

 University of Groningen

Predicate-Transformer Semantics of General Recursion
Hesselink, Wim H.

Published in:
Acta informatica

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1989

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Hesselink, W. H. (1989). Predicate-Transformer Semantics of General Recursion. Acta informatica, 26(4),
309-332.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 11-12-2022

https://research.rug.nl/en/publications/35692ae2-a806-4005-826b-5a117466004b

Acta Informatica 26, 309-332 (1989)

�9 Springer-Verlag 1989

Predicate-Transformer Semantics of General Recursion

Wim H. Hessetink
University of Groningen, Department of Computing Science, P.O. Box 800,
NL-9700 AV Groningen, The Netherlands

Summary. We develop the semantics of a language with arbitrary atomic
statements, unbounded nondeterminacy, and mutual recursion. The semant-
ics is expressed in weakest preconditions and weakest liberal preconditions.
Individual states are not mentioned. The predicates on the state space are
treated as elements of a distributive lattice. The semantics of recursion is
constructed by means of the theorem of Knaster-Tarski. It is proved that
the law of the excluded miracle can be preserved, if that is wanted. The
universal conjunctivity of the weakest liberal precondition, and the connec-
tion between the weakest precondition and the weakest liberal precondition
are proved to remain valid. Finally we treat Hoare-triple methods for proving
correctness and conditional correctness of programs.

O. Introduction

0.0. Recursion, Repetition, and Nondeterminacy

Most treatments of the semantics of repetitive or recursive constructs depend
on an assumption of bounded nondeterminacy. As recursion is less operational
and more general than repetition, we concentrate on recursion, cf. [10]. An
outline for a treatment of recursion was given as early as 1976 in [18], but
more detailed treatments such as [I0] and [2], Chap. 7, depended on continuity,
i.e. bounded nondeterminacy. In [I], the repetition is treated, under the weaker
assumption of countable nondeterminacy. Unbounded nondeterminacy for the
repetition is achieved in [7] and [9]. Inspired by [9], we constructed in [13]
an operational model for recursion with unbounded nondeterminacy. This model
leads to nice denotational characterizations of the semantics, but, as it heavily
depends on consideration of individual states, it tends to encourage operational
reasoning.

The present paper contains a purely formal treatment of recursion with
unbounded nondeterminacy. We express the semantics of our programming
language by means of weakest preconditions, cf. [4] and [10]. This method

310 W.H. Hesselink

is more suitable for programming methodology than the method of [2] and
[13], in which the semantics of a construct is determined by the set of possibly
resulting states for a given initial state.

0.1. The Semantic Functions wp and wlp

Following Dijkstra, cf. [4], we express the semantics of our programming lan-
guage by means of functions wp and wlp. If x is a predicate and t is a command,
the predicate wp(t, x) is the weakest precondition such that execution of t termi-
nates in a state where x holds. The predicate wlp(t, x) is the weakest precondition
such that x holds whenever execution of t terminates. Thus the weakest liberal
precondition wlp does not imply termination. In other words, wp represents
correctness and wlp represents conditional correctness. The predicate wp(t, true)
represents guaranteed termination. This leads to the requirement, cf. [5] :

wp(t, x) = wp(t, true) A wlp(t, X). (o)

It is easy to argue that the wlp of a conjunction of postconditions should be
the conjunction of the wtp's of the postconditions, cf. [5]. So, if Y is a set
of predicates, then

wlp(t, (rye Y" :y)) = (Vye Y: :wlp(t, y)). (1)

As a formalization of the fact that no precondition can guarantee termination
in a state where false holds, Dijkstra [4] postulates the so-called law of the
excluded miracle

wp(t, false) =false. (2)

In the semantics of recursion, however, syntactic enforcement of this law leads
to complicated formulae. Therefore, we follow De Bakker, cf. [2], p. 270, and
Nelson, cf. [17], in allowing violations of (2). A command t that violates (2)
is said to be partial. In states where wp(t, false) holds, command t is said to
fail, and implementations are supposed to perform backtracking, cf. [14] p. 470.
A command t that satisfies (2) is said to be total.

0.2. The Alternative Construct

The starting point for our treatment of recursion is Dijkstra's nondeterministic
alternative construct, cf. [4], in the form

h=if(OjeJ:b.j-~r.j) fi, (3)

where J is a set of indices, each guard b.j is a predicate, and each r.j is a
command. The operational interpretation is that one command r . j is executed

Predicate-Transformer Semantics of General Recursion 311

for which the guard b.j holds. If no guard holds, the construct does not terminate.
Formally, the semantics is defined by the preconditions

wp(h, x) = (3j; :b .j) A (Vj; ; --7 b .j v wp(r.j, x))

A wlp(h, x) = (Vj: :-7 b.j v wlp(r.j, x)) (4)

for any postcondition x.

0.3. Discussion of our Modifications

(a) In order to treat general recursion, formula (3) is regarded as the declaration
of a procedure h. Every procedure is supposed to be declared in this way.
The commands r.j are strings of simple commands. Every simple command
is either a statement of which the semantics is assumed to be known, or a
procedure which has some declaration. In this way recursion is possible, as
is mutual recursion.

(b) The index set J in (3) is allowed to be infinite. In this way, a value
parameter can be passed to the procedure, but unbounded nondeterminacy
can arise. Notice that the statements can also be unboundedly nondeterministic.

(c) Because of the conjunct (3j: :b.j) in wp(h, x), the procedure h leads to
abortion if all guards are false. This is an exception, which complicates the
semantics of recursion. Therefore, in this paper we delete this conjunct, cf. [2],
p. 272, [17]. This has the effect that if none of the guards holds, abortion is
replaced by failure, so that h is a partial command, cf. 0.1. In implementations,
one may want to impose the semantic restriction

(3j: : b.j) = true. (5)

Remark. The equality sign between predicates on the state space is used to
denote that the predicates are everywhere equivalent.

