certain boundary-integral conditions,
cf. (3.6) and (3.1), and H, involves the differential operator L as well as
boundary-integral terms.

Regular problems. We shall consider in more detail the case when L
is regular. In this case a and b are finite, p; € C*(¥) and p,.(x) 5= O for all
x €i, the closure of i. The operator Sy* is the set of all {f,Lf} where
fe (i), f»1 is absolutely continuous on i and Lf € §, and S is the set



ORDINARY DIFFERENTIAL SUBSPACES 485

of all {f, Lf} € Sy* for which f(a) = f(b) = 0. Since for each /e C all solu-
tions of (L — I)u = 0 belong to C*(t),

o = dim My(l) = dim w(Sy* — i) = n.

Thus S,, and hence .S, has self-adjoint extensions H in $H? and ¢ =
dim M) = p + =

Using the vector notation described in the Introduction we shall write
down the various conditions of Theorem 3.4. We put

{8’ SO*S} = ({8m+1 ’ S0*8m+1}s"" {Sa ’ SO*SG})’

{'}’r SO*Y} = ({78+1 y S0*7s+1}:-"a {'}'m s So*ym})’
and

§ = (Smﬂ yeesy 80), y = (73+1 soany 'ym), etc.

Let {o%, 7'} denote the 1 X (p — m) matrix whose entries form a basis
for B;. Then the elements 7, ,..., 7,€ R(B,) given in Theorem 3.3
uniquely determine elements {o,.,, 7541}, {04, 7o} € By and they may be
expressed in terms of {o?, 7*}. Thus there exist matrices 4, and 4, of complex
constants of order (p — m) X (9 — m) and (p — m) X {m — s), respectively,
such that

({O'm+1 ’ Tm+1}"“v {Uq ’ Ta}) = {01: "'1} A1 s

({o5s1 s Tosabrens {Om » Tmal) = {o!, 71} 4, .

@.1)

Using the notion of a matrix inner product described in the Introduction,
and the above notation, we see that condition (3.3) reads

8,8 + A,*F — F*4, — A,*T\ A4, =0, (4.2)
where
3,8y = (5¢*3, 8) — (3, Sy*3),
F = ({8, Sy*8}, {o*, 71}) = (8, o") + (So™9, 71),

T, = (ot g, = (a1, 1) — (+1, ob).
The form [uv](x) may be written as
[ue](x) = 9%(x) B(x) a(x),  u,veD(S,*),

where B is a continuous, invertible, skew-hermitian, n X # matrix-valued
function on i, and then we have

Cu, v> = 5*(b) B(b) @(b) — 5*(a) B(a) ii(a).
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We remark that this relation remains valid if «, v are one~rowed matrices
whose elements are in D(Sy*). If M = §*(a) B(a), N = —§*(b) B(b), then

8,8 = MB~Y(a) M* — NB~Y(b) N*, 4.3)
and (4.3) combined with (4.2) shows that condition (3.3) is equivalent to
MB-Ya) M* — NB-Yb) N* + A*F — F*4, — A,*T,A, = 0.

We now consider (3.5). Let
C =7%a)Bl@), D= —7%(b)B(),
G = (fr, So*r} {a", ) = (v, o) + (So™y, ),

¢0 = (‘Pl ey ‘Ps)’ (pl = (‘Ps+1 yeeey ‘Pm)’
¥ = (¢s+1 erey 'ﬁm)’ Z = (C'fn+1 ey ca)’ E = (Erk)

Then (3.5) can be replaced by

W — @{E + ADB-Y(b) D* — CBa) C* + G*A4, — A,*G + A,*Ty 4]},
Z = ®{DB-Yb) N* — CB-Ya) M* + G*4; — A*F + A,*T\4,}.

We now turn to condition (3.2). Using the above notations (3.2) says that
{8, Sy*8} + {71, —a'}4, is a 1 X (¢ — m) matrix whose components are
linearly independent mod .S, . Suppose that these components are linearly
dependent mod .S; . Then there exists a (¢ — m) X 1 matrix d of complex
constants, not all equal to 0, such that

8, S,*8} + {1, —al}A;] d€ S, = S, N Byt
(1] 1

It follows that 8d -+ +24,d € D(S,) C D(S,*), and since 8d € D(S,*) we have
714,d € D(Sy*). Hence

{01, #1} A,d € B, N B, = {{0, 0}}.
Since the components of {ol, 7!} form a basis for B;, this implies
that 4,d = 0, or d*4,* =0, and {5, Sy*8}d e S, N By*. The fact that
{8, Sy*8}d € B;* implies that

d*F* = ({d\, 7}, {8, Sy*8}d) = 0.
The fact that {5, Sy*8}d € S, implies that §(a)d = §(b)d = 0 and hence that

d*M = d*N = 0. Now let (M : N : A,* : F*) be the (¢ — m) X 2(q — m)
matrix formed by setting the columns of N, 4;*, F* next to those of M
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in the order indicated. Then we have just shown that if the components of
{8, S;*8} + {71, —ol}4, are linearly dependent mod S; ,

8 20 95 7 j43y @1C RACAlL)y Gopiits

rank(M : N : A;* 1 F*) < g —m.

The above argument can be traced in reverse, to show that the converse
also holds. Hence condition (3.2) is equivalent to

rank(M : N : 4% :F¥) = g —m.

TueoreM 4.1. In the regular case of an nth order formally symmetric
differential operator L as given above, let H be a self-adjoint extension of S
in H2 with dim H(Q) = s. Let @, ,..., p, be an orthonormal basis for H(0) and
P seees Ps s Posl oeees P O€ aft orthonormal basis for $H,, where m = dim B, .
Let {o', 7'} be a 1 x (p — m) matrix whose entries form a basis for B,
dim B; = dim(B © B,) = p — m, and put Ty = (7', 7135 = (o}, ) — (7, o%).
Let ¢ = p + n and put

(po = (‘Pl e ‘Ps)) P, = (‘Ps+1 yeees q’m)'
Then there exist matrices of complex comstants M, N, C, D, F, G, 4,,
Ay, E of order (¢q —m) X n, (g— m) X n, (m——s) X n, (m—s) X n,
(p—m) X (g—m), (p—m) X (m—3), (p—m) X (g —m), (p—m) X
(m —s), (m — s) X (m — ), respectively, such that

rank(ll
L7

Tallngivs

MB-Y(a) M* — NB-Y(b) N* + A*F — F*A, — A*Ty4, = 0, (4.5)

TN A EFXY — g__ m (4 4\
Y T \&.a)

oLV . L1y - 4 m,

) ol Tk 7. A
L= ", \+.V)

and if

¥ = ®{E + {DB-Yb) D* — CBY(a) C* + G*d,— A,*G + A,*T,A;}},
Z = ®{DB-Y(b) N* — CB-Ya) M* 4+ G*4, — A,*F + A,*T, A4}, (4.7)

then

H is the set of all {h + 7', , Sg*h — o'c; + ¢}, where
heD(S*), €Dy, and c; is a (p — m) X 1 matrix of
complex constants such that (4.8)
(h + ¢, , D) =0,
(M:N:—A4*:F* 4 A*T) R+ (h +7¢,Z) =0,

R oAl AT Ty . A % . £ 1 1 wn
¢ =P +P(C:D:—4,*:G* + AFXTH R + (b + 8¢, V),
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where c is an arbitrary s X 1 matrix of complex constants,
h(a)

h(b)

({h, So*h}, {o', 7} |’

G

Bl =

and

H(h + 7%¢) = Lh — o'c; — ®y(Lh — a'c, , D)
+ @[(C: D : —Ay* : G* + AT b+ (h + 7'y , P)).
(4.9)

Conversely, tf @y, Ps s Poiq reers P 15 an orthonormal basis for 9, , the
entries of {o, 7} form a basis for B,, and M, N, C, D, F, G, 4,, 4, E
exist satisfying (4.4), (4.5) and (4.6), and V¥, Z are defined by (4.7), then H
defined by (4.8) is a self-adjoint extension of S such that H(0) = span{e ,..., .}
and the operator part H, of H is given by (4.9).

Proof. If H is a self-adjoint extension of S with H(0) = span{g, ,..., ¢},
then, as we have seen, (3.2)~(3.5) are equivalent to (4.4)(4.7). One can
readily verify that the descriptions of D(H) and H, in (3.6) and (3.7) coincide
with the descriptions of D(H) and H, in (4.8) and (4.9).

To prove the converse, all we need to show is that for given matrices
M, N, C, D, F, G, A, and A4, there exist

Vo1 see> Y s Omi1 se-s 0 € D(Sp*), Tsi1 3o Tg € R(ByY),
such that (4.1) holds, and such that
§(a) = —B-Ya) M*,  §(b) = B-'(b) N*,
({8, So*8}, {o', 7)) = F,
¥ a) = —BYa) C*, 7(b) = B-Y(b) D*,
({y, So*rh {e", }) = G.

(4.10)

We let (4.1) define 74,4 ,..., 7, € R(By). The existence of yeiq,.r; Yim s
Smi1 s 0 € D(Sy*) satisfying (4.10) is established once it is shown that
the linear mapping x: D(S,*) — C*+7-™, defined by

£(a)
«(g) = | &(b) s £€D(S0%),
({g» So*g} {0l )
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E

be
Le

8

is surjective. To prove this let d = (d,:d,:d))e C" x C* X
1 x (2n+ p— m) matrix such that du(o\ =0 for all gE D

1 X \ v ey IHIALNNA Sl ias

£ €D(Sy). Then g(a) = g(b) =0, and hence
(8 0) + (So™g:7) =0,

where {o, 7} = {0, 71}d;*. Since ge D(S,) is arbitrary it follows that
{ —o}e So* N —B;' = {0, 0}}. Hence {0, 71}d,* = 0, and thus d; = 0.

