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Predicate-Transformer Semantics of General Recursion 

Wim H. Hessetink 
University of Groningen, Department of Computing Science, P.O. Box 800, 
NL-9700 AV Groningen, The Netherlands 

Summary. We develop the semantics of a language with arbitrary atomic 
statements, unbounded nondeterminacy, and mutual recursion. The semant- 
ics is expressed in weakest preconditions and weakest liberal preconditions. 
Individual states are not mentioned. The predicates on the state space are 
treated as elements of a distributive lattice. The semantics of recursion is 
constructed by means of the theorem of Knaster-Tarski. It is proved that 
the law of the excluded miracle can be preserved, if that is wanted. The 
universal conjunctivity of the weakest liberal precondition, and the connec- 
tion between the weakest precondition and the weakest liberal precondition 
are proved to remain valid. Finally we treat Hoare-triple methods for proving 
correctness and conditional correctness of programs. 

O. Introduction 

0.0. Recursion, Repetition, and Nondeterminacy 

Most treatments of the semantics of repetitive or recursive constructs depend 
on an assumption of bounded nondeterminacy. As recursion is less operational 
and more general than repetition, we concentrate on recursion, cf. [10]. An 
outline for a treatment of recursion was given as early as 1976 in [18], but 
more detailed treatments such as [I0] and [2], Chap. 7, depended on continuity, 
i.e. bounded nondeterminacy. In [I],  the repetition is treated, under the weaker 
assumption of countable nondeterminacy. Unbounded nondeterminacy for the 
repetition is achieved in [7] and [9]. Inspired by [9], we constructed in [13] 
an operational model for recursion with unbounded nondeterminacy. This model 
leads to nice denotational characterizations of the semantics, but, as it heavily 
depends on consideration of individual states, it tends to encourage operational 
reasoning. 

The present paper contains a purely formal treatment of recursion with 
unbounded nondeterminacy. We express the semantics of our programming 
language by means of weakest preconditions, cf. [4] and [10]. This method 
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is more suitable for programming methodology than the method of [2] and 
[13], in which the semantics of a construct is determined by the set of possibly 
resulting states for a given initial state. 

0.1. The Semantic Functions wp and wlp 

Following Dijkstra, cf. [4], we express the semantics of our programming lan- 
guage by means of functions wp and wlp. If x is a predicate and t is a command, 
the predicate wp(t, x) is the weakest precondition such that execution of t termi- 
nates in a state where x holds. The predicate wlp(t, x) is the weakest precondition 
such that x holds whenever execution of t terminates. Thus the weakest liberal 
precondition wlp does not imply termination. In other words, wp represents 
correctness and wlp represents conditional correctness. The predicate wp(t, true) 
represents guaranteed termination. This leads to the requirement, cf. [5] : 

wp(t, x) = wp(t, true) A wlp(t, X). (o) 

It is easy to argue that the wlp of a conjunction of postconditions should be 
the conjunction of the wtp's of the postconditions, cf. [5]. So, if Y is a set 
of predicates, then 

wlp(t, (rye Y" :y)) = (Vye Y: :wlp(t, y)). (1) 

As a formalization of the fact that no precondition can guarantee termination 
in a state where false holds, Dijkstra [4] postulates the so-called law of the 
excluded miracle 

wp(t, false) =false. (2) 

In the semantics of recursion, however, syntactic enforcement of this law leads 
to complicated formulae. Therefore, we follow De Bakker, cf. [2], p. 270, and 
Nelson, cf. [17], in allowing violations of (2). A command t that violates (2) 
is said to be partial. In states where wp(t, false) holds, command t is said to 
fail, and implementations are supposed to perform backtracking, cf. [14] p. 470. 
A command t that satisfies (2) is said to be total. 

0.2. The Alternative Construct 

The starting point for our treatment of recursion is Dijkstra's nondeterministic 
alternative construct, cf. [4], in the form 

h=if(OjeJ:b.j-~r.j) fi, (3) 

where J is a set of indices, each guard b.j is a predicate, and each r.j is a 
command. The operational interpretation is that one command r . j  is executed 
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for which the guard b.j holds. If no guard holds, the construct does not terminate. 
Formally, the semantics is defined by the preconditions 

wp(h, x) = (3j; :b .j) A (Vj; ; --7 b .j v wp(r.j, x)) 

A wlp(h, x) = (Vj: :-7 b.j v wlp(r.j, x)) (4) 

for any postcondition x. 

0.3. Discussion of  our Modifications 

(a) In order to treat general recursion, formula (3) is regarded as the declaration 
of a procedure h. Every procedure is supposed to be declared in this way. 
The commands r.j are strings of simple commands. Every simple command 
is either a statement of which the semantics is assumed to be known, or a 
procedure which has some declaration. In this way recursion is possible, as 
is mutual recursion. 

(b) The index set J in (3) is allowed to be infinite. In this way, a value 
parameter can be passed to the procedure, but unbounded nondeterminacy 
can arise. Notice that the statements can also be unboundedly nondeterministic. 

(c) Because of the conjunct (3j: :b.j) in wp(h, x), the procedure h leads to 
abortion if all guards are false. This is an exception, which complicates the 
semantics of recursion. Therefore, in this paper we delete this conjunct, cf. [2], 
p. 272, [17]. This has the effect that if none of the guards holds, abortion is 
replaced by failure, so that h is a partial command, cf. 0.1. In implementations, 
one may want to impose the semantic restriction 

(3j: : b.j) = true. (5) 

Remark. The equality sign between predicates on the state space is used to 
denote that the predicates are everywhere equivalent. 

0.4. Procedure Declarations 

Summarizing our modifications, we propose procedure declarations of the form 

h : : = (0j e J: b.j ~ r.j) (6) 

where J can be any set of indices, b.j is a predicate, r.j is a command. If 
all predicates --7 b.j hold, execution fails, cf. 0.1. Declaration (6) is defined to 
be total, if and only if 

(Vj: :--7 b.j) = false. (7) 

Notice that (7)=(5). We do not require that the commands r.j be total. For, 
in case of recursion, such a condition would lead to circularity. We come back 
to this in Sect. 2.8. In view of (4) and modification (c), the semantic functions 
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wp and wlp will be defined as solutions of the following equation in an unknown 
function w 

w (h, x) = (V j:  : ~ b.j v w (r.j, x)). (8) 

As the commands r.j may contain recursive calls of h, this equation need not 
have a unique solution. We come back to this in Sect. 0.8 below. Notice that 
step 0.3 (c) was crucial in obtaining a single equation for both wp and wlp. 

