

 University of Groningen

LR-PARSING DERIVED
Hesselink, Wim H.

Published in:
Science of computer programming

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1992

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Hesselink, W. H. (1992). LR-PARSING DERIVED. Science of computer programming, 19(2), 171-196.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 11-10-2022

https://research.rug.nl/en/publications/c794eada-9b28-4b3a-b70d-4ae1e23a78c3

Science of Computer Programming 19 (1992) 171-196

Elsevier

171

LR-parsing derived

Wim H. Hesselink
Rijksuniversiteit Groningen, Department of Computing Science, P.O. Box 800,

9700 A V Groningen, Netherlands

Communicated by M. Rem

Received June 1989

Revised March 1991

Absrmct

Hesselink, W.H., LR-parsing derived, Science of Computer Programming 19 (1992) 171-196.

The LR(k)-parsing algorithm is derived, i.e., presented and proved as an interplay between

program development and parsing theory. The program development uses invariants and the new

concept of weakest angelic precondition. The parsing theory involved relates rightmost derivability

to three other transitive relations on strings. The usual stack of item sets and the finite automaton

appear in an optimisation of the abstract algorithm.

0. Introduction

The purpose of this note is to derive and prove the LR-parsing algorithm of Knuth

(cf. [7]). The reader is advised to forget momentarily most of what he or she might

know of this algorithm. We do not start from scratch completely. The reader is

supposed to know context-free grammars and languages, and rightmost derivations.

The major prerequisite for reading this note is an acquaintance with predicate

calculus and a tendency towards formal verification.

The main argument can be summarised as follows. For any context-free grammar

we derive a nondeterministic algorithm that may accept any sentence of the language

and cannot accept other strings. If the grammar satisfies the LR(k) condition, the

algorithm is deterministic and accepts all sentences of the language.

The structure of the paper is as follows. In Section 1 we compare the angelic

nondeterminacy of language theory with the demonic nondeterminacy usually

associated with program correctness. In Section 2 we fix some notations. A first

approximation of the parsing algorithm is developed in Section 3.

Correspondence to: W.H. Hesselink, Rijksuniversiteit Groningen, Department of Computing Science,

P.O. Box 800, 9700 AV Groningen, Netheriands. E-mail: wim@cs.rug.nl.

0167-6423/92/$05,00 @ 1992--El sevier Science Publishers B.V. All rights reserved

172 W. H. Hesselink

Section 4 forms the heart of the paper. We introduce a “heuristic” predicate to

guide the nondeterminacy by means of k look-ahead symbols. This predicate is

used to derive an algorithm in which certain sets of strings are needed. Subsequently,

we derive a recurrence equation for these sets. The sets are used in algorithm P2,

which is proved here to be conditionally correct in the sense that it can only terminate

for sentences of the language.

In Section 5 we investigate the relationship between the heuristic predicate and

rightmost derivations. The results are used in Section 6 to prove that under angelic

nondeterminacy any sentence of the language can be accepted by program P2.

Section 7 contains the traditional LR(k)-parsing algorithm, called P4, that uses a

finite automaton and a stack of item sets. It is obtained as an optimisation of program

P2.

in Section 8 we reach the conclusion: if the grammar satisfies the LR(k) condition,

algorithm P4 accepts the language. It is also shown that an easy modification of

the algorithm generates an error message if the input string does not belong to the

language.

Section 9 is devoted to the determination of a set-valued function Rks that is

introduced in Section 4. Here the complications appear that are due to the possibility

of &-productions. Finally, in Section 10 we summarise some distinctive features of

our approach in comparison with Knuth’s paper 171.

Our presentation of LR-parsing is an interplay between parsing theory and

program development. The theory could have been separated completely from the

program development. We prefer, however, to develop the theory according to the

needs of the program. For the ease of the reader, we use the symbol “Theory” to

indicate the fragments of the parsing theory, and the symbof “Program” for the

parts of the program development.

1. Nondeterminacy and language acceptors

Program. In language theory and complexity theory, nondeterminacy of some

mechanism usually leads to the question of whether the mechanism admits at least

one computation with a certain property (cf. [6, p. 19, p. 1631). This point of view

is called the angelic appreciation of nondeterminacy. In programming methodology

one usually asks whether all (or all terminating) computations satisfy a certain

property (cf. [l, 7.3; 2; 3, Chapter 71). This point of view is called the ~em~ffjc

appreciation. Here we investigate a possibly nondeterministic algorithm for the

parsing of languages. Therefore, we must be careful about the appreciation of

nondeterminacy.