0.4. Procedure Declarations

Summarizing our modifications, we propose procedure declarations of the form

h : : = (0j e J: b.j ~ r.j) (6)

where J can be any set of indices, b.j is a predicate, r.j is a command. If
all predicates --7 b.j hold, execution fails, cf. 0.1. Declaration (6) is defined to
be total, if and only if

(Vj: :--7 b.j) = false. (7)

Notice that (7)=(5). We do not require that the commands r.j be total. For,
in case of recursion, such a condition would lead to circularity. We come back
to this in Sect. 2.8. In view of (4) and modification (c), the semantic functions

312 W.H. Hesselink

wp and wlp will be defined as solutions of the following equation in an unknown
function w

w (h, x) = (V j: : ~ b.j v w (r.j, x)). (8)

As the commands r.j may contain recursive calls of h, this equation need not
have a unique solution. We come back to this in Sect. 0.8 below. Notice that
step 0.3 (c) was crucial in obtaining a single equation for both wp and wlp.

0.5. Using a Partially Ordered Set

In programming practice, we write [x=~y] to denote that predicate x implies
predicate y everywhere on the state space. For the present purpose, however,
it is convenient to treat the implication abstractly as a partial order. Therefore,
the predicates are treated as elements of a partially ordered set (X, <) where
relat ion" ~ " is given by

x < y = [x =c-y]. (9)

The strongest predicate false corresponds to the smallest element 0 of X. The
weakest element true corresponds to the biggest element 1. The conjunction
operators A and V are replaced by the greatest lower bound operators A
and A , pronounced "meet". The disjunction operators v and 3 are replaced
by the least upper bound operators v and V , pronounced "join". The negation
operator " 7 " used in (7) and (8) could be an arbitrary function from X to
X. We abstract from all its special properties.

We need arbitrary least upper bounds and greatest lower bounds, and a
general form of distributivity. Therefore, X will be a complete distributive lattice,
cf. 2.0 and 3.1 below. This abstraction is justified by the fact that the set of
predicates on a state space satisfies all these axioms.

0.6. Notations for Functions

For the sake of uniformity, the application of a function is denoted by the
infix operator dot ".", cf. [8]. Composition of functions is denoted by the usual
circle "o". Dot and circle have the same high binding power. They bind from
left to right, so that f og . x=f . (g . x) . We use the currying convention that a
function of more than one argument is treated as a function of the first argument
which yields a function of the remaining arguments.

By convention, functions f and g on the same domain U are equal, if and
only i f f . u = g . u for every u~ U. Thus the well-known rule

(Vx: : wp((p ; q), x) = wp(p, wp(q, x)))

of [4] is expressed by

or equivalently
(Vx : : wp.(p; q).x =(wp.p)o(wp.q).x),

wp. (p; q) = (wp. p) o (wp. q).

Predicate-Transformer Semantics of General Recursion 313

0.7. The Language

Let A be a given set of symbols, to be called simple commands. Let A* denote
the set of finite strings of elements of A. The empty string is denoted by e.
The concatenation of strings p and q is denoted by "p; q", as used already.
The elements of A* are called commands.

We assume that A is the union of two disjoint subsets S and H, where
S is the set of the statements and H is the set of the procedure names. For
each statement s~S the semantics is supposed to be given, so that the predicate
transformers wp.s and wlp.s are known. Functions w, such as wp and wlp,
will be defined on the set A, and then extended to A* by the rule

w.(p;q)=(w.p)o(w.q). (10)

Therefore, it will remain to specify wp.h and wlp.h for each procedure heH.
Every procedure h has a declaration of the form

h: : =([]jEJ.h:b.j ~r. j) (11)

with b. jeX and r.jeA*, where J.h is an index set, which may depend on h.
Actually, some readers may want to impose the condition that the set J.h
for different values of h are disjoint. By formula (8), the functions wp and wlp
should be solutions of the system of equations in w

w.h .x=(Aj6J .h : :--q b . jv w.(r.j).x). (12)

0.8. Main Results

It will turn out that wp can be defined as the smallest solution of (12) that
extends wp as given on the statements. Similarly, wlp will be defined as the
greatest solution of (12) that extends wlp as given on the statements. This choice
for extending wp and wlp goes back to [18] and [10]. In [13], we showed
that a suitable operational model leads to functions wp and wlp which are
indeed the extreme solutions of Eq. (12).

Another justification for this choice is provided by the fact that the functions
wp and wlp thus defined have the expected properties. In fact we prove that
if all statements satisfy the requirements (0) and (1), then the procedures and
all commands satisfy these requirements. We also prove that if all statements
are total, cf. 0.1, and all procedure declarations are total, cf. 0.4, then all proce-
dures and all commands are total, cf. 0.1. Finally, if all statements and all
declarations are deterministic, then all commands are deterministic, see Sect. 3.5.

In Chap. 4, we develop Hoare-triple methods for proving termination, cor-
rectness and conditional correctness of programs. The methods are well-known.
New is that the validity is proved in a very general semantic formalism. As
an illustration we treat a very simple example in Sect. 4.4.

314 W.H. Hesselink

0.9. Aspects of Presentation

The braces "{" and "}" are used exclusively for comment within formal proofs.
We use the proof format exposed in [19] p. 2. We use a typed version of Dijk-
stra's quantification format, cf. [6]. The formula

(Vv~V:b.v:f.v)

denotes that f .v holds for every value vEV for which b.v holds. If the range
condition b. v is identically true, it can be omitted. The existential quantification
is determined by

(3v~ V:b.v: f .v)---1 (Vv~ V:b.v:-q f.v).

In each chapter, the referenced formulae are numbered consecutively. Formula
(j) of chapter i is referred to from other chapters as formula i(j).

1. A Variation of the Theorem of Knaster-Tarski

1.0. This chapter contains some background material on partially ordered sets.
In particular, we present a version of the theorem of Knaster-Tarski which
is slightly stronger than usual.

1.1. Partially Ordered Sets

Let W be a partially ordered set with order relation " < ". An element wO
of W is said to be a greatest lower bound of a subset U of W, if and only
if

(VweW: :w<wO--(Vu~U: :w<u)). (0)

If it exists, the greatest lower bound of a set U is unique. It is denoted by
(Au U: :u).

Reversing the order, we say that w 1 e W is a least upper bound of U, if
and only if

(Vw~W: :wl <w=(Vu~U: :u<w)). (1)

If it exists, the least upper bound of U is also unique. It is denoted by

(Vu u" :u).

1.2. Completeness and Closure

The partially ordered set W is said to be complete if and only if every subset
of W has a greatest lower bound and a least upper bound in IV.

