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Received October 20, 1974 

1. INTRODUCTION 

Let L be an ordinary differential expression of order 12 on an open real 
interval L = (a, b), 

L = i pkDk, D = dldx, 
k=O 

where p, E P(c), and p,(x) # 0, x E I. Its Lagrange adjoint is L+, where 

L+ = f (- 1)” D”jk . 
k=O 

Naturally associated with L in the Hilbert space 43 = !G2(b) are two closed 
operators, the minimal operator To and the maximal operator T. We shall 
identify operators with their graphs in the Hilbert space 4j2 = 5 @ 9. 
Thus To can be described as the closure in 5,” of the set of all {f, Lf> with 
f E Con(,), the functions of class P( ) c with compact support. If we denote 
the minimal and maximal operators for L+ by To+, T+, then we have the 
relations To C T, To+ C Tf, and To* = T+, (To+)* = T, where To*, (To+)* 
are the adjoints of To, To+, respectively. In order to be more specific, let 
us suppose we are in the regular case where a, b are finite, p, E F(l), and 
p,(x) # 0, x E L, where I is the closure of c. Then T is the set of all (f, Lf} 
such that f E F-~(L), ffn-l) is absolutely continuous on L, and Lf E $j. The 
minimal operator To is given by 

To = iif, Lf > E T I f(a) = f(b) = O), 

wheref(x) is the n x 1 matrix with rows f(x), f’(x),..., f(+l)(x). A typical 
boundary value problem associated with L in 5 is one of finding solutions 
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f of the equation Lf = h, where h is given in 5, and f is required to satisfy 
a finite set of boundary conditions: 

Lf = h, bj(f) = i mjkf’“-“(a) + nj,f’“-l’(b) = 0, j = l,...,~, (1.1) 
k=l 

where mj, , njk are given complex constants. Similarly, a typical eigenvalue 
problem for L is given by: 

Lf = hf, b,(f) = 0, j = l,...,p. (1.2) 

Associated with these two problems is the operator A, defined by 

A, = {{f, Tf} 1 f e IS(T), b,(f) = 0,i = ly.ee,P>p 

where D(T) is the domain of T. It clearly satisfies To C A, C T. The problem 
(1.1) is just the problem of computing A;‘(h), and (1.2) is the problem of 
determining the eigenvalues and eigenfunctions of the operator A, . 

The boundary functionals bi are examples of continuous linear functionals 
on T, considered as a subspace of $jz. Therefore there exist elements 
{ui , TV}, j = l,..., p, in sj2 such that 

b,(f) = ({f, Tfl, h > ‘2) = (f, ui) + (Tf, d, f E a(T). 

If B is the subspace in $j2 spanned by {pi , pi},..., (u, , r9}, then we see that 

A, = T n BL = {{f, Tf} If E D(T), (f, 0) + (Tf, T) = 0, all (0, T> E B}. 

The boundary functionals bj are not the only type of continuous linear 
functionals on T. For example, if p1 ,..., pn are functions of bounded 
variation on I, then the linear functional b given by 

b(f) = i j” f ‘“-“(x) G&) 
k=l a 

is continuous on T. Of course, the most general finite set of continuous 
linear functionals on T is prescribed by a finite-dimensional subspace B 
of b2, and it is natural to consider the operator A, = T n BI which is 
associated with T and such a subspace B. Clearly To n BI C A, C T. Now, 
since A, need not be densely defined, its adjoint, 

A,* = {(h, h) E sj2 I (g, h) = (f, 4, all if, g3 E Ally 
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need not be (the graph of) an operator (single-valued function), and, even 
if A, is densely defined, A,* need no longer be a differential operator. From 
Section 2 it follows that A,* is an algebraic sum: 

A,* = To+ -j- (-B-l) = {(f + 7, Toif - u} 1 f E a( To+), {a, 7> E B}. 

More generally, for the given finite-dimensional B, we can study subspaces 
(closed linear manifolds) A C $jz satisfying 

T,, n B’- C A C (To+ n Bl)* = T -j- (-B-l). 

Such subspaces A can be described as restrictions of T i (-B-l), namely 
as the intersection of the null spaces of a finite number of continuous linear 
functionals on T r (--B-l) which vanish on T,, n B’. These functionals, 
which might be called generalized boundary values, involve not only the 
boundary values at a and b, but integral terms as well. The results of Section 2 
imply that 

T,,+ n Bi C A* C (T,, n Bl)* = T+ -j- (-B-l). 

The case when L is formally symmetric, L = L+, is important, and we 
concentrate our attention on this case. Then we write S, , S,,* instead of 
To = To+, T = T+, where S,, is now a symmetric operator, S,, C S,,*. 
We consider the general (not necessarily regular) case of an arbitrary open 
interval 6, and study the possible self-adjoint subspace extensions H = H* 
of S = S, n BI. When such H exist in B2 they can be characterized by 
corresponding generalized boundary values. Self-adjoint extensions H 
always exist in an appropriate larger Hilbert space R2, where $3 C R. We 
show how each such extension H gives rise to an eigenfunction expansion 
result. 

We briefly summarize the contents of the subsequent sections. In Section 2 
we consider a general subspace T,, in the sum X @ Y of two Banach spaces 
X, Y, and a finite-dimensional subspace B of the dual space X* @ Y*, 
and compute the adjoint of T,, n IB, where 

LB = {if, g> E X 0 Y I (a, f) + (.T, g) = 0, all h 4 E B). 

We then specialize to the case when X = Y = 5, a Hilbert space, IB = 
B’- = &” 0 B, and To = S,, is a densely defined symmetric operator 
in !+j. The adjoint of the symmetric operator S = S, n Bl is then just 
S* = S,,* i (-B-l). In [4] was considered the special case where B 
has the form B = sj, @ {0}, with &, being a finite-dimensional subspace 
of 5. In Theorem 2.3 we indicate how S may be represented as S = 
Sr n (8, @ {O})l for an appropriate densely defined symmetric operator 
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S, and a subspace 6s of fi. Thus, in a certain sense, the general case for S 
is reduced to the special case. We show in Section 3 that the symmetric 
operator S = S,, n BI has self-adjoint extensions in 8s if and only if S,, 
does, that is, if and only if S,, has equal deficiency indices. Then, assuming 
S,, does have self-adjoint extensions in Jj2, all self-adjoint extensions of S 
in e2 are characterized in Theorem 3.3. In Section 4 it is shown how this 
result applies to the case of an S,, which is the minimal operator for a 
formally symmetric ordinary differential expression L in $s = P(t). The 
regular case is considered in detail in Theorem 4.1. We show that problems 
involving multipoint boundary conditions, and, more generally, problems 
involving measures (Stieltjes boundary conditions), can be considered as 
special cases of Theorem 4.1. Moreover, certain singular problems involving 
measures can be considered as special cases of the general result Theorem 3.3. 
Facts about self-adjoint extensions of S = S,, n BI in larger spaces R2, 
4j C W, are summarized in Section 5. For an S,, which is the minimal operator 
for a formally symmetric L in 9 = g2(&), and each self-adjoint subspace 
extension of S in R2, !+j C si, we give an eigenfunction expansion result. 
Two proofs are presented. One, in Section 6, follows the general scheme 
in [5], where the special case B = !&, @ (0) was treated. It depends upon 
an analysis of the generalized resolvent corresponding to H. The other 
proof is given in Section 7; it follows the ideas in [6], and makes use of the 
Riesz representation theorem. In deducing the eigenfunction expansion 
we obtain a map V of 5 into a transform space & which is in general a con- 
traction. It is an isometry on a certain subspace of !+j which has finite codi- 
mension. We show that this isometry is surjective if and only if the generalized 
spectral family for S corresponding to H is the spectral family for a self- 
adjoint subspace extension of S in 52 itself. 

Our results carry over to the case of systems of ordinary differential 
operators. In fact, only a minor reinterpretation of the symbols is required 
in order to obtain the results for a system of n first-order operators. 

The real and complex numbers are denoted by Iw and C, respectively, 
and we let Cc* = {Z E C 1 Im I2 0}, C, = @+ u @-. For any interval 
L C iw we denote by C”(L) the set of all complex-valued functions on L having 12 
continuous derivatives there, and COlz(b) is the set of all thosefE C”(c) with 
compact support. Although we denote by L the closure of an interval I, 
for other sets D in a Hilbert space !+j the closure is denoted by DC. The 
identity operator is denoted by I. The j x K zero matrix is designated by 
Oj”, and the n x n identity matrix is represented by Z, . The transpose of 
the matrix A is denoted by At, and the conjugate transpose of A is A*. 
If A, B are two matrices with the same number of rows, then (A : B) denotes 
the matrix obtained by placing the columns of B next to those of A in the 
order indicated. If f is a one-rowed matrix-valued function whose elements 



ORDINARY DIFFERENTIAL SUBSPACES 477 

have n-l derivatives, thenf’x) is the matrix with rowsf(x), f’(~),...,f(“-l)(x). 
If F = (FM), G = (GM), are matrices, with elements in a Hilbert space $j 
over C, and which have the same number of rows, we define the matrix 
inner product (F, G) to be the matrix whose (i, j)th element is 

(F, Ghi = 1 Pw 9 Gci). 
k 

For example, if the elements of F, G are in sj = @, then (F, G) = G*F, 
and if the elements of F, G are in $s = P(b), I = (a, b), then (F, G) = 
c G*F. This matrix inner product has the properties: 

(F, F) 2 0, and (F,F) = 0 if and only if F = 0, 

(G F) = (F, G)*, 

(F,+F,,G) =(F,,G)+(F,,G), 

W, G) = (F, G)C, (F, GD) = D*(F, G), 

where C, D are matrices with elements in C. A true inner product is given by 
F * G = trace(F, G), and hence a norm is given via [IF I/* = trace(F, F). 

2. THE ADJOINT OF A SUBSPACE 

We extend some of the definitions given in [3] to Banach spaces. Let 
X and Y be Banach spaces over the complex field @. We denote by X @ Y 
the Banach space of all pairs {f, g}, f E X and g E Y, with a linear structure 
defined component-wise. and with the norm defined by 

INf, dll = (llf lri + II g l/W 

where II IIx and II (jr are the norms of the spaces X and Y. A subspuce T 
in X @ Y is a closed linear manifold T in X @ Y. We treat such a subspace 
T as a linear relation and define the domain D(T) and the range ‘$I( T) of T by 

Let T and S be subspaces in X @ Y. We define the sets aT (a E C), 
T+SinX@Yand T-rin Y@Xby 

cz = {tf, 4 I if, g) E Tb 

T+S={{f,g+k)I{f,g)~T,{f,k)~S), 

T-l = {k, f> I {f, g> E TZ- 
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For f E D(T) we let 

T(f) ={g~YIUd~T~* 

If T is a subspace in X @ Y satisfying T(0) = {0}, then T is the graph 
of a closed operator, that is, a closed linear function, from X into Y. We 
shall frequently identify this operator with its graph, denote it by T and 
replace T(f) by the usual Tf, fe D(T). C onversely, if T is a closed operator 
from X into Y we shall often identify it with its graph which is a subspace 
in X @ Y. The null space of the subspace Tin X @ Y is the set 

v(T) = {f~ X 1 {f, 0} E T} = T-l(O). 

The algebraic sum T i S in X @ Y of the subspaces T, S in X @ Y is 
the linear manifold 

It is called a direct algebraic sum if T n S = ((0, O}}. If T n S = ((0, 0)) 
then each {I(, w} E T $ S has a unique decomposition 

{u> 4 = U, g> + (4 4, if9 d E TY {h, k) E S. 

The dual space 2” of a Banach space 2 is the Banach space of all con- 
tinuous conjugate linear functionals on 2. If h E Z* then its value at g E 2 
will be denoted by (h, g). Let X, Y be Banach spaces. Then the dual of 
x 0 y, (X 0 Y)“, is isometrically isomorphic to the Banach spaces 
X* @ Y* and Y* @ X*. With the subspaces Tin X @ Y and Sin X* @ Y* 
we associate the subspaces TA in X* @ Y*, IS in X @ Y and T* in 
Y* @ X* given by 

T’ = {{h, k} E X* 0 Y* I (h, f) + (k, g) = 0 for all {f, g} E T}, 

3 = {(f, g> E X 0 Y I (h,f) + (6 g) = 0 for all (4 k) E 8, 
T* = ({h, k} E Y* @ X* 1 (h, g) - (k,f) = 0 for all (f, g} E T). 

T* is called the adjoint of T, and, clearly, T* = (- T-‘)I. 
Let To be a subspace in X @ Y and let B be a finite dimensional subspace 

of X* @ Y*. Let T = T, n IB. Then T is a subspace in X @ Y and 
its adjoint is given by the following theorem. 

THEOREM 2.1. Let T,, C X @ Y and B C X* @ Y* be subspaces with 
dim B < co, and let T = T, n lB. Then T* = T,,* i -B-l, and the 
algebraic sum is direct if and only if T,‘- n B = ((0, O}}. 
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Proof. If il4 and N are linear manifolds in a Banach space such that 
ML + NL is closed in the dual space then ML + N’- = (M n N)I (cf. 
[9, p. 2211). Set M = -T;’ and N = -(*B)-l. Then M and N are subspaces 
in Y @ X, ML = T,* and, since dim B < co, N’- = -((‘-I?)l)-l = --B-l 
(cf. [12, p. 227, Problem 21). Again since B is finite dimensional, ML + N’- 
is closed in Y* @X* (cf. [9, p. 1301). Hence, 

T,,* $ -B-l = M-’ + N-’ = (M n N)I = (-(T@ n LB)-1)1 
= (-T-l)1 = T”. 

