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We report on the quantum-mechanical displacement form factor in quasiperiodic and 
random heterostructures. A one-dimensional treatment is adopted to describe the longitu- 
dinal displacement along the growth axis. Elastic properties are assumed to be homoge- 
neous, while the inhomogeneous mass density characterizes the heterostructure. In the 
low-frequency limit, the peak structure can be attributed to acoustic phonons, whereas 
for higher frequencies the quasiperiodic and random cases differ markedly. In the quasi- 
periodic case and constant momentum transfer, resonances separated by gaps occur 
and their number depends on the resolution in the frequency domain. The random 
case is dominated by an acoustic resonance becoming broader with increasing frequency. 

1. Introduction 

In this work, we study the properties of phonons 
propagating parallel to the growth axis of heteros- 
tructures. The ability to produce heterostructures is 
a revolutionary advance, allowing the growth of sys- 
tems consisting of layers of material with nanometer 
spacing. Potential device applications initiated studies 
of electronic and transport properties, in particular 
of doped and undoped semiconductor superlattices 
and quantum-well heterostructures [13. Much less at- 
tention was devoted to random and quasiperiodic 
heterostructures. Here the layers consisting of build- 
ing blocks, are grown at random or according to a 
deterministic rule, exhibiting no periodicity. In analo- 
gy to the periodic case, a one-dimensional (l-D) treat- 
ment appears to be appropriate to describe properties 
along the growth axis [1]. Adopting the 1-D descrip- 
tion, we study the propagation of longitudinal phon- 
ons in random and quasiperiodic heterostructures. 
Elastic properties are assumed to be homogeneous, 
while the inhomogeneous mass density characterizes 
the heterostructure. 

In Sect. 2, we sketch the formalism to calculate 
the integrated density of states, the inverse exponen- 
tial localization length and the dynamic form factor 
* Permanent address: Department of Physics of Antwerp, Uni- 
versiteitsplein 1, B 2610 Wilrijk, Belgium 

of the displacements. Here, we also point out the con- 
nection to the tight-binding Schr6dinger problem for 
an electron in a random and quasiperiodic potential. 
In Sect. 3, we present and discuss the numerical re- 
sults, including the integrated density of states, the 
inverse exponential localization length and the dy- 
namic form factor. In the quasiperiodic case, we con- 
sider two models, differing in the deterministic rule, 
assigning the mass density M, of the n-th layer. As 
seen from Table 1, quasiperiodicity in Model I is ob- 
tained from irrational Q-values, while in Model II the 
mass density is given by the Fibonacci sequence. For 
comparison, we also treat the periodic counterpart 
of Model I, with a Q = 1/5, representing a crude ap- 

to Q=(1//5-1)/(2~). Model III refers proximant to 
the random case. 

Our main results include: In the low-frequency 
limit, the peak structure of the quantum-mechanical 
zero-temperature displacement form factor can be at- 

Table 1. Definition of the models 

Model M. 

I M , = A + B  cos (27zQn) 
II Fibonacci sequence 
III Random 
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tributed to acoustic phonons, while for higher fre- 
quencies the quasiperiodic and random systems differ 
drastically. In the quasiperiodic case and constant 
momentum transfer, resonances separated by gaps oc- 
cur and their number is limited by the resolution in 
the frequency domain. The random case is dominated 
by an acoustic resonance becoming broader with in- 
creasing frequency. In comparison with the quasiperi- 
odic Model I, both Fibonacci and random hetero- 
structure are found to have enhanced Debye-Waller 
factors. Inclusion of inhomogeneous elastic properties 
and equilibrium spacings of the heterostructure we 
leave for future studies. 

2. Sketch  o f  the f o r m a l i s m  

Restricting our study to longitudinal displacements, 
the discretized equation of motion reads [-2] 

- M .  co2u.=f (u.+ 1 +u.-1 - 2u.). (1) 

M. denotes mass density, u. displacement of the n-th 
layer, (̀ 0 is the frequency and f the elastic constant, 
assumed to be homogeneous. For numerical treat- 
ments, it is convenient to rewrite (1) in the form [-3] 

mn ('02 Un + 1 
R.+a= -- 1 /R.+2 , R n + l  = (2) 

f u. 

corresponding to a recursion relation. The integrated 
density of states is then obtained, in terms of node 
counting, from 

1 N {10 f o r R , < 0  
N(co) = ~  .~a A., A .=  (3) 

= otherwise. 