0.5. Using a Partially Ordered Set 

In programming practice, we write [x=~y] to denote that predicate x implies 
predicate y everywhere on the state space. For  the present purpose, however, 
it is convenient to treat the implication abstractly as a partial order. Therefore, 
the predicates are treated as elements of a partially ordered set (X, < ) where 
relat ion" ~ "  is given by 

x < y = [x =c-y]. (9) 

The strongest predicate false corresponds to the smallest element 0 of X. The 
weakest element true corresponds to the biggest element 1. The conjunction 
operators A and V are replaced by the greatest lower bound operators A 
and A ,  pronounced "meet".  The disjunction operators v and 3 are replaced 
by the least upper bound operators v and V ,  pronounced "join".  The negation 
operator " 7 "  used in (7) and (8) could be an arbitrary function from X to 
X. We abstract from all its special properties. 

We need arbitrary least upper bounds and greatest lower bounds, and a 
general form of distributivity. Therefore, X will be a complete distributive lattice, 
cf. 2.0 and 3.1 below. This abstraction is justified by the fact that the set of 
predicates on a state space satisfies all these axioms. 

0.6. Notations for Functions 

For the sake of uniformity, the application of a function is denoted by the 
infix operator dot ".",  cf. [8]. Composition of functions is denoted by the usual 
circle "o". Dot and circle have the same high binding power. They bind from 
left to right, so that f og . x=f . (g . x ) .  We use the currying convention that a 
function of more than one argument is treated as a function of the first argument 
which yields a function of the remaining arguments. 

By convention, functions f and g on the same domain U are equal, if and 
only i f f . u = g . u  for every u~ U. Thus the well-known rule 

(Vx: : wp((p ; q), x) = wp(p, wp(q, x))) 

of [4] is expressed by 

or equivalently 
(Vx : : wp.(p; q).x =(wp.p)o(wp.q).x), 

wp. (p; q) = (wp. p) o (wp. q). 
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0.7. The Language 

Let A be a given set of symbols, to be called simple commands. Let A* denote 
the set of finite strings of elements of A. The empty string is denoted by e. 
The concatenation of strings p and q is denoted by "p; q", as used already. 
The elements of A* are called commands. 

We assume that A is the union of two disjoint subsets S and H, where 
S is the set of the statements and H is the set of the procedure names. For  
each statement s~S the semantics is supposed to be given, so that the predicate 
transformers wp.s and wlp.s are known. Functions w, such as wp and wlp, 
will be defined on the set A, and then extended to A* by the rule 

w.(p;q)=(w.p)o(w.q). (10) 

Therefore, it will remain to specify wp.h and wlp.h for each procedure heH. 
Every procedure h has a declaration of the form 

h: : =([]jEJ.h:b.j ~r. j)  (11) 

with b. jeX and r.jeA*, where J.h is an index set, which may depend on h. 
Actually, some readers may want to impose the condition that the set J.h 
for different values of h are disjoint. By formula (8), the functions wp and wlp 
should be solutions of the system of equations in w 

w.h .x=(Aj6J .h :  :--q b . jv  w.(r.j).x). (12) 

0.8. Main Results 

It will turn out that wp can be defined as the smallest solution of (12) that 
extends wp as given on the statements. Similarly, wlp will be defined as the 
greatest solution of (12) that extends wlp as given on the statements. This choice 
for extending wp and wlp goes back to [18] and [10]. In [13], we showed 
that a suitable operational model leads to functions wp and wlp which are 
indeed the extreme solutions of Eq. (12). 

Another  justification for this choice is provided by the fact that the functions 
wp and wlp thus defined have the expected properties. In fact we prove that 
if all statements satisfy the requirements (0) and (1), then the procedures and 
all commands satisfy these requirements. We also prove that if all statements 
are total, cf. 0.1, and all procedure declarations are total, cf. 0.4, then all proce- 
dures and all commands are total, cf. 0.1. Finally, if all statements and all 
declarations are deterministic, then all commands are deterministic, see Sect. 3.5. 

In Chap. 4, we develop Hoare-triple methods for proving termination, cor- 
rectness and conditional correctness of programs. The methods are well-known. 
New is that the validity is proved in a very general semantic formalism. As 
an illustration we treat a very simple example in Sect. 4.4. 
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0.9. Aspects of Presentation 

The braces "{"  and "}"  are used exclusively for comment within formal proofs. 
We use the proof format exposed in [19] p. 2. We use a typed version of Dijk- 
stra's quantification format, cf. [6]. The formula 

(Vv~V:b.v:f.v) 

denotes that f .v  holds for every value vEV for which b.v holds. If the range 
condition b. v is identically true, it can be omitted. The existential quantification 
is determined by 

(3v~ V:b.v: f .v)---1 (Vv~ V:b.v:-q f.v). 

In each chapter, the referenced formulae are numbered consecutively. Formula 
(j) of chapter i is referred to from other chapters as formula i(j). 

1. A Variation of the Theorem of Knaster-Tarski 

1.0. This chapter contains some background material on partially ordered sets. 
In particular, we present a version of the theorem of Knaster-Tarski which 
is slightly stronger than usual. 

1.1. Partially Ordered Sets 

Let W be a partially ordered set with order relation " <  ". An element wO 
of W is said to be a greatest lower bound of a subset U of W, if and only 
if 

(VweW: :w<wO--(Vu~U: :w<u)). (0) 

If it exists, the greatest lower bound of a set U is unique. It is denoted by 
(Au U: :u). 

Reversing the order, we say that w 1 e W is a least upper bound of U, if 
and only if 

(Vw~W: :wl <w=(Vu~U: :u<w)). (1) 

If it exists, the least upper bound of U is also unique. It is denoted by 

(Vu u" :u). 