The equality T* n -B-l = -(T,,’ n B)-1 shows that T* 4 -B-l is a 
direct sum if and only if T,,l n B = ((0, O}}. 

We now set X = Y = 8, where $ is a Hilbert space. Then $~a = sj @ !+j 
is a Hilbert space also, with inner product 

We identify $ with its dual in the usual manner. Then all the above defini- 
tions coincide with the ones in [3]. In particular, if T is a subspace in 5s 
then TL and IT coincide and are equal to the orthogonal complement 
of Tin 52, which we denote by Tl. If S is a subspace in 8” which is orthogonal 
to T then T -i- S is a direct algebraic sum which is denoted by T @ S and 
called the orthogonal sum. If S C T then the orthogonal complement of S 
in T will be denoted by T 0 S. 

For any subspace T in sj2 let T, be the set of all elements of the form 
(0, g} in T. Then T, = (0) @ T(0). Let T, = T 0 T, . Then T, is an 
operator in sj, called the operator part of T, with 9(T,) = D(T) dense 
in ( T*(0))1 and %( T,) C (T(O))l. 

A symmetric subspace S in fi* is one satisfying S C S*, and a self-&joint 
subspace H in 5~” is one for which H = H*. If H = H, @ H, is a self- 
adjoint subspace in s2, then H, is a densely defined self-adjoint operator 
in the Hilbert space (H(O))l. 

Let S, be a symmetric subspace in a2 and let B be a subspace in $32 with 
dim B = p < co and S,‘- n B = ((0, 0)). Let S = S,, n BL. The following 
result is an immediate consequence of Theorem 2.1. 

COROLLARY 2.2. S is a symmetric subspace in 5j2 and S* = S,,* -i- -B-l, 
where the algebraic sum is direct. 

We remark here that S,l n B = ((0, 0)) is not a real restriction. For, 
without this condition, S = S, n BL = S, n [B 0 (S,‘- n B)]’ and 
SoA n [B 0 (SoA n B)] = ((0, O}>. 
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From now on we shall assume that 3(5’s) is dense in 5. Then S,, is a 
densely dejned symmetric operator in 6, for S,,(O) = (B(S,*))l = (0). 
We decompose B into two subspaces B, and B, , where 

B, = I+, 4 E B I 7 E Wo*>>, 

B, = BOB,. 

Thus B = B, 0 B, , and, since B, contains all elements of B of the form 
{u, 0} we see that By1 is an operator. Let m = dim B, , and, consequently, 
dim B, = p - m. We define 

and S, = S,, n B,l. In the following theorem we list some of the properties 
of the subspaces defined above. 

THEOREM 2.3. (i) S, is a densely dejned symmetric operator in $j and 
S,* = S,,* -j- -B;‘, where the algebraic sum is direct, 

(ii) dim &, = m, 

(iii) (s*)m = #I d I P E %I = @I 0 fib , 
(iv) S = S, n B,‘- = S, n (Q,, @ (O})l, 

(v) S” = S,* -j- -Bi’ = S,* -j- ({0} @!&,) = S,,* -j- -By1 -j- (S*), , 
where the algebraic sums are direct. 

Proof. (i) Since S, C S, , S, is an operator. Since S,,l n B, = ((0, 0}}, 
Corollary 2.2 with S, B replaced by S, , B, , implies that S, is a symmetric 
subspace in fi2 and that S, * = A’,,* i -B;l, where the algebraic sum 
is direct. To show that S, is densely defined it suffices to prove that S,*(O) = 
{0}, for a(&) is dense in (S,*(O))l. Let g E S,*(O). Then {0, g} E S,* = 
S,,* q --B;l and there exists a unique decomposition 

(0, g> = ih, W + {T, -4 {h 4 E so*, (0, ~1 E B, . 

It follows that T = -h E a(&*). Hence {a, T} E BI n B, = ((0, O>}. There- 
fore h = 0 and, since S,,* is an operator, g = k = S,*h = 0, that is 
s,*(o) = (0). 

(ii) Let K: B, -+ 5& be defined by ~({a, T}) = So*7 + a. Clearly 
K is linear and surjective. We show that K is also injective. If S,,*T + u = 0, 
{a, T} E B, , then u = -S,*T and by Corollary 2.2 

{T, -u} = {T, &*T} E so* n -B;l c S,,* A -B-l = ((0, 0)). 

Hence {a, T} = (0, 01. Consequently dim !& = dim B, = m. 
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(iii) Let (0, ~1 E (S*), C Ss* -j- --B-r. Then {O, ~1 can be written as 

Kh 94 = {A, 4 + (7, -4, (h, k} E So*, {a, T} E B. 

As in (i) this implies that {a, 7} E B, and 7 = --h. Hence ‘p = k - CJ = 
Ss*h - a = -(S,*T + u) E 5s. Thus (S*), C (0) @ &,, . Conversely if 
q E !+j,, , then v = S,*T + a for some {a, T} E B, . It follows that 

(0, ‘p} = {T, S,,*T> + (-7, u} E So* f- --B-l = S*, 

and so (0, v} E (S*), . This proves (iii). 

(iv) Since BL = B,I n BZL, S = S,, n BL = S, IT B,I. To prove the 
second equality, let {f, g} E S, n B, I = S and let {v, 0} E sj,, @ (0). Then 
by (iii) (0, cp} E S* and hence (f, p’) = 0. Thus {f,g} E S, n (!ij,, @{O})L. 
Conversely, let {f, g} E S, n (!+jO 0 {O})l and let {a, T} E B, . Then g = S,,f, 
~=S,*r+u~!&,,and 

(f, 4 + (g, 4 = (f, 4 + (f, so*4 = (6 9’) = 0. 

Hence {f, g} E S, n B,-!-. 

(v) Let {u, T} E S,-‘- n B, . Then for all {f, S,,f} E S, = S, n BIL we 
have 

0 = u WI, (5 4) = (f, 0) + (Sof, 7) = (f, fJ + so*+ 

Since a(&) is dense in 5, this implies u = -S,*T and consequently 

(T, -CT> = (7, S,,*T> E So* n -B-l = ((0, O}>. 

Thus S,l n B, = {{0, O}>, and similarly S,l n (&, @ (0)) = ((0, O}}. The 
equalities in (v) now follow from Corollary 2.2(i), (iii), and (iv). 

3. SELF-ADJOINT SUBSPACE EXTENSIONS IN e2 

For any subspace S in $3” and 1 E @ we define 

%(O = WY ‘49 E s* I g = If>* 

If S is symmetric and I E Cf, then 

s* = s + M,(Z) i M,(i), 

where the algebraic sums are direct. A symmetric subspace S in 5” always 
has self-adjoint extensions in suitably chosen Hilbert spaces fi2, fi C $3, 
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but there exist self-adjoint extensions of S in 9s if and only if for some 
I E C+ (and hence for all 2 E C+) dim M,(Z) = dim M,(l). 

Let 5’s , B and S = S,, n BL be as in Section 2. We shall write M,(Z), M(Z) 
instead of AcZ,~(Z), M,(Z). 

THEOREM 3.1. For 1 E C, 

dim M(Z) = dim M,,(Z) + dim B. 

Proof. Let Z E Co . Each {f, Zf} E M(Z) C S* = S,,* 4 --B-l can be 
uniquely decomposed into 

{f, Y> = h 4 + 17, -4, {u, ~1 E So”, {a, T} E B. 

We define the linear map K: M(Z) -+ B by K({f, If}) = {a, T]. Let (a, T} E B. 
Since %(S,* - ZZ) = 8, there exists a u E a(&*) such that (S,* - U)u = 
u $ h. If f = u + 7, then 

if, If> = @, &*u} + (T, -‘=} E s*. 

Thus (f, If} E M(Z) and K({f, If}) = {a, T}, that is, K is surjective. It is easy 
to see that M,,(Z) is the null space of K. It follows that K restricted to 
M(Z) 0 M,,(Z) is a linear bijection onto B. Hence dim(M(Z) 0 M,,(Z)) = 
dim B, which proves the theorem. 

COROLLARY 3.2. S has self-adjoint extensions in $j2 if and only if SO 
has self-adjoint extensions in 9”. 

In the remainder of Section 3 we assume that dim M,(Z) = dim M,(l) < cc 
forZ~@,,andweputw=dimMO(Z),p=w+p=dimM,(Z)+dimB= 
dim M(Z). Then S, has self-adjoint extensions in B2, and so do S, and S. 
By Theorem 3.1 

and 

dim Ms,(Z) = dim M,(Z) + dim B, = w + p - m, 

dim M(2) = dim M,,(Z) + dim !&, = w + p - m + m = 4. 

We can now apply [4, Theorem 31 and describe all self-adjoint extensions 
H of S = S, n (!&, @ {O})l in @. We shall use the following notation. 
For h,f E W,*), h d, {T, 4) E & , 

<h + 7, f + #>I = (%*(h + T>v f + $8 - (h + 7, %*(f + 16)) 

= (&,*h - u,f + $) - (h + 7, &*f - v) 

= <h f > + (@> So*%, b, $1) 

- (h 7)~ if> %*f >) - (7, d’)q > (3.1) 



ORDINARY DIFFERENTIAL SUBSPACES 483 

where 

THEOREM 3.3. Let H be a self-adjoint subspace extension of S in $3” with 
dim H(0) = s. Let CJ+ ,..., qS be an orthonormal basis for H(O), and vI ,..., v’s , 

%+1 ,***3 9% an orthonormal basis for !&, . Then there exist yS+l ,..., ym , 
6 m+l ,..., 6, in W%*>, T,+~ ,-., T* E %(B,) and Erk E C, r, k = s + l,..., m, 

such that 

6 m+1 + T9n+1 ,***, 6, + ~~ are linearly independent mod a(&), (3.2) 

(4 + 71 , sj + Ti>l = 0, j, 1 = m + l,..., q, (3.3) 

kc = -f&c,, , r, k = s + l,..., m, (3.4) 
and if 

?h = 2 Pr, - i&‘k + 7k, Yv. + T,>I] 9% > k = s + l,..., m, 
ws+1 

(3.5) 
m 

51 = - 1 (6, + Tz, Yr + T,>I 9’~ 3 1 = m + l,..., q, 
r=s+1 

then 

His the set of all {h + 7, S,*h - u + v}, hEa(s,*),{“,T)EBl,~,Efj~, 

(3.6) 
such that 

+ kz+l Kh +T, hc) - <h + 79 Yk + Tkhl qk 7 CjEC, 

and the operator part H, of H is given by 

H,(h + T) = S,,*h - u - i (&*h - u, qf) yj 
I-1 

+ bF+l [(h + 7s h) - @ + T> Yk + Tk)ll 9)k - (3.7) 
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Conv~=ly, if 93 ,..., ps, ~~~~ ,..., vpm is un orthonormal basis for Sj,, , ya , 
8, E a(&,*), 7j E %(B,) and Efire @ exist sutisfyng (3.2), (3.3) and (3.4), 
and #k, & are de$ned by (3.5), then H defked by (3.6) is a self-adjoint extension 
of S such that H(0) = span{% ,..., q~~} and H, is given by (3.7). 

We observe that if B, = ((0, 0}} then Theorem 3.3 coincides with 
[4, Theorem 31. We refer to [4] for comments about other special cases 
of Theorem 3.3. 

4. PROBLEMS INVOLVING ORDINARY DIFFERENTIAL OPERATORS 

Let L be a formally symmetric ordinary differential operator of order it, 

L = f p,D” = 2 (-1)” DkFk, D = dldx, 
A=0 h=O 

where p, E CR(b), I = (a, b) C R and pi,(x) # 0 for all x E L. We consider 
the Hilbert space 9 = es(~), and define So to be the closure in 4j2 of the set 
of all {f, Lf} with f E Co”(~). Then Se is a closed densely defined symmetric 
operator in !$ called the minimal operator for L in $3. Its adjoint So* is the 
set of all {f, Lf} where f E P-l(,) n sj, f w-l) is locally absolutely continuous 
on L and Lf E sj. So* is called the maxim& operator for L in fi. The operator 
So satisfies the conditions set in the previous sections and we define B, S, 
Bl , B, and fis as in those sections. Let u, v E B(S,*). Then, as is well 
known, the limits of 

n 

[uv](x) = c c (-l)j u’“‘(x)(p,a)‘~‘(x) 
m=l i+k=m-1 

exist as x tends to a or b and 

Thus (u, v) represents boundary terms, and in Theorem 3.3 we see that 
the domain ID(H) is prescribed by certain boundary-integral conditions, 
cf. (3.6) and (3.1), and H, involves the differential operator L as well as 
boundary-integral terms. 

Regular problems. We shall consider in more detail the case when L 
is regular. In this case a and b are finite, p, E Ck(L) and p,(x) # 0 for all 
x E c, the closure of I. The operator So* is the set of all {f, Lf} where 
f~ P-r(r), f +r) is absolutely continuous on i and Lf E $j, and So is the set 
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of all {f, Lf} E S,* for which j(u) = j(b) = 0. Since for each I E @ all solu- 
tions of (L - l)u = 0 belong to P(i), 

w = dim M,,(Z) = dim v(S,,* - II) = n. 