So d,§(a) + d,£(b) = O for all g € D(S,*). For the given d,, , d, one can find a

£€D(S,*) such that F(a) =d,* g(b) = dy*; see, eg., [5, Proof of
Theorem 1]. Consequently, d, = d, = 0, and thus d =0, showing that «
is surjective.

If B, = {{0, 0}} Theorem 4.1 reduces to [5, Theorem 1].

Cr-
(S *
\*o

N’
-

Remark. Theorem 4.1 holds almost verbatim if I is not an nth-order
differential operator but a system of # first-order differential operators and
9 = 2,2%), the Hilbert space of n X 1 matrix-valued functions on «, whose

raceitadan aea o wa A,
magnitudes are square integrable {see [5] for more details). The only change

is that {o1, 71} now is an n X (p — m) matrix whose (p — m) columns form
a basis for B;. Observe that in this case @,, P, are n X s, n X (m — s)
matrices whose columns are given by (@y 5..., ) and {Psiq »-e, Pr)> TESPEC-
tively. Self-adjoint operator extensions of such systems have been studied
in a number of papers; see [10], for instance. Zimmerberg [14] deals with
genuine subspaces (multivalued operators) associated with systems of
first-order differential operators. His Theorem 3.1 with A = 0 coincides
with [5, Theorem 9], which is the system analog of Theorem 4.1 above,
in the case B, = {{0,0}}. The parameter mentioned in the title of [14]
is the matrix ¢ in [5, Theorem 9].

Problems with multipoint boundary conditions. LetL be as in Theorem 4.1,
and let ce(a,d). We define {o, 7} = ({01, 7o} {00, o)) on [a, 8] as
follows: 7 = ¢ = Oy" on[a, ¢), 7;€ C"[¢, b], 0; = —Lr;onlc, b}, = 1,..., m,
#(c) = —B~Yc), #(b) = O,". Let B be the space spanned by the components
of {s,7}. Then B, = {{0,0}}, p = dim B = dim B, = n, T} = —BYc),
Sy N B = {{0, 0}}, and ({h, Sy*H}, {0, 7}) = —HA(c). Let H be a self-adjoint
extension of S = Sy N B+. Then H is necessarily an operator and can be
described as follows: D(H) is the set of all v € C*~1(:\{c}), such that -1
is absolutely continuous on each compact subset of the components of
e}, Lve H, and

M#(a) + N3(b) + Cd(c + 0) — D3(c — 0) = 0,
where the matrices M, N, C (= —F*B(c) 4 4,*), D = (—F*B(c)) satisfy
rank[M : N : C : D] = 2n,

(- Mk . NTB-1E NTX ) £YR-1( ) _ Ry
pFaiye) \u} ive AV \U} 4 ¥ "T‘ L\ 5 \L) w Fu gl \(r}

505/20/2-14
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and Hv = Lo on \{c}. This example can easily be extended to cover the
case of finitely many points ¢, ,..., ¢; in (4, b). A recent paper on this subject
is by Locker [11].

Problems involving measures. More generally, Theorems 3.3 and 4.1 can
be applied to certain problems where the side conditions involve measures,
which need not be concentrated at a finite number of points. For example,
let us consider a formally symmetric ordinary differential operator L in
the regular case, which is the situation obtaining in Theorem 4.1. Let .S,
be the minimal operator for L in § = £2(), and define S C S, by

D(S) = (e D(So)

b
f fO0da,; =0,i=1,.,p;,j = L...,n,
(4.11)

where the p; € BV(i), the set of all functions of bounded variation on &.
This S is clearly symmetric in £, and it may be described as S = §; N B+
for an appropriate subspace B C $? as the following shows.

TueorReM 4.2. There exists a 1| X p vector v = (1 ..., Tp), 7; €9, such
that
D(S) = {f € D(S) | (Sofs ) = O} (4.12)

Thus
S = S() A BJ‘, B = Spaﬂ{{o, 7'1}’"" {0’ Tp}}'

Proof. It is sufficient to show that, if w € BV (t) and j is fixed, j = 1,..., n,
then there exists a 7; € § such that

DS [ 150 di = 0f = (e DSy | (Sofy =) = O

Since f € D(S,) implies that f¢-1 e C(t) N BV (&), integration by parts yields
b b )
[ 760 dp = F9-98) 50) — £ (@) @) — [ fOR = ~(F, ),

for f(a) = F(b) = 0. We show that for each j = 1,..., n there exists a 7;€ §

such that
(f9 p) = (Sof, 73)s  FE€D(Sy)- (4.13)

To do this we use the well-known right inverse R, of Sy*, which is an
integral operator

Ri) = [ b, ) W) dy = [ I 3) KoY dy, he®,
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with a kernel given explicitly by

ko(x, y) = s(@)[ss] 2 s*(y), a<y<x<bh,
=0, a<Lx<y<b

Here s = (854 ...y 81) is a basis for the solutions of Lu = 0, and [ss] =
[ss](x) = §*(x) B(x) §(x) is independent of x and invertible. If D? = (d/dxY/,
then

b
DiRJi(x) = [ kx,3) h(3) dy, =0, Lun—1,

DPR(x) = [ kale ) H3) dy -+ (H()pal)

where
ki(x, y) = Dis(x)[ss] 1 s%(y), ¥ <%,
=0, y > X

We have Sy*Ryh = h for all ke §. Since »(S,) = {0} we see that Sp! exists
as an operator. In fact, Sy is R, restricted to R(S,), that is,

SRk =h,  heR(Sy), (4.14)
RySof =1, fe€D(So) (4.15)

As to (4.14), note that if f = Ryh then f(a) = 0 and £ (b) = §(b)[ss]* (&, ).
Since §(b), [ss]~* are nonsingular, we see that f € D(.S,) if and only if (&, ) = 0,
or he[v(Sy*)]*- Hence R(S,) = [#(Se*)]* and (4.14) is true. If fe D(S,)
then 2 = S,f is such that g = Rhe D(S) and Sog = SeRSyf = Sof,
from (4.14). But »(S,) = {0} implies f = g, or (4.15). The operators R; =
DRy, j =0,1,..,n, are defined on $ as bounded operators there, and so
their adjoints R;* are bounded on $.
We return to the proof of (4.13). From (4.15) we have that

9 = Dif = D'R,S,f = R;Sof,  feD(Sy),
and thus
(f9 1) = (R;iSof, ) = (Sof, Ri*p),  FeD(S).

This is just (4.13) with =; = R;*u, and so the proof of Theorem 4.2 is
complete.

In order to apply Theorem 4.1 to the S described above it is necessary to
identify the subspace B, of B, that is, identify those respan{r ,..., 7,}
which are in D(Sy*), and to make sure of the nontriviality condition
St N B = {0, 0}}. In order to illustrate these ideas we present a simple



492 CODDINGTON AND DIJKSMA
example. Let L = D, and let S, be the minimal operator for L on § =

270, 1]. Let 7€ BV[0, 1], and suppose t is not a constant function. We
define S C .S, via

DS) = |fe DSy

folf ar = 0§ = {f€D(So) | (Sof, 7) = 0}

Thus if B = {0} @ {r}, where {7} is the subspace in § spanned by =, then
S = S, N B Also BN St = {{0, 0}} since 7 is not a constant. We have

§* = Sy* L (—B-Y) = {{h, ik} + {cr, 0} | he D(Sy*), ce C},

and for /€ C* we have dim M(l) = 1, dim B = 1, and thus dim M(/) = 2.
There are two cases according as (1) 7 € D(Sy*), or (2) 7 ¢ D(Sy*).

In case (1), B = B,, $ = S*0) = {S,*r} = {ir’}. There are two
subcases: (1i) H(0) = {0}, and H is an operator, or (lii) H(0) = {i+'},
where H is a self-adjoint extension of S given by Theorem 4.1. In case
(1i) H = {{h, ik’ + oir’}} where h e D(Sy*) and

mh(0) -+ nh(1) + i(dn — ém)(h, ir') = 0,
o = ch(0) + dh(1) + [e + G[2)(| d |* — [ ¢ D)](A, &r'),
|m|=1{n| 0, ee R, c¢,de C arbitrary.

In case (lii) we have H = {{h, ih’ + air’}} where he D(S,*), «€C is
arbitrary, and

(h,ir) =0, mh(0) + nk(1) =0, |m|=|n| 0.

In case (2), B = B, , §, = S*(0) = {0}, and so S* is an operator. All self-
adjoint extensions H of S are operators, and have the form H = {{ 4- or, ih'}},
where k€ D(S,*), a € C, satisfy

mh(0) -+ mh(l) + ay(ik', 7) + fio = 0,
myh(0) -+ noh(1) + ay(ik', v) 4+ fou = 0,

with m; , n; , a; , f; € C such that
m n a f
k(™M ™ % )
ran (m2 ny, a, f2)
m,-ﬁk — n,'ﬁk = i(a,-f,c —f_,,-ﬁk), j, k == 1, 2.
As we remarked just after the proof of Theorem 4.1, an analog of Theorem

4.1 is valid for systems. A number of authors have considered first-order
systems together with Stieltjes boundary conditions; see e.g. [10, 13]. For
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example, Krall [10] considered in $ = £,2[0, 1] the set D of all feH
satisfying:

(a) For each f there is an s X 1 matrix of constants ¢ such that
f+ H[Cf(0) + Df(1)] + Hyy is absolutely continuous;

(b) Tf = —i(f + HI[Cf(0) + Df(1)] + Hyp) + Of exists almost ev-
erywhere and is in §;

(©) Af(0) + Bf(1) + Jo dK(®) f(¢) = O,
) " dK,(1) £(2) = 0.