The inverse exponential localization length is given 
by [-3] 

1 
7 ((̀ 0) = ~ .~_. In I R. I, (4) 

where 

((`0) __> o. (5) 

Rewriting (1) in the form 

M. 
Un+l +Un_l--2Un-- f co2U., (6) 

the connection to the Schr6dinger problem 

(p. + 1 + ~o._ 1 - 2 rp. = (V.-  E) (p. (7) 

for a tightly-bound electron in the presence of a po- 
tential V with strength V. at the n-th site, is obvious. 

This equation also models the electronic properties 
of quantum-well superlattices, along the growth axis. 
For random and g-correlated V,'s, it corresponds to 
the 1-D Anderson model [4]. Recently, the quasiperi- 
odic case evoked considerable interest [5, 6]. In fact, 
quasiperiodicity provides a link to understanding of 
the crossover between corresponding properties re- 
~ulting from periodic and random potentials. Periodic 
~otentials lead to continuous spectra (bands) with 
gaps and extended wave functions, while random and 
uncorrelated potentials exhibit pure point spectra and 
exponentially localized wave functions. There is con- 
siderable evidence for much richness in the quasiperi- 
odic case. Highly fragmented integrated density of 
states [5, 6] transition from extended to localized 
wave functions [-7] and algebraic localization can oc- 
cur [8]. Invoking the equivalence between the equa- 
tion of motion for lattice dynamics (1), and the Schr6- 
dinger problem (7), it is clear that these phenomena 
will also appear in the lattice-dynamic case. However, 
there is a crucial difference stemming from the fact 
that in lattice dynamics, the lowest eigenvalue (̀ 0 = 0 
is fixed and the corresponding displacements u, are 
extended. Consequently, the leading term in the inte- 
grated density of states N(co) can be calculated exact- 
ly. The result is [-9] 

l i m N ( c o ) - l ( ~ )  l/z, (8) 
o o ~ O  (`0 7"C 

where 
1 N 

( M )  = ~  .~1 M.. (9) 

To calculate the dynamic form factor of the displace- 
ments, 

+ o o  

S..(q, co)= ~ dtei~ (10) 
- o o  

where 

u(q,t) ] ~  i elqtul(t)' (11) 

we adopt two approaches. 
For Model I and its periodic counterpart (Table 1) 

it is useful to reformulate (1) in terms of the wave 
number dependent displacement u (q), yielding 

I f  co2 + 2 (1 -cos  q)] u(q) 

Bco 2 
- - - -  (u (q + Q) + u (q - Q)) = 0. (12) 

f 

Adding integer multiples of Q to q, one obtains from 
(12) the recursive relation 



] Bco 2 
I f  (D2 "q- 2(1--C, , )]uo--T(Un+l + u,- 1) =0, 

where 

(13) 

C,=cos(q+nQ), X,=u(q+nQ). (14) 

Thus for fixed q, the problem is reduced to an eigen- 
value problem of a tridiagonal matrix, with eigen- 
values co~(q) and normalized eigenvectors Y~, where 

N <  m 
2 = e < 2  and X,=Y'u,~Y=. The quantum-me- 

chanical and zero-temperature expression for the dy- 
namic form factor is then obtained from 

Su,,(q+nQ, co)=~ [u"~(q)[2_,__ 277~a)- 6 (o,- co,(q)) 

in terms of 

(15) 

S,,(q, o9) = ~ S,, (q + nQ) (16) 
n 

by reducing the q + nQ to the interval [-~z, rc], corre- 
sponding to the first Brillouin zone. 