1.2. Completeness and Closure 

The partially ordered set W is said to be complete if and only if every subset 
of W has a greatest lower bound and a least upper bound in IV. 

A subset V of W is said to be closed under least upper bounds in W if and 
only if for every subset U of V the set V contains an element that is the 
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least upper bound of U in W. Similarly, V is said to be closed under greatest 
lower bounds in W if and only if for every subset U of V the set V contains 
an element that is the greatest lower bound of U in W. 

Remark. If V is closed under least upper bounds in W, then V is nonempty. 
For, V contains the least upper bound of the empty subset U=0 .  Similarly, 
V is nonempty if it is closed under greatest lower bounds in W. 

1.3. Fixed Points of Monotone Functions 

A function f" W ~  W is said to be monotone, if and only if 

(Vv, w e W : v < w : f . v <  f.w). 

An element w e W  is called a f ixed point of function f if and only if f . w = w .  
A subset V of W is said to be invariant under f, if and only if 

(We V: "f. ve V). 

The following result is a variation of the theorem of Knaster-Tarski, cf. [20]. 

Theorem. Let f: W ~  W be a monotone function. Let V be a subset of W, which 
is closed under least upper bounds in W and which is invariant under f Then 
V contains a f ixed point vO o f f  which satisfies vO<=w for every w e W  with 
f .  w ~ w. In particular, v 0 is the smallest f ixed point o f f  in W. 

Proof Let U be the subset of W given by 

u e U = u e  V ^ (Vwe W:f  .w< w:u< w). (2) 

Since U is a subset of V and V is closed under least upper bounds in W,, the 
set V contains an element that is the least upper bound of U in W. Calling 
this element v0, we have from (1) with w ! .-=v0 

vOe V ^ (Vwe W: " vO< w - ( V u e U  : :u<w)). (3) 

For  any w e W we observe 

f.w~w 

(rue u:  :u<w) 

={(3)} v0<w. 

By (2) and (3) this implies that v0e  U. Instantiation of (3) with w :=vO gives 

(VueU: :u_<v0). (4) 
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vO< f.vO (5) 

~{(2) with u,=vO and w.'=f.vO} 

f.(LvO)< f.vO 

~ { f  is monotone} 

fivO<vO (6) 

~{(4)} 

f.vO~U 

r and V is invariant under f}  

(Vw~ W:f .w< w:f.vO<__w) 

r of < and range condition} 

(Vw~W:f.w<w:f.vO< f.w) 

~={f is monotone} 

(Vwe W:f .w< w:vO < w) 

-{vO~U and (2)} 

true. 

This reduction shows that the inequalities (5) and (6) hold. These inequalities 
combine to yield vO=f.vO. This proves that v0 is a fixed point of f Since 
vO~U, we have vO<w for every w~W with f .w<w. The last assertion of the 
theorem follows from the fact that every fixed point w satisfies f .w  < w. (End 
of proof.) 

Remark. I first used the above argument in 1-12] 8.2. I assume that the result 
is known. Using transfinite induction one can prove the result under the weaker 
assumptions that V is invariant under f and closed under least upper bounds 
of totally ordered subsets. 

2. The Semantics of Recursion 

2.0. The Semantic Domain 

In this chapter we formally construct the extended functions wp and wlp on 
the set A, cf. 0.7. 

Let X be a given partially ordered set with order relation <.  We assume 
that X is complete, cf. 1.2. The smallest element of X is denoted by 0, the 
biggest one by 1. The elements of X may be regarded as predicates on a state 
space. A function from X to X may be regarded as a predicate transformer. 
We only consider monotone functions from X to X. 
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We use M to denote the set of the monotone  functions X ~ X. The composi-  
tion fog  of functions f, g e M  is an element of M. The identify function ident 
of X is the unit element for the composit ion in M. 

2.1. Semantic Functions 

We refer to Sect. 0.7 for the introduction of the alphabet A = S w H and of the 
language A*. We define W t o  be the set of all functions w: A ~ M. Since composi-  
tion in M is associative and has ident as unit element, any function we W has 
precisely one extension to a function w: A * ~  M such that 

w. ~ = ident (0) 

(Vp, qeA*: :w.(p; q)=(w.p)o(w.q)). (1) 

For  any weW, we shall use the extended function w whenever appropriate.  
Compare  formula 0(10). F rom 0.7, every procedure h e l l  is equipped with a 
declaration of the form 

h: :=(DjeJ .h :b . j~r . j ) .  

A function we W is called a semantic function, if and only if it satisfies formula 
0(12), that is 

(Vhe H, x e X  ; : w . h . x = ( / \ j e J . h  : :--1 b.j v w.(r.j).x)). (2) 

Remark. The semantic functions used here correspond to the prepara tor  func- 
tions of [13]. 

2.2. Unfolding 

In order to treat formula (2) as a fixed point equation, we introduce the unfolding 
function F. For  any given function wg: S ~ M ,  we define the function 
F . w g : W ~  W b y  

(Vwe W, seS, he l l ,  x e X :  : 

F . w g . w . s . x = w g . s . x  A F . w g . w . h . x = ( / \ j e J . h "  :---1 b.j v w.(r.j).x)). (3) 

So F. wg. w agrees with wg on the statements s. For  a procedure name h, function 
F.wg.w.h  is given as the r ighthand side of formula (2). One verifies that 
F . w g . w . a e M  for every we W and every aeA. Clearly, we W is a semantic func- 
tion if and only if w = F.wg.w for some function wg, - in which case wg is 
the restriction of w to the set S. 
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2.3. A Partial Order on W 

We shall use the theorem of Knas t e r -Ta r sk i  to ensure that  every given funct ion 
wg: S--* M can be extended to a semant ic  funct ion w. Therefore,  we in t roduce 
a part ial  order  < on W by 

w< w' =-(V aeA,  x e  X . w . a . x =  w .a.x). (4) 

The part ial ly o rdered  set (IV,, < ) is complete.  In  fact, a subset  U of W has 
a greatest  lower b o u n d  w0 and a least uppe r  b o u n d  w 1 in W given by 

w O . a . x = ( A  u s U  : :u.a.x) ^ w l . a . x = ( V u s U "  :u.a.x). (5) 