If X is a boolean function on the state space, we let [X] denote the proposition

that X holds everywhere on the state space. In particular, [X2 Y] is the proposition

that 1X v Y holds everywhere, i.e. that X is stronger than Y. For a command P
we write wp.P.X to denote the weakest precondition such that every computation

LR-parsing derived 173

of P terminates in a state where X holds. We write w1p.P.X to denote the weakest

precondition such that every terminating computation of P terminates in a state

where X holds (cf. [3, Chapter 71). The predicate transformers wp and wlp represent

the demonic appreciation of nondeterminacy (and wfp corresponds to conditional

correctness).

Let us introduce the weakest angelic precondition wap, by specifying that wap.PX

is the weakest precondition such that P has at least one computation that terminates

in a state where X holds. Clearly, P has a computation that terminates in a state

where X holds if and only if it is not the case that every terminating computation

terminates in a state where IX holds. Therefore, we have

(0) [wap.P.X = 1wlp.P.(1X)].

If P has at least one computation and if every computation of P terminates in a

state where X holds, then P has some computation that terminates in a state where

X holds. This means

(1) [lwp.P.fafse A wp.l?X * wap.P.X].

In this note we only consider total commands, i.e. commands P that satisfy

(2) [i wp.P.false].

Therefore, formula (1) simplifies to

(3) [wp.P.X * wap.P.X].

We now come to the parsing problem. Recall that a language is a set of strings.

A program P is called an acceptor of language L if and only if m E L is a necessary

and sufficient precondition for termination of I? Sufficiency means that m E L implies

termination, i.e.

(4) [m E L * wp.P.true].

Necessity means that m E L implies nontermination, i.e.

(5) [m & L * wlp.P.false].

With contraposition we get from (0) that (5) is equivalent to

(6) [wap.l?true 3 m E L].

In general we do not completely know the language. So, the acceptance problem

of context-free languages must be posed in terms of grammars. We only consider

context-free grammars. For such a grammar G, we write L.G to denote the language

that is generated. The problem is to construct a program l?G dependent of a

parameter G such that for every grammar G program P.G is an acceptor of the

language L. G.

It is not difficult to construct a program P.G such that m E L.G if and only if P.G

has some terminating computation, i.e.

(7) [rns L.G = wap.(PG).true].

174 W. H. Hesselink

Usually, such a program l?G has a nondeterminacy that reflects the freedom any

user of the grammar has to generate arbitrary sentences of the language. Clearly,

formula (7) implies (6), but it does not imply (4). Nevertheless, it follows that P.G

is an acceptor of L.G if l?G satisfies the additional condition

(8) [wap.(P.G).true z wp.(P.G).true],

i.e. that termination of P.G is deterministic. Anyhow, since angelic nondeterminacy

is not well implementable, it seems reasonable to impose condition (8). There are

two possibilities to get (8) for a parametrised program P.G that satisfies (7). In both

cases we restrict the class of grammars. The first possibility is to make the program

deterministic by strengthening the guards of the nondeterminate choices. In this

way, condition (8) is forced, but (7) may have been invalidated. The modified

program is correct for the grammars for which (7) remains valid. These grammars,

however, may be difficult to characterise.

The other possibility is to preserve program PG and to characterise the grammars

G for which l?G happens to be deterministic. In this way no new proof obligations

appear. This approach has the drawback that in the design of program P.G we have

the implicit consideration that the class of grammars for which (8) holds should be

as large as possible. Nevertheless, this is the way to derive LR-acceptors (and

presumably LL-acceptors as well).

It may be mentioned here that the construction of an acceptor is only one step

in the construction of a parser, which has the additional tasks of building a derivation

tree and of error detection or error recovery. Usually, the construction of a derivation

tree can be implemented as a side-effect of the control flow of the acceptor. Error

handling requires that the nontermination be replaced by the generation of adequate

error messages. In the remainder of this paper we concentrate on the acceptance

problem. Error detection is mentioned briefly in Section 8.

2. Notational conventions

In each section the formulae are numbered consecutively. For reference to

formulae from other sections we use the convention that i(j) refers to formula (j)

of Section i.

Functions

The application of a function on an argument is denoted by the infix-operator

“.“. The operator “.” binds stronger than all other operators. It binds from left to

right, so as to allow currying.

Quantijications and sets

We write (Vx E X: b.x:jx) to denote the predicate that jx holds for all x, where

the dummy x ranges through the elements of X that satisfy predicate b. If b.x is

LR-parsing derived 175

omitted, the default value true is meant. The indication “EX” can be omitted if

the type of x is clear from the context. Similar quantifications are

(3x E x: b.x: Jx): “Jx holds for at least one x with b.x”,

(UXEX: b.x:Jx): “the union of the Jx with b.x”,

(.zr x E X: b.x: jx): “the set of the Jx with b.x”.

The empty set is denoted ID. The braces “{” and “}” are only used to enclose

comments within formal proofs.