Here H,H, are n X (2n —m) and n X s matrix-valued functions of
bounded variation; A, B are m X »n matrices of constants (m < 2n) with
rank(4 : B) = m; C, D are (2n — m) X n matrices such that

(o
C D
is nonsingular; K, K, are matrix-valued functions of bounded variation
of order m X nand r X n, respectively; and Q is a continuous # X 7 matrix-
valued function on [0, 1]. The map f € D — Tf defines an operator T in .

If we let S, be the minimal operator for L = —iD + Q on $ = £,70, 1],
and we define S C S, via

2(s) = {7 | [ @K)r = [ @Kaf =0,

then clearly S C T, and we must have T* C S*. If we define the n X (m + r)
matrix-valued function p by p = (K* : K;*), then we have

DS) = |fe DSy

J| @z =o}.

An integration by parts yields

[ @nf = =[ W = () = =iSus ~ Of. ).
Therefore,
D(S) = (f DS | (f, ) + (Sf, ) = O},

where 0 = —Q*u, 7 = u. If py ..., iy, are the columns of u, and we
define B as the span of {—O%*u;, i}y, {—O*tmir » Pmir), then clearly
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S = S, N B+, and we have the situation to which the system analog of
Theorem 4.1 applies. If T is self-adjoint it must be among those operator
extensions H given in Theorem 4.1.

The singular case. There are some problems involving measures in the
general singular case of an open interval ¢« = (g, b) (possibly infinite) which
can be dealt with in the same manner as in Theorem 4.2. Suppose S, is the
minimal operator for an nth-order differential operator L in § = %),
as indicated at the beginning of Section 4. Let now D;, j = 1,..., n, denote
the maximal operator for D7 = (d/dx)! in §. Thus D(D;) is the set of all
fe Ci7Y{i) N 9, such that fY-1 is locally absolutely continuous on ¢, f¥) € §,
and D;f = f9 for fe D(D;). Suppose D(S,*) C D(D,) and let SC .S, be
defined by

b
D(S) = gfeD(So)f FU9D Ay = 0,8 = 1y, py,f = L, |, (4.16)

where now pg; e BV(1)N$H. Then the symmetric operator S may be
described as S = S, N B for an appropriate B C $2 This will be indicated
in Theorem 4.3 below.

We remark that a sufficient condition for the inclusion D(S,*) C D(D,)
is that there exist constants ¢, d > 0 such that | p,(x)| > c and | p;(x)| < d,
J=0,1,..,n—1, for xe:. In fact, in [8, Lemma 2.1] it is shown that
under these conditions D(S*) CD(D;) for j = 1,..,n In particular,
D(D,) CDD;) for j = 1,...,n — 1, and D(S,*) C D(D,) implies D(S,*) C
BD(D,) for j = 1,...,n. The map {f, Sp*f} — {f, D; f} of S,* into D; is
clearly closed, and thus the closed graph theorem implies that it is bounded.
Therefore there exist constants ¢; > 0 such that

IFIP+UDifIR < edllfIP+ 1S 1D feDSe™), j=Lyn (417)
In particular these inequalities are valid for f € D(S;). Under the assumptions
DS CDDy),  wyeBV(HNS, (4.18)
we see that the integrals involved in (4.16) can be given a meaning as follows.
For fe Cy"(1) we have
[ 70 dpy = —(19, ),

and for an arbitrary fe D(S,) there exists a sequence f; € C;"(:) such that
{fr» Sofi} = {f, Sof}, and from (4.17) we see that {f,., D;fi} — {f, D; f}.

Hence,

b
[ 187 dig— —(f?, ),
a
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and, since the limit is independent of the sequence chosen, we can define
Jaf 970 dy as —(f9, ).

TueoREM 4.3. Let S,, S be as above with (4.18) assumed. Then there
exists a 1 X p vector {0, 7} = {0y, T}, {0, , Tp}}, {05, 75} € D such that

D(S) = {f e D(So) | ({1, Sof}: {o, 7}) = O},
and hence
S = Sy,N B, B = span{{oy , 7},..., {0, , Tu}}

Proof. Here we use the existence of a right inverse G(I) of Sy* — II,
Ie Cy ; see [1]. It has the properties:

(St — GOk =h, he$; COI<Iml;  (GO)* = GO,

Now S, being symmetric implies that (S, — II)™! exists as an operator
defined on R(S, — ) = [1(Sy* — II)]*, and it is easy to see that (S, — II)1
is just G(l) restricted to R(S, — II), that is,

(Sy— )Gk =k,  heR(S, — i), (4.19)
GUNS, —INf =f,  feD(S,). (4.20)

As to (4.20), since (Sy* — i) G(I(Sy — I)f = (S, — U)f = (Sy* — I)f, we
have G(I)(S, — I)f = f -+ x(1), where x(I) € W(Sy* — II). But then

(f xD) + 1 xDIF = (GANSo — IS, x(D))
= (f, (So* — i) G(I) x()
= (£, x()

implies that x(I) = 0, and thus (4.20) is true. This shows that G(I) restricted
to R(S, — /) has a range in D(S,), and hence (4.19) follows.
For any h e H, G()h e D(S,*) CD(D;) for j = 1,..., n, and so we define
Ry(l) by
Ri(l) = D;,G(), j=1,..,n, R() = G(I).
Now R(l) is defined on all of §, and, since it is closed, it follows from the
closed graph theorem that each Ry(!) is bounded. Thus the adjoint operator
R;*(l) is defined on § as a bounded operator. For f € D(S,) we have by (4.20)

[ = D;GUXS, — ID)f = RS, — ),
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and hence for u € BV (1) N § we see that

[ 700 dp = —(, ) = —RA(S, — D, )
— — (S — I, Ry*(w)
= (f, ) + (Sofs 7,

where o = IR*()g, v = —R;*()u. This implies the statement of the
theorem with p =3, p; .
Clearly, Theorem 3.3 can now be applied to the S of Theorem 4.3.

5. SELF-ADJOINT EXTENSIONS IN LARGER SPACES

We now return to the general situation considered in Section 2 and at
the beginning of Section 3. Thus S is a densely defined symmetric operator
in a Hilbert space $, B is a subspace in $? with dimB =p < o0, S =
S, N B+, S¢* N B = {0, 0}}, S* = Sp* + —B-1 (a direct algebraic sum),
and

dim M(l) = dim M) + dim B, [eC,.

If dim M(]) = wt, dim M(]) = ¢%, 1€ C%, then
¢ = w4 p, le C

We do not assume that w* = w~, and so S need not have any self-adjoint
extensions in $?% However, S always has self-adjoint subspace extensions
in some larger space 82, § C K. Let H = H, @ H,, be a self-adjoint subspace
in & satisfying SCH. Then H, is a self-adjoint operator in H(0)* =
K © H(0) with a spectral resolution

H, = [~ XdEW,

where E; = {E(A) | A € R} is the unique suitably normalized spectral family
of projections in H(0)* for H, . The resolvent Ry of H is an operator-valued
function defined for e C, by Ry(l) = (H — II)"!. The operator Ry(l)
is defined on all of & and satisfies:

| Ru(D)l < 1/ Im 1],
(Ru())* = Ry(D),
Ry(l) — Ry(m) = (I — m) Ry(l) Ru(m).
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Moreover, Ry is analytic in the uniform topology, and

_ = dEY
Ry(l) = f_w o, 1eGy, (5.1)
where
EWf = EMNf,  feHO),
=0, fe H(0).
Thus EQA) = E ) @ O,, where O, is the zero operator on H(0). The
family E = {E(X) | A€ R} is called the spectral family of projections in &

for the subspace H.
Let P be the orthogonal projection of & onto §, and put

RDf = PRy(N)f, fe9, 1eCy.
Then R is called a generalized resolvent of S corresponding to H. The operator
R(]) is defined on all of § and satisfies:
@) RO <1/ Im1],
i) (RO)* = RO, 652
(it})  Im(RD)S, /)Im i = || RSP,
(iv) SCT(CS*  where T(l) ={RDf, IRDf +f}|fe H},

and R is analytic in the uniform topology. For f € § the relation (5.1) implies
that

ROSS) = Ra)f ) = [~ LEOLI) 53)

—-—00

where
FQf = PEQ)f, fe$9.

The family F ={F(A\) | A€ R} is a generalized spectral family for S corre-
sponding to H. An inversion of (5.3) yields

(F@)Lf) = lim - | InRG +iof,f) b, fe5,  (54)

where
A=plu<v<N, F)=F}—F),

and A, p are continuity points of F. See [5, Section 4] and [7] for more details
concerning Ry, R, E, F. Note that in [5] a generalized spectral family was
defined on the smaller space $ N H(0)* = H © PH(0). Clearly, for fe &,
EA)f — E()f, as A - + o0, where E(c0) = P, , the orthogonal projection
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of $ onto H(0)*. This implies that for fe§, F(A)f — F(o0)f, where
F(c0) = PP, .

For any given symmetric S in $? and self-adjoint extension H in K?,
$H C K, the fundamental problem is to compute the F(x). We show how
this can be done for the case when S is an ordinary differential operator.
This leads directly to an eigenfunction expansion result. Two proofs are
presented in the following two sections. One, following the general scheme
in [5], depends upon an analysis of the nature of the generalized resolvent,
and the use of (5.4). The other approach follows ideas in [6] and makes
use of the Riesz representation theorem to yield the F(}).