The  verifications are s t raightforward.  F o r  example,  m o n o t o n y  of w0 and w 1 
is easy to show. The  calculat ion 

w<wO 

--- {(4)} (Va, x: "w.a.x<-_wO.a.x) 

=- {(5)} (Va, x: " w . a . x < ( A u :  :u.a.x)) 

= {1(0)} (Va, x ,u:  : w . a . x < u . a . x )  

= {(4)} (Vu: "w < u) 

proves  tha t  w0 is the greatest  lower bound.  
Since the definition of F involves appl ica t ion  of w to strings r.j, we extend 

formula  (4) to strings. F o r  functions w, w 'e  W,, we have 

w < w ' = ( V t e A * , x e X "  :w . t . x<w' . t . x ) .  (6) 

The  impl ica t ion " ~ "  follows f rom (4) and  A c A * .  The  impl ica t ion "=~"  is 
p roved  by induct ion on the length of string t. The  case t = e follows f rom (0). 
The  induct ion step is 

< , w . t . x : w . t . x  

=z-{if a e A  then w.a is mono tone}  w.a . (w . t . x )<w.a . (w ' . t . x )  

< , =~{(4) with x. '=w' ,  t. x and  transi t ivi ty of  < } w.a .  (w. t. x ) _  w .  a.  (w.  t. x) 

< , = {(1)} w.(a;  t ) . x =  w .(a; t).x. 

This concludes the p r o o f  of  (6). 

2.4. Theorem.  For any function wg:S ~ M, the function F. wg: W ~  W is mono- 
tone. 
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Proof For  any w, w' e W, we observe 

F . w g . w < F . w g . w '  

-= { (4)}  

(VaeA, x e X :  : F . w g . w . a . x < F . w g . w ' . a . x )  

- {(3), use J.  h as range for j} 

(Vh ~ H, x E X: :(AJ: :-7 b.j v w. (r.j). x) _--< (AJ: :-7 b.j v w'. (r.j). x)) 

~ { m o n o t o n y  of A and v } 

(VteA*, x e X :  : w . t . x ~ w ' . t . x )  

- {(6)} 

W <_~ W '. 

(End of proof.) 

Remark. This proof relies on (6). The proof of (6) relies on the monotony of 
the functions in M. In 2.0, monotony was imposed for this reason. It does 
not help to define the order of W by means of (6), since the above proof  also 
u s e s  (4). 

2.5. Theorem. For any function w g : S ~  M, the function F.wg: W ~  W has a 
smallest f ixed point wg ~ and a greatest f ixed point wg 1 in W. The functions 
wg ~ and wg ~ are the smallest and greatest semantic functions which agree with 
wg on S. 

Proof Since W is complete and F. wg is monotone,  the existence of wg ~ follows 
from Theorem 1.3 with V.'= 14(. The dual version of that theorem yields the 
existence of wg ~. The last assertion of the theorem follows from 2.2. (End of 
proof.) 

Remark. Here we just use the ordinary version of the theorem of Knaster-Tarski. 

2.6. The Postulate of Predicate-Transformer Semantics 

We assume that the semantics of the statements s e S is given by weakest precon- 
ditions and weakest liberal preconditions, cf. [4]. So we assume given a weakest 
precondition function wp: S--* M and a weakest liberal precondition function 
wlp: S ~ M. 

The weakest precondition function on A is defined as the smallest semantic 
function which extends wp on S. So, it is the function wp~ A ~ M, cf. 2.5. The 
weakest liberal precondition function on A is defined as the greatest semantic 
function which extends wlp: S - * M .  So it is the function wlpl: A ~ M ,  cf. 2.5. 
If no ambiguity can arise we write wp and wlp instead to wp ~ and wlp 1. This 
is rather harmless, as wp ~ and wlp a are extensions of the functions wp and 
wlp, respectively. 
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2.7. Remarks. The above definition can be justified by its simplicity, or by many 
references, cf. [10, 16, 18], or by an operational model. Following [9], we devel- 
oped in [13] an operational model in which the functions wp and wlp are 
proved to be the extreme semantic functions. Actually, they remain extreme 
if the monotony  condition of 2.0 is dropped. I cannot achieve this in the abstract 
setting. For  the translation, it may be noted that in [13] the symbol X stands 
for the set of states, so that the power set ~ (X )  corresponds to the set X 
of the present paper. 

The recursive equation w = F. wg. w is an equation of second order functions. 
In the case of simple recursion, however, the set H consists of one procedure, 
say h. So, in that case, the equation boils down to one equation in the "predicate 
transformer" w.heM.  In the last part of [17], it is shown that in the case 
of tail recursion the equation can be specialized to equations in the predicates 
w . h . x .  

2.8. The Law of the Excluded Miracle 

In this section we show that the law of the excluded miracle is equivalent to 
that same law restricted to the statements in conjunction with the totality of 
the declarations. In other words we prove 

Theorem. All commands are total if and only if all statements and all declarations 
are total. 

Proof By 0.1 and 0.5, a command t is total if and only if wp.t.O=O, and the 
declaration of a procedure h is total if and only if ( A j E J .  h: :--1 b.j)= O. 

Let all commands be total. Clearly, all statements are total. For  a procedure 
h~H, totality of h implies totality of its declaration because of 

wp.h.O=O 

- {2.6} F.wp.wp.O=O 

- {(3)} (AJ  ~ J.  h: :--q b.j v wp. (r.j). O) = 0 

=~{calculus} ( A j ~  J. h: :--1 b.j) = O. 