Thus S,, and hence S, has self-adjoint extensions H in $Y and q = 

dim M(I) = p + n. 
Using the vector notation described in the Introduction we shall write 

down the various conditions of Theorem 3.4. We put 

@, &*s> = @,+1 , ~o*L+lL @, , &*$I), 

h s,*Yl = es+1 Y f%*Ys+lL b%n 9 %l*A9, 
and 

f3 = (hn,, >---, &J), Y = (Ys+1 3*--T rvd> etc. 

Let (~1, T’> denote the 1 x (p - m) matrix whose entries form a basis 
for Bl. Then the elements ~~+r ,..., 7g E %(B,) given in Theorem 3.3 
uniquely determine elements {u s+l , T,+&-, h , T,J E 4 and they may be 
expressed in terms of {ul, T’>. Thus there exist matrices A, and A, of complex 
constants of order (p - m) x (q - m) and (p - m) x (m - s), respectively, 
such that 

(h&+1 ? Tm+1 > >***> kl , T,>) = WY 7'1 Al 7 

((us+1 9 Ts+&, c-%2 , TnJ) = WY 4 A, * 
(4.1) 

Using the notion of a matrix inner product described in the Introduction, 
and the above notation, we see that condition (3.3) reads 

where 

(6, S> + A,*F - F*A, - A,*T,A, = 0, (4.2) 

<s, Q = (&I*& 8) - (8, s,*q, 

F = (@, so*% W, T’>> = (6, u’) + (So*& 7% 

Tl = (Tl, T1)jjl = (d, 7’) - (TI, u’). 

The form [zN](x) may be written as 

[w](x) = a*(x) B(x) u’(x), % u E q%*), 

where B is a continuous, invertible, skew-hermitian, n x n matrix-valued 
function on L, and then we have 

(u, w> = E*(b) B(b) J(b) - e*(u) B(a) u-(a). 
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We remark that this relation remains valid if u, w are one-rowed matrices 
whose elements are in a($,*). If M = g*(o) B(a), N = -8*(b) B(b), then 

(6, S) = MB-l(a) M” - NB-l(b) N”, (4.3) 

and (4.3) combined with (4.2) shows that condition (3.3) is equivalent to 

MB-l(u) M” - NB-l(b) N” + A,*F - F*A, - A,*TlAl = 0. 

We now consider (3.5). Let 

c = T*(a) B(u), D = -F*(b) B(b), 

G = ({‘y, %,*‘y), W, T’>) = (y, 4 + (so*y, 3, 

@o = bl ,.a-, %>, @l = (v s+1 t..-, %rz 1 3 

y = (A+1 ,a.*, &7J, 2 = (L+1 ,...> LJ, E = (Ed 

Then (3.5) can be replaced by 

?I’ = aI{E + $[DB-l(b) D” - CB-l(u) C* + G*A, - A,*G + A,*T,A,]), 

2 = @,{DB-l(b) N” - CB-l(u) M* + G*A, - A,*F + A,*T,A,}. 

We now turn to condition (3.2). Using the above notations (3.2) says that 
(6 %l*s> + {T 1, -&}A, is a 1 x (4 - m) matrix whose components are 
linearly independent mod S, . Suppose that these components are linearly 
dependent mod S, . Then there exists a (4 - m) x 1 matrix d of complex 
constants, not all equal to 0, such that 

[{S, s,*s> + v, --&}A,] d E S, = So n BI1. 

It follows that 6d + 9Ald E a(&,) C a(&*), and since 8d E ID(S,-,*) we have 
TIA,d E a(&*). Hence 

(d, G} A,d E B, n B, = ((0, O}}. 

Since the components of {u’, T’} form a basis for BI , this implies 
that A,d = 0, or d*A,* = 0, and (6, S,*6)d E S, n BI1. The fact that 
(6, S,*S}d E BI1 implies that 

d*F* = ({cl, T1), (8, S,,*S}d) = 0. 

The fact that (6, S,,*S}d E S,, implies that &u)d = &b)d = 0 and hence that 
d*M=d*N=O.Nowlet(M:N:A,*:F*)bethe(q--)x2@--mm) 
matrix formed by setting the columns of N, A,*, F* next to those of M 
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in the order indicated. Then we have just shown that if the components of 
(8, S,*S} + (9, --OfjAr are linearly dependent mod Sr , 

rank(M:N:A,*:F*) <q-m. 

The above argument can be traced in reverse, to show that the converse 
also holds. Hence condition (3.2) is equivalent to 

rank(M : N : A,* : F*) = q - m. 

THEOREM 4.1. In the regular case of an nth order formally symmetric 
di&ential operator L as given above, let H be a self-adjoint extension of S 
in e2 with dim H(0) = s. Let v1 ,..., vS be an orthonormal basis for H(0) and 
9% ,..a, vs 9 vs+1 Y-‘-Y %n be an orthonormal basis for sj, , where m = dim B, . 
Let (al, rl} be a 1 x (p - m) matrix whose entries form a basis for B, , 
dim B, = dim(B @ B,) = p - m, andput T1 = (Al, ~l)~, = (d, T’) - (T’, d). 
Letq=p+nandput 

@I3 = (Pl ,a*., P,,h @l = bs+1 ,-**9 %a). 

Then there exist matrices of complex constants M, N, C, D, F, G, A,, 
A,, E of order (q - m) x n, (q - m) x n, (m - s) x n, (m - s) x n, 

(P - 4 x (q - ml, (P - 4 x (m - 4, (P - 4 x (q - 4, (P - 4 x 
(m - s), (m - s) x (m - s), respectively, such that 

rank(M : N : A,* : F*) = q - m, (4.4) 

MB-l(a) M* - NB-l(b) N* + A,*F - F*A, - A,*T,A, = 0, (4.5) 

E = E*, (4.6) 
and if 

Y = ${E + &[DB-l(b) D* - CB-l(a) C* + G*A, - A,*G + A,*T,A,]}, 

2 = Q1{DB-l(b) N* - CB-l(a) M* + G*A, - A,*F + A,*T,A,}, (4.7) 

then 

H is the set of all {h + rlcl , S,*h - ok1 + ~1, where 
h~~(S,,*),p,~$,,andclisa(p-m) x lmutrixof 
complex constants such that (4.8) 

(h + 71~1, @o) = 0, 
(M : N : --A,* : F” + A,*T,) hl + (h + 7’c1, 2) = 0, 

qo = @,c + @J(C : D : --A,* : G* + A,*T,) h1 + (h + 71c1, ul)], 
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where c is an arbitrary s x 1 matrix of complex constants, 

H,(h + T~CJ = Lh - u%, - @,,(Lh - olc, , @,) 

+ Ql[(C : D : -A,* : G* + A,*TJ h1 + (h + 71c1, Y)]. 

(4.9) 

Convflsely, if 93 ,..., vs , ‘P~+~ ,..., vrn is an orthonormul basis for !& , the 
entries of {ul, T’} form a bask for B, , and M, N, C, D, F, G, A, , A, , E 
exist satisfying (4.4), (4.5) and (4.6), and U, 2 are defined by (4.7), then H 
dejined by (4.8) is a self-adjoint extension of S such that H(0) = span{v, ,..., ~JJ 
and the operator part H, of H is given by (4.9). 

Proof. If H is a self-adjoint extension of S with H(0) = span{q, ,..., yS}, 
then, as we have seen, (3.2)-(3.5) are equivalent to (4.4)-(4.7). One can 
readily verify that the descriptions of 3(H) and H, in (3.6) and (3.7) coincide 
with the descriptions of ID(H) and H, in (4.8) and (4.9). 

To prove the converse, all we need to show is that for given matrices 
M, N, C, D, F, G, A, and A, there exist 

such that (4.1) holds, and such that 

&a) = -B-l(a) M*, S(b) = B-l(b) N*, 

((6, S,*S}, (al, T’}) = F, 

q(a) = -B-l(a) C*, F(b) = B-l(b) D*, 

(h SO*Y), {ul, T’>) = G. 

(4.10) 

we let (4.1) define T,+1 ,..., Tp E %(B,). The existence of yS+r ,..., yrn , 
6 m+l ,..., 6, E a(&*) satisfying (4.10) is established once it is shown that 
the linear mapping K: a(&,*) + c2”+*+, defined by 
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is surjective. To prove this let d = (da : db : dl) E 6” x @” x @P-m be a 
1 x (2n+p-m) matrix such that dK(g) = 0 for all g E a(&*). Let 
g E a(&,). Then g”(u) = g”(b) = 0, and hence 

(g, 4 + (so*& 4 = 0, 

where {u, T} = {&, G)d,*. Since g E D(S,,) is arbitrary it follows that 
(7, -U} E S,,* n -F1 = ((0, O}}. Hence {ul, G}dl* = 0, and thus dl = 0. 
So d&a) + d&b) = 0 for all g E a(&*). For the given d, , db one can find a 
g E a(&,*) such that g”(a) = da*, g”(b) = db*; see, e.g., [5, Proof of 
Theorem I]. Consequently, da = db = 0, and thus d = ,O, showing that K 

is surjective. 
If B, = {{0, O>> Theorem 4.1 reduces to [5, Theorem 11. 

Remark. Theorem 4.1 holds almost verbatim if L is not an nth-order 
differential operator but a system of n first-order differential operators and 
sj = Qn2(~), h H lb t t e i er space of n x 1 matrix-valued functions on C, whose 
magnitudes are square integrable (see [5] for more details). The only change 
is that {ul, G} now is an n x (p - m) matrix whose (p - m) columns form 
a basis for Bl . Observe that in this case a0 , a1 are n x s, n x (m - s) 
matrices whose columns are given by (ql ,..., cpJ and (Y~+~ ,..., cp,J, respec- 
tively. Self-adjoint operator extensions of such systems have been studied 
in a number of papers; see [lo], for instance. Zimmerberg [14] deals with 
genuine subspaces (multivalued operators) associated with systems of 
first-order differential operators. His Theorem 3.1 with h = 0 coincides 
with [5, Theorem 91, which is the system analog of Theorem 4.1 above, 
in the case B, = ((0, O}}. The parameter mentioned in the title of [14] 
is the matrix c in [5, Theorem 91. 

Problems with multipoint boundary conditions. Let L be as in Theorem 4.1, 
and let c E (a, b). We define (a, T} = ((ox , TJ ,..., {un , T,}) on [a, b] as 
follows: 7 = a = Oln on [u, c), ~5 E C”[C, b], ~5 = -LTj on [c, b],j = l,..., n, 
?(c) = --B-l(c), F(b) = 0,“. Let B be the space spanned by the components 
of {u, T}. Then B, = ((0, O>>, p = dim B = dim B, = n, Tl = -B-l(c), 
S,‘- n B = ((0, 0}}, and ({h, S,*h}, {a, T}) = -h(c). Let H be a self-adjoint 
extension of S = S,-, n Bl. Then H is necessarily an operator and can be 
described as follows: 3(H) is the set of all w E C”-1(&\(c)), such that ~(“-1) 
is absolutely continuous on each compact subset of the components of 
l\(c), Lv E $3, and 

JIG(u) + NZ(b) + CE(c + 0) - Db(c - 0) = 0, 

where the matrices M, N, C (= --F*B(c) + A,*), D = (-F*B(c)) satisfy 

rank[M : N : C : D] = 2n, 
MB-l(u) M* - NB-l(b) N* + CB-l(c) C* - DB-l(c) D* = 0, 
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and Hv = Lv on c\(c>. This example can easily be extended to cover the 
case of finitely many points c, ,..., ck in (a, b). A recent paper on this subject 
is by Locker [ll]. 

Problems involving measures. More generally, Theorems 3.3 and 4.1 can 
be applied to certain problems where the side conditions involve measures, 
which need not be concentrated at a finite number of points. For example, 
let us consider a formally symmetric ordinary differential operator L in 
the regular case, which is the situation obtaining in Theorem 4.1. Let S, 
be the minimal operator for L in 4j = e2(c), and define S C S,, by 

D(S) = [fe ID(S,) 1 jabf(j-l) dji,$ = 0, i = l,..., pi, j = l,..., n!, 

(4.11) 

where the pij E BV(E), the set of all functions of bounded variation on 1. 
This S is clearly symmetric in sj, and it may be described as S = S’s n BL 
for an appropriate subspace B C !+j2, as the following shows. 

THEOREM 4.2. There exists a 1 x p vector 7 = (-rl ,..., T*), rj E !+j, such 
that 

W) = {fE WiJ I (Sof, 4 = 01. (4.12) 

Thus 
S = So n Bl, B = q.dP, 4+.., (0, T,>>. 

Proof. It is sufficient to show that, if p E BV(i) and j is fixed, j = I,..., n, 
then there exists a ri E 43 such that 

If E w%) 1 jabf ‘- (3 l) d,Ci = 0 1 = (f E ID&,) 1 (S,f, T,) = O}. 

Since f E a(&,) implies that f (j-l) E C(i) n BV(i), integration by parts yields 

s bf”-” dF = f M(b) p(b) -f (j-l)@) i&) - j” f ‘i’p = -(f W, p), 
a a 

fort(@) =f(b) = 0. We show that for each j = I,..., n there exists a Tj E 8 
such that 

(f(j), P) = (4lf, 4, f E Wo). (4.13) 

To do this we use the well-known right inverse R, of So*, which is an 
integral operator 

R&(4 = jb kc&> Y) h(y) 4 = jz k&y) h(y) dy, hEXi 
n a 
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with a kernel given explicitly by 

w, Y) = 44w1 s*(Y)* a<ybxbb, 
= 0, a<x<y<b. 