6. EIGENFUNCTION EXPANSIONS

In this section we consider the general case of a formally symmetric
ordinary differential operator L of order 7 on an arbitrary open interval
¢ = (a, b), as described at the beginning of Section 4. Thus S, Sy* are
the minimal and maximal operators for L in $ == 2%(:), B, S are as given
in Section 5, and H is a self-adjoint extension of S in K2, $ C K, with
generalized resolvent R and generalized spectral family . We first show
that R(l) is an integral operator of Carleman type, and determine the
smoothness properties of its kernel. To do this we use the existence of a
right inverse G(I) of Sy* — II which was described in {5, Section 5]. It is
an integral operator of Carleman type

601w = [ GEnD ()b 1Ty, feS,

with the properties:
|G < 1/ Im 1],
(GI)* = G),
(So* — ) GIOf =,

and G is analytic in the uniform topology.
Since for all fe §,

RO, IROf +f1esy, (GO IGOSf + f1e S CS*

we see that if A(l) = R(l) — G(l), then {A(D)f, IA() f} € M(l), and A(l)fe
W S* — Iy = D(M(2)). Let

o) = ((1)se.., ogz(?)), le C#,
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where the components of «(/) form an orthonormal basis for v(S* — II),
I e C+. Then,

ADf = AADS, «AD) = LS, AD) (D)
= ofl) ax(I)(f, «(0)),
where

a*(l) = (A() oLl), o)), e Cx

Thus A(l) is an integral operator

ADfE = [ A5 DS d feD, 1C,

where
A(x, y, 1) = ofx, 1) ax(l) «*(y, I), le C#,
(ar())* = a~(]), le Ct.

Consequently R(I) = G(I) + A(l) is an integral operator

ROSE) = [ K@ Di0)dy  fes, 1eC,,

with kernel
K(x, 3, 1) = G(x, 9, 1) + A(x, 3, 1).
If
N(l) = {G()o + Ir) + v | {0, 7} € B},

then we claim that
w(S* — II) = »(Sy* — II) + Ng(l), 6.1)

where the algebraic sum is direct. Indeed, if ¥ = G(I)(c + I7), then Sy*u =
u -+ o 4 Ir, and

{u, So*u} + {r, —0} = {u + =, l(u -+ 1)} € S*,

which shows that Ny(l) C»(S* — II), and consequently »(:Sy* — II) + Ny(1) C
v(S* — II). The lirfear map «: B — Ny(I) given by «({o, 7}) = G(I)(o + Ir) + =
is bijective. For if G(I)(o + Ir) + 7 = 0 then 7eD(Sy*), Sp*r = —o,
which implies {r, —¢} € Sy* N —B- = {{0, 0}}. The same argument shows
that the sum is direct. Since dim Ny(l) = dim B = p, dim »(S,* — II) = w*,
we have dim[u(Sy* — II) + Np())] = w* + p = dim »(S* — II), resulting
in (6.1).
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Let 64() be a 1 X w* matrix, /€ C*, whose elements form a basis for
v(Sg* — ), and let
03(l) = G(o + Ir) + =,

where now {o, 7} is a 1 X p matrix whose elements form a basis for B.
Then the elements of

o(l) = () 6¥1)), e C,

constitute a basis for »(S* — II). We note that 6%(l), v(l) = G(l)(c + k)
satisfy the differential equations

(L—0ol) =0, (L—Dol)=o-+h,

and we now proceed to express these solutions in terms of an entire basis
for the solutions of these equations. Let ¢ be fixed, a << ¢ < b, and let

'@ 1) = (1, Dyerry su(, 1)), 0, 1) = (s, D)ooy (3, 1)),

be the unique matrices satisfying

(L — 1) si(l) = 0, fe,)=1,, IeC,
L—=Dufl)=oc+t, icl) =07, IcC. (6.2

We denote by s(I) the 1 X (n ++ p) matrix given by
s() = (*(D: (1), () =u(l) + 7. (6.3)

If w(x, ) = (s'(x, !): u(x, I)), then the matrix-valued function % is con-
tinuous on ¢ X C, and, for each fixed x €, it is entire. That §! has these
properties follows from the existence theorem. Now # may be expressed

in terms of st via

1) = e, ) 72 [ (@0 D) [o(3) + ) o,

where % is the invertible matrix
& = [s{() s{(D)=),

which is independent of x and I This representation shows that 4 also
has the properties stated. It is now clear that there exist matrices dy(/) and

dy(1) such that
(1) = s dll), () = si(D) d(l) + 5*(),

or (1) = s(!) d(I) for some matrix d(f).
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Returning now to the integral operator A(l) = R(!) — G(l), we may
express its kernel in terms of s(/) as follows:

A(x7 y’ l) = s(x, l) a(l) S*(_y, [)a IE 0:0 ’

where a(l) is an (n 4+ p) X (» + p) matrix. The kernel of G(I) may be
written as

G(x7 J’, l) == Ko(x, J’; l) + Gl(x) J’, l):
where
Kyx 3,1) = Ko(y: X, I) = 3z, ) SNy, I))*! x =Y.
Gy, 3, 1) = s'(x, ) g(D(sN(y, DY,

for some n X n matrix g(I). Thus the kernel of R(l) may be represented as

K('x: J’, l) = Ko('x’ y) l) + Kl(x’ y’ l)’
where

Ky 9, 1) = Gy(x, 3, 1) + Alx, 3, 1) = s(x, 1) P()) s*(3, D),
and Y(I) is an (n + p) X (# + p) matrix given by
— &(l) O
v0) = a0+ (50 o3 )
THeOREM 6.1. The matrix-valued function ¥ has the following properties:
(a) VY is analytic for le C,,
(b) ¥X1) = (),
(¢) ImP()/Iml =0, where Imn¥ = (¥ — ¥*)/2i.
In order to prove Theorem 6.1 we require the following lemma, which

provides for a weak approximation to {o, 7}.

Levmma.  Given the | X p matrix {o, v}, whose elements form a basis for B,
there exists a matrix {¢° L%} = ({p:% Lo %,..., {9, Le,%}) such that

?° = (@’ @,°) € C(0), (6.4)

and
({o, 7} {¢% Le") = (0, %) + (7, Lg") =1, (6.5)
Proof. Let{f;, Sof;} == Qofo;, 7;}, where O, is the orthogonal projection

of $? onto S;, and let {f, S,f} be the 1 X p matrix with components
{fi, Sefi}, 7 = L,..., p. The projection Q, is a bijective map of B onto Q,B,
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since if Qyfoy, 70} = {0, 0} then {o,, 7o} € BN Sy = {{0,0}}. Thus the
components of {f, S, f} form a basis for Q,B, and this implies that

(s Sofhs Ufs Sof 1) = (£, + (Sofs Sof)

is nonsingular. Now the set

{{o, Lo} | o € Co(1)}

is dense in S, , and the determinant is a continuous function of its elements.
Hence we can find a matrix-valued function {¢', Le'}, ¢' € Cy*(x), so close
to {f, Sgf} (in the sense that || f — ¢* || + || Sof — L' ||? is small) that the
matrix

4y = (f, ') + (Sofs L") = (0, ¢') + (7, Lo")

is nonsingular. The matrix {¢°, Lo®} = {¢*, L'}(A")* satisfies the condi-
tions (6.4) and (6.5).

The principal application of the lemma is given by the following corollary,
which follows directly from an application of Green’s formula.

CoroLLARY. If s() is given by (6.2), (6.3), and {¢% L¢°} satisfies (6.4),
(6.5), then
(5D (L = D) = (0," : 1), (6.6)
that s,
D), (L =D = 0,7, (2, (L~} =1,. (6.7)
Proof of Theorem 6.1. Let | be a finite subinterval of ¢ containing ¢

in its interior, and let ke Cy®(J) be such that 0 < A(x) < 1, A(c) = 1.
For such & we put

B o= (h, (—l)h’,“.’ (__l)n-l h(”‘l)),

This A+ is a “formal adjoint” to % in the sense that (f, &) = (f, #7) for all
feC™(). We let
sol) = (s6*(?) = a*(D))s
where
st(l) = It — (L — D) ¢*(h*,7),  s?(l) = (L — D) o",

b
yzf h(x) dx > 0.

Thus
o) =9+ (L — Dy (6.8)
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where
7=F:07), ¥ = (¢t 7): ¢%)
From the definition of sy(/) and the properties (6.2), (6.7), it follows that
(), soD)) = (Z(1), h), (6.9)
where () is the (n + p) X (n + p) matrix given by

-0 %)

It is clear that X is continuous on ¢ X C, for fixed x € it is entire, and
Z(c, 1) = I,,, . From these properties it follows that

yHEW), B) = Losy = v HE(S D), B),

as the length | J | of ] tends to zero, uniformly for / in any compact subset
of C. It follows that if | J| is small enough, then (s(I), so(1)) = (Z(2), &)
is invertible for any 4 € C,*(J) of the type mentioned above. We now assume
J has been chosen in this way.

For fe Cy:) we define

RS = | Kol 2D F(3) .
ROI@ = [ K30 £3) dy = s, ) ¥ 50).

If r(l) = RS, 8)s 7o(d) = (Ry(Df, &) (D) = (R(DS, &) =r(l) — 7ol), for
fixed £, g € Cy(t), then 7 is analytic on C,, 7, is entire, and thus r, is analytic
on C, . The equality

(Ru(D) o), @) = (Z(0), B) P(L) (R, Z(D)), (6.10)
which follows from (6.9), shows that
P(0) = (21, ky (Ry(l) soD), soD) 2. (6.11)

From (6.8) it is clear that (Ry(2) so(), 5,(})) is analytic on C,, and since
(Z), B, (h, Z())! are analytic, we see that ¥ is analytic on C,, proving (a).
The equalities

(Ry(D) o), seD)* = (so0), Rell) so(D)) = (Ry(I) 56(D); so(0),
and (6.11), now show that ¥*(l) = ¥(I), which is (b).
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We turn to the proof of (c). This depends upon the following inequalities
for matrices:

0 < (R sold) — X% R so(D) — x°)
= (R() so(D), RQ) so(1)) — (R so(D), x°) — (% R so(D)) + (4% X°)

< (O =KD 1, sy)) — (RA)sold) 1) — 06, RO D) + @
6.1

where the latter inequality is a consequence of (5.2)(iii). An easy computation
shows that

(_[RL(lz—Z-[RI_(Ql so(d), so(i)) — (Ry(D) sod), x°) — (% Ra(?) (D))

= oy (R ulD), D) — (50, Rel@) o]
= L 1, B Pk, Z0) — 0, By P, ZO)

= [ [ 0ut 3,1y hs) W) d
where
Ou(x, 3, 1) = (1 — D)[E(, 1) ¥() 2X(3, 1) — 2(x, D) P ZX(, D)]-

We note that Qy(c, ¢, ) = [Z(l) — P(D)/(! — ). Similarly we have
(Rl = SOT ), 5 — (Rl 56 X — (3% Rl D) + o 0
= (LD =R ) = [ [ Ol 1) ) W) ds .