For  the proof of the other implication, we construct an auxiliary function. Let 
u ~ W be given by 

(Va~A : : u . a . 0 = 0  ^ (Vx~X:x+O:u .a .x= 1)). (7) 

Function u is the biggest function that treats all simple commands as total. 
In fact, by (4) and (7), we have 

(Vw~W: : w < u - ( V a ~ A :  :w.a.0=0)) .  (8) 



Predicate-Transformer Semantics of General Recursion 

Now we observe that 
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(VteA* : :wp.t.O=O) 

= {induction on the length of string t, using (0) and (1)} 

(VaEA: :wp.a.O=O) 

- {(8)} 

wp <= u 

~{Theorem 1.3 with V..= W, f , = F .  wp, w ,=u, 
and hence v0 = wp, the smallest fixed point o fF .  wp} 

F.wp.u<u 

-{(8)} 
(VaeA: :F.wp.u.a.O=O) 

-{(3)} 
(VseS: :wp.s.O=O)A(VheH: : (A jeJ .h :  :-nb.jvu.(r.j).O)=O) 

-= {calculus} 

(Vs~S: :wp.s.O=O)A(Vh~H: : (Aj~J .h:  :--n b.j) =0). 

This proves that totality of all commands follows from totality of all statements 
and all declarations. (End of proof.) 

3. Properties of wp and wlp 

3.0. In this chapter we show that the semantic functions wp and wlp have the 
properties 0(0) and 0(1), provided that these properties hold for the statements 
and that the partially ordered set X satisfies certain distributivity laws. We 
use Pow.X to denote the power set of X. In the last subsection we consider 
the deterministic theory. If all statements are deterministic and all declarations 
are deterministic, we prove that all comands are deterministic. 

3.1. Postulates 

We assume that all statements satisfy the formulae 0(0) and 0(1). By 0.5 and 
0.6, this gives the postulates 

(Vse S, xe  X : : wp.s.x = wp.s. 1 ̂  wlp.s.x), (0) 

(VseS, Y~Pow.X: :wlp .s . (Ayer:  : y )=(AyeY:  :wlp.s.y)). (1) 
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Moreover, we postulate the distributivity laws 

(VxeX, YePow.X: :x v (Aye  Y: : y ) = ( / \ y e  Y: :x v y)), (2) 

(VxeX, YePow.X: :x ^ (Vye  Y: :y) = ( V y e  Y: :x ^ y)), (3) 

Remark. It is justified to postulate these laws, as they are satisfied by the set 
of boolean functions on a state space. In [3], p. 229, these laws are denoted 
by D 1 and DT. 

3.2. Universal Conjunctivity 

It turns out that in order to extend formula (0) we need a weak version of 
the extension of formula (1). Therefore, we start by extending formula (1) to 
command strings r 

Theorem. For every teA* and YePow.X we have 

wlp. t . (Aye Y: : y )= (Aye  Y: : wlp.t, y). 

Proof. Let M0 denote the subset of M given by 

f e M O - ( V Y e P o w . X :  : f . ( / \ yeY:  : f . y )=( / \ yeY:  :f.y)). (4) 

Let W0 denote the subset of W given by 

weWO=(VaeA: :w.aeMO). (5) 

For elements f, geM0, the composition fog is also element of M0. Therefore, 
it follows from (5) by the extension rules 2(0) and 2(1) that 

(Vwe WO, teA* : :w. teMO). (6) 

Now the theorem is equivalent to wlpeWO. By 2.6, wlp is the greatest fixed 
point of the monotone function F.wlp in W. Therefore, by the dual version 
of Theorem 1.3 with V=WO, it suffices to prove 

(a) W0 is closed under greatest lower bounds in W. 

(b) W0 is invariant under F. wlp. 

These two facts are proved in the Lemmas (a) and (b) below. (End of proof.) 

Lemma (a). The set WO is closed under greatest lower bounds in W. 

Proof. Let U be a subset of W0. By 2.3, the set U has a greatest lower bound 
u0 in Wgiven by 

uO.a .x=( / \ueU:  :u.a.x). (7) 
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For any subset Y of X and any element aeA ,  we observe 

u O . a . ( f y e  Y: :y) 

={(7)} ( A u � 9  u :  : u . a . ( f y � 9  :y)) 

= { U c W0, and (5) and (4)} (A u e u :  ; (Ay e Y: : u.a.  y)) 

= {interchange} ( A y e  Y: : (A u �9  u :  :u.a.y))  

= {(7)} (Ay �9  Y: :uO.a.y). 

By (4) and (5), this proves that u 0 � 9  W0. (End of proof). 

Lemma (b). The set WO is invariant under F. wlp. 

Proof  Let w � 9  be given. For any s e S  we have 

F. wlp. w.s  

= {2(3)} wlp.s 

e {(1), (4)} M0. 

For any h e l l  and any subset Y of X, we observe 

F . w l p . w . h . ( f y e  Y: :y) 

= {2 (3)} ( f J  e J.  h: :-7 b.j v w. (r.j). ( f y e  Y: :y)) 

= {w e wo,  (5), (6)} ( f J  e J .  h: : -7 b.j v ( f y  �9 Y: : w. (r.j). y)) 

= {distributivity law (2)} (AjeJ.h:  : (Ay�9 Y: :--7 b.j v w.(r.j).y)) 

= {interchange and 2 (3)} ( f y  �9 Y: : F.  wlp. w. h. y), 

so that F . w l p . w . h � 9  by (4). By formula (5), this proves that F . w l p . w e W O ,  
as required. (End of proof.) 

3.3. The Separation of  Termination and Conditional Correctness 

Theorem. (Vt cA*, x e X  : : w p . t . x = w p . t .  1 A wlp. t .x) .  

Proof. Let W 1 be defined as the subset of W given by 

we  W1  - (VaeA,  x e X : : w . a . x  = w.a .1  A wlp.a.x) .  (8) 

Below in Lemma (c) we prove 

(Vwe W1, teA*, x e X  : : w . t . x  = w . t .1  A wlp. t .x) .  

Now the theorem is equivalent to w p e W 1 .  By 2.6, wp is the smallest fixed 
point of the monotone function F . w p  in W. Therefore, by 1.3 with V..=W1, 
it suffices to prove 
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(d) W1 is closed under  least uppe r  bounds  in W. 

(e) W 1 is invar iant  under  F.  wp. 

These facts are p roved  below in the L e m m a s  (d) and  (e). (End of  proof.) 

L e m m a  (e). Let  w e W 1  and t eA* .  Then ( V x e X :  : w.  t .1 ^ wlp. t. x). 