A subset V of W is said to be closed under least upper bounds in W if and
only if for every subset U of V the set V contains an element that is the

Predicate-Transformer Semantics of General Recursion 315

least upper bound of U in W. Similarly, V is said to be closed under greatest
lower bounds in W if and only if for every subset U of V the set V contains
an element that is the greatest lower bound of U in W.

Remark. If V is closed under least upper bounds in W, then V is nonempty.
For, V contains the least upper bound of the empty subset U=0 . Similarly,
V is nonempty if it is closed under greatest lower bounds in W.

1.3. Fixed Points of Monotone Functions

A function f" W ~ W is said to be monotone, if and only if

(Vv, w e W : v < w : f . v < f.w).

An element w e W is called a f ixed point of function f if and only if f . w = w .
A subset V of W is said to be invariant under f, if and only if

(We V: "f. ve V).

The following result is a variation of the theorem of Knaster-Tarski, cf. [20].

Theorem. Let f: W ~ W be a monotone function. Let V be a subset of W, which
is closed under least upper bounds in W and which is invariant under f Then
V contains a f ixed point vO o f f which satisfies vO<=w for every w e W with
f . w ~ w. In particular, v 0 is the smallest f ixed point o f f in W.

Proof Let U be the subset of W given by

u e U = u e V ^ (Vwe W:f .w< w:u< w). (2)

Since U is a subset of V and V is closed under least upper bounds in W,, the
set V contains an element that is the least upper bound of U in W. Calling
this element v0, we have from (1) with w ! .-=v0

vOe V ^ (Vwe W: " vO< w - (V u e U : :u<w)). (3)

For any w e W we observe

f.w~w

(rue u: :u<w)

={(3)} v0<w.

By (2) and (3) this implies that v0e U. Instantiation of (3) with w :=vO gives

(VueU: :u_<v0). (4)

316

NOW we observe

W.H. Hesselink

vO< f.vO (5)

~{(2) with u,=vO and w.'=f.vO}

f.(LvO)< f.vO

~ { f is monotone}

fivO<vO (6)

~{(4)}

f.vO~U

r and V is invariant under f}

(Vw~ W:f .w< w:f.vO<__w)

r of < and range condition}

(Vw~W:f.w<w:f.vO< f.w)

~={f is monotone}

(Vwe W:f .w< w:vO < w)

-{vO~U and (2)}

true.

This reduction shows that the inequalities (5) and (6) hold. These inequalities
combine to yield vO=f.vO. This proves that v0 is a fixed point of f Since
vO~U, we have vO<w for every w~W with f .w<w. The last assertion of the
theorem follows from the fact that every fixed point w satisfies f .w < w. (End
of proof.)

Remark. I first used the above argument in 1-12] 8.2. I assume that the result
is known. Using transfinite induction one can prove the result under the weaker
assumptions that V is invariant under f and closed under least upper bounds
of totally ordered subsets.

2. The Semantics of Recursion

2.0. The Semantic Domain

In this chapter we formally construct the extended functions wp and wlp on
the set A, cf. 0.7.

Let X be a given partially ordered set with order relation <. We assume
that X is complete, cf. 1.2. The smallest element of X is denoted by 0, the
biggest one by 1. The elements of X may be regarded as predicates on a state
space. A function from X to X may be regarded as a predicate transformer.
We only consider monotone functions from X to X.

Predicate-Transformer Semantics of General Recursion 317

We use M to denote the set of the monotone functions X ~ X. The composi-
tion fog of functions f, g e M is an element of M. The identify function ident
of X is the unit element for the composit ion in M.

2.1. Semantic Functions

We refer to Sect. 0.7 for the introduction of the alphabet A = S w H and of the
language A*. We define W t o be the set of all functions w: A ~ M. Since composi-
tion in M is associative and has ident as unit element, any function we W has
precisely one extension to a function w: A * ~ M such that

w. ~ = ident (0)

(Vp, qeA*: :w.(p; q)=(w.p)o(w.q)). (1)

For any weW, we shall use the extended function w whenever appropriate.
Compare formula 0(10). F rom 0.7, every procedure h e l l is equipped with a
declaration of the form

h: :=(DjeJ .h :b . j~r . j) .

A function we W is called a semantic function, if and only if it satisfies formula
0(12), that is

(Vhe H, x e X ; : w . h . x = (/ \ j e J . h : :--1 b.j v w.(r.j).x)). (2)

Remark. The semantic functions used here correspond to the prepara tor func-
tions of [13].

2.2. Unfolding

In order to treat formula (2) as a fixed point equation, we introduce the unfolding
function F. For any given function wg: S ~ M , we define the function
F . w g : W ~ W b y

(Vwe W, seS, he l l , x e X : :

F . w g . w . s . x = w g . s . x A F . w g . w . h . x = (/ \ j e J . h " :---1 b.j v w.(r.j).x)). (3)

So F. wg. w agrees with wg on the statements s. For a procedure name h, function
F.wg.w.h is given as the r ighthand side of formula (2). One verifies that
F . w g . w . a e M for every we W and every aeA. Clearly, we W is a semantic func-
tion if and only if w = F.wg.w for some function wg, - in which case wg is
the restriction of w to the set S.

318 W.H. Hesselink

2.3. A Partial Order on W

We shall use the theorem of Knas t e r -Ta r sk i to ensure that every given funct ion
wg: S--* M can be extended to a semant ic funct ion w. Therefore, we in t roduce
a part ial order < on W by

w< w' =-(V aeA, x e X . w . a . x = w .a.x). (4)

The part ial ly o rdered set (IV,, <) is complete. In fact, a subset U of W has
a greatest lower b o u n d w0 and a least uppe r b o u n d w 1 in W given by

w O . a . x = (A u s U : :u.a.x) ^ w l . a . x = (V u s U " :u.a.x). (5)

The verifications are s t raightforward. F o r example, m o n o t o n y of w0 and w 1
is easy to show. The calculat ion

w<wO

--- {(4)} (Va, x: "w.a.x<-_wO.a.x)

=- {(5)} (Va, x: " w . a . x < (A u : :u.a.x))

= {1(0)} (Va, x ,u: : w . a . x < u . a . x)

= {(4)} (Vu: "w < u)

proves tha t w0 is the greatest lower bound.
Since the definition of F involves appl ica t ion of w to strings r.j, we extend

formula (4) to strings. F o r functions w, w 'e W,, we have

w < w ' = (V t e A * , x e X " :w . t . x<w' . t . x) . (6)

The impl ica t ion " ~ " follows f rom (4) and A c A * . The impl ica t ion "=~" is
p roved by induct ion on the length of string t. The case t = e follows f rom (0).
The induct ion step is

< , w . t . x : w . t . x

=z-{if a e A then w.a is mono tone} w.a . (w . t . x)<w.a . (w ' . t . x)

< , =~{(4) with x. '=w' , t. x and transi t ivi ty of < } w.a . (w. t. x) _ w . a. (w. t. x)

< , = {(1)} w.(a; t) . x = w .(a; t).x.