The matrix Q(x, y, I) has the form

O = (PG 2D 07,
where
(9o, 3, D) = (&9 7F2H[0xi~* 8y*)(x, 3, 1),
and

Hyx, y,1) = (1 — D)Kol 3, 1) — Ko, 3, D)]-
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From the structure of H, it follows that Qyc, ¢, I) = O," Thus (6.12)
yields

ogfﬂq%mmmuwwa

where O = Q, + O, . Since, for sufficiently small | J |, this is true for all
h e Cy*(]) satisfying 0 < h(x) < I, A(c) = 1, we see that

0 < Qe e 1) = (FQ) — P - D),

which is (c). This completes the proof of Theorem 6.1.

The argument leading from (5.4) to an explicit representation for the
generalized spectral family F, corresponding to the self-adjoint extension
H of S, now follows along the lines given in {2, Theorems 4-7]. We briefly
sketch the reasoning. From Theorem 6.1 it follows that ¥ has an integral
representation

Mn_a+m+f

dm leC,,

where «, 8 are constant hermitian matrices, 8 > 0, and ¢ is a nondecreasing
hermitian matrix-valued function of bounded variation on R. This repre-
sentation implies that the matrix-valued function p given by

MM—hm—fImMWHQ@ (6.13)

e+0

exists, is nondecreasing, and of bounded variation on any finite subinterval
of R. We now use (5.4), namely,

(F@)L,f) = lim - [ Im(RG + i), 1) dv

for f€ Cy(r). For such f we let f(v) = (f, s(v)), v€ R. Then the structure
of K, implies that Im(Ry(v + t€)f, f) — 0, as € — +0, uniformly for v € 4,
and so we just have to consider Im(R,(v + ie)f, ). We have

Im(R,(v -+ ie)f, f) = (f@))* Im ¥(v + ie) f(v)
+ F(V’ e’f) e F(Va —E!f)’
where
I, & f) = (120)[(f( + ie))* V(v + ie) f(v — i) — (f())* ¥(v + ie) f ()]
= (2K + ie) — fO)* P + ie) f(v)
+ (fO + ie)* P + ie)[ f (v — i) — f()]}-

505/20/2-15
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From a theorem due to Helly it follows that

ﬁmLLUmeWH%VMﬁ=meWWVM

e+0 7
As to I'(y, ¢, f) we note that
| fv £ i) — fO) <l s(v £ de) — s@)lo I £,

where f vanishes outside J,, and

lels = f, g¥(x)g(x) dx.

0
Since

s(x, v 4 i€} — s(x, v) = w(x, v + i) — w(x, v),

and w is continuous on ¢ X C, and entire for each fixed x €, we see that
for all sufficiently small ¢ > 0,

|| s(v + de) — s(v)lly < ke, ved, (6.14)

for some constant & depending only on J, and 4. The integral representation
of ¥ implies that

f | Wis(v & fe)| dv = O(log(1/¢)), e — 0. (6.15)
4
Thus (6.14) and (6.15) show that
-I—J. I'(v, 4¢, f) dv = O(e log(1/¢)), e — +0;
T Ja
in particular, this integral tends to 0 as € — +0. We have now shown that
(FAS.f) = L (fEN* dp) f(),  fe Culo),
and this readily implies the following result.
THEOREM 6.2. Let H be any self-adjoint subspace extension of S in K2,
H C K, with corresponding peneralized resolvent R and generalized spectral

Sfamily F given by (5.4). If s(x, 1) is defined by (6.2), (6.3) and the matrix p
is given by (6.13), then

Fa)f = L sw) dp(v) f(v),  fe Col), (6.16)

where the endpoints of 4 are continuity points for F, and f (v) = (f, s(v)).
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Let £, n represent vector-valued functions from R to C**? (considered
as (n -+ p) X 1 matrices), and define

@ = [ 76) dot) L0)

Since p is nondecreasing we have ({, {) > 0 and we can define ||{| =
(&, O)Y2. The Hilbert space § is then given by

H = 2%p) = {111L)l < oo}

The cigenfunction expansion result then takes the following form.

THEOREM 6.3. Let H =H, @ H,, be as in Theorem 6.2, and fe $.
Then f, where

76) = [ ¥ f(0) s, (6.17)
converges in norm in § = L2(p), and

‘ F(e)f = [ ) o) /) (6.18)

where this integral converges in norm in § = L¥1). Moreover, (F(c0)f, g) =
(f, §) for all f,ge$. In particular, the map V:$— § given by Vf={f
is a contraction (| Vf|| <||fl). It is an isometry (|| Vf| = |fI) for
feHn HO)* = H O PH(0), and

f=[" ) d0)f0),  feH© PHO) (6.19)

Proof. Recall that F(c0) = PP,, where P, P, are the projections of &
onto $ and H(0)", respectively. The validity of (6.18) for fe Cyt) follows
from (6.16) and the fact that || F(4)f — F(c0)f|| — 0 as 4 — R. Since, for

fe G
(F(A)f,f) = Lf *() dp(v) f(v) — (F(0)f, f),

as 4 — R, we see that || f||2 = (F(0)f, ) < |IfI? The denseness of Cy(x)

in § permits us to extend these results to all f€ §, and polarization yields

(F(0)f, 8) = (f, 8). For fe $ N H(0)*, we have F(c0)f = f, which shows

that V' is an isometry when restricted to § © PH(0) and that (6.19) is valid.
The operators F(o0) and V imply a splitting of § and V§. If

Do ={feH|F(0)f =f}, H ={feH|F(o)f =0},
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then we have the following result. (Please note that this $, is not the §,
introduced just prior to Theorem 2.3.)

auecad jus Il L0

THEOREM 6.4. The spaces ©, , $, are also characterized as

Do = SN HOY ={feS|IVfIl =Sl (6.20)
H=9HNHQO) ={feH|Vf=0L (6.21)

Thus 94 1 D, and the splitting H =9, DD, P H., where H, =
D EO(D DD, implies that VH = VH, D VD, .

\_/\~uv~ £ AN

Proof. As noted above SN H(0)LCH,. If feH,, then feH and
PP f =f,or P(I — P))f = 0. Thus

I — PYfIE = (I — P)f.f) = (PU — PYf.f) =0,

showing that P.f = f, or fe$ N H(0)', and hence $H, = H N HO)-
We have (F(oo)f, f) = (Vf, Vf), and so fe 9, implies || Vf|| = || f|l. Con-
versely, if (Vf, Vf) = (F(0)f, f) = (f. f), then

(I — F(o))fIF = [ F(o)fiF — 1 fI? = PPSfIF—[fI? <0

shows that F(oo)f =f, or fe$,. Thus (6.20) is established. Replacing
P, in the above argument by I — P, we obtain the first equality in (6.21).
If fe H, then (VF, V) = (F(0)f, f} = 0, or Vf = 0. Conversely, suppose
Vf = 0. Then (F(c0)f, f) = 0 and

IF(o)fI* = (I — F(co)fIF — Il fI? = || PLL — PfIF =1 fI* <O

implies that F(o0)f = 0, or fe §, . This gives (6.21). Now clearly V'$H =
VS, + V9, , and we claim that VH, | V$H,. Indeed, if foe9,, fo€H:
then (Vfy, Vfy) = (F(0)fy . fo) = (fo. /o) = 0, since Ho L 9, -

Remarks on Theorem 6.4. 1f either D(S) is dense in §, or H is an operator,
then $ = $,. The first assertion follows from the fact that D(S)CT H N
DHYCH N HO) = H,, and then (D(S))* = HCH, implies H = H,.
For the second, if H is an operator, then H(0) = {0} and hence & = H(0)*,
or H, = HNHO)* =9H. Thus nontrivial §,,H, can exist only for a
nondensely defined S and a subspace (nonoperator) extension H in a &

T\fﬂl’\ﬁfl‘l rnnfnu’unn G A lenlﬂ pvamn‘p WI’IP"F Cﬂll‘h G G- FYIQf IQ as
properly containin S ix SEIAY <1 2

follows Let T be the max1mal operator for id/dx on & = 22(—~1 1). We
let § = L£%0, 1), and identify $ with the set of all fe & such that f(x) =0

£ 1 = anr D Tt fad — N far 1 < a0 and ) — 1 fae
07 —1 S & < U, & &) = U 16T 1S <<U and @] — 1 107
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0<x<1, and let {x) = x — } for —1 < » << 1. We define SCH?
and H C §2 by

S={f Tf} 1 feDT)N $,f(0) =f(1) =0, (f, o) = (f,4) = O},

H ={f, Tf + cp + &} | fe D(T), f(—1) = f(1),
(o) =Uh¥) =0,6deC}

It is clear that S is a symmetric operator in $. Since
Hy = {1, T} | fe D(T), f(—1) = f(1)}

is self-adjoint in &, it follows that H is a self-adjoint subspace in &2, which
is an extension of .S (see [4, Section 5]). Now H(0) = {g, ¢} and PH(0) =
{p, o}, where y(x) = Ofor —1 << x < Oandy(x) = — for0 <x << 1.

Thus H, = H © PH(0) = H ©{@: o}, H1 = 9 N H(O) = {9}, Hy = {ho}-
Here {p}, {p, ¥} represent the subspaces spanned by ¢ and g, ¢, respectively.