In Models II and III, the masses are assigned ac- 
cording to the Fibonacci sequence or at random. 
Here, one has to treat the equation of motion (1) 
direct. Adopting free boundary conditions, and intro- 
ducing the matrices 

( 2 0  _1 0 0 ) 
2 --1 0 

A=  --1 2 --1 ' 
�9 , �9 �9 

B = M2/f 

(17) 

the equivalent of (1) reads 

(B- ~/2 AB-  1/2_co2 E) Y=0 (18) 

yielding eigenvalues ~o~ (e = 1 . . . . .  N) and eigenvectors 
Y.~. The quantum-mechanical and zero-temperature 
expression for the displacement dynamic form factor 
is then 

Su,,(q, co)=~ ]X~(q)[~22co, 6(co--co~)' (19) 

where 

~ g ~ = l  q.l = B 1 / 2  X~ (q) = sin rc ~ Xe,, X Y. 
l -  

(20) 
The numerical results for S,,(q, co) are conveniently 
expressed in terms of the normalized dynamic form 
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factor 

~(q, co)= S ~ q ) ) ,  (21) 

where 

S,, (q) = ; S,, (q, co) d co (22) 
0 

is the static form factor. S,,u(q, co) and S,,,,(q) are pro- 
portional to the one-phonon coherent inelastic and 
elastic neutron-scattering cross sections, respectively. 
S,,,(q) also determines the Debye-Waller factor in 
terms of W(q) ~ q2 Su,,(q). 

3. Numer ica l  results and discussion 

In this section, we present and discuss the numerical 
results for the integrated density of states (3), the in- 
verse exponential localization length (4) and the dy- 
namic form factor of the displacements. 

3.1. Model I 

With 

M, = A + B cos (2 ~z Q n), (23) 

the equation of motion (1) reads 

u,,+l+u.-1 ~-cos2~Qnu.= ~ - +  u.. (24) 

It is closely related to Harper's equation, extensively 
studied in the context of Bloch electrons in a magnetic 
field [10], the transition from extended to exponen- 
tially localized states [6, 7], granular superconductors 
and superconducting networks [11]. Harper's equa- 
tion reads 

% + a (?,- 1 + c~ cos (2 ~ ft, + 0) ~o, = E (p,. (25) 

It is known to exhibit a transition at c~=2 for - re  
_< 0 < rt and irrational/3 [6, 7]. If e > 2, the wave func- 
tions are exponentially localized and there is a dense- 
point spectrum. For ~<2, the q), are extended and 
the spectrum is continuous. Thus, in the lattice model 
frequency 

Boo 2 
= = 2 (26) 

f 

separates extended and exponentially localized dis- 
placements, as well as the occurrence of a continuous 
and a point spectrum. 
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Fig. 1. Integrated density of states N(co) and inverse exponential 
localization length 7(co) as obtained from iterating (2) for Model I 
with parameters listed in (27) for N =  104 and co = 10 -3. The arrow 
marks the frequency below which the spectrum is continuous be- 
tween the gaps, while above, a point spectrum occurs in between 
the gaps. The gap labeling follows (28) 

Figure 1 shows the integrated density of states 
N(co) and the inverse exponential localization length 
7(co) for Model I with 

]//5- 1 (27) A=2, B = I ,  /=1 /4 ,  Q -  2~ 

The gaps corresponding to the plateaus can be labeled 
by two integers, n and m. The integrated density of 
states below gap n, m is then given by 

O< N,.,,(co)=n 2~+rn< 1. (28) 

The labeling of major gaps is also depicted in Fig. 1. 
For small co-values, N(co) approaches the expected 
linear behavior given by (8), but with increasing co 
fragmentation becomes more pronounced. It should 
be kept in mind, however, that beyond the resolution 
of Fig. 1 there is an infinite number of gaps, with 
rapidly decreasing width. The major gaps are also 
signaled by the nonvanishing inverse exponential 

length 7(0)). For co <coo= 1/V~, the displacements as- 
sociated with values pertaining to the spectrum are 
extended. For co > coc, there is only a small frequency 
window left, separating gap ( -1 ,  1) and the top. In 
this window, there are frequencies in the spectrum. 
They form a point spectrum, and the corresponding 
displacements are exponentially localized. This be- 
havior is visible in Fig. 1, and clearly seen in Fig. 2, 
showing a blow-up of this frequency window. In fact 
7 (co) remains finite, revealing the exponential localiza- 
tion of the displacements. 