Strings
Let A be a set of symbols. We use A* to denote the set of the finite strings of

elements of A. The elements of A are regarded as strings of length 1. So A is a

subset of A”. We write E to denote the empty string. Catenation of strings is denoted

by means of the infix operator “;” (by convention “;” and E are not elements of

A). The string functions head and tail are defined as usual: if x = b;y with b E A
then head.x = b and tai1.x = y. We also need the string function fast which is given

by

(0) last.(y;b) = b, if b E A.

For a string x the set of suffixes Sufix is given by

(1) y~Sufi.x = (3z~A* :: x=z;y).

For any y E Suff.x we define string x -y by

(2) x -,y = z = x = z;y.

The length of a string x is denoted by 1x1. If i is an integer with 0 s is 1x1, we write

x 1 i to denote the prefix of x of length i. If X and Y are sets of strings, we write

(3) x;Y=(sErxEx,yE Y :: x;y).

3. Two blind ~igorith~s

We let G = (V, r P, S) be a context-free grammar. Here, T is the finite set of the

terminal symbols, V is the finite set of the nonterminal symbols, V and T are

disjoint, SE V is the start symbol, and P is the set of productions. Formally speaking,

P is a finite subset of the Cartesian product VX A* where A is the disjoint union

of V and T.
We use the convention that the letters b, c, and d represent symbols in A and

that the letters from m to z represent strings over A. In the programs we use strings

s and z over A and strings m,p, q, r, and t over T; the letter m represents the

constant input string, the other letters are program variables subject to the invariants

JO of (3) and Jl of (10) below.

176 W. H. Hesselink

Theory. In LR-parsing, we only consider rightmost derivations. These are formalised

as follows. One step of a rightmost derivation is characterised by relation rm: for

strings x,y E A* we define

(0) rm.x.y =

(~uEA”, WE T*,(c,z)E P::x=v;c;w A y==v;z;w).

The reflexive transitive closure of relation rm is denoted by r-m*. So, formally, we

have

(1) fm”.x.y = (3i: i2O:rm’.x.y), where

rm’.x.y = x =y, and

rm’+’ .x.y - (3zEA*::rm’.x.z A rm.z.y).

It is well known (cf. [6, Section 4.31) that the language generated by grammar G

is the set of the strings m E T” with rm*.S.m, that is

(2) [rng L.G = me T* A rm*.S.m].

Program. The task of the algorithm is to read a given string m E T* and to decide

whether rm*.S.m holds. We assume that the string is read from left to right. So we

have the invariant relation m =p; t, where p has been read and t is the remainder

of the input string m. Let string s E A* represent the syntactic structure that has

been recognised. Accordingly, we extend the invariant to

(3) JO: m = p;t A rm”.s.p.

This is known as the valid prefix property. Now the purpose of the algorithm is to

establish (if possible) the validity of rm*.S.m. We observe that

(4) [JO r\ s=S A I=.5 * rm*.S.m].

So we need two kinds of actions: to read string t and to process string s. The obvious

candidate for a reading command is

(5) CO = I[s := (s;head.t)

; p := (p;head.t)

; t:= tadt]I.

We calculate the weakest precondition of CO with postcondition JO in

wp.CO.~O

e { (5); (3); substitutions}

t # F A m =p;headt;tail.t A rm*.(s;head.t).(p;head.t)

= {(0), (1) and he&t E T}

tf E A m =p;t A rm*.s.p

= ((3))

JO A t f E.

LR-parsing derived 177

This proves

(6) [JO A t# & * wp.CO.JO].

In processing string s we have more freedom. The second conjunct of (3) admits

replacement of a segment z of s by a nonterminal c if (c, z) E P and if z is followed

in s only by terminal symbols. Given a derivation of 112, we assume that such a

reduction is performed as soon as is possible in the repetition. Therefore, we consider

only reductions of suffixes z of s. So, we propose a command

(7) DO=i[s:=((s-z);c) 11.

An adequate precondition is found in

wp.DO.JO

= {(3), (7) and substitutions}

m =p;t A zESuff.s A rm*.((s-z);c).p

e ((0) and transitivity of rm*}

m=p;t A zE.9uff.s A (c,z)EP A rm*.s.p

= i(3))

JO A (c,z)~P A z~Suff.s.

This proves that

(8) [JOA(C,Z)EPA~ESU~~.S + wp.DO.JO].

Adding the obvious initialisation we get the program

(9) PO=I[p:= ~;t:=m;s:=&

; do{JO}t#c v s#S +

iftZ-5 + CO

0 let (c, z) E P with z E Suff.s + DO

fi

od {JO A t = e A s = S, and hence rm*.S.m}

II.
One can easily verify the correctness of the initialisation. The body of the repetition

is an alternative statement which terminates if and only if at least one of the guards

holds. If the body terminates, it preserves the invariant JO by (6) and (8). Even if

the body always terminates, the loop need not terminate. When the loop terminates,

JO holds and t = F and s = S, so that rm*.S.m follows from (4). In that case, string

m has been recognised (notice that rm*.S.m is constant). This shows that program

PO of (9) is conditionally correct, in the sense that formula l(6) holds in the form

[wap.PO.true * rm*.S.m].