Proof. This is p roved  by induct ion in the length of string t. F o r  t:=e, we have 

w . e . x  = w.e .  1 ^ w lp . e . x  

- { 2 ( 0 ) }  x = 1 ^ x 

= { x < l }  true. 

F o r  t : = a ;  t with a e A ,  we observe  

w.(a; t ) .x  = w.(a; t). 1 ^ wlp.(a; t ) .x  

={2(1)} 

w . a . ( w . t . x ) = w . a . ( w . t .  1) ^ wlp .a . (w lp . t . x )  

= {(8) with x ,=w. t .x ,  and also with x.-=w, t. 1} 

w.a .  1 ^ w l p . a . ( w . t . x ) =  w.a .  1 ^ wlp .a . (w,  t. 1) ^ wlp .a . (w lp . t . x )  

,*={calculus} 

wlp. a. (w. t. x) = wlp. a. (w. t. 1) A wlp. a. (wlp. t. x) 

, = { T h e o r e m  3.2 with t. '= a, and where  Y consists of  w. t. 1 and  wlp. t. x} 

w . t . x = w . t . 1  ^ w lp . t . x .  

This proves  the induction.  (End of proof.) 

L e m m a  (d). The subset W 1 is closed under least upper bounds in W. 

Proof. Let w l  be the least b o u n d  in W of a subset  U of W1. F o r  any  a e A  
and x e X we observe  

w l . a . x = w  1.a. 1 ^ w l p . a . x  

- {2(5)} ( k / u e U :  : u . a . x ) = ( V u e U :  : u . a . 1 ) A w l p . a . x  

= {distributivity law (3)} (k /u  e U: : u. a .  x) = (k /u  e U: : u. a.  1 A wlp. a. x) 

---- { U c W 1 and  (8)} true. 

This proves  tha t  w 1 e W 1. (End of  proof.) 

L e m m a  (e). The set W 1 is invariant under F.  wp. 

Proof. Let  w e W 1  and x e X .  F o r  seS ,  we observe  

F . w p . w . s . x  = F . w p . w . s .  1 ^ w l p . s . x  

= {2(3)} w p . s . x  = wp.s .  1 ^ w l p . s . x  

= {postulate  (0)} true. 
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For  any h e l l  we have 

F . w p . w . h . x  

= {2(3), use J .h  as range for j} 

(AJ:  : m b.j v w. (r.j). x) 

= {we W1 and Lemma (c)} 

( A J  : : --q b .j v (w. (r.j). 1 A wlp. (r.j). x)) 

= {distributivity law (2) and calculus} 

(/kJ: : --q b .j v w. (r.j). 1) A (/~j: : --q b .j v wlp. (r .j). x) 

= {2(3) with wg, w :=wp, w, and also with wg, w:=wlp, wlp} 

F .wp .w .h .  1 A F .wlp .wlp .h .x  

={2.6} 

F.wp .w .h .1  ^ wlp.h.x. 

This proves that F. wp. we W 1. (End of proof). 

Remarks. In definition 2(3) we kept the first argument of F explicit because 
of the proof  of this lemma. If it was endurable, that is due to our currying 
convention. The above theorem can be compared with Hehner's result in [11] 
Sect. 5.3.2. It should be noticed, however, that the semantics of [11] is defined 
by means of the limit of the iterated unfoldings, and not by means of extreme 
fixed points. So, in the case of unbounded nondeterminacy, our semantics differ 
from those of [11]. 

3.4. Remark. As is well known, the Theorems 3.2 and 3.3 imply that the predicate 
transformers wp. t commute with nonempty conjunctions. In fact, for any com- 
mand t and any nonempty set Y of predicates we have 

w p . t . ( / k y e  Y: : y) 

={3.3} wp.t .1 ^ w l p . t . ( / \ y e  Y: : y) 

={3.2} wp.t .1 ^ ( / \ y e  Y : : wlp.t, y) 

= { Y * 0 }  ( / \ y e  Y: : wp.t .1 ^ wlp.t, y) 

= {3.3} ( A y e  Y: :wp.t.y). 

3.5. Determinacy of Commands 

In this section we need the negation of predicates with all its usual properties. 
Therefore, X is supposed to be a complete Boolean lattice, and --7 is the negation 
operator. 

A command t is defined to be deterministic if for every predicate x the 
following holds. If t starts in a state not satisfying wp. t.x, then t does not 
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terminate or terminates in a state that satisfies --1 x. So, formally, t is deterministic 
if and only if 

(VxeX: :--7 wp. t . x<wlp . t . ( -q  x)). (9) 

A declaration h: : = (Bj e J. h:b.j ~ r.j) is called deterministic if and only if 

(Vi , jeJ .h: iJej:b. i  A b.j=O). (10) 

Theorem. Let all statements and all declarations be deterministic. Then all com- 
mands are deterministic. 

Proof We define the subset W2 of W by 

we W 2 - ( V  aeA, x e X  : :--1 wp .a .x  < w.a.(-n x)). (11) 

Below in Lemma (f) we prove that 

(Vwe W2, teA*, x e X :  :--1 w p . t . x < w . t . ( ~  x)). 

Therefore, the theorem is equivalent to wlpeW2.  By 2.6, wlp is the biggest 
fixed point of F.wlp in W. Thus, by the dual version of 1.3 with V:= W2, it 
suffices to prove 

(g) W2 is closed under greatest lower bounds in W. 
(h) W2 is invariant under F. wlp. 

These facts are proved in the Lemmas (g) and (h) below. (End of proof.) 

Lemma (O. Let w e W 2  and teA*. Then (VxeX: :--1 w p . t . x < w . t . ( ~  x)). 

Proof We use induction on the length of string t. For t=e,  it suffices by 2(0) 
to note that - q x < m x .  For t :=a;  t with aeA we have 

wp.(a; t).x 

= {2(1)} m wp.a.(wp. t .x)  

< {(11)} w.a.(--n wp. t .x)  

< {induction and monotony of w. a} w.a. (w. t. (--1 x)) 

= {2(1)} w.(a; t).(--n x). 

This proves the induction. (End of proof.) 