Here s = (sr ,..., s,) is a basis for the solutions of Lu = 0, and [ss] = 

w4 = f*(x) B( x s x is independent of x and invertible. If Dj = (d/dx)i, > -c > 
then 

b DiR,,h(x) = 
s &(x9 Y> h(Y) dY, j = 0, I,..., n - 1, 
a 

D”%W = j-” hdx, Y) 4~) dr + WMn(xN~ 
a 

where 
hj(x, y) = DG(x)[ss]-’ s*(y), Y < x, 

= 0, y > x. 

We have S,,*R,h = h for all h E 9. Since v(S,,) = (0) we see that Sk1 exists 
as an operator. In fact, S;’ is R. restricted to %(SJ, that is, 

SdV = h, h E W&,), (4.14) 

Wof =f, f E Wll). (4.15) 

As to (4.14), note that if f = R,h thenf(a) = 0 andf(b) = i(b)[ss]-l (h, s). 
Since i(b), [ss]-l are nonsingular, we see thatf E a(&,) if and only if (h, s) = 0, 
or h E [v(&*)]‘. Hence %(S,) = [v(&*)]’ and (4.14) is true. If f E 9(S,) 
then h = S,,f is such that g = R,h E a(&,) and S,g = S,R,,S,f = S,f, 
from (4.14). But v(S,) = {0} implies f = g, or (4.15). The operators Ri = 
DjR, , j = 0, I,..., n, are defined on sj as bounded operators there, and so 
their adjoints Rj* are bounded on fi. 

We return to the proof of (4.13). From (4.15) we have that 

and thus 

f(j) = Djf = D~R&,f = RjSof, f E WlJ, 

(f ‘j), P) = (RjSof, P) = (Sof, Rj*p), f E WStJ- 

This is just (4.13) with ri = Rj*p, and so the proof of Theorem 4.2 is 
complete. 

In order to apply Theorem 4.1 to the S described above it is necessary to 
identify the subspace B, of B, that is, identify those r E spa.n{~~ ,..., T,} 
which are in a(&*), and to make sure of the nontriviality condition 
S,,’ r\ B = ((0, O>}. In order to illustrate these ideas we present a simple 
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example. Let L = iD, and let S,, be the minimal operator for L on 5 = 
P[O, I]. Let 7 E BV[O, 11, and suppose 7 is not a constant function. We 
define S C S, via 

w> = Ifs WCJ / S,lfdF = 01 = {fE D(S,) 1 (S,f, T) = 0). 
Thus if B = {0} @ {T}, where (T) is th e subspace in $ spanned by r, then 
S = Son Bl. Also B n SoL = {{O,O}} since 7 is not a constant. We have 

S* = So* -j- (--B-l) = ({h, ih’} + (CT, 0} 1 h E a(&,*), c E a=}, 

and for I E Cf we have dim M,,(l) = 1, dim B = 1, and thus dim M(Z) = 2. 
There are two cases according as (1) T E B(S,,*), or (2) T $ a(&*). 

In case (l), B = B, , qj,, = S*(O) = {S,*T} = {iT’}. There are two 
subcases: (li) H(0) = {0}, and H is an operator, or (lii) H(0) = {ir’}, 
where H is a self-adjoint extension of S given by Theorem 4.1. In case 
(li) H = {{h, ih’ + aiT’>} where h E a(&,*) and 

m/Z(o) + d(l) + i(dn - tm)(h, iT’) = 0, 

01 = ch(0) + dh(l) + [e + (@)(I d I2 - I c 12)l(k iT’), 
Iml= In/ #O, eE IL!, c, d E @ arbitrary. 

In case (lii) we have H = {{h, ih’ + aiT’>} where h E a(&*), 01 E c is 
arbitrary, and 

(h, iT’) = 0, mh(0) + nh(1) = 0, lml= Inl #O. 

In case (2), B = B, , sj, = S*(O) = {0}, and so S* is an operator. All self- 
adjoint extensions H of S are operators, and have the form H = {{h + a~, ih’}}, 
where h E a(&,*), OL E @, satisfy 

m+(o) + nlh( 1) + %(ih’, 7) -k fP = 0, 

m,h(O) + n,h( 1) + a2(ih’, T) + f2a = 0, 

with mj , nj , aj , fi E @ such that 

rank 
( 
ml nl ~1 fl =2, 
m2 na a2 f2 ) 

- - 

?tljVlk - nink - - i(dk - fjzk)7 j, k = 1,2. 

As we remarked just after the proof of Theorem 4.1, an analog of Theorem 
4.1 is valid for systems. A number of authors have considered first-order 
systems together with Stieltjes boundary conditions; see e.g. [lo, 131. For 
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example, Krall [IO] considered in sj = &“[O, I] the set 3 of all f E jj 
satisfying: 

(a) For each f there is an s x 1 matrix of constants # such that 
f + H[Cf (0) + Df (l)] + Z+j is absolutely continuous; 

(b) Tf = -i(f + H[Cf(O) + Of(l)] + HI+) + Qf exists almost ev- 
erywhere and is in jj; 

(4 Af (0) + Bf (1) 4 Ji dK(t)f (t) = 0, 

f 
l dK,(t)f(t) = 0. 

0 

Here H, HI are n x (272 - m) and n x s matrix-valued functions of 
bounded variation; A, B are m x n matrices of constants (m < 2n) with 
rank(A : B) = m; C, D are (2n - m) x n matrices such that 

is nonsingular; K, Kl are matrix-valued functions of bounded variation 
of order m x n and r x n, respectively; and Q is a continuous n x n matrix- 
valued function on [0, 11. The map f E 3 + Tf defines an operator T in fi. 
If we let So be the minimal operator for L = --iD + Q on fi = &s[O, I], 
and we define S C S,, via 

then clearly S C T, and we must have T* C S*. If we define the n x (m + Y) 
matrix-valued function TV by p = (K* : Kl*), then we have 

w> = If E B(So) ) l1 (&*)f = 01. 

An integration by parts yields 

l1 @*If = -p p*f’ = -(f ‘, II) = -$%f - Qf, p). 

Therefore, 

W) = {f E Wo) I (f9 4 + (Sof, 4 = 01, 

where cr = -Q*p, r = CL. If h ,..., prn+r are the columns of p, and we 
define B as the span of {-Q*h , k},..., {-Q*pm+, , pm+,J, then clearly 
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S = S, n Bl, and we have the situation to which the system analog of 
Theorem 4.1 applies. If T is self-adjoint it must be among those operator 
extensions H given in Theorem 4.1. 

The singular case. There are some problems involving measures in the 
general singular case of an open interval L = (a, b) (possibly infinite) which 
can be dealt with in the same manner as in Theorem 4.2. Suppose S,, is the 
minimal operator for an nth-order differential operator L in $ = es(b), 
as indicated at the beginning of Section 4. Let now Dj , j = I,..., n, denote 
the maximal operator for Dj = (d/dx)j in 8. Thus QD,) is the set of all 
f E C+r(,) n $j, such that f (f-1) is locally absolutely continuous on I, f(j) E fi, 
and DJ = f (i) for f E a(D,). Suppose ID(S,*) C a(D,) and let S C S,, be 
defined by 

ID(S)= lfEa(S~)ISPf(j-l)dCiri=O,i=l ,..., p,,j=l,..., rz/, (4.16) 
a 

where now ptj E BV(t) n fi. Then the symmetric operator S may be 
described as S = S, n Bl for an appropriate B C !+j2. This will be indicated 
in Theorem 4.3 below. 

We remark that a sufficient condition for the inclusion a(&,*) C a(D,) 
is that there exist constants c, d > 0 such that 1 p&)1 > c and 1 pj(x)l < d, 
j = 0, l,..., n - 1, for x E I. In fact, in [S, Lemma 2.11 it is shown that 
under these conditions a(&,*) C 3(D,) for j = l,..., n. In particular, 
a(D,) C a(D,) for j = I,..., 1z - 1, and a(&,*) C a(D,) implies B(S,,*) C 
9(Dj) for j = I,..., 12. The map {f, S,,*f} + {f, Djf} of S,,* into Dj is 
clearly closed, and thus the closed graph theorem implies that it is bounded. 
Therefore there exist constants ci > 0 such that 

Ilf II2 + II Dif II2 < dllf II2 + II So*f II’), fe ID(S,*), j = l,..., n. (4.17) 

In particular these inequalities are valid for f E B(S,). Under the assumptions 

Wt,*> C W,), pij E BQ) n $3, (4.18) 

we see that the integrals involved in (4.16) can be given a meaning as follows. 
For f E C,“(b) we have 

s 
bf(+l) dGij = -(f(i), CL& 
a 

and for an arbitrary f E a($,) there exists a sequence fk E Cgn(b) such that 
{fk, SofJ -+ if, S,f>, and from (4.17) we see that {fk, Djfk> -+ If, Djf>. 
Hence, 

I ,” f f-l) d/Ii+ + -(f”‘, pii), 
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and, since the limit is independent of the sequence chosen, we can define 
J-p-1) d/r&f as -(f(j), &.j). 

THEOREM 4.3. Let S, , S be as above with (4.18) assumed. Then there 
exists a 1 x p vector {o, T} = {(al , To} ,..., {o, , TV}}, {q , TJ E fia, such that 

Proof. Here we use the existence of a right inverse G(2) of S,* - ZI, 
I E co ; see [I]. It has the properties: 

(So* - U) G(Z)h = h, h E fi; II Wll G l/l Im l I; (G(Z))* = G(i). 

Now S, being symmetric implies that (S,, - a)-1 exists as an operator 
defined on %(S,, - ZZ) = [v(S,* - @IL, and it is easy to see that (5’s - II)-’ 
is just G(Z) restricted to %(S, - U), that is, 

(S,, - II) G(Z)h = h, h E R(S,, - ZI), (4.19) 

G(O(s,, - ZIlf = f, f E WlJ. (4.20) 

As to (4.20), since (S, * - ZI) G(Z)(S, - ZI)f = (S,, - ZI)f = (So* - ZI)f, we 
have G(Z)(S, - ZZ)f = f + x(Z), where x(Z) E v(S,* - ZZ). But then 

(f, x(4) + II xWll” = (GWo - W XV)) 
= (f, (so” - 11) G(l) x(z)> 
= (.f, XV)) 

implies that x(Z) = 0, and thus (4.20) is true. This shows that G(Z) restricted 
to ‘%(A’,, - U) has a range in a(&), and hence (4.19) follows. 

For any h E 5, G(Z)h E a(&,*) C 3(Dj) for j = I,..., n, and so we define 
WO by 

R,(Z) = D,G(Z), j = l,..., n, %(I) = G(Z). 

Now Rj(Z) is defined on all of $j, and, since it is closed, it follows from the 
closed graph theorem that each R,(Z) is bounded. Thus the adjoint operator 
Rj*(Z) is defined on 5 as a bounded operator. Forfe ID(&) we have by (4.20) 

f(j) = D,G(Z)(S, - ZI)f = Rj(Z)(S,, - ZI)f, 
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and hence for p E BV(L) r\ fi we see that 

where u = &*(Z)p, T = -&*(Z)p. This implies the statement of the 
theorem with p = &pj . 

Clearly, Theorem 3.3 can now be applied to the S of Theorem 4.3. 

5. SELF-ADJOINT EXTENSIONS IN LARGER SPACES 

We now return to the general situation considered in Section 2 and at 
the beginning of Section 3. Thus S,, is a densely defined symmetric operator 
in a Hilbert space $3, B is a subspace in 8s with dim B = p < co, S = 
S, n Bl, Sal n B = ((0, 0}}, S* = S,* i --B-l (a direct algebraic sum), 
and 

dim M(Z) = dim M,,(Z) + dim B, ZE&. 

If dim M,(Z) = w*, dim M(Z) = qf, I E @*, then 

4’ = w* + P, ZE c*. 

We do not assume that w+ = w-, and so S need not have any self-adjoint 
extensions in 8”. However, S always has self-adjoint subspace extensions 
in some larger space B2, 4j C R. Let H = H, @ H, be a self-adjoint subspace 
in $I satisfying SC H. Then H, is a self-adjoint operator in H(O)I = 
R @ H(0) with a spectral resolution 

H, = jm h dE,(X), 
-co 

where E, = {E,(h) ) X E Iw} is th e unique suitably normalized spectral family 
of projections in H(O)l for H, . The resolvent RH of H is an operator-valued 
function defined for I E C, by R,(Z) = (H - U)-l. The operator R,(Z) 
is defined on all of R and satisfies: 

II R&N < l/l Im Z I9 
(R,(z))* = R,&’ 

R,(Z) - R,(m) = (I - 4 R,(z) R&G 
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Moreover, Rn is analytic in the uniform topology, and 

(5.1) 

where 

Wf = -wvfl fE w9L, 
= 0, f E H(0). 

Thus E(h) = E,(X) @ 0, , where 0, is the zero operator on H(0). The 
family E = (E(h) 1 h E rW} is called the spectral family of projections in R 
for the subspace H. 

Let P be the orthogonal projection of R onto $j, and put 

R(0f = PR,(l)f, f E $3, 1 E @o . 