This concludes the p r o o f of (6).

2.4. Theorem. For any function wg:S ~ M, the function F. wg: W ~ W is mono-
tone.

Predicate-Transformer Semantics of General Recursion 319

Proof For any w, w' e W, we observe

F . w g . w < F . w g . w '

-= { (4)}

(VaeA, x e X : : F . w g . w . a . x < F . w g . w ' . a . x)

- {(3), use J. h as range for j}

(Vh ~ H, x E X: :(AJ: :-7 b.j v w. (r.j). x) _--< (AJ: :-7 b.j v w'. (r.j). x))

~ { m o n o t o n y of A and v }

(VteA*, x e X : : w . t . x ~ w ' . t . x)

- {(6)}

W <_~ W '.

(End of proof.)

Remark. This proof relies on (6). The proof of (6) relies on the monotony of
the functions in M. In 2.0, monotony was imposed for this reason. It does
not help to define the order of W by means of (6), since the above proof also
u s e s (4).

2.5. Theorem. For any function w g : S ~ M, the function F.wg: W ~ W has a
smallest f ixed point wg ~ and a greatest f ixed point wg 1 in W. The functions
wg ~ and wg ~ are the smallest and greatest semantic functions which agree with
wg on S.

Proof Since W is complete and F. wg is monotone, the existence of wg ~ follows
from Theorem 1.3 with V.'= 14(. The dual version of that theorem yields the
existence of wg ~. The last assertion of the theorem follows from 2.2. (End of
proof.)

Remark. Here we just use the ordinary version of the theorem of Knaster-Tarski.

2.6. The Postulate of Predicate-Transformer Semantics

We assume that the semantics of the statements s e S is given by weakest precon-
ditions and weakest liberal preconditions, cf. [4]. So we assume given a weakest
precondition function wp: S--* M and a weakest liberal precondition function
wlp: S ~ M.

The weakest precondition function on A is defined as the smallest semantic
function which extends wp on S. So, it is the function wp~ A ~ M, cf. 2.5. The
weakest liberal precondition function on A is defined as the greatest semantic
function which extends wlp: S - * M . So it is the function wlpl: A ~ M , cf. 2.5.
If no ambiguity can arise we write wp and wlp instead to wp ~ and wlp 1. This
is rather harmless, as wp ~ and wlp a are extensions of the functions wp and
wlp, respectively.

320 W.H. Hesselink

2.7. Remarks. The above definition can be justified by its simplicity, or by many
references, cf. [10, 16, 18], or by an operational model. Following [9], we devel-
oped in [13] an operational model in which the functions wp and wlp are
proved to be the extreme semantic functions. Actually, they remain extreme
if the monotony condition of 2.0 is dropped. I cannot achieve this in the abstract
setting. For the translation, it may be noted that in [13] the symbol X stands
for the set of states, so that the power set ~ (X) corresponds to the set X
of the present paper.

The recursive equation w = F. wg. w is an equation of second order functions.
In the case of simple recursion, however, the set H consists of one procedure,
say h. So, in that case, the equation boils down to one equation in the "predicate
transformer" w.heM. In the last part of [17], it is shown that in the case
of tail recursion the equation can be specialized to equations in the predicates
w . h . x .

2.8. The Law of the Excluded Miracle

In this section we show that the law of the excluded miracle is equivalent to
that same law restricted to the statements in conjunction with the totality of
the declarations. In other words we prove

Theorem. All commands are total if and only if all statements and all declarations
are total.

Proof By 0.1 and 0.5, a command t is total if and only if wp.t.O=O, and the
declaration of a procedure h is total if and only if (A j E J . h: :--1 b.j)= O.

Let all commands be total. Clearly, all statements are total. For a procedure
h~H, totality of h implies totality of its declaration because of

wp.h.O=O

- {2.6} F.wp.wp.O=O

- {(3)} (AJ ~ J. h: :--q b.j v wp. (r.j). O) = 0

=~{calculus} (A j ~ J. h: :--1 b.j) = O.

For the proof of the other implication, we construct an auxiliary function. Let
u ~ W be given by

(Va~A : : u . a . 0 = 0 ^ (Vx~X:x+O:u .a .x= 1)). (7)

Function u is the biggest function that treats all simple commands as total.
In fact, by (4) and (7), we have

(Vw~W: : w < u - (V a ~ A : :w.a.0=0)) . (8)

Predicate-Transformer Semantics of General Recursion

Now we observe that

321

(VteA* : :wp.t.O=O)

= {induction on the length of string t, using (0) and (1)}

(VaEA: :wp.a.O=O)

- {(8)}

wp <= u

~{Theorem 1.3 with V..= W, f , = F . wp, w ,=u,
and hence v0 = wp, the smallest fixed point o fF . wp}

F.wp.u<u

-{(8)}
(VaeA: :F.wp.u.a.O=O)

-{(3)}
(VseS: :wp.s.O=O)A(VheH: : (A jeJ .h : :-nb.jvu.(r.j).O)=O)

-= {calculus}

(Vs~S: :wp.s.O=O)A(Vh~H: : (Aj~J .h: :--n b.j) =0).

This proves that totality of all commands follows from totality of all statements
and all declarations. (End of proof.)

3. Properties of wp and wlp

3.0. In this chapter we show that the semantic functions wp and wlp have the
properties 0(0) and 0(1), provided that these properties hold for the statements
and that the partially ordered set X satisfies certain distributivity laws. We
use Pow.X to denote the power set of X. In the last subsection we consider
the deterministic theory. If all statements are deterministic and all declarations
are deterministic, we prove that all comands are deterministic.