It is easy to check that PH(0)C S*(0), which has a finite dimension.
Thus $, @ 9, = PH(0) is finite-dimensional and §, = H © PH(0) has
finite codimension.

THEOREM 6.5. We have V9, = $ if and only if F is the spectral family
for a self-adjoint subspace extension of S in H? itself.

Proof. Suppose V§, = §. Then Theorem 6.3 shows that V$§, — {0},
and since ¥ is bijective from H, @ H, onto V§H it follows that H, = {0}.
Thus = Ho @ H; , and F(oo0) is the orthogonal projection of § onto §, -
The relation (6.16) implies that (F(4)f,g) = (xaf, &), for all f,ge$,
where x4A) =1 for Aed, x4A) =0, A¢ 4. For ge$,, § =0, and thus
this relation shows that F(d)fe $, for all fe H. Moreover, if g€ $,, then

(F(A)f, 8) = (VF(A)f, Vg) = (xaVf, V&),
and the equality V$, = §, shows that
VFAf = xaf, €9
From this it follows that

Fa&)f = EQ)f, fe%

Indeed, we have

| Q)12 = (EQ)f, f) = (FA)f. f) = (xaf, f)
= (xafs xaf) = IFA)f I,
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and this implies that (I — P) E(4)f|| = 0, or F(4)f = E(4)f. In particular,

FA)f =ELQ)f, €9,
= 0’ feSJI ’

and F restricted to $, is a spectral family for a self-adjoint operator H,
in §, . Its domain is

DH)= |fe Sy

[” vaEwsf) = [ xaEmsp < o,

and

Hf = f; XdFQ)f = f: NdENf,  feD(H,).

It is easy to see that VH ’-1 = /, the self-adjoint operator of *‘multiplication
by A" on §. We define

The subspace H1C H is self—adjoint for Hy is self-adjoint in $2 and

o M & aalf adiaine W ~laien tha — TN\ K2 (Maasrly
Wy on lb SCLL=aujuLilit 111 "Jl YYC uidanii that 111 — LI T2y, \.leally

H,CH,, and {0} ® 9, = {0} D (H n H(0)) C{0} © H(0) = H,, . There-
fore HHCHN S I {f, H f + x} € HN $? then fe D(H,) N H = D(H,),
and H,f+yx = Hyf +ye®. Thus ye HO)NH = H,, showing that
Hn $2CH,, and thus H, = H N $2% Since SC H, we have SC H; and
we have shown that H, , whose spectral family is clearly F, is a self-adjoint
subspace extension of S in $2.

Now suppose H = H, @ H,, C 9% that is, F == F is the spectral family
for a self-adjoint exténsion H of S in 2 Then $H, = H(0)', H; = H(0),
D =9H DH,, and F(xx) = E(w0) = P, the projection of § onto H,.
The self-adjoint operator H, in $, is such that

VH.f = AVf,  fe D(H,), (6.22)
where / is the self-adjoint ‘“‘multiplication by A’ operator in $, that is,

D(A) =

te$| [ e o) () < o,
ALY = M), LeD(A).

Indeed, for fe D(H)),
| VHLAIR = | AP = | Rd@ENFD

= [ ) o) f) = | AVF IR,
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and forge H,,

(VELS, V) = (Hui9) = | MENSe)

= [ ) 4o f) = (477, V)

Thus VH,f = AVf + £, L€ $ © V$°. But then
|AVFIR = VHfE+ IR =1 AVFIR+ 1 LIR

implies { = 0, proving (6.22). Now E(d)fe D(H,) for any fe $ and any
interval 4. We claim that

VE)f = xdVf, fe9. (6.23)
The proof is similar to that for (6.22). On the one hand,
(VE)f, Vg) = (E(A)f,8) = VS, Vg), f€9, g€Hy,
implies VE(A)f = x Vf+ L, LeH O VH,. But
I VEQSIP = | EQ)fI? = (B, f) = (xaf, /) =l xaf I?
then shows that { = 0. From (6.22) and (6.23) it follows that
VHEQ)f = AxVf, fe$. (6.24)

In order to prove that V50 = § in case HC $?, we show that £ e $,
(¢, Vg) =0 for all g€, implies that ¢ = 0. For any fe Cy(:) we have
E(4)f € $H, and hence

0 = (¢ VE()f) = (¢, xaf) = L () 1) dp(d) £

for all subintervals 4 of R. Let f = 5,(0) = 5 4 Ly® where s,(l) is defined
by (6.8). We have

(5(A); $0(0)) = (5(A); $0(A)) +- (5(A); 50(0) — $6(A))
= (ZQ), &) + A(s(A)s x°)»

and therefore

[, Z0, ) do) £0) + [ Mo, %) do@) £0) = 0.
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The second integral is just (¢, VHE(4)x%) by (6.24), and is thus zero.
Now we have

[ @, 1) a2 €09 = 0

for all 4, and since yY(Z(A), ) — I,,,,, as | J | — O, uniformly on 4, we
see that

[ oy e =0

for all 4. This implies that (¢, {) = O for all { € § whose components are
step functions and which vanish outside compact subsets of R. These {
are dense in §, and therefore £ = 0 as desired. Note that the self-adjoint
operator VH,V-1 in V$, = § is such that VH,V-1C A, by (6.22), and
hence VH V! = A.

The argument used in the proof of Theorem 6.5 to show that V', = §
in case H C $?2 can be used to prove the essential uniqueness of the matrix-
valued function p of Theorem 6.2.

THEOREM 6.6. Let p, , p, be two (n + p) X (n + p) matrix-valued func-
tions on R such that

FA@f0) = [ FW MM, j=1,2

for all f,ge Cyv) and all intervals A whose endpoints are continuity points
of F. Then

[ des = [ dest¥

for all such intervals 4.

Proof. For f, g € Cyt) we have
| wdEQSe) = [ ¥W o [0 f=1,2 k=012,
Thus if p = p, — ps , and f, g € Co(s),
L Xeg*(2) dp(A) f0) =0, k=0,1,2. (6.25)

We apply (6.25) with & = 0, g = 5,(0), which implies
B = (s0(0), s(V) = (B, Z()) + Ax" s(V)),
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and hence

[ @m.m e i = o, (6:26)

since

[ X600, 2 do) /) = 0,

using (6.25) with & = 1, g = % Now we apply (6.25) with 2 = 1, f = ¥,
£ = 55(0). This results in

[ M@, 5 o), ) = 0 (6.27)

since

[ 2860, x) 4o, s) = 0,
using (6.25) with &k = 2, f = g = ¥% Now let f = 5,(0) in (6.26). We get
[ 0. 5y dptih, 20 = o, (6.28)

where we have used (6.27). Now recall that y~{(Z(A), B) - I,,,,,as| J1 — 0,
uniformly on 4. Using this in (6.28) we obtain

L dp(¥) = 0,

which proves the theorem.

7. E1GeNFUNCTION ExpaNsIONs (CONTINUED)

In this section we present different proofs of Theorems 6.2 and 6.5.
We repeat some of the definitions given in Section 6. Let ¢ be fixed, a < ¢ < b,
and let

s x, 1) = (sy(%, Dyerry 50(2, 1)), w(x, 1) = (upiq(w, D)., uppp(x, 1))
be the unique matrix solutions of
(L—Ds() =0, e,y =1,, leC,
(L—-Du(l) =o0c+ I, 4, 1) = 0,7 leC,

where {¢, 7} is a 1 X p matrix whose entries form a basis for B. Let s%(/) =

u(l) + 7 and s(1) = (s}(0) : ().
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Let k(x, v, [), x, ¥ €+, l € C, be the solution of
(L —Dkx 1) =0, Ky, v, 1) = (0,..., 0, 1/pa(3)),, le C.
Then K(I) 2(x) = [> k(x, v, ) 2(¥) dy, z€9, is the uniquely determined
solution of
L=DfD) =2 flc,) =0, leC.
Since k(x, y, 1) is continuous in (x, y, ) for y < x and for y > x, it follows

that for each compact interval [ C . and for each [ € C there exists a constant
b(J, 1) > 0, bounded for / in compact sets, such that

Il K(D=ls < o], D =1, (7.1)

where

17l = (] 1 a)

Let H = H, ® H, be a self-adjoint extension of S in ]2, as described
in Section 5. Let R(l) = (H, — I)™%, le Cy, be the resolvent of the self-
adjoint operator H, in H(0)* = & © H(0). Then R(I) is a bounded operator
defined on all of H(0)* and it is easily verified that for all 2 e H(0)",

{PR(I)h, IPR()h + Ph} € Sy* - —B1,

where P is the orthogonal projection of & onto §. Thus for each » € H(0)*
there exist a unique fe& D(S,*) and a unique p X 1 matrix @ of complex
constants, both depending on /€ C,, such that

{PR(I)h, IPR()h + Ph} = {f, So*f} -+ {r, —ola. (7.2)
We define

I'Y(PR(Dh) = f(c),  T™(PR(Dh) = a,

r l(PRs(l)h)).

I(PR(D)k) = (FZ(PRs(l)h)

Lemma 7.1. For each le C,, the map h — I'(PR()h) from H(0)* into
Crt? is linear and continuous.

Proof. Clearly, the indicated map is linear. We shall prove it is con-
tinuous. Let # € H(0)*. Then (7.2) implies that

Ph = (L — (f — u(l)a).
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Since Ph = (L — 1) K(I) Ph, we have that
(L —I)f — K(I) Ph — u(l)a) = 0.

Using the initial conditions for K(I) Ph, u(l) and the fact that by (7.2)
f = PRk — 7a, we find that

PRIk — K(l) Ph = s(I) T(PR,()k). (1.3)

Let {g% Lg®} be a 1 X p matrix satisfying the Lemma preceding the proof
of Theorem 6.1. Then, using (7.3) and (6.6) we find that

(PR(Dh — K(I) Ph, (L — Dg®) = I'*(PR(1)k).