Lemma (g). The subset W2  is closed under greatest lower bounds in W. 

Proof Let w be the greatest lower bound in W of a subset U of W2. For 
any aeA  and x e X  we have 

~ w p . a . x < w . a . ( ~ x )  

- {2(5) and 1(0)} (Vue U: :--1 w p . a . x <  u.a.(-n x)) 

-{(11)} (rue u: :ueW2). 

By (11), this proves that we W2. (End of proof.) 

Lemma (h). The set W2  is invariant under F. wlp. 
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Proof  F o r  any  we  W2 we have  

F . w l p . w e W 2  

= {(11) and  2 (3)} 

( V x e X ,  seS:  :-7 wp.s.x<=wlp.s.('-7 x)) 

A ( V x e X ,  h e l l :  :--7 w p . h . x < F . w l p . w . h . ( ~  x)) 

-= {all s e S are deterministic,  (9), wp = F. wp. wp} 

( V x e X ,  h e l l :  :--7 F . w p . w p . h . x < F . w l p . w . h . ( ~ x ) ) .  

We fix x and  h. It  remains  to observe  that  

--1 F. wp. wp .h . x  < F. wlp. w.h.( -n  x) 

= {2(3), use J .h  as range  for i and j} 

-'1 ( A  i : :---1 b. i v wp. (r. i). x) <= (AJ :  : --q b.j  v w. (r.j). (--1 x)) 

- {De Morgan}  

(W i: : b. i a "--1 wp. (r. i). x) <= (AJ :  : "-q b .j v w. (r.j). (---1 x)) 

~- {1(0) and  1(1)} 

(Vi, j :  : b . i ^ ~ w p . ( r . O . x < - - n b . j v w . ( r . j ) . ( - q x ) )  

~ { t r a n s i t i v i t y  of  < } 

(Vi, j:i=~j:b.i <=--q b.j) A (Vj : :--q wp.(r . j ) .x  <= w.(r.j).(--q x)) 

- {calculus, and  we  W2 and L e m m a  (f)} 

(Vi, j e J . h : i  @j:b.i ^ b . j = 0 )  

- {all declara t ions  are determinist ic,  (10)} 

true. 

(End of proof.) 
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wlp.t.(---n x) <="-n w p . t . x  

~- {calculus} wp. t. x A wlp. t. (--1 X) = 0 

= {3.3} wp.t .  1 ^ w lp . t . x  ^ wlp.t.(--q X ) = 0  

---- {3.2} wp. t .  1 A wlp . t . (x  A --7 X ) = 0  

-- {3.3 and  calculus} wp.t .O=O 

- {0.1 and  0.5} c o m m a n d  t is total.  

Remark. I f  c o m m a n d  t is total ,  the inequal i ty  in fo rmula  (9) is equivalent  to 
equality.  In fact, for any  c o m m a n d  t and  any  predicate  x we have  
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4. Hoare-Triple Methods 

4.0. Hoare Triples 

Usually, one is interested in establishing specific postconditions, not arbitrary 
ones. Moreover, one may be happy with suitable preconditions which are not 
weakest preconditions. Therefore, Hoare triples are introduced as specifications. 
Hoare triples of recursive procedures generalize both the invariant of a loop, 
and the variant function. 

We define a Hoare triple to be a triple (x,  h, y)  with x, y e X  and hel l .  
Hoare's relation {x} h{y} is represented by [x=:,w.h.y]. So it depends on a 
semantic function w. In our formalism this relation is represented by x < w. h. y, 
cf. 0.5. 

We first treat termination and correctness. For  the case of simple recursion, 
the result is contained in [15] Sect.6. We refer to I-7] for the use of well-founded 
sets in termination proofs. 

4.1. Theorem. Let C be a well-founded set. Let ((x.c,  h.c, y . c )  :ceC) be a family 
of Hoare triples such that for every ceC  we have 

(V de C :d < c : x .d  < wp.(h.d).(y.d))=>(VjeJ.(h.c) : : x .c  < ~ b.j v wp.(r.j).(y.c)). (0) 

Then for every c e C, it holds that x. c < wp. (h. c). (y. c). 

Proof By induction over the well-founded set C, this follows from the fact 
that for every c e C we have 

x.c<wp.(h.c) . (y .c)  

= {2.6} x .c<F.wp.wp.(h .c) . (y .c)  

- {2(3)} x . c < ( A j e J . ( h . c ) :  :-"1 b.j v wp.(r.j).(y.c)) 

- { 1 (0)} (Vj e J .  (h. c): : x. c < --1 b .j v wp. (r.j). (y. c)) 

~={(0)} (V deC  :d <c:x .d  < wp.(h.d).(y.d)). 

(End of proof.) 

4.2. Remark. The method of proving termination by means of 4.1 is complete 
for the following reason. Let the set H be ordered by (h<h')=(h=h'). This 
ordering is well-founded. Now the family of Hoare triples (wp.h.1,  h, 1) with 
h e l l  satisfies formula (0). In fact, that formula reduces to 

(VheH, j eJ .h"  : wp.h. 1 <--7 b.j v wp.(r.j). 1), 

and the calculation in the above proof  shows that this is true. The triviality 
of this completeness proof  indicates that in general it may be difficult to establish 
formula (0). 
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4.3. The Induction Theorem of Conditional Correctness 

The next result generalizes Hoare's  recursion rule, cf. [0] p. 444, to the case 
of unbounded nondeterminacy and mutual recursion. If T is a set of Hoare 
triples, a function we W is said to satisfy specification T, notation w ~  T, if and 
only if 

(V(x ,h , y )eT:  :x<w.h.y). (1) 

Let WLP denote the subset of W given by 

weWLP- (VseS :  :w.s=wlp.s). (2) 

Theorem. Let T be a set of Hoare triples such that 

(VweWLP:w~ T:F.wlp.w~ T). (3) 

7hen wlp ~ T. 

Proof We define W3 to be the subset of Wgiven by 

w e W 3 = w e W L P  ^ w ~  T. (4) 

By 2(3), we have F. wlp. we WLP for any we W. Therefore, the set WLP is invari- 
ant under F.wlp. By (3), it follows that W3 is invariant under F.wlp as well. 