3.1. Postulates

We assume that all statements satisfy the formulae 0(0) and 0(1). By 0.5 and
0.6, this gives the postulates

(Vse S, xe X : : wp.s.x = wp.s. 1 ̂ wlp.s.x), (0)

(VseS, Y~Pow.X: :wlp .s . (Ayer: : y)=(AyeY: :wlp.s.y)). (1)

W.H. Hesselink 322

Moreover, we postulate the distributivity laws

(VxeX, YePow.X: :x v (Aye Y: : y) = (/ \ y e Y: :x v y)), (2)

(VxeX, YePow.X: :x ^ (Vye Y: :y) = (V y e Y: :x ^ y)), (3)

Remark. It is justified to postulate these laws, as they are satisfied by the set
of boolean functions on a state space. In [3], p. 229, these laws are denoted
by D 1 and DT.

3.2. Universal Conjunctivity

It turns out that in order to extend formula (0) we need a weak version of
the extension of formula (1). Therefore, we start by extending formula (1) to
command strings r

Theorem. For every teA* and YePow.X we have

wlp. t . (Aye Y: : y)= (Aye Y: : wlp.t, y).

Proof. Let M0 denote the subset of M given by

f e M O - (V Y e P o w . X : : f . (/ \ yeY: : f . y)=(/ \ yeY: :f.y)). (4)

Let W0 denote the subset of W given by

weWO=(VaeA: :w.aeMO). (5)

For elements f, geM0, the composition fog is also element of M0. Therefore,
it follows from (5) by the extension rules 2(0) and 2(1) that

(Vwe WO, teA* : :w. teMO). (6)

Now the theorem is equivalent to wlpeWO. By 2.6, wlp is the greatest fixed
point of the monotone function F.wlp in W. Therefore, by the dual version
of Theorem 1.3 with V=WO, it suffices to prove

(a) W0 is closed under greatest lower bounds in W.

(b) W0 is invariant under F. wlp.

These two facts are proved in the Lemmas (a) and (b) below. (End of proof.)

Lemma (a). The set WO is closed under greatest lower bounds in W.

Proof. Let U be a subset of W0. By 2.3, the set U has a greatest lower bound
u0 in Wgiven by

uO.a .x=(/ \ueU: :u.a.x). (7)

Predicate-Transformer Semantics of General Recursion 323

For any subset Y of X and any element aeA , we observe

u O . a . (f y e Y: :y)

={(7)} (A u � 9 u : : u . a . (f y � 9 :y))

= { U c W0, and (5) and (4)} (A u e u : ; (Ay e Y: : u.a. y))

= {interchange} (A y e Y: : (A u �9 u : :u.a.y))

= {(7)} (Ay �9 Y: :uO.a.y).

By (4) and (5), this proves that u 0 � 9 W0. (End of proof).

Lemma (b). The set WO is invariant under F. wlp.

Proof Let w � 9 be given. For any s e S we have

F. wlp. w.s

= {2(3)} wlp.s

e {(1), (4)} M0.

For any h e l l and any subset Y of X, we observe

F . w l p . w . h . (f y e Y: :y)

= {2 (3)} (f J e J. h: :-7 b.j v w. (r.j). (f y e Y: :y))

= {w e wo, (5), (6)} (f J e J . h: : -7 b.j v (f y �9 Y: : w. (r.j). y))

= {distributivity law (2)} (AjeJ.h: : (Ay�9 Y: :--7 b.j v w.(r.j).y))

= {interchange and 2 (3)} (f y �9 Y: : F. wlp. w. h. y),

so that F . w l p . w . h � 9 by (4). By formula (5), this proves that F . w l p . w e W O ,
as required. (End of proof.)

3.3. The Separation of Termination and Conditional Correctness

Theorem. (Vt cA*, x e X : : w p . t . x = w p . t . 1 A wlp. t .x) .

Proof. Let W 1 be defined as the subset of W given by

we W1 - (VaeA, x e X : : w . a . x = w.a .1 A wlp.a.x) . (8)

Below in Lemma (c) we prove

(Vwe W1, teA*, x e X : : w . t . x = w . t .1 A wlp. t .x) .

Now the theorem is equivalent to w p e W 1 . By 2.6, wp is the smallest fixed
point of the monotone function F . w p in W. Therefore, by 1.3 with V..=W1,
it suffices to prove

324 W.H. Hesselink

(d) W1 is closed under least uppe r bounds in W.

(e) W 1 is invar iant under F. wp.

These facts are p roved below in the L e m m a s (d) and (e). (End of proof.)

L e m m a (e). Let w e W 1 and t eA* . Then (V x e X : : w. t .1 ^ wlp. t. x).

Proof. This is p roved by induct ion in the length of string t. F o r t:=e, we have

w . e . x = w.e . 1 ^ w lp . e . x

- { 2 (0) } x = 1 ^ x

= { x < l } true.

F o r t : = a ; t with a e A , we observe

w.(a; t) .x = w.(a; t). 1 ^ wlp.(a; t) .x

={2(1)}

w . a . (w . t . x) = w . a . (w . t . 1) ^ wlp .a . (w lp . t . x)

= {(8) with x ,=w. t .x , and also with x.-=w, t. 1}

w.a . 1 ^ w l p . a . (w . t . x) = w.a . 1 ^ wlp .a . (w, t. 1) ^ wlp .a . (w lp . t . x)

,*={calculus}

wlp. a. (w. t. x) = wlp. a. (w. t. 1) A wlp. a. (wlp. t. x)

, = { T h e o r e m 3.2 with t. '= a, and where Y consists of w. t. 1 and wlp. t. x}

w . t . x = w . t . 1 ^ w lp . t . x .

This proves the induction. (End of proof.)

L e m m a (d). The subset W 1 is closed under least upper bounds in W.

Proof. Let w l be the least b o u n d in W of a subset U of W1. F o r any a e A
and x e X we observe

w l . a . x = w 1.a. 1 ^ w l p . a . x

- {2(5)} (k / u e U : : u . a . x) = (V u e U : : u . a . 1) A w l p . a . x

= {distributivity law (3)} (k /u e U: : u. a . x) = (k /u e U: : u. a. 1 A wlp. a. x)

---- { U c W 1 and (8)} true.

This proves tha t w 1 e W 1. (End of proof.)

L e m m a (e). The set W 1 is invariant under F. wp.