From this equality, the continuity of PR(!), and (7.1), it follows that there
exists a constant cy(/) > 0 such that

| THPR(DA), < (D)l 2, (7.4)
where | |, denotes the norm of C?. We rewrite (7.3) to obtain
s{) (PR (k) = PR\ — K(IYh — s*(1) TAPRLI)R). (7.5)

Let J be a compact subinterval of ¢ such that ¢ € J. Then the # X n matrix

(0, 20)s = [ (0 D) (x. ]) d

is invertible. From (7.5) it then follows that
THPR(DA) = [(s'(2), DI HPR(Dh — KDk — s*(1) THPR(D), s(1); .

Since the right-hand side of (7.5) is continuous on H(0)*, it follows from
the above equality that there exists a constant ¢,(I}) > 0 such that

| PYPRDA)n < ei(D)]| 2] (7.6)

The inequalities (7.4) and (7.6) show that the map & — I'(PR(l)h) is con-
tinuous on H(0)*.

Lemma 7.1 and the Riesz representation theorem imply that there exists
al X (n 4 p) matrix G(I) whose entries belong to H(0)* such that

T'(PR(Dk) = (h, G(l), 1eC,, heH(O)"

Without loss of generality we may and do assume that H is minimal,
i.e., that the set {EQA)f|fe 9, e R} U H is fundamental in R (cf. [7]),
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where {E(A) | A € R} is the spectral family of projections in & for the sub-
space H. The assumption implies that R, and therefore H(0)* also, is
separable. Consequently H, has only countably many eigenvalues A, ,
v =0, £1,...,, listed as often as the multiplicity of the eigenvalue requires.
Let y,, v =0, 4-1,..., be a corresponding orthonormal system of eigen-
functions of H, in H(0):. We decompose E,(N) € E,, the spectral family
of orthogonal projections in H(0)* for H,, as follows:

E) = P2 + 0,0,

where
0N f =Y (EA)— EQX —0)f
A,<A
= ZA(f)yv)yvy fEH(O)lv
and a

PY) = E}) — Q).

Hence {P(X)|Ae R} is a continuous and {Q,A) | A€ R} is a right-con-
tinuous family of projections in H{0)'; the first family is related to the
continuous part and the second family is related to the discrete part of the
spectrum of H, . Furthermore, for A, u € R, we have

Pyd) < Pyp), 0,8 < Oop), A< p,
P ) Qi) = Q) Pu) = 0,

PMNH, = H,P (), O(wH, = HQ ().
For h € D(H,) we have by the spectral theorem,

and

w¢4m=jmu_oagm-P@m
+¥ O~ D, 3)y,, leC. (1.7)

Lemma 7.2, Let he HQQ) and v(X) = (P,(A) — P,(0))h, Ae R. Then

Po) = [ o) dTPo(e)

Proof. The function ¢ from R into D(H,) is continuous and 2(0) = 0.
Let le€ C, be fixed and let

W) = (Hy = 1) o) = [ (u 1) dof)

A
:@—”MM—L“M@ (7.8)
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(cf. (7.7)). Then u, too, is a continuous function from R into D(H,) and
#(0) = 0. Hence I'(Pu(-)) = I'(PRI) u(')) is a continuous function from R
into C"+?. This implies that

w) = [ o) dr(Poge)

exists and
w(x) = s(3) T(Po(X) — j: (8J2w) s(u)) T(Po(w)) du.
A simple calculation shows that

(L — ) — TP = (o -+ ) PHPo() — [ ) i

On the other hand it follows from (7.8) that

P(H, =3 o) = —[ PoGu) da,

and hence that

@—mmmﬂmwwm=@+Mﬂwwm~ﬁhw@,

since {Po(\), PHo(A)} € Sp* + —B-1. Combining these two results and
putting

) = Pe) — w0, KO = — [ 50 d
we get
(L — X) 2(2) = k().

Since

5OV(E) = (Po(h) — 7THPo)Y~ (€) — (w(A) — TP (¢)
— IYPo) — [ e, ) d(Po()
e O,

it follows that 2(X) = K{(A) k(). Using (7.1) we obtain that for each compact
JCu,
I 2y < B(J, 2) | A,

<Y | [ iaE e
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Gronwall’s lemma and the continuity of 2(A)(x) as a function of x € ¢ imply
that 2(A) = 0 on ¢ for all Ae R. Thus Pr(A) = w(}), A€ R, and we have
proved the lemma.

Let [, € C, be fixed and let #* be the 1 X (7 4 p) matrix-valued function
on R with components in D(H,) defined by

2A) = (H, — )P — P0)) G(l)), reR
Clearly we have t(0) = O;*?. We define the (n -+ p) X (r + p) matrix-
valued function p! on R by
PA) = T(PEN) = (TPt} N) = -+ : TPy, (),
where
t'(A) = (HHA)yeos thip(A)),  AER.

Tueorem 7.3. The matrix-valued function p' is hermitian nondecreasing,

and continuous on R and p}(0) = O}*D . For each he  and o, B R,

PAB) — Pi) P = [ s dy (b [ () ),

where P, is the orthogonal projection from K onto H(0)*.

Proof. (Note the distinction between P, and the Pya); P, = E(o0) =
P(0) + Oy0).) Let A, n € R and choose a, 8 € R such that 0, A, x € [«, B].
Then

1) — B(u) = (PA) — P)(Hs — L)P(B) — Pyx) GL)  (7.9)

and

PHA) — ) = D(PE Q) — t(w))
= ((H, — L)) — (1)), G(lo)
= (1)) — (), (PyA) — P)H, — L)YPy(B) — Py(v) G(k))
= (£(2) — t4w), £1(2) — 1 (p))- (7.10)

By (7.9), £ is continuous and thus by (7.10) p* is hermitian, nondecreasing
and continuous on R. Clearly, p¥(0) = O%?. From (7.9) with u =0,
Lemma 7.2 (with %, »(A) replaced by (H, — L)P«B) — Pya)) G(4), (X))
and the definition of p!, we deduce that

Po) = [ s(u) ). (7.11)
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Thus we have
D(P(P Q) — P0)) Ph) = ((H, — L)(PsQ) — P0)) Pk, G(ky)
= (h, P11(}))
A
= (i ]| st dei(w)-
Again we apply Lemma 7.2 (with % replaced by P,) and obtain

PO.W) — PAO) P = [ str)d. (b [ o) do'Ge).

From this equality the second part of the theorem easily follows.
With the same [; € C, as above we define the 1 X (r + p) matrix-valued
function 2 on R with components in D(H,) by

2Q) = (H; — L)Q:Q) — 00)) Glhp), AR,
and we define the (n 4 p) X (n + p) matrix-valued function p? on R by
XA = I'(PE(\)), AeR.

'THEOREM 7.4. The matrix-valued function p? is hermitian, nondecreasing
and right continuous on R and p*(0) = O™ . For each he $ and o, B R,

POE) — Qu) Pt = [ s dy (b [ () dp().

Proof. The proof of the first part of this theorem can be given along the
same lines as the proof of the first part of Theorem 7.3. For, if 0, A, p € [o, 8]
then

2A) — () = (0s(2) — OH; — L) Q:(B) — O()) G(k)
and

) — p) = (P) — £3(w), £0) — B(w)). (7.12)

We shall prove the second part of the theorem by showing that
A T
PN — Q,0) Ph = [ s(r)d, (b, [ s(uw) dp*(w)).  (7.13)
0 0

This equality evidently implies the equality of the theorem.
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Let u € H(0)*. Then for A > u

(Hy — L)(H, — LY(Q.2) — Os(p))u
= Y A=k} —Lk)») . (7.14)

u<A,A

Hence the series in (7.14) converges in H(0)-, An apphcatlon of the con-
7 + 't

tinuous linear function I'(PRJ(l)) (cf.

the convergence in C**? of

T Ty O~ b)) (7.15)
u<A,gA

As u is arbitrary in H(0)*, it follows that the series

Y =) »I(Py)* (7.16)

u<A, <A

is weakly convergent in H(0)* @ - @ H(0)* (n + p copies). Since y,,
v = 0, 41,..., is an orthonormal system in H(0)' the series in fact con-
verges in the norm. Again we apply I'(PR,{f,)") and obtain the convergence
of the series of (n 4+ p) X (n 4 p) matrices

u<A, <A

From (7.14) (with u = G(l;)) we get for A > u

(H,— ) Q) — 3(w) = 3 (A — L) ».T(Py.)* (7.17)

u<A, <A

Applying I'(PR (1)) to both sides of (7.17) we obtain

P — ) = T(PE) — PE(w) = T T(Py) T(Py)"
u<A, <A
The series on the right-hand side equals
T(PR(LNQAN — Ou(w)) Y. (A — &) n.T(Py)”),

a<A, <A

where o <{ p < A. Letting p — A we obtain
pEA) — p2(A — 0) = ¥ 7 (Py,) T(Py,)*
A,=2
Since
Py, = s(A,) [(Py,), v =90, +-1,..., (7.18)
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we have

3

[ s dp = 30 TBy) TP*

0<A, KT

= Y PyI(Py)* (7.19)

0<A, LT

(the last series converges since it equals the series obtained from the applica-
tion of PR(],) to the series (7.16)).
Now in (7.15) let u = Ryl Psh. Using the fact that Ry(f)* = RyL),
we see that the series o(h, A), defined by
olh, A) — o(h, p) = Z F(Pyv)(h’ ») p<A

u<A, <A

11 O i
o, V) = Upyp s

converges in C™?. A reasoning similar to the one used above leads to

o, ) = ofh, A = 0) = T TEx)(h3.).

v

From this, (7.18) and (7.19), we derive that for A > 0,

(" sty d, (b [ s0) do*w) = [ s(x) doth, 7)

Yo \ Yo E o

= 3 s(A) I'(Py,)k, y,)
0<A, <A

= Z (h’yv) Pyv
0<A, <A

=P ) hy)y

0<A, <A
= P(Q,(1) — Qs(l")) Ph.