Then R is called a generalized resolveat of S corresponding to H. The operator 
R(l) is defined on all of $j and satisfies: 

(9 II Wll < l/l Im II, 
(ii) (R(Z))* = R(l), 

(iii) WRU)f, f Mm 1 2 II R(l)f /12, 
(5.2) 

(iv) S C T(Z) C S*, where T(1) = {{R(l)f, lR(l)f i-f> If E $9, 

and R is analytic in the uniform topology. For f E $ the relation (5.1) implies 
that 

(R(l)f, f) = (R&f, f) = 1-L d(;(!f;f) 9 (5.3) 

where 

F(h)f = PJw)f, f E 9. 

The family F = {F(h) I h E W} is a generalized spectral family for S corre- 
sponding to H. An inversion of (5.3) yields 

(F@)f,f) = j$$ ; 1 Im(R(v + ic)f, f) dv, f E $3, (5.4) 
A 

where 

d = {v I p < v < A}, F(4 = W - W-4 

and h, p are continuity points of F. See [5, Section 43 and [7] for more details 
concerning Rtl , R, E, F. Note that in [5] a generalized spectral family was 
defined on the smaller space fi n H(O)I = J3 @ PH(0). Clearly, for f E R, 
E(A)f + E(co) f, as h -+ + co, where E(co) = P, , the orthogonal projection 
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of !+j onto H(O)l. This implies that for f~ !& F(A)JC -+ F(m)f, where 
F(m) = PP, . 

For any given symmetric S in 8” and self-adjoint extension H in 32, 
fi C 53, the fundamental problem is to compute the F(h). We show how 
this can be done for the case when S, is an ordinary differential operator. 
This leads directly to an eigenfunction expansion result. Two proofs are 
presented in the following two sections. One, following the general scheme 
in [5], depends upon an analysis of the nature of the generalized resolvent, 
and the use of (5.4). Th e other approach follows ideas in [6] and makes 
use of the Riesz representation theorem to yield the F(h). 

6. EIGENFUNCTION EXPANSIONS 

In this section we consider the general case of a formally symmetric 
ordinary differential operator L of order n on an arbitrary open interval 
L = (a, b), as described at the beginning of Section 4. Thus S,, , S’s* are 
the minimal and maximal operators for L in $ = e2(b), B, S are as given 
in Section 5, and H is a self-adjoint extension of S in R2, & CR, with 
generalized resolvent R and generalized spectral family F. We first show 
that R(Z) is an integral operator of Carleman type, and determine the 
smoothness properties of its kernel. To do this we use the existence of a 
right inverse G(Z) of Ss * - II which was described in [5, Section 51. It is 
an integral operator of Carleman type 

WfW = 1” 'WY> 4 f(r) dy, ZE@O, fE43, 
a 

with the properties: 

II WI1 d l/l Im 2 1, 

(G(z))* = G(l), 

(S,,” - 11) G(Z)f =f, 

and G is analytic in the uniform topology. 
Since for all f E fi, 

iR(Z)f, ZR(Z)f + f > E S*> {G(Z)f, ZG(Z)f + f> E So* C S*, 

we see that if A(Z) = R(Z) - G(Z), then {A(Z)f, ZA(Z)f} E M(Z), and A(Z)f E 
v(S* - ZI) = IL)(M(Z)). Let 
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where the components of a(Z) form an orthonormal basis for v(S* - ZZ), 
E E @*. Then, 

where 

a*:(4 = (A(Z) 4), a(Z)), ZE d-Z*. 

Thus A(Z) is an integral operator 

44 f(x) = j b 4% Y, 0 f(Y) dY> fEB5, ZEa=,, a 
where 

4% Y, I> = 4% I) a*(Z) a*(% 0, ZE Cf, 

(a+(z))* = u-(I), ZE Q=+. 

Consequently R(Z) = G(Z) + A(Z) is an integral operator 

with kernel 

JQ> Y, 9 = G(x, y, I> + 43, y, I). 

If 

N,(z) = W)(u + IT> + T 1 {u, T} E B}, 

then we claim that 

v(s* - U) = v(q)* - u> -I- N,(Z), (6-l) 

where the algebraic sum is direct. Indeed, if u = G(Z)(a + IT), then S,,*u = 
Zu + a + h, and 

{u, &*u) + (T, -U} = {u + 7, z(u + 7)) E s”, 

which shows that N,(Z) C v(S* - U), and consequently v(S,* - Z1) i N,(Z) C 
v(S* - ZZ). The li&ar map K: B + N,(Z) given by ~({a, T}) = G(Z)(u f IT) + T 

is bijective. For if G(Z)(u + IT) + T = 0 then T E a(&*), S,*T = -a, 
which implies (T, -u] E S,,* (7 --B-l = ((0, O]}. The same argument shows 
that the sum is direct. Since dim N,(Z) = dim B = p, dim v(S,,* - U) = co*, 
we have dim[v(S,, * - ZZ) -i- N,(Z)] = UJ* + p = dim v(S* - ZZ), resulting 
in (6.1). 
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Let 131(Z) be a 1 x w* matrix, 1 E @*, whose elements form a basis for 
v(&* - II), and let 

P(Z) = G(Z)@ + IT) + 7, 

where now {u, Q-} is a 1 X p matrix whose elements form a basis for B, 
Then the elements of 

e(z) = (61(Z): P(Z)), ZECf, 

constitute a basis for v(S* - II). We note that P(Z), w(Z) = G(Z)(o + Zr) 
satisfy the differential equations 

(L - z) eyz) = 0, (L - I) w(Z) = u + h, 

and we now proceed to express these solutions in terms of an entire basis 
for the solutions of these equations. Let c be fixed, a < c < b, and let 

syx, Z) = (s&T 1) ,..., s,(x, Q, 4% 4 = (%+1(X, b.., %+&, Z)), 

be the unique matrices satisfying 

(L - 1) sl(Z) = 0, iyc, Z) = I, , ZEC, 

(L - 2) u(Z) = 0 + h, zqc,Z) =o; , ZEC. 

We denote by s(Z) the 1 x (n + p) matrix given by 

s(Z) = (9(Z): s2(Z)), S(Z) = u(Z) + 7. 

(6.2) 

(6.3) 

If W(X, 1) = (s~(x, I): U(X, Z)), then the matrix-valued function 8 is con- 
tinuous on L x @, and, for each fixed x E I, it is entire. That 9 has these 
properties follows from the existence theorem. Now u may be expressed 
in terms of 9 via 

u(x, 1) = syx, 1) +z (sl(y, I)>* [a(y) + MY)1 4, c 

where 9’ is the invertible matrix 

Y = [9(Z) sl(l)](x), 

which is independent of x and 1. This representation shows that u’ t&o 

has the properties stated. It is now clear that there exist matrices C&(Z) and 
d,(Z) such that 

eyz) = 9(z) d,(z), P(Z) = sl(l) 4(l) + sP(O, 

or e(z) = s(Z) d(Z) for some matrix d(Z). 
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Returning now to the integral operator A(Z) = R(Z) - G(Z), we may 
express its kernel in terms of s(Z) as follows: 

4% y, 0 = 4x, I) 40 s*(Y, 0, ZEa=o, 

where a(Z) is an (n + p) x (n + p) matrix. The kernel of G(Z) may be 
written as 

where 
G(x, Y, 0 = K@, y, 0 + 6(x, Y, 4, 

Ko(X,Y, 0 = KO(Y> x, Z) = &1(x, 1) Y-ysy y, z>,*, x >Y* 

W, Y, 4 = 3x, I> gW(y, I>>*, 

for some n x ?t matrix g(Z). Thus the kernel of R(Z) may be represented as 

wx, Y, 0 = Ko(x, Y, 4 + &(x, y, 0, 
where 

&(x, Y, 0 = 4(x, Y, 4 + A@, Y, 4 = s(x, 4 Y(z) s*(Y, I,, 

and Y(Z) is an (n + p) x (n + p) matrix given by 

THEOREM 6.1. The matrix-valued function Y has the following properties: 

(a) Y is analytic for Z e CO , 

(b) Y*(z) = y(z), 

(c) Im Y(Z)/Im Z > 0, where Im Y = (Y - Y*)/2i. 

In order to prove Theorem 6.1 we require the following lemma, which 
provides for a weak approximation to {a, 71. 

LEMMA. Given the 1 x p matrix {u, r), whose elements form u basis for B, 
there exists a matrix (~0, L@> = ({vlo, ho},..., (vDoo, l&,0}) such that 

and 

PO = (vlO,.-., pp”P) E CoyQt (6.4) 

(CT 4, iv09 hJOH = (a, d> + (7, ho) = 1, . (6.5) 

Proof. Let {fi , Sof3} = Qo{crj , ~~1, where IQ0 is the orthogonal projection 
of $ja onto So, and let (f, S,f} be the I x p matrix with components 
{fi , SoA), j = I,..., p. The projection Q. is a bijective map of B onto QoB, 
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since if Qs{u,, , T,,} = (0, 0} then {us , us> E B n S,,l = ((0, O}}. Thus the 
components of (f, S,f} form a basis for Q,B, and this implies that 

(If? Sofh tL SofH = (f,f) + (Sof, Sof) 

is nonsingular. Now the set 

is dense in S, , and the determinant is a continuous function of its elements. 
Hence we can find a matrix-valued function {@, Lc$}, + E C,,lt(t), so close 
to (f, so fl t- m t h e sense that l\f - $ II* + 11 S,,f - Lq9 (I2 is small) that the 
matrix 

4 = (f, 94 + (Gf, W) = 63 9) + (7, W) 

is nonsingular. The matrix {q”,Lqo} = {~~,L~zJ}(A;~)* satisfies the condi- 
tions (6.4) and (6.5). 

The principal application of the lemma is given by the following corollary, 
which follows directly from an application of Green’s formula. 

COROLLARY. If s(Z) is given by (6.2), (6.3), and {p”,Lpo} satisfies (6.4), 
(6.5), then 

that is, 
(s(Z), (L - I)vO) = topn : a, (6.6) 

(s’(Z), (L - &IO) = O,“, (2(Z), (L - I)@) = I, . (6.7) 

Proof of Theorem 6.1. Let J be a finite subinterval of L containing c 
in its interior, and let h E C,“(J) be such that 0 < h(x) < 1, h(c) = 1. 
For such h we put 

l+ = (h, (-l)h’,..., (--l)n-l h(“--l)). 

This A+ is a “formal adjoint” to h” in the sense that (f; h) = (f, L+) for all 
f E C(L). We let 

so(Z) = (SOY4 : soa(z 

where 

sol(Z) = R+ - (L - Z) q+J(R’, T), so2(Z) = (L - I) #Jy, 

Thus 

Y= s ’ h(x) dx > 0. 
a 

%V) = 17 + CL - 0x0, W3) 



ORDINARY DIFFERENTIAL. SUBSPACES 503 

where 

7] = (R+ : O,P), x0 = (-q@+, 7): &). 

From the definition of s,(Z) and the properties (6.2), (6.7), it follows that 

(40, ~OV)) = Pw, 4, (6.9) 

where z(Z) is the (n + p) x (n + p) matrix given by 

It is clear that ,JY is continuous on I x @, for fixed x E L it is entire, and 
qc, 4 = 4l+p * From these properties it follows that 

y-‘(W), h) -+ In+p = r-WC, 4, h), 

as the length 1 / 1 of J tends to zero, uniformly for Z in any compact subset 
of C. It follows that if 1 / 1 is small enough, then (s(Z), s,(Z)) = (z(Z), h) 
is invertible for any h E Con(j) of the type mentioned above. We now assume 
J has been chosen in this way. 

For f~ Co(b) we define 

RoV)f(4 = j” Ko(x9 Y7 Of(Y) dY, a 

JWfW = j-” G(x, Y, Of(y) dr = 4x, 4 VW s@N. 
a 

If r(Z) = P(Md9 r,(Z) = WMg), 44 = (wlf,g) = r(Z) - row, for 
fixed f, g E C,(b), then r is analytic on co , ,. r is entire, and thus r, is analytic 
on Co . The equality 

(W) so(Q ho = (W 4 W)(h m>, (6.10) 

which follows from (6.9), shows that 

Y(Z) = (,JqZ), y&(z) &), so(O)(h, WY. (6.11) 

From (6.8) it is clear that (Ii,(Z) s,(Z), s,(Z)) is analytic on co , and since 
(W, w, (A, q))-l are analytic, we see that Y is analytic on Co, proving (a). 
The equalities 

W) ~OV), ~OV))” = (SOV), W) %O> = (WI ~o(O ~00, 

and (6.11), now show that Y*(Z) = Y(Z), which is (b). 
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We turn to the proof of (c). This depends upon the following inequalities 
for matrices: 

0 d (R(Z) d) - x0, W) so(j) - x0) 
= tw so(h W) so@>) - (W sotb, x0) - (x0, w so(O) + (x0, x0) 
< VW) - WI 

( z-z SO@)? sg(i)) - tw ~00, x0) - (x07 w so(O) + (X”? x0), 
(6.12) 

where the latter inequality is a consequence of (5.2)(iii). An easy computation 
shows that 

( [R1cz; I plol s,(f), so(i)) - (R,(Z) s,(I), x0) - (x0, R,(Z) so(j)) 

= ss ab ,” Qdx, Y, 0 44 4~) dx dh 

where 

Ql(x, y, 0 = (U(z - ~W(x, I) W) Z*(Y, 1) - -W, 1) Y(l) Z*(Y, z)l- 

We note that Q1(c, c, 1) = p(Z) - Y(l)]/(Z - 2). Similarly we have 

( [Ro(zi I Rdz)1 s,(j), so@) - (R,(Z) s,(f), xo)) - (~0, R,(z) s,(f)) + (x0 , x0) 