Proof. Let w e W 1 and x e X . F o r seS , we observe

F . w p . w . s . x = F . w p . w . s . 1 ^ w l p . s . x

= {2(3)} w p . s . x = wp.s . 1 ^ w l p . s . x

= {postulate (0)} true.

Predicate-Transformer Semantics of General Recursion 325

For any h e l l we have

F . w p . w . h . x

= {2(3), use J .h as range for j}

(AJ: : m b.j v w. (r.j). x)

= {we W1 and Lemma (c)}

(A J : : --q b .j v (w. (r.j). 1 A wlp. (r.j). x))

= {distributivity law (2) and calculus}

(/kJ: : --q b .j v w. (r.j). 1) A (/~j: : --q b .j v wlp. (r .j). x)

= {2(3) with wg, w :=wp, w, and also with wg, w:=wlp, wlp}

F .wp .w .h . 1 A F .wlp .wlp .h .x

={2.6}

F.wp .w .h .1 ^ wlp.h.x.

This proves that F. wp. we W 1. (End of proof).

Remarks. In definition 2(3) we kept the first argument of F explicit because
of the proof of this lemma. If it was endurable, that is due to our currying
convention. The above theorem can be compared with Hehner's result in [11]
Sect. 5.3.2. It should be noticed, however, that the semantics of [11] is defined
by means of the limit of the iterated unfoldings, and not by means of extreme
fixed points. So, in the case of unbounded nondeterminacy, our semantics differ
from those of [11].

3.4. Remark. As is well known, the Theorems 3.2 and 3.3 imply that the predicate
transformers wp. t commute with nonempty conjunctions. In fact, for any com-
mand t and any nonempty set Y of predicates we have

w p . t . (/ k y e Y: : y)

={3.3} wp.t .1 ^ w l p . t . (/ \ y e Y: : y)

={3.2} wp.t .1 ^ (/ \ y e Y : : wlp.t, y)

= { Y * 0 } (/ \ y e Y: : wp.t .1 ^ wlp.t, y)

= {3.3} (A y e Y: :wp.t.y).

3.5. Determinacy of Commands

In this section we need the negation of predicates with all its usual properties.
Therefore, X is supposed to be a complete Boolean lattice, and --7 is the negation
operator.

A command t is defined to be deterministic if for every predicate x the
following holds. If t starts in a state not satisfying wp. t.x, then t does not

326 W.H. Hesselink

terminate or terminates in a state that satisfies --1 x. So, formally, t is deterministic
if and only if

(VxeX: :--7 wp. t . x<wlp . t . (-q x)). (9)

A declaration h: : = (Bj e J. h:b.j ~ r.j) is called deterministic if and only if

(Vi , jeJ .h: iJej:b. i A b.j=O). (10)

Theorem. Let all statements and all declarations be deterministic. Then all com-
mands are deterministic.

Proof We define the subset W2 of W by

we W 2 - (V aeA, x e X : :--1 wp .a .x < w.a.(-n x)). (11)

Below in Lemma (f) we prove that

(Vwe W2, teA*, x e X : :--1 w p . t . x < w . t . (~ x)).

Therefore, the theorem is equivalent to wlpeW2. By 2.6, wlp is the biggest
fixed point of F.wlp in W. Thus, by the dual version of 1.3 with V:= W2, it
suffices to prove

(g) W2 is closed under greatest lower bounds in W.
(h) W2 is invariant under F. wlp.

These facts are proved in the Lemmas (g) and (h) below. (End of proof.)

Lemma (O. Let w e W 2 and teA*. Then (VxeX: :--1 w p . t . x < w . t . (~ x)).

Proof We use induction on the length of string t. For t=e, it suffices by 2(0)
to note that - q x < m x . For t :=a; t with aeA we have

wp.(a; t).x

= {2(1)} m wp.a.(wp. t .x)

< {(11)} w.a.(--n wp. t .x)

< {induction and monotony of w. a} w.a. (w. t. (--1 x))

= {2(1)} w.(a; t).(--n x).

This proves the induction. (End of proof.)

Lemma (g). The subset W2 is closed under greatest lower bounds in W.

Proof Let w be the greatest lower bound in W of a subset U of W2. For
any aeA and x e X we have

~ w p . a . x < w . a . (~ x)

- {2(5) and 1(0)} (Vue U: :--1 w p . a . x < u.a.(-n x))

-{(11)} (rue u: :ueW2).

By (11), this proves that we W2. (End of proof.)

Lemma (h). The set W2 is invariant under F. wlp.

Predicate-Transformer Semantics of General Recursion

Proof F o r any we W2 we have

F . w l p . w e W 2

= {(11) and 2 (3)}

(V x e X , seS: :-7 wp.s.x<=wlp.s.('-7 x))

A (V x e X , h e l l : :--7 w p . h . x < F . w l p . w . h . (~ x))

-= {all s e S are deterministic, (9), wp = F. wp. wp}

(V x e X , h e l l : :--7 F . w p . w p . h . x < F . w l p . w . h . (~ x)) .

We fix x and h. It remains to observe that

--1 F. wp. wp .h . x < F. wlp. w.h.(-n x)

= {2(3), use J .h as range for i and j}

-'1 (A i : :---1 b. i v wp. (r. i). x) <= (AJ : : --q b.j v w. (r.j). (--1 x))

- {De Morgan}

(W i: : b. i a "--1 wp. (r. i). x) <= (AJ : : "-q b .j v w. (r.j). (---1 x))

~- {1(0) and 1(1)}

(Vi, j : : b . i ^ ~ w p . (r . O . x < - - n b . j v w . (r . j) . (- q x))

~ { t r a n s i t i v i t y of < }

(Vi, j:i=~j:b.i <=--q b.j) A (Vj : :--q wp.(r . j) .x <= w.(r.j).(--q x))

- {calculus, and we W2 and L e m m a (f)}

(Vi, j e J . h : i @j:b.i ^ b . j = 0)

- {all declara t ions are determinist ic, (10)}

true.

(End of proof.)

327

wlp.t.(---n x) <="-n w p . t . x

~- {calculus} wp. t. x A wlp. t. (--1 X) = 0

= {3.3} wp.t . 1 ^ w lp . t . x ^ wlp.t.(--q X) = 0

---- {3.2} wp. t . 1 A wlp . t . (x A --7 X) = 0

-- {3.3 and calculus} wp.t .O=O

- {0.1 and 0.5} c o m m a n d t is total.