For A << 0 a similar derivation may be given. Hence (7.13) is valid and
thus the proof of the theorem is complete.

We observe that if we apply PR (J,) to both sides of (7.17) (with u = 0,
A = 1) then by (7.19) we obtain

Pr(r) = [ s(w) dp*(u). (7.20)

)

<

Combining Theorems 7.3 and 7.4, using the definition of {F(2) | Ae R},
the generalized spectral family for S corresponding to H, we obtain that
ifhe®, o, R, then

8 A
(F(B) — F@h = [ s dy (1, [ () do),
2 0 4

505/20/2-16
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where p{p) = p'(p) + p*(p), peR. I A =feCy) then (6.16) holds.
Thus Theorem 6.2 has been proved.

We define § = £(p), the map V: $ — § and the subspaces $,, $; and
$, as in Section 6. Since the proofs of Theorems 6.3 and 6.4 are based on
the above formula for F(A), proofs of these theorems using the approach
presented in this section would be exactly the same and are therefore not
repeated. However, a proof of Theorem 6.5 can be based on the machinery
we have built up in this section and we now give this proof.

Second proof of Theorem 6.5. Let t(A) = tY(A) + t*A), Ae R. Then tis a
1 X (n + p) matrix-valued function on R whose components t;e D(H,) C
H(0)*. By 4 we shall denote finite left open and right closed subintervals
of R. If o, B€ R, o < B, are the endpoints of 4 C R, then we put #4) =
#(B) — #(a) and p(d) = p(B) — p(«). Since (F(A), #*(w)) = OZ17, we have
on account of (7.10) and (7.12) that

o4 N 4y) = (#(4), 14y), 4, 4,CR. (7.21)

From (7.11) and (7.20) it follows that

Pi(d) = [ s(p) dp(e). (7.22)

Let x(j, 4) be the (n 4 p) X 1 matrix-valued function in $ whose jth
component equals the characteristic function of 4 while all other entries
are zero, j = 1,...,n 4+ p, 4 CR. The collection X of all such functions
is fundamental in §. We define T: X — H(0)* by

Tx(G, 4) = t(4).

From the previous observation and from (7.21) we deduce that T may
be extended by continuity to an isometry from § into H(0)*. We denote
this isometry by T also. We claim that T = V-1 on V$,C §.

To prove this claim, let # € $ N Cyft), € > 0 and ], a compact subinterval
of ¢, be fixed. We choose 4 C R such that

“ h— L SN dpY(VRY(A) “, — “ d — F(4)h “, <e (1.23)

and
| PT(Vh)s— PTVh|; < ¢ (7.24)

where (Vh), equals VA on 4 and O}, , outside 4. We observe that for |
and this fixed interval 4 there exists a constant M > 0 such that

(] st 20 oy st )| <
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Let u., k= 1,2,..., be a sequence of linear combinations of elements
in X having support in 4 such that u, — (Vk),, as & — c0. On account
of (7.22) we have

PTy. = [ ) do(X) (X, (7.25)

We choose % so large that

| [ ) om0 — [ ) dol) W) | < M IRy = mi], < <
(7.26)
and
| PTn — PT(VRh)all; < e (7.27)

where || [, denotes the norm in §. Using (7.25) and the triangle inequality
we see that || A — PTVh||; is bounded by the sum of the terms on the left-
hand sides of the inequalities (7.23), (7.24), (7.26) and (7.27). Therefore
| — PTVh; < 4e, and since ¢ and | have been arbitrarily chosen,
PTVh = h in $,0 Cy(). Since T on § and V on $, are isometries,
| PTVh| = || k] = || TVk|| and thus TVk = h. Using the continuity of T
and V we see that TVh = h holds for all e $H,, which shows that our
claim is true.

Assume that V9, = §. Then #,(4) = V-1x(j, 4) € $,, and since X is
fundamental in §, the set {t{(4) | 4 € R, j = 1,..., n -+ p} is fundamental in
o - From the definitions of £, 2 and ¢ it follows that Ey(4,) t;(4) =
t;(dn4d,y), 4,4,CR,j=1,..,n -+ p, which shows that E,(}), A € R, maps
9, into §, , and since the surjectivity of ¥ implies that §, = {0} we have that

{EQf1/e9AeRpUS ={ENh|heH,,AeRIUH, CHCK.

Now, H is minimal, which means that the set on the left-hand side is
fundamental in & Thus we see that & = §, and hence that the “only if”
part of Theorem 6.5 holds true.

To prove the converse, let H be a self-adjoint subspace extension of S
in 2 Then $, = $ © H(0) and T is an isometry which maps § into $, .
Let ne $ be such that (Vh, %), = 0 for all e $,, where ( , ), denotes
the inner product in . Then, since T = V- on V$, and thus

0= (Vh’ 77)0 - (TVh’ T"I) = (h’ T’?),

we see that 7% = 0, which implies n = 0. Hence V is surjective.
Some special cases of Theorem 6.3. Let H = H, @ H, be a minimal
self-adjoint subspace extension of .S in &2 and suppose that H, has a pure
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point spectrum. Then, for all Ae R, Py(A) = 0 and hence the matrix p
entering in the eigenfunction expansion equals p? which consists of step
functions only. It follows from the definitions of F(X), O,X) and (7.18)
that for all se § N Cyfe) and o, B R, o < B,

(F(B) — F())h = P(Q,B) — Qo)) P i
= Y (hy,) Py,

a<A, <8
= Y. T(Py)* hA) s(\) I'(Py,),
a<A, LB
and hence

PP =3 I(Py,)* h(\,) s() T'(Py,),

where the series converges in § = 2&().

If H is an extension of S in $?% then H is automatically minimal and
we must have w® = w~. If furthermore, w* = w~ = n, the order of the
differential operator L, then it is clear from (6.2) and (6.3) that the com-
ponents of the matrix-valued functions s(I) = (s¥(J) : s¥(I)) are in Q3(:) for
all e C,. From the representation of the kernel K = K, + K; of the
resolvent R of H in $? in terms of s(f), described in Section 6, it follows
that R(l) is an integral operator of Hilbert-Schmidt type. This implies
that the spectrum of H, is a pure point spectrum. In particular this is true
for self-adjoint problems in the regular case which is described in detail
in Section 4.

For the regular case let H be a self-adjoint extension of S described
as in Theorem 4.1, and let A\e R and y € § = £.) be such that H,y = Ay.
We shall indicate how the eigenvalue A and I'(y) can be determined.

We split the matrices {o, 7}, whose elements form a basis for B, and (/)
defined by (6.2) into two parts:

{o, 7} = (o', 7} : {o% 7%),  w(l) = (i(0) : w3(D)),

where {0, 71} is as in Theorem 4.1, the elements of {¢%, 7%} form a basis
for B, such that Lr? 4 6% = (@, :D,), (L — D) u!(l) = o' + I, and
(L —Dud(l) = o* 4+ 2, 1€ C. We define #(l) = (s(I) : ul(l) : u3(I) 4- +?).
By Theorem 4.1 the eigenfunction y has the form y = & 4 7l¢, and by
(4.9),
d
51
h + ey = s(d) (Lk — o'c, , B,)
—(C:D:—A*:G* + AT R — (b + 1Yy, F)

(1.28)
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for some constant # X | matrix d. By (7.18), where now P is the identity
operator on $, we have

k+ 7le, = s(\) (). (1.29)

*

We claim that I'(y) equals the ¢ X | matrix on the right-hand side of (7.28).
To see this, it suffices to prove that if

)z + @A) + )b 4 (13A) + %) = 0

for some constant # X 1, (p —m) X 1 and m X | matrices a, b and ¢,
then all three matrices are zero. Now, since the elements of #(!) belong
to D(Sy*), the equality implies 716 € D(S,*). From the definition of B,
this implies b = 0. Consequently, s*(A)a + (#%(A) + 7%)c = 0. Applying
(L — A) to both sides of this equality, we get that (D, : @,)c = 0, and hence
that ¢ = 0 since the elements of (@, : @) are linearly independent. Finally
si{A\)a = 0 implies @ = 0 on account of the initial conditions (6.2) for si(I).
From the claim we deduce that

- = AI(y) (7.30)

and
(C:D:—A4*:G* + A>T + (h + %, ¥) + AI(y) =0, (7.31)
where
A= Opom Ly 1 Op )y Fy = (ORZ™ L)

From (7.29) and (7.30) we deduce that

h = 1) I'(y),
which implies that
i(a, A)
1 Z(b’ A)
"=\ e, 2o, o1 -y | 7O (32
A
Let A(A) be the ¢ X ¢ matrix defined by
(s(2), Po)
Mi(a, ) + Ni(b, ) — A, *{t(D), Lt(N)}, {o*, 71})
AQR) = + (F* 4 A,*T,)) 2, + (s(A), Z)

Sy + Ct(a, X) + Db, X) — A*({t(A), Lt(N)}, {o*, 71})
+(G* + 4,*T) A, + (), ¥)
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Then it follows from the first two defining relations for D(H) in (4.8) com~
bined with (7.28), (7.32) and from (7.31) combined with (7.20), (7.32) that

det A(A) = 0, (7.33)
and
AN I(y) = 0. (7.34)

Hence we have shown that if H .y = Ay for some A€ R then (7.33) and
(7.34) hold. Conversely, if for some A € R (7.33) holds then A is an eigenvalue
for H, , and if for some nonzero constant ¢ X 1 matrix I" we have A(N)I" = 0,
then y = s(A)[" is an eigenfunction associated with A and I" = I'(y). This
can be shown by tracing the above argument in the opposite direction.
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