= [R,(Z) - R,(j)1 
( z-z % 7) = s.” s.” So@, Y, 4 44 4~) dx dye 

The matrix Qo(x, y, I) has the form 

Qo(x, y, 1) = (40$; ‘) ,“;;), 

where 

and 

(qo(x, y, z)),k = (a~+~-wo/ax~-l ay”-1)(x, y, I), 

Hot% y, I) = (U(Z - WO(X> Y, 4 - Ko(x, Y, 91. 
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From the structure of H,, it follows that Qs(c, c, I) = 0,“. Thus (6.12) 
yields 

O< ff ab ab IQ& Y> 4 44 h(y) dx dy, 

where Q = Q0 + Qr . Since, for sufficiently small 1 J 1, this is true for all 
h E C,,%(J) satisfying 0 < h(x) < I, h(c) = 1, we see that 

0 < Q!(c, c, 4 = P’(l) - Y(~))l(Z - I), 

which is (c). This completes the proof of Theorem 6.1. 
The argument leading from (5.4) to an explicit representation for the 

generalized spectral family F, corresponding to the self-adjoint extension 
H of S, now follows along the lines given in [2, Theorems 4-71. We briefly 
sketch the reasoning. From Theorem 6.1 it follows that \Y has an integral 
representation 

Y(Z) = a + @ + f-1 $+ d+), ZE@O, 

where (Y, j3 are constant hermitian matrices, /3 > 0, and (T is a nondecreasing 
hermitian matrix-valued function of bounded variation on E-X. This repre- 
sentation implies that the matrix-valued function p given by 

exists, is nondecreasing, and of bounded variation on any finite subintervai 
of 58. We now use (5.4), namely, 

(W)f,f) = Jj$, $1 Im(R(v + ic)f,f) dv, d 

for f E C,,(L). For such f we let f”(v) = (f, s(v)), Y E R. Then the structure 
of AZ0 implies that Im(R,(v + ie)f, f) -+ 0, as E -+ +O, uniformly for Y E A, 
and so we just have to consider Im(Rr(v + zk)f, f). We have 

where 

Im(h(v + ie)f, f) = (P(v))* Im WV + ie)f^(v> 
+ w, %f) - w, -5f ), 

W, ~,f) = (w)[(3(~ + ic))* y(v + k)3(~ - q - (3(v)>* y(v + 93(v)] 
= (W)U3(~ + ie) - 3(41* y(v + W./(v) 

+ (P(v + ieN* y(v + ic)Lp(v - ic) - 3(4]>. 
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From a theorem due to Helly it follows that 

AS to r(v, l ,f) we note that 

If”@ zt i4 -S(v)1 < II s(v It i’) - s(4llo llfll> 

where f vanishes outside J,, , and 

Since 

II P II: = s, g*(+W dx. 

s(x, v f ie) - s(x, v) = w(x, v + k) - w(x, v), 

and w is continuous on L x @, and entire for each fixed x E C, we see that 
for all sufficiently small E > 0, 

II s(v + 4 - +)I/0 < k VEA, (6.14) 

for some constant R depending only on Jo and A. The integral representation 
of ?P implies that 

f 1 Yij(v k ic)l dv = O(log(l/e)), E--f $0. (6.15) 
A 

Thus (6.14) and (6.15) show that 

; /A J-(v, ie,f) dv = O(e Wl/4h c--t +o; 

in particular, this integral tends to 0 as E -+ $0. We have now shown that 

PT4.f~ f) = s, th4* 444 f(v), f~ G(4, 
and this readily implies the following result. 

THEOREM 6.2. Let H be any self-adjoint subspace extension of S in %, 
Jj C R, with corresponding generalized resolvent R and generalized spectral 
family F given by (5.4). If s(x, I) is defined by (6.2), (6.3) and the matrix p 
is given by (6.13), then 

FWf = s, 44 4(v) f(v), f E Cob), (6.16) 

where the endpoints of A are continuity points for F, and f”(v) = (f, s(v)). 
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Let Z;, 7 represent vector-valued functions from Iw to P+p (considered 
as (n + p) x 1 matrices), and define 

Since p is nondecreasing we have (5, 5) > 0 and we can define I/[ /I = 
(5, c)l12. The Hilbert space 5 is then given by 

-5 = fwP) = (5 I II 5 II < co). 

The eigenfunction expansion result then takes the following form. 

THEOREM 6.3. Let H = H, @ H, be as in Theorem 6.2, and f E sj. 
Then f, where 

h> = Jb s*(x, 4 f (4 dx, 
n 

(6.17) 

converges in norm in 5 = e”(p), and 

. F(m)f = j-1 s(v) d&k&4, (6.18) 

where this integral converges in norm in $ = l12(~). Moreover, (F(co)f,g) = 
(3,j) for all f, g E 5. In particular, the map V: $s -+ !$ given by Vf = 3 
is a contraction (11 Vf 11 < II f 11). It is an isometry (11 Vf II = II f 11) for 
f E fi n H(O)l = 5 0 PH(O), and 

f = 1 a, s(v) dp(v) f(4, f E $5 0 PH(0). (6.19) 
-cc 

Proof. Recall that F(W) = PP, , where P, P, are the projections of si 
onto 8 and H(O)I, respectively. The validity of (6.18) for f E C,,(b) follows 
from (6.16) and the fact that IIF(d)f - F(oo)f II -+ 0 as d ---f [w. Since, for 

f E Co(~), 

(FWf,f) = j.j*(4 dp(+&) -+ (F(a)f,f), 

as A --f Iw, we see that Ilfll” = (F(oo)f, f) < I/f I12. The denseness of C,,(L) 
in $j permits us to extend these results to all f E fi, and polarization yields 
(F( co)f, g) = ( f, t). For f E fi n H(O)l, we have F(m)f = f, which shows 
that V is an isometry when restricted to 9 @ PH(0) and that (6.19) is valid. 

The operators F(m) and V imply a splitting of 5j and V!$ If 

Bo = {f g fi I F(m)f = f 1, $31 = {f E -5 I F(a)f = 019 
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then we have the following result. (Please note that this !+js is not the !+j, 
introduced just prior to Theorem 2.3.) 

THEOREM 6.4. The spaces Sjo , sj, are also characterized as 

bo = % n H(W = ifE% I II Jm = llfll>, 

5j1 =$nH(O) ={fE$j Vf=O}. 

(6.20) 

(6.21) 

Thus !&, 1 3$, and the splitting sj = sj,, @ & @ !& , where giz = 
4$@ (8, @ !&), implies that Z’$ = L’s0 @ V!& . 

Proof. As noted above !$ n H(O)l C &, . If f E !+js , then f E 9 and 
PPsf = f, or P(I - PJf = 0. Thus 

w - Ps)f /I2 = ((I - PJfT f) = (W - PS)fY f) = 07 

showing that P,f = f, or f E sj n H(O)l, and hence !$, = J3 n H(O)I. 
We have (F(co)f, f) = (Vf, Vf), and so f E !&, implies 11 Vf 11 = /If 11. Con- 
versely, if (Vf, Vf) = (F(co)f,f) = (f,f), then 

ll(I - q~))fll” = ll~(~)fll” - llf II2 = II PPf II2 - llfl12 G 0 

shows that F(co)f = f, or f E 5j,. Thus (6.20) is established. Replacing 
P, in the above argument by I - P,? we obtain the first equality in (6.21). 
If f E sj, then (Vf, Vf) = (F( co)f, f) = 0, or Vf = 0. Conversely, suppose 
Vf = 0. Then (F(m)f, f) = 0 and 

II F(a)f II2 = IIV - F(a))f II2 - Ilf II2 = II w - PJf II2 - llf /I2 G 0 

implies that F(co)f = 0, or f E &i . This gives (6.21). Now clearly V!$ = 
V4j,, i V!+j2 , and we claim that Vfi,, 1 V$j, . Indeed, if f. E !+j, , fi E $5, 

then (vfo , 62 = (F(~)f, , fJ = (f. ,f2) = 0, since fro I B2 . 

Remarks on Theorem 6.4. If either Z?(S) is dense in !+j, or His an operator, 
then !+j = &, . The first assertion follows from the fact that D(S) C 5 n 
B(H) C !+j n H(O)I = !&, , and then (B(S))0 = $j C !&, implies 5 = !&, . 
For the second, if H is an operator, then H(0) = (0) and hence R = H(O)*, 
or sj, = 8 n H(O)l = $3. Thus nontrivial !& , sj, can exist only for a 
nondensely defined S and a subspace (nonoperator) extension H in a fi 
properly containing 5. A simple example where such &r , $ja exist is as 
follows. Let T be the maximal operator for id/dx on 52 = !i!l(- 1, 1). We 
let $ = e2(0, I), and identify 5j with the set of all f~ R such that f (x) = 0 
for --1,(x(0. Let q~(x)=O for -l<x<O and v,(x)=1 for 
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0 QxQ 1, and let #(x)=x- 4 for -1 <X < 1. We define SC$* 
and HCR2 by 

s = {{f, Tf} IfE ID(T) f-l fi,f(O) =f(l) = 0, (f, ‘PI = (f, $Y = 01, 

H = (if, Tf+ CT + &J) IfeW’),f(--I) =f(l), 
(f,~)=(f,~)=O,c,dE@}* 

It is clear that S is a symmetric operator in $. Since 

HI = {{f, VI Ifg Whf(- 1) = f(l)1 

is self-adjoint in R, it follows that H is a self-adjoint subspace in R*, which 
is an extension of S (see [4, Section 51). Now H(0) = (v, (6> and PH(0) = 
(~,~,,},where$,,(~)=Ofor---1 <x<Oand&,(x)=x--$forO<x<l. 
Thus 5, = 5 0 PH(O) = $3 0 GFJ, VU &I = 5 n H(O) = b>, 5s = +,4J. 
Here {v}, {g), #} represent the subspaces spanned by v and q~, #, respectively. 

It is easy to check that PH(0) C S*(O), which has a finite dimension. 
Thus sj, @ $js = PH(0) is finite-dimensional and 4$,, = f3 0 PH(0) has 
finite codimension. 

THEOREM 6.5. We have V$, = 5 ;f and only if F is the spectral family 
for a self-adjoiint subspace extension of S in 5% itself. 

Proof. Suppose V!$, = 5. Then Theorem 6.3 shows that V!& = {0}, 
and since V is bijective from &,, @ sj, onto V5j it follows that 5, = (O}. 
Thus 9 = !&, @ !& , and F(m) is the orthogonal projection of $3 onto &s . 
The relation (6.16) implies that (F(A)f,g) = (~~4, g), for all f,g E !+j, 
where x,(X) = 1 for AEA, xd(h) = 0, X$A. For gE!&, g = 0, and thus 
this relation shows that F(A)f E sj,, for all f E 5. Moreover, if g E &, , then 

(W)f,g) = (VF(A)f, Vg) = (xJ!f> Vg>, 

and the equality V!&, = 5, shows that 

VF(A)f = x&, f E 45. 

From this it follows that 

Indeed, we have 

FWf = E(A)f, f E fi. 

II W9fl12 = W’)f, f) = V’V)f~ f) = (~$93) 
= Cxd x~3) = IIF(A)f II’> 
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and this implies that l/(1 - P) E(d)f jl = 0, or F(d)f = E(d)f. In particular, 

wvf = EsWf, fE thl9 
= 0, fEJjl, 

and F restricted to $j,, is a spectral family for a self-adjoint operator Hs 
in 9s . Its domain is 

and 

I&f = jm h dF(X)f = jm h dE,(h)f, f E WHo). -co -cc 

It is easy to see that VH,,V-* = A, the self-adjoint operator of “multiplication 
by A” on 5. We define 

HI = Ho 0 WI 0 5,). 

The subspace HI C !$? is self-adjoint, for H, is self-adjoint in 4j,,z and 
(0) @ fil is self-adjoint in $r2. We claim that HI = H n B2. Clearly 
H,, C H, , and (0) @ %I = (0) 0 (& n H(0)) C (0} @ H(0) = H, . There- 
fore HI C H n !tj2. If {f, Hsf + x} E H A fis, then f E 3(H,) n $ = IE)(H,), 
and H,f + x = Hof + x E sj. Thus x E H(0) n 6 = sj, , showing that 
Hnti2CHl, and thus HI = Hng2. Since SCH, we have SCH, and 
we have shown that HI , whose spectral family is clearly F, is a self-adjoint 
subspace extension of S in B2. 

Now suppose H = H, @ H, C B2, that is, F = E is the spectral family 
for a seif-adjoint extension H of 5’ in $2. Then $,, = H(O)‘-, sj, = H(O), 
$j = &, @ sj, , and F(a) = E(a) = P, , the projection of 5 onto !&, . 
The self-adjoint operator H, in $3, is such that 

VH,f = AVf, f E VHs)> (6.22) 

where A is the self-adjoint “multiplication by A” operator in 5, that is, 

w> = jr E 5 ( j-1 h25*(4 444 4x4 < m/ 9 

fl5(4 = WV, 5 E WV. 