(Remark. We are heading for an application of the dual of Theorem 1.3, 
but WLP and W3 need not be closed under greatest lower bounds in W. The 
greatest lower bound of the empty set in W is the function w 1 given by 
w l . a . x =  1 for all aeA and xeX .  Usually, wlq~WLP.) 

The set WLP with the order relation " < "  inherited from W is a complete 
partially ordered set. For  example, the greatest lower bound in WLP of a subset 
U is the function w0 given by wOe WLP and 

(VheH, x e X :  "wO.h.x=(AueU: :u.h.x)). (5) 

The subset W3 of WLP is closed in WLP under greatest lower bounds. For, 
with U and w0 as above, we have 

wOeW3 

= {(1) and (4)} (V (x, h, y> e T: :x < w 0. h. y) 

- {(5)} (V(x, h, y ) e  T: :x<( /kueU:  :u.h.y)) 

- {1(0)} (V(x ,h ,y)eT,  ueU: :x<u.h.y) 

= {(1) and (4)} (Vue U: :ue W3). 

Since wlp is the greatest fixed point in WLP of the monotone function 
F. wlp:WLP ~ WLP, it follows from the dual of Theorem 1.3 that wlp e W3. This 
proves that wlp ~ T. (End of proof.) 
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Remark. This theorem shows that in order to prove [x=c, wlp.h.y] for all triples 
(x,  h, y ) ~  T, it suffices to prove that [x=~F.wlp.w.h.y]  for all triples (x,  h, y ) e  T 
and all functions w E W with 

(VseS: :w.s = wlp.s) A (V(x, h, y ) e  T: :[x=~w.h.y]). 

In other words, to prove conditional correctness of a specification T, it suffices 
to prove correctness of the first unfoldings with respect to all functions w that  
are equal to wlp on the statements and that satisfy specification T on the proce- 
dures. 

4.4. Example: A Euclidean Algorithm 

We illustrate Theorem 4.3 by means of a nondeterministic and not necessarily 
terminating implementat ion of the euclidean algorithm. Procedure h works on 
a state space of five integer variables p, q, s, t, k. If p and q have initial values 
m and n, procedure h (if terminating) determines values for s and t such that 
s x m + t x n is the greatest common divisor gcd. m. n of m and n. By convention, 
gcd.0.0 = 0. Formally, procedure h is specified by means of the set T of the 
Hoare  triples (x .m .n ,  h, y . m . n )  where m and n range over the integers and 
where the preconditions x. m. n are given by 

x . m . n = ( p  =m A q = n) 

and the postconditions y .m.  n are given by 

y .m .n=(s  x m + t x n=gcd.m.n).  

We now turn to the implementation. Procedure h is declared by 

h: : = ( b O : p > O A q = O - * r O : s , t : = l , O  

Db 1 : true ~ r 1 : k. .=arbitrary 

; p , q : = q , p - k x q  

;h 

; s , t , = t , s - k x t  

. 

In this declaration we use labels b0, b l to indicate the guards, and labels r0, 
r 1 to indicate the commands.  Clearly, procedure h need not terminate. Therefore, 
we only prove conditional correctness, that is wlp ~ T. By Theorem 4.3, it suffices 
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to verify formula (3). Let w e W L P  be such that w ~ T .  In order to prove 
F. wlp. w ~ T we observe that 

[x.m.n=*. F.  wlp. w .h . ( y .m .n ) ]  

-- {2(3) and declaration of h} 

[ x . m . n ~ ( - - n  b O v  w.rO.(y .m.n) )  ^ (--7 b 1 v w .r  l .(y.m.n))] 

- {b 1 = true and calculus} 

[ x . m . n  /x b O ~  w.rO.(y .m.n)]  ^ [ x . m . n ~  w.r  l . (y .m.n)] .  (6) 

The two conjuncts of (6) are verified separately. The first conjunct is proved 
in 

[ x . m . n  ^ bO=*.w.rO.(y.m.n)] 

-- {we WLP so that w. r0 = wlp.rO} 

[ x . m . n  ^ bO=> wlp.rO.(s x m +  t x n =  gcd.m.n)] 

- { r 0  = (s, t , =  1, 0 ) }  

[ p = m ^ q = n ^ p > O ^ q = O = > l  x m + 0 x  n = g c d . m . n ]  

- {calculus} 

true. 

In order to prove the second conjunct of formula (6), we write r l = ( s 0 ;  s l ;  
h; s2) with sO, s l ,  s 2 e S .  We use a different proof  format. The second conjunct 
is proved in 

w . r l . ( y . m . n )  

= {we WLP} w.(s0; s 1; h) . (wlp .s2 . (y .m.n))  

= {s2, y . m . n }  w.(s0; s 1; h).(t x m + ( s - k  x t) x n =gcd .m .n )  

= {calculus} w. (s 0; s 1; h). (s x n + t x ( m -  k x n) = gcd. n. ( m -  k x n)) 

~ { w e WLP,  w ~ T} wlp.(sO ; s l ). (p = n ^ q = m - k x n) 

= { s l }  w l p . s O . ( q = n ^ p - k x q = m - k x n )  

= {calculus } wlp. s O. (x. m. n) 

= {k does not occur in x . m . n }  x .m .n .  

This concludes the proof  of the conditional correctness of h. Conditional correct- 
ness in itself is useless. Terminat ion can be effected, however, by guiding the 
nondeterminacy. In other words, 

wlp. h .false = false. 

As it does not illustrate Theorem 4.3, the verification of this fact is left to the 
reader. 

5. Concluding Remarks 

We developed the semantics of recursion with unbounded nondeterminacy, 
expressed in terms of predicate transformers. The predicates were treated as 



332 W.H. Hesselink 

elements of a complete distributive lattice. The main technical features were 
a strong version of the theorem of Knaster-Tarski, cf. 1.3, a treatment of unfold- 
ing by means of the higher order function F of 2.2, and the use of the complete 
partially ordered set W of 2.3, The proofs of most theorems were straightforward 
applications of Theorem 1.3. 
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