To study some implications of this rich excitation 
spectrum and the localized nature of the displace- 
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Fig.2. Blow-up of integrated density of states N(co) and inverse 
exponential localization length ,/(co) depicted in Fig. 1 for co-values 
close to the top. N = 2.104 and A co = 5.10 -4  

h )  

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2- 

0.1- 

0 

k / k / k / k / k /  

0 1.0 2.0 3.0 4.0 5.0 6.0 710 
q 

Fig. 3. Phonon-dispersion curves for the periodic version of Model I 
(23) with Q = 1/5 and parameters listed in (27) 

ments, we next consider the behavior of the quantum- 
mechanical form factor at zero temperature. In doing 
so, it is instructive to treat a closely related periodic 
system for comparison. Q = 1/5 is a crude but reason- 
able rational approximant to the irrational number 

Q=(]//5-1)/(2~)=0.196726 .... With this choice, M, 
(21) becomes periodic, with five particles in the unit 
cell. As depicted in Fig. 3, there are one acoustic, four 
optic branches and four gaps. Moreover, on the reso- 
lution scale of Fig. 1, the resulting integrated density 
of states looks very much the same as in the quasiperi- 
odic counterpart. Nevertheless, in the periodic case 
all displacements are extended, while in the quasiperi- 
odic model exponential localization sets in for co > coc- 
The associated dynamic form factor, as calculated 
from (13), (15) and (16), is depicted in Fig. 4, for 64 co- 
and 32 q-channels. The resonance structure is readily 
traced back to the five phonon branches and their 
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Fig. 4. Dynamic  form factor ~u,(q, co) (16) for the periodic Model I 
(23) for Q = 1/5 and parameters listed in (27), q=n~/32, n =  1 . . . . .  32; 
co = n/64, n = 1, ...,  64 
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5. ~,,(q, e)) for the quasiperiodic Model with Q = ( [ / 5 -  Fig. 1)/(2~) 
and parameters listed in (27) for N=512 .  The grid in q and ~o 
is identical to that  in Fig. 4 

q-dependence, as shown in Fig. 3. Although all dis- 
placements are extended, localization effects are rath- 
er pronounced with increasing frequency, because the 
q-dependence of the resonance structure becomes flat, 
in agreement with the dispersion laws. The dynamic 
form factor of the corresponding quasiperiodic model 

with Q = ( ] ~ - 1 ) / ( 2 ~ )  is shown in Fig. 5. Comparing 
these results with Fig. 4, there is no dramatic differ- 
ence. Clearly, in the quasiperiodic case, in principle, 
there is an infinite number of branches. Owing to 
limited resolution, fixed by the width of the channels, 
only dominating features are seen, well approximated 
by the periodic counterpart with Q = 1/5. In fact, the 
four major gaps are readily seen in Fig. 5, and the 
q-dependence of the resonance structure becomes flat- 
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ter with increasing co. Moreover, the highest q-inde- 
pendent resonance, arising from exponentially local- 
ized displacements, does not differ much from the lo- 
cal optic mode in the periodic model. 

It is worthwhile noting that, for A-=-B = 2, c0c is 
not in a gap and the associated displacements are 
expected to be algebraically localized [5-7]. Explor- 
ing this point, we iterated recursion relation (2) for 

N 

chains up to N =  10 a to estimate/~N = ~ l n l R ,  l / ln(N).  
n = l  

Our results revealed strong fluctuations in /~N (even 
for N =  10 8) and a pronounced dependence on the 
initial conditions. The mean value (fiN) fluctuates be- 
tween 0.3 and 0.7. Thus, further work is needed to 
elucidate the nature of localization for ~oc values 
which are not in a gap. 

3.2. M o d e l  I I  

In this system, mass M,  is assigned according to the 
Fibonacci sequence 

M,  -- A + B,, (29) 

where 

B,+ 1 = - - 2 [ 0 . +  1/a6]i + 1 

O. + 1 = [0, + 1/aG-I : mod 1 (30) 

~ - 1  0 0 = ] / 5 _ 2  , Bo = - 1 .  
GG-- 2 ' 

A pictorial illustration of the generation of the se- 
quence is given in Table 2. Models of this type have 
been studied quite extensitvely [5] and even an exact 
renormalization-group scheme was developed to un- 
ravel scaling properties of the integrated density of 
states and the displacements [9]. Numerical results 
for the integrated density of states N(m) and the in- 
verse exponential localization length 7 (on) are shown 