Indeed, for f E B(H,), 

II VHsf II2 = II Hsf /I2 = j-1 h24W)f,f) 
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Thus VH,f = A Vf + 5, 5 E 6 @ V$j”. But then 

II AY.f II2 = II VHsf II2 + II i II2 = II AVf II2 + II 5 II2 

implies [ = 0, proving (6.22). Now E(d)f E IL)(H,) for any f e @ and any 
interval 4. We claim that 

VJw)f = XdVf> f E!?j. (6.23) 

The proof is similar to that for (6.22). On the one hand, 

wwf9 59 = (W)f,g) = (XJ?f> v&9> f E $9 !? E 830 3 

implies VE(d)f = xdVf + 5, 4 E 5 0 VBo . But 

II VW)f II2 = II -wf II2 = (Jw)f,f) = (XLlfJ) = II xdll” 

then shows that 5 = 0. From (6.22) and (6.23) it follows that 

VHsWOf = flxXf, f E 5 (6.24) 

In order to prove that V!+j, = 5 in case H C $32, we show that 4 E 5, 
(5, Vg) = 0 for all g E $, implies that .$ = 0. For any f B C,(L) we have 
E(d)f E e. and hence 

0 = (5, V-w)f) = (4, x&i) = s, W)? f) &(A) 4(h) 

for all subintervals d of R. Let f = s,(O) = 7 + Lx”, where s,(2) is defined 
by (6.8). We have 

w, ho) = (442 ~o@N + (49 so(O) - SoON 
= (qq, 4 + Mv, x3, 

and therefore 

JA cw~ 4 40) E(4 + s, WV, x0) dp(X) 4(X) = 0. 
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The second integral is just (f, VHSE(A)xo) by (6.24), and is thus zero. 
Now we have 

1 Gw, h) dp(4 iv) = 0 
A 

for all d, and since y-l(Z(h), h) -+ I,,, , as 1 J j ---f 0, uniformly on d, we 
see that 

I dP(4 W) = 0 
A 

for all d. This implies that (I, iJ = 0 f or all 5 E 6 whose components are 
step functions and which vanish outside compact subsets of Iw. These 5 
are dense in 5, and therefore 6 = 0 as desired. Note that the self-adjoint 
operator VH,V-l in Vsj, = 5 is such that VH8V-l CA, by (6.22), and 
hence VH,V-l = A. 

The argument used in the proof of Theorem 6.5 to show that V$, = & 
in case H C a3” can be used to prove the essential uniqueness of the matrix- 
valued function p of Theorem 6.2. 

THEOREM 6.6. Let pl, pz be two (n + p) x (n + p) matrix-valued fum- 
tions on R such that 

(Wf,d = J’, t*@> 4+$&h j = I,% 

for all f, g E C,(L) and all intervals A whose endpoints are continuity points 
of F. Then 

s, 444 = jA 443 
for all such intervals A. 

Proof. For f, g E C,,(l) we have 

jA hkd(F(4f,g) =jA &!*(X) dpOf(4; j = 1,2, h = 0, 1,2. 

Thus if p = p1 - pz , and f, g E Co(b), 

s hkg*(h) d&W%) = 0, h = 0, 1,2. 
A 

We apply (6.25) with k = 0, g = so(O), which implies 

&Y = (so(O), 44) = (h, W>> + X(x”> s(3), 

(6.25) 
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(6.26) 

and hence 

s A bwh 4 449m = 09 

since 

I A 4+9, x0) 449m = 0, 

using (6.25) with k = 1, g = x0. Now we apply (6.25) with Ii = 1, f = x0, 
g = s,(O). This results in 
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s w&9> 4 4J(4(X0, 49 = 0 (6.27) 
A 

since 

s A w4, x0) 4(4(X0, s(4) = 0, 

using (6.25) with k = 2, f = g = x0. Now let f = s,(O) in (6.26). We get 

s (W)> h) 4J(W, ,Jw)) = 0, (6.28) 
A 

where we have used (6.27). Now recall that r-‘(,E(A), h) --t I,,, , as 1 J j -+ 0, 
uniformly on d. Using this in (6.28) we obtain 

s 444 = 0, 
A 

which proves the theorem. 

7. EIGENFUNCTION EXPANSIONS (CONTINUED) 

In this section we present different proofs of Theorems 6.2 and 6.5. 
We repeat some of the definitions given in Section 6. Let c be fixed, a < c < b, 
and let 

S1(& 0 = (h(X, Z),..., h&% Z)), 4% 1) = (%+1(& ~>,.*v %z+&, 1)) 
be the unique matrix solutions of 

(L - I) SyZ) = 0, P(c, 1) = I, , ZE c, 

(L - 1) u(Z) = a + k, zi(c, 1) = o,p, 1 E c, 

where {a, r> is a 1 x p matrix whose entries form a basis for B. Let S(Z) = 
u(Z) + r and s(Z) = (s’(Z) : 9(Z)). 
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Let Nx, Y, 4, x, y E L, I E C, be the solution of 

(L - 1) &, y, 1) = 0, F;(Y, y, 1) = VL., 0, l/Pn(YP, ZE @. 

Then K(Z) z(x) = sf k(x, y, 1) z(y) dy, z E $, is the uniquely determined 
solution of 

(L - Z)f(Z) = z, f(c, 1) = O,l, ZE c. 

Since K(x, y, 1) is continuous in (x, y, 1) for y < x and for y > X, it follows 
that for each compact interval J C L and for each Z E @ there exists a constant 
b(J, I) > 0, bounded for Z in compact sets, such that 

where 

IlfllJ = (s, I f(4l” dq2. 

Let H = H, @ H, be a self-adjoint extension of 5’ in R2, as described 
in Section 5. Let R,(Z) = (Hs - 1)-l, 1 E C, , be the resolvent of the self- 
adjoint operator H, in H(O)l = fi @ H(O). Then R,(Z) is a bounded operator 
defined on all of H(O)‘- and it is easily verified that for all h E H(O)I, 

(PR,(Z)h, ZPR,(Z)h + Ph} E S,” -i- ---B-l, 

where P is the orthogonal projection of 9 onto 5. Thus for each h E H(O)-‘- 
there exist a unique f E a(&*) and a unique p x 1 matrix a of complex 
constants, both depending on 1 E C,, , such that 

(PR,(y, lPR,(Z)h + Ph) = (f, &*f> + (7, -+. (74 

We define 

Jym(z)~) = J(c), P(PR,(Z)h) = a, 

LEMMA 7.1. For each Z E C,, , the map h + T(PR,(Z)h) from H(O)l info 
Cn+g is linear and continuous. 

Proof. Clearly, the indicated map is linear. We shall prove it is con- 
tinuous. Let h E H(O)“. Then (7.2) implies that 

Ph = (L - Z)(f - u(Z)u). 
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Since Ph = (L - I) K(Z) Ph, we have that 

(L - Z)(f - K(Z) Ph - u(Z)u) = 0. 

Using the initial conditions for K(Z) Ph, u(Z) and the fact that by (7.2) 
f = PR,(Z)h - ra, we find that 

PR,(Z)h - K(Z) Ph = s(Z) T(PR,(Z)h). (7.3) 

Let (~0, &JO} be a 1 x p matrix satisfying the Lemma preceding the proof 
of Theorem 6.1. Then, using (7.3) and (6.6) we find that 

(PR,(Z)h - K(Z) Ph, (L - &JO) = T2(PR,(Z)h). 

From this equality, the continuity of PR,(Z), and (7.1) it follows that there 
exists a constant c&Z) > 0 such that 

I W’W)W, < c,(z) II h IL 

where 1 12) denotes the norm of 0. We rewrite (7.3) to obtain 

(7.4) 

9(Z) II(PR,(Z)h) = PR,(Z)h - K(Z)h - se(Z) F2(PR8(Z)h). (7.5) 

Let J be a compact subinterval of c such that c E J. Then the n x n matrix 

(W, W>J = JJ (SY? w* 4% 1) & 

is invertible. From (7.5) it then follows that 

F(PR,(Z)h) = [@l(Z), G(Z)),]-l(PR,(Z)h - K(Z)h - S(Z) T2(PR,(Z)h), G(Z)), . 

Since the right-hand side of (7.5) is continuous on H(O)I, it follows from 
the above equality that there exists a constant c,(Z) > 0 such that 

(7.6) 

The inequalities (7.4) and (7.6) show that the map h + T(PR,(Z)h) is con- 
tinuous on H(O)l. 

Lemma 7.1 and the Riesz representation theorem imply that there exists 
a 1 x (n + p) matrix G(Z) whose entries belong to H(O)l such that 

W%(W) = (h, G(z)), lE@ot h E H(O)& 

Without loss of generality we may and do assume that H is minimal, 
i.e., that the set {E(h)f 1 f~ !?j, X E Iw} u Sj is fundamental in R (cf. [A), 
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where {E(h) 1 X E W} is the spectral family of projections in R for the sub- 
space H. The assumption implies that R, and therefore H(O)I also, is 
separable. Consequently H, has only countably many eigenvalues X, , 
v = 0, fl,..., listed as often as the multiplicity of the eigenvalue requires. 
Let yy , v = 0, fl,..., be a corresponding orthonormal system of eigen- 
functions of H, in H(O)l. We decompose E,(h) E E, , the spectral family 
of orthogonal projections in H(O)l for H, , as follows: 

where 

and 

Hence (P,(h) 1 h E R} is a continuous and (Q9(X) j h E W} is a right-con- 
tinuous family of projections in H(O)l; the first family is related to the 
continuous part and the second family is related to the discrete part of the 
spectrum of H, . Furthermore, for A, p E R, we have 

P&Y d P,(P), Q&U < QX/4 h < PI, 

P&9 Q&L) = Q.&V f’s(~) = 0, 
and 

P&W, = HJ’,@h QsWHs = HsQ&L)- 
For h E ID(H,) we have by the spectral theorem, 

(Ha - l)h = j= (A - 1) d(P,(h) - P,(O))h 
--m 

+ 2 (4 - WY YY) YY 7 lE@. (7.7) 

LEMMA 7.2. Let h E H(O)I and w(h) = (P,(h) - P,(O))h, h E R. Then 

Proof The function o from R into B(H,) is continuous and w(0) = 0. 
Let I E Co be fixed and let 
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(cf. (7.7)). Then u, too, is a continuous function from R into ID(H,) and 
u(O) = 0. Hence r(Pw(.)) = r(PR$) u(e)) is a continuous function from R 
into C?+P. This implies that 

exists and 

A simple calculation shows that 

(L - h)(w(X) - ~T~(Per(h))) = (u + AT) F2(Pw(X)) - IoA w(p) dp. 

On the other hand it follows from (7.8) that 

P(H, - A) w(h) = -IA Wp) dp, 
0 

and hence that 

(L - 8@(X) - 7T2(P+))) = (u + XT) T2(Pw(h)) - joA Pi dp, 

since {Pw(h), PH,w(h)} E So* + --B-l. C ombining these two results and 
putting 

we get 

z(h) = Pw(A) - w(A), h(A) = -j-” 4~) dp, 
0 

Since 

(L - A) z(A) = h(h). 

f(h)(c) = (Pw(A) - TryPer(h) (c) - (w(h) - TryPer(h) (c) 

= P(Pw(X)) - JoA i’(c, ,u) dTl(Pw(p)) 

= 0, 

it follows that z(h) = K(h) h(h). Using (7.1) we obtain that for each compact 
JCL, 
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Gronwall’s lemma and the continuity of z(h)(x) as a function of x E c imply 
that z(h) = 0 on c for all h E IR. Thus Per(h) = w(A), h E R, and we have 
proved the lemma. 

Let 1, E Co be fixed and let t1 be the 1 x (n + p) matrix-valued function 
on R with components in D(H,) defined by 

W) = W, - ho) - P.0)) G(lo), hE R. 

Clearly we have t’(O) = OF+P. We define the (n + p) x (n + p) matrix- 
valued function p1 on R by 

p’(X) = IyPtl(X)) = (T(Pt,l(h)) : **. : qPt;+,(h))), 

where 

t’(x) = (t:(Q..., t:+,(4), XER. 

THEOREM 7.3. The matrix-valued function p1 is hermitian nondecreasing, 
and continuous on R and ~~(0) = 0::;. For each h E 8 and 01, /3 E R, 

Ws(8) - Ps(4 P& = j-’ 44 4 (k JoA 4-d dploC$ 

where P, is the orthogonal projection from 52 onto H(O)‘-. 

Proof. (Note the distinction between P, and the P,(cY); P, = ES(~) = 
P,(W) + @(a).) Let A, p E R and choose 01, /3 E R such that 0, A, p E [OL, 81. 
Then 

W) - W = (PA4 - P&W, - ~o)(Ps(B) - PsW Wo) (7.9) 

and 

/w - PYP> = v(w) - tWN 
= Ws - ~oW(4 - W>, GVoN 
= (W - %-4 (P,(4 - P,W)(H, - &W’,(B) - P&)> GVoN 
= (P(A) - P(p), C(h) - P(p)). (7.10) 

By (7.9), t1 is continuous and thus by (7.10) pr is hermitian, nondecreasing 
and continuous on R. Clearly, ~~(0) = Oz$s. From (7.9) with p = 0, 
Lemma 7.2 (with h, v(X) replaced by (H, - &)(P@) - P,(a)) G(l,), @(A)) 
and the definition of pl, we deduce that 

(7.11) 
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Thus we have 

qP(Ps(4 - P,(o)) P&h) = ((HP - Zo)V’@) - J’s(O)) P&h, GVoN 

= (h, Pt’(A)) 

Again we apply Lemma 7.2 (with h replaced by P,h) and obtain 

P(P.s(4 - PsW P.4 = 1” 44 4 (h, j-’ S(P) Wb4). 
0 0 

From this equality the second part of the theorem easily follows. 
With the same I,, E Co as above we define the 1 x (n + p) matrix-valued 

function t2 on R with components in B(H,) by 

and we define the (n + p) x (n + p) matrix-valued function ps on R by 

P”(4 = wtv)), AE R. 