Actually, l(7) holds as well, but the fact is not useful for the rest of the development

(it follows from the result of Section 6 below).

178 W. H. Hesselink

The parsing program PO of (9) may easily turn into a blind alley. In order to

avoid this we shall allow more information concerning string t to appear in the

guards of the alternative statement. More precisely, we fix a number k b 0 and we

let the choice between a shifr CO or an adequate reduction DO be guided by (s;q)

where q is the prefix of t of length k. To guarantee that t has a prefix of length k,

we extend string m with a fixed string of length k, say lk where I is a terminal symbol.

Remark. The decision to use a window of fixed size is rather arbitrary. The particular

choice of the additional suffix 1“ is irrelevant for the derivation and correctness of

our version of LR-parsing. For immediate error detection, however, it is useful to

postulate that the first symbol of the suffix (here I if k > 0) does not occur in the

righthand side of any production. 0

We now replace program variable t of PO by the catenation of two program

variables q E Th and r E T* with the invariant

(10) Jl: m;l” =p;q;r A frn*.s.p.

This invariant is established by the initialisation

(11) lnl=l[~:=F;s:=F

; q := (m;lk) 1 k {the first k symbols of m;l”}

; r:= tailk.(m;l’) {the remainder} 11.

To preserve Jl, command CO is replaced by

(12) Cl = I[q:= (q;head.r); r:= tai1.r

; s := (s;head.q); p := (p;head.q)

; q:= taif.q]I.

A straightforward calculation (similar to the one that preceded (6)) yields

(13) [Jl A r # E 3 wp.Cl.Jl].

Command DO remains useful and we get

(14) [Jl A(C, Z)E Pr\z~SuR.s + wp.DO.Jl].

Now program PO is replaced by

(15) Pl=l[Znl

; do{/l}r#E v s#S +

ifrf.5 + Cl

0 let (c, z) E P with z E SUES + DO

fi

od {Jl A r = F A s = S, and hence rm*.S.m}

II.
Now all remarks made after program PO can be repeated. In fact, program Pl may

have string q at its disposal, but it does not use this information.

LR-parsing derived 179

4. A heuristic predicate

We now turn to the question of how to use the information contained in string

(s;q) for the guidance of the nondeterminacy of program Pl of 3(15). We strengthen

the invariant so that choices that cannot be successful are recognised earlier. To

this end, we introduce a condition that expresses that (s;q) is a prefix of a rightmost

derivation of (S;ik), and that string s - 1ast.s is fully interpreted, in the sense that

none of its substrings will he replaced by a nonterminal (compare DO in 3(7)).

In other words, the condition is that (s;qj can be obtained from (S;i’) by zero

or more steps of the following type. If lasts is a terminal symbol, the last symbol

of (s;q) is removed. If 1ast.s is a nontermina~, it is rewritten. Nonterminals in

s - 1ast.s are not rewritten since that would yield a string s’ in which s’- 1ast.s’ is

not fully interpreted.

Theory, The set of strings that end in at least k terminal symbols is denoted (A*; Tk)

(cf. 2(3)). Now the steps suggested above are formalised in relation rk on (A*;T”),

defined by

(0) rk.x.y =

(3bE T::x=y;b)

v (3v~A*, WE Tk,(c,z)~P::x=v;c;w A y=u;z;w).

Notice that, since y E (A*; Tk), the first disjunct implies that the last k + 1 symbols

of string x are terminals. We define relation rk* on (A*;Tk) to be the reflexive

transitive closure of rk. Its formal definition is analogous to 3(l). Predicate rk*.x.y

holds if and only if there is a sequence of strings from x to y in which consecutive

pairs satisfy rk. Such a sequence is called an rk-derivation.

The name rk stands for rightmost prefix with respect to number k. The condition

is a variation of definition 3(O), but the trailing string of terminal symbols is forced

onto a bed of Procrustes of length k.

Program. We extend invariant J1 of 3(10) with the “heuristic” predicate

(1) N: rk*.(S;_L’).(s;q).

Predicate 111 is only introduced to guide the nondeterminacy. It follows from formula

5(l) below that predicate H implies the existence of a string u E T” with

rm*.(S;l”).(s;q;u), so that the execution is not yet in a blind alley.

Remark. Instead of the choices (0) and (l), one can propose to use the relation rp

given by

rp.x.y = (3~ E T*:: rm*.x.(y;u))

and the heuristic predicate rp.