Table 2. Generation of a Fibonacci sequence with F1 elements. F1 
denotes the 1-th Fibonacci number,  and A corresponds to mass  
MA = 1, while B denotes mass  MB = 3 

l Ft Fiobanacci sequence 

0 B 
1 1 A 
2 2 AB 
3 3 ABA 
4 5 ABAAB 
5 8 ABAABABA 
6 13 A B A A B A B A A B A A B  
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Fig. 6. N(~o) and ?(o) for ModelII  with masses M =  1, 3, assigned 
according to the Fibonacci sequence (Table 2, (28)) for N = 104 and 
A ~o = 10- 3 as obtained from iterating (2) 
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Fig. 8. N(@ and 7(o@ for Model III with randomly assigned masses 
(33) for N = 104 and A co = 10- 3. For comparison, we included N(@, 
resulting from the average mass  approximation (36) 
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The dynamic form factor of this model, as calcu- 
lated with the aid of (18)(20) for a chain of N =  512, 
is shown in Fig. 7. At low frequencies, there is a reso- 
nance structure which can be attributed to acoustic 
phonons, while for higher frequencies nearly q-inde- 
pendent peaks occur only, revealing the localized na- 
ture of the displacements with frequencies in between 
the major gaps (2, -1) ,  ( - 1 ,  1) and (4, - 2 )  (Fig. 6). 
In a larger system allowing increased resolution in 
the frequency domain, these peaks are expected to 
split, because new, but narrower gaps will occur (32). 

- 10 0 10 20 30 40 50 60 70 
~d 

Fig. 7. S,,(q, co) for Model lI, with masses 1, 3 assigned according 
to the Fibonacci sequence for N=512 ,  q = n ~ / 3 2 ,  n =  I . . . . .  32 and 
o) = n/64,  n = 1 . . . . .  64 

in Fig. 6 for 

A =2, f =  1/4. (31) 

In the limit co ~ 0 the expected linear frequency de- 
pendence (8) is clearly seen, and fragmentation of the 
spectrum becomes more pronounced with increasing 
co. The gaps can again be labeled by two integers 
n, m, where the integrated density of states below gap 
n, m is given by 

O < N.,m(co)= n + m aa< 1. (32) 

This labelling is depicted in Fig. 6 for the major gaps. 
Again, there is an infinite number of gaps, with gradu- 
ally diminishing width and beyond the resolution 
scale of Fig. 6. The visible gaps are also signaled by 
the finite value of the inverse exponential localization 
length. For the frequencies belonging to the spectrum, 
one expects algebraic localization. 

3.3. Model I I I  

Finally, we consider the case of randomly assigned 
masses, where 

M, = A + B, 

p(B,)={lo/:2" ifotherwise.-A </~,__< A (33) 

In this case and for the infinite chain, all displace- 
ments are exponentially localized and the spectrum 
is point. Numerical results for N(co) and 7(co) are 
shown in Fig. 8, for 

A =2, A =0.5, f =  1/4. (34) 

In the low-frequency limit, localization is seen to be 
weak and the frequency dependence of N(co) is linear. 
There are no gaps and at the top the expected Lifshitz 
tail behavior becomes visible [12]. Here, appreciable 
exponential localization sets in. The absence of gaps 
and the nearly continuous behavior differ markedly 
from the periodic and quasiperiodic (Fig. 5) cases. In 
fact, not only the low, but also the intermediate fre- 
quency regime of N(co) are well approximated by an 
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Fig. 9. g,,(q, co) for Modell III with randomly assigned masses (33) 
for N = 512. The grid for q and co is identical to that in Fig. 7 

average mass modes with frequency 

~ = -  2 f  (1 - cos q), <M> -- A (35) 
<M> 

yielding 

= -  arc sin . (36) No(cO) 

This expression leads to the exact low-frequency limit 
(8). For  comparison, No(co ) is included in Fig. 8 and 
differs from N(co) close to the top only, where the 
Lifschitz tail behavior [123 sets in. Accordingly, we 
expect the dynamic form factor to be dominated by 
a resonance with dispersion (35) and richer structure 
appearing at higher frequencies. The numerical results 
shown in Fig. 9 fully confirm this expectation. 
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