THEOREM 7.4. The matrix-valued function p2 is hermitian, nondecreasing 
and right continuous on R and pa(O) = 0::;. For each h E $j and 01, /3 E R, 

Proof. The proof of the first part of this theorem can be given along the 
same lines as the proof of the first part of Theorem 7.3. For, if 0, h, TV E [CX, p] 
then 

t2(4 - tab4 = (Q&V - Qs(dWs - &>(Qs(P) - Q&N GVo) 

and 

Pa@> - P2W = WY4 - t2b4 t”(4 - t2w (7.12) 

We shall prove the second part of the theorem by showing that 

P(Qd4 - &do)) Pa-h = joA 44 4 (k j-; 44 dp2(/4). (7.13) 

This equality evidently implies the equality of the theorem. 
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Let u E H(O)“. Then for X 3 p, 

Ws - 4Ws - k)(Qdh) - Q&N~ 
= c (4 - 4J)(% (A” - 44 Y”> YY . 

lKA,gA 
(7.14) 

Hence the series in (7.14) converges in H(O)l. An application of the con- 
tinuous linear function r(PZ?,(Z,).) (cf. Lemma 7.1) to this series yields 
the convergence in cn+p of 

u<F<A r(PY”)(u, (A” - 43) Y”). (7.15) 
Y-. 

As u is arbitrary in IIZ(O)~, it follows that the series 

2 (L - 4J YYvY”)* (7.16) 
u<A,<A 

is weakly convergent in H(O)I @ .*. @ H(O)l (n + p copies). Since yy , 
v = 0, kl,..., is an orthonormal system in H(0)L the series in fact con- 
verges in the norm. Again we apply r(PR,(Z,)*) and obtain the convergence 
of the series of (n + p) x (n + p) matrices 

1 VY”) WY”)*. 
u<A,<A 

From (7.14) (with u = G(Z,,)) we get for X 2 p, 

(H, - &J)(W - t2(/.4 = 1 (A” - &I) Y”wY”)** 
*<h,<A 

(7.17) 

Applying Z’(PR,(Z,,)*) to both sides of (7.17) we obtain 

p2(Q - P2(P) = qPt2(q - pt2(P)) = 1 TY”) WY”)*- 
LKA,<A 

The series on the right-hand side equals 

WWo)(Q,(~) - Q&4) c 0, - 4) rvV’~v)*), 
o<A,<A 

where o < p < h. Letting p -+ X we obtain 

p2(8 - P2(A - 0) = c JWY”) WY”>*. 
A,=A 

Since 
PY” = 4tJ w-!Y”h v = 0, &I,..., (7.18) 
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we have 

I 7 S(P) 4%4 = c SP”) VY”) VY”)” 
0 0<1,(7 

= c ~Y)YvY”)* (7.19) 
O<l& 

(the last series converges since it equals the series obtained from the applica- 
tion of PR,(Io) to the series (7.16)). 

Now in (7.15) let u = &(I,) Z’,h. Using the fact that R,(1,)* = R,(&), 
we see that the series o(h, h), defined by 

& 4 - & CL) = c WY”)(~~Y”), p < A, 
@<A&A 

o(h, 0) = o’,,, I 

converges in @+P. A reasoning similar to the one used above leads to 

u(h, A) - up, x - 0) = c q~y”)(~,Y”). 
h,=l 

From this, (7.18) and (7.19), we derive that for h > 0, 

= ,<XSA SW J-YPY”P> YY) 

= c VGY”) PY,. 
o<a,<A 

= p c (4Y”)Y” 
O<A,<A 

= f’(Q),@) - Q&4 P& 

For X < 0 a similar derivation may be given. Hence (7.13) is valid and 
thus the proof of the theorem is complete. 

We observe that if we apply PR,(1,) to both sides of (7.17) (with p = 0, 
h = T) then by (7.19) we obtain 

J+“W = JOT 44 +2(P)* (7.20) 

Combining Theorems 7.3 and 7.4, using the definition of {F(h) ) X E lR>, 
the generalized spectral family for S corresponding to H, we obtain that 
if hE$j, cu,/3~ R, then 

505/20/z-16 
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where p(p) = p’(p) + pa(p), p E R. If h = f E C’s(b) then (6.16) holds. 
Thus Theorem 6.2 has been proved. 

We define f; = P(p), the map V: 5 --+ $I and the subspaces $3s, e1 and 
!& as in Section 6. Since the proofs of Theorems 6.3 and 6.4 are based on 
the above formula for F(h), proofs of these theorems using the approach 
presented in this section would be exactly the same and are therefore not 
repeated. However, a proof of Theorem 6.5 can be based on the machinery 
we have built up in this section and we now give this proof. 

Second proof of Theorem 6.5. Let t(h) = tl(A) + P(A), X E IR. Then t is a 
1 x (n + p) matrix-valued function on lF! whose components ti E D(H,) C 
H(O)-‘. By d we shall denote finite left open and right closed subintervals 
of R. If 01, /3 E R, 01 < /3, are the endpoints of A C R, then we put t(d) = 
t(p) - t(a) and p(A) = &I) - p(a). Since (C(A), t2(p)) = Ozt;E , we have 
on account of (7.10) and (7.12) that 

PM n 4 = (W t(4)), A,A,C R. (7.21) 

From (7.11) and (7.20) it follows that 

WJ) = .c, w 444 (7.22) 

Let x(j, A) be the (n + p) x 1 matrix-valued function in $ whose jth 
component equals the characteristic function of d while all other entries 
are zero, j = l,..., n + p, d C R. The collection X of all such functions 
is fundamental in 5. We define T: X -+ H(O)l by 

Tx(i 4 = w>* 

From the previous observation and from (7.21) we deduce that T may 
be extended by continuity to an isometry from 5 into H(O)I. We denote 
this isometry by T also. We claim that T = V-l on V!+j,, C 5. 

To prove this claim, let h E sj, n C,,(L), E > 0 and J, a compact subinterval 
of L, be fixed. We choose A C IF! such that 

Ij h - s, 4) 44W’W) II = iI(I - WP llJ G E (7.23) 

and 
II PT(Wb - PTVii IL < E, (7.24) 

where (Vh), equals Vh on A and Oi,, outside A. We observe that for J 
and this fixed interval A there exists a constant M 2 0 such that 
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Let vrc , K = 1, 2 ,..., be a sequence of linear combinations of elements 
in X having support in d such that r], -+ (VA), , as k -+ co. On account 
of (7.22) we have 

We choose k so large that 

and 

. (7.26) 

II PTQ - f’V% Ill < l s (7.27) 

where /I &, denotes the norm in 5. Using (7.25) and the triangle inequality 
we see that 11 h - PTVh IL is bounded by the sum of the terms on the left- 
hand sides of the inequalities (7.23), (7.24), (7.26) and (7.27). Therefore 
11 h - PTVh lb < 4E, and since E and J have been arbitrarily chosen, 
PTVh = h in 5s n C,(L). Since T on 5 and V on &, are isometries, 
11 PTVh I/ = /I h /I = 11 TVh 11 and thus TVh = h. Using the continuity of T 
and V we see that TVh = h holds for all h E $j,, , which shows that our 
claim is true. 

Assume that V$,, = 5. Then t,(d) = V-lx(j, A) E $jO, and since X is 
fundamental in 5, the set {tj(d) I A E R, i = I,..., n + p} is fundamental in 
$js . From the definitions of tl, ta and t it follows that E&l,) t&l) = t&l n d,), d, d, c R, j = l)..., 12 + p, which shows that E,(X), X E R, maps 
!&, into sj, , and since the surjectivity of V implies that 5js = {0} we have that 

Now, H is minimal, which means that the set on the left-hand side is 
fundamental in R. Thus we see that R = 5, and hence that the “only if” 
part of Theorem 6.5 holds true. 

To prove the converse, let H be a self-adjoint subspace extension of S 
in !$. Then !&, = 5 0 H(0) and T is an isometry which maps 5 into &, . 
Let 7 E 5 be such that (Vh, v),, = 0 for all h E & , where ( , ), denotes 
the inner product in 6. Then, since T = V-l on V!?J, and thus 

0 = (VA, do = (TV4 Td = (h, TV), 

we see that T? = 0, which implies 7 = 0. Hence V is surjective. 
Some special cases of Theorem 6.3. Let H = H, @H, be a minimal 

self-adjoint subspace extension of S in R2 and suppose that H, has a pure 
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point spectrum. Then, for all A E W, P,(h) = 0 and hence the matrix p 
entering in the eigenfunction expansion equals pz which consists of step 
functions only. It follows from the definitions of F(X), Q$(A) and (7.18) 
that for all h E 6 n C,(L) and 01, /3 E R, 01 < /3, 

(F(P) - Q))h = P(Qs(B) - Q.44 PA 

= 2 my”) PYY 
a<&<6 

and hence 

= c WY”)* 4b) w WY”), 
a<h,<8 

where the series converges in 5 = P(c). 
If H is an extension of S in 4ja, then H is automatically minimal and 

we must have w+ = w-. If furthermore, o+ = w- = n, the order of the 
differential operator L, then it is clear from (6.2) and (6.3) that the com- 
ponents of the matrix-valued functions s(Z) = (sl(Z) : ~~(1)) are in !P(L) for 
all I E co . From the representation of the kernel K = K,, + Kl of the 
r&solvent R of H in ss in terms of s(Z), described in Section 6, it follows 
that R(Z) is an integral operator of Hilbert-Schmidt type. This implies 
that the spectrum of H, is a pure point spectrum. In particular this is true 
for self-adjoint problems in the regular case which is described in detail 
in Section 4. 

For the regular case let H be a self-adjoint extension of S described 
as in Theorem 4.1, and let X E 58 and y E $j = P(L) be such that Hay = hy. 
We shall indicate how the eigenvalue X and Z’(y) can be determined. 

We split the matrices {a, T}, whose elements form a basis for B, and u(Z) 
defined by (6.2) into two parts: 

{a, 7) = ({al, T’) : (9, G]), u(Z) = (d(Z) : u”(Z)), 

where {ul, T’> is as in Theorem 4.1, the elements of {u2, ~“1 form a basis 
for B, such that Lra + u2 = (@, : @J, (L - I) P(Z) = u1 + 19, and 
(L - 1) us(Z) = ~2 + 2~2, 1 E @. We define t(Z) = (si(Z) : ul(Z) : us(Z) + T”). 

By Theorem 4.1 the eigenfunction y has the form y = h + 71c1 and by 
(4.9), 

d 

h + TlCl = s(X) 
(Lh - :c, , $) 

-(c : D : -A,* : G* + A,*T,) h1 - (h + T’c~, Y) 

(7.28) 
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for some constant n x I matrix d. By (7.18), where now P is the identity 
operator on 9, we have 

h + T’Cl = s(h) r(y). * (7.29) 

We claim that r(y) equals the 4 x 1 matrix on the right-hand side of (7.28). 
To see this, it suffices to prove that if 

3(X)a + (u’(X) + TyJ + (u”(A) + T2)C = 0 

for some constant 12 x 1, ( p - m) x 1 and m x 1 matrices a, b and c, 
then all three matrices are zero. Now, since the elements of t(Z) belong 
to a(&*), the equality implies TV E Ib(S,*). From the definition of I$ 
this implies b = 0. Consequently, $@)a + (u”(A) + P)c = 0. Applying 
(L - h) to both sides of this equality, we get that (@,, : @r)c = 0, and hence 
that c = 0 since the elements of (G+, : @t) are linearly independent. Finally 
sr(h)u = 0 implies a = 0 on account of the initial conditions (6.2) for S(l). 

From the claim we deduce that 

and 
Cl = $,Wh (7.30) 

(C : D : --A, * : G* + A,*T,)h’ + (h + “Cl, ‘u) + ya’,r(y) = 0, (7.31) 

where 

$, = (O,“-, : Ipem : OF-_,), fa = (ok?;” : I,-,). 

From (7.29) and (7.30) we deduce that 

h = $9 QY), 
which implies that 

h1 = (({t(A), $j& Tl))) r(y)’ 

Let cl(h) be the p x 4 matrix defined by 

Mi(u, A) + Nf(b, A) - A,*({t(A),Lt(h)}, {U’, T’}) 

+ P* + A,*T,) $1 + (s@), -q 

da;l + cf(U, A) + Of@, A) - A,*@(A), Lt(h)), {d, T1) 

+ v* + A,*TJ d”, + (44, Y) 

(7.32) 
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Then it follows from the first two defining relations for B(H) in (4.8) com- 
bined with (7.28), (7.32) and from (7.31) combined with (7.20) (7.32) that 

det A(X) = 0, (7.33) 

and 

A(A) r(y) = 0. (7.34) 

Hence we have shown that if H,y = hy for some X E Iw then (7.33) and 
(7.34) hold. Conversely, if for some X E R (7.33) holds then h is an eigenvalue 
for H, , and if for some nonaero constant q x 1 matrix I’we have A(h)P = 0, 
then y = s(A)r is an eigenfunction associated with X and r = I’(y). This 
can be shown by tracing the above argument in the opposite direction. 
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