Remark. I f c o m m a n d t is total , the inequal i ty in fo rmula (9) is equivalent to
equality. In fact, for any c o m m a n d t and any predicate x we have

328 W.H. Hesselink

4. Hoare-Triple Methods

4.0. Hoare Triples

Usually, one is interested in establishing specific postconditions, not arbitrary
ones. Moreover, one may be happy with suitable preconditions which are not
weakest preconditions. Therefore, Hoare triples are introduced as specifications.
Hoare triples of recursive procedures generalize both the invariant of a loop,
and the variant function.

We define a Hoare triple to be a triple (x, h, y) with x, y e X and hel l .
Hoare's relation {x} h{y} is represented by [x=:,w.h.y]. So it depends on a
semantic function w. In our formalism this relation is represented by x < w. h. y,
cf. 0.5.

We first treat termination and correctness. For the case of simple recursion,
the result is contained in [15] Sect.6. We refer to I-7] for the use of well-founded
sets in termination proofs.

4.1. Theorem. Let C be a well-founded set. Let ((x.c, h.c, y . c) :ceC) be a family
of Hoare triples such that for every ceC we have

(V de C :d < c : x .d < wp.(h.d).(y.d))=>(VjeJ.(h.c) : : x .c < ~ b.j v wp.(r.j).(y.c)). (0)

Then for every c e C, it holds that x. c < wp. (h. c). (y. c).

Proof By induction over the well-founded set C, this follows from the fact
that for every c e C we have

x.c<wp.(h.c) . (y .c)

= {2.6} x .c<F.wp.wp.(h .c) . (y .c)

- {2(3)} x . c < (A j e J . (h . c) : :-"1 b.j v wp.(r.j).(y.c))

- { 1 (0)} (Vj e J . (h. c): : x. c < --1 b .j v wp. (r.j). (y. c))

~={(0)} (V deC :d <c:x .d < wp.(h.d).(y.d)).

(End of proof.)

4.2. Remark. The method of proving termination by means of 4.1 is complete
for the following reason. Let the set H be ordered by (h<h')=(h=h'). This
ordering is well-founded. Now the family of Hoare triples (wp.h.1, h, 1) with
h e l l satisfies formula (0). In fact, that formula reduces to

(VheH, j eJ .h" : wp.h. 1 <--7 b.j v wp.(r.j). 1),

and the calculation in the above proof shows that this is true. The triviality
of this completeness proof indicates that in general it may be difficult to establish
formula (0).

Predicate-Transformer Semantics of General Recursion 329

4.3. The Induction Theorem of Conditional Correctness

The next result generalizes Hoare's recursion rule, cf. [0] p. 444, to the case
of unbounded nondeterminacy and mutual recursion. If T is a set of Hoare
triples, a function we W is said to satisfy specification T, notation w ~ T, if and
only if

(V(x ,h , y)eT: :x<w.h.y). (1)

Let WLP denote the subset of W given by

weWLP- (VseS : :w.s=wlp.s). (2)

Theorem. Let T be a set of Hoare triples such that

(VweWLP:w~ T:F.wlp.w~ T). (3)

7hen wlp ~ T.

Proof We define W3 to be the subset of Wgiven by

w e W 3 = w e W L P ^ w ~ T. (4)

By 2(3), we have F. wlp. we WLP for any we W. Therefore, the set WLP is invari-
ant under F.wlp. By (3), it follows that W3 is invariant under F.wlp as well.

(Remark. We are heading for an application of the dual of Theorem 1.3,
but WLP and W3 need not be closed under greatest lower bounds in W. The
greatest lower bound of the empty set in W is the function w 1 given by
w l . a . x = 1 for all aeA and xeX . Usually, wlq~WLP.)

The set WLP with the order relation " < " inherited from W is a complete
partially ordered set. For example, the greatest lower bound in WLP of a subset
U is the function w0 given by wOe WLP and

(VheH, x e X : "wO.h.x=(AueU: :u.h.x)). (5)

The subset W3 of WLP is closed in WLP under greatest lower bounds. For,
with U and w0 as above, we have

wOeW3

= {(1) and (4)} (V (x, h, y> e T: :x < w 0. h. y)

- {(5)} (V(x, h, y) e T: :x<(/kueU: :u.h.y))

- {1(0)} (V(x ,h ,y)eT, ueU: :x<u.h.y)

= {(1) and (4)} (Vue U: :ue W3).

Since wlp is the greatest fixed point in WLP of the monotone function
F. wlp:WLP ~ WLP, it follows from the dual of Theorem 1.3 that wlp e W3. This
proves that wlp ~ T. (End of proof.)

330 W.H. Hesselink

Remark. This theorem shows that in order to prove [x=c, wlp.h.y] for all triples
(x, h, y) ~ T, it suffices to prove that [x=~F.wlp.w.h.y] for all triples (x, h, y) e T
and all functions w E W with

(VseS: :w.s = wlp.s) A (V(x, h, y) e T: :[x=~w.h.y]).

In other words, to prove conditional correctness of a specification T, it suffices
to prove correctness of the first unfoldings with respect to all functions w that
are equal to wlp on the statements and that satisfy specification T on the proce-
dures.

4.4. Example: A Euclidean Algorithm

We illustrate Theorem 4.3 by means of a nondeterministic and not necessarily
terminating implementat ion of the euclidean algorithm. Procedure h works on
a state space of five integer variables p, q, s, t, k. If p and q have initial values
m and n, procedure h (if terminating) determines values for s and t such that
s x m + t x n is the greatest common divisor gcd. m. n of m and n. By convention,
gcd.0.0 = 0. Formally, procedure h is specified by means of the set T of the
Hoare triples (x .m .n , h, y . m . n) where m and n range over the integers and
where the preconditions x. m. n are given by

x . m . n = (p =m A q = n)

and the postconditions y .m. n are given by

y .m .n=(s x m + t x n=gcd.m.n).

We now turn to the implementation. Procedure h is declared by

h: : = (b O : p > O A q = O - * r O : s , t : = l , O

Db 1 : true ~ r 1 : k. .=arbitrary

; p , q : = q , p - k x q

;h

; s , t , = t , s - k x t

.

In this declaration we use labels b0, b l to indicate the guards, and labels r0,
r 1 to indicate the commands. Clearly, procedure h need not terminate. Therefore,
we only prove conditional correctness, that is wlp ~ T. By Theorem 4.3, it suffices

Predicate-Transformer Semantics of General Recursion 331

to verify formula (3). Let w e W L P be such that w ~ T . In order to prove
F. wlp. w ~ T we observe that

[x.m.n=*. F. wlp. w .h . (y .m .n)]

-- {2(3) and declaration of h}

[x . m . n ~ (- - n b O v w.rO.(y .m.n)) ^ (--7 b 1 v w .r l .(y.m.n))]

- {b 1 = true and calculus}

[x . m . n /x b O ~ w.rO.(y .m.n)] ^ [x . m . n ~ w.r l . (y .m.n)] . (6)

The two conjuncts of (6) are verified separately. The first conjunct is proved
in

[x . m . n ^ bO=*.w.rO.(y.m.n)]

-- {we WLP so that w. r0 = wlp.rO}

[x . m . n ^ bO=> wlp.rO.(s x m + t x n = gcd.m.n)]

- { r 0 = (s, t , = 1, 0) }

[p = m ^ q = n ^ p > O ^ q = O = > l x m + 0 x n = g c d . m . n]

- {calculus}

true.

In order to prove the second conjunct of formula (6), we write r l = (s 0 ; s l ;
h; s2) with sO, s l , s 2 e S . We use a different proof format. The second conjunct
is proved in

w . r l . (y . m . n)

= {we WLP} w.(s0; s 1; h) . (wlp .s2 . (y .m.n))

= {s2, y . m . n } w.(s0; s 1; h).(t x m + (s - k x t) x n =gcd .m .n)

= {calculus} w. (s 0; s 1; h). (s x n + t x (m - k x n) = gcd. n. (m - k x n))

~ { w e WLP, w ~ T} wlp.(sO ; s l). (p = n ^ q = m - k x n)

= { s l } w l p . s O . (q = n ^ p - k x q = m - k x n)

= {calculus } wlp. s O. (x. m. n)

= {k does not occur in x . m . n } x .m .n .

This concludes the proof of the conditional correctness of h. Conditional correct-
ness in itself is useless. Terminat ion can be effected, however, by guiding the
nondeterminacy. In other words,

wlp. h .false = false.

As it does not illustrate Theorem 4.3, the verification of this fact is left to the
reader.

5. Concluding Remarks

We developed the semantics of recursion with unbounded nondeterminacy,
expressed in terms of predicate transformers. The predicates were treated as

332 W.H. Hesselink

elements of a complete distributive lattice. The main technical features were
a strong version of the theorem of Knaster-Tarski, cf. 1.3, a treatment of unfold-
ing by means of the higher order function F of 2.2, and the use of the complete
partially ordered set W of 2.3, The proofs of most theorems were straightforward
applications of Theorem 1.3.

Acknowledgements. During the academic year 1986-1987, when I was on sabbatical leave in Austin,
Texas, I relearned mathematical methodology and predicate calculus from E.W. Dijkstra. My view
of mathematics and computing science was influenced immensely. This paper was written at the
end of that fruitful year. It was mainly prompted by Dijkstra's appreciation of [17]. I am indebted
to the Austin Tuesday Afternoon Club for constructive comments on an early version of the paper,
and to the Department of Computing Sciences at Austin for its hospitality and support. Many
improvements in the presentation are due to suggestions of the members of the Wednesday Morning
Club at Groningen.

References

0. Apt, K.R.: Ten years of Hoare's logic: a survey - Part I. ACM Trans. Program. Lang. Syst.
3, 431-483 (1981)

1. Apt, K.R., Plotkin, G.D.: Countable nondeterminism and random assignment. J. ACM 33, 724-767
(1986)

2. De Bakker, J.W.: Mathematical theory of program correctness. London: Prentice-Hall 1980
3. Balbes, R., Dwinger, P.: Distributive lattices. University of Missouri Press 1974
4. Dijkstra, E.W.: A discipline of programming. London: Prentice-Hall 1976
5. Dijkstra, E.W.: Semantics of straight-line programs (draft of Chap. 4) EWD 910 (1985)
6. Dijkstra, E.W.: The calculus of boolean structures (Part 1). EWD 1002, March 1987
7. Dijkstra, E.W., van Gasteren, A.J.M.: A simple fixpoint argument without the restriction to conti-

nuity. Acta Inf. 23, 1-7 (1986)
8. Dijkstra, E.W., van Gasteren, A.J.M.: On notation, AvG 65 a/EWD 950a, January 1986
9. Dijkstra, E.W., Scholten, C.S.: The operational interpretation of extreme solutions. EWD 883

(1984)
10. Hehner, E.C.R.: do considered od: a contribution to programming calculus. Acta Inf. 11, 287-304

(1979)
11. Hehner, E.C.R.: The logic of programming. New York: Prentice-Hall 1984
12. Hesselink, W.H.: Nondeterminism in data types, a mathematical approach. ACM Trans. Program.

Lang. Syst. 10, 87-117 (1988)
13. Hesselink, W.H.: Interpretations of recursion under unbounded nondeterminacy. Theor. Comput.

Sci. 59, 211-234 (1988)
14. Hoare, C.A.R.: Some properties of predicate transformers. J. ACM 25, 461-480 (1978)
15. Martin, A.: A general proof rule for procedures in predicate transformer semantics. Acta Inf.

20, 301-313 (1983)
16. Meyer, J.-J.Ch.: Programming calculi based on fixed point transformations: semantics and applica-

tions. Thesis, Vrije Universiteit Amsterdam 1985
17. Nelson, G." A generalization of Dijkstra's calculus. SRC Report (DEC), April 1987
18. De Roever, W.P.: Dijkstra's predicate transformer, non-determinism, recursion, and termination.

In: Mathematical foundations of computer science. LNCS 45, Springer 1976, pp. 472-481
19. Van de Snepscheut, J.L.A.: Trace theory and VLSI design. LNCS 200. Berlin Heidelberg New

York: Springer 1985
20. Tarski, A.: A lattice theoretical fixpoint theorem and its applications. Pacific J. Math. 5, 285-309

(1955)

Received December 3, 1987/August 30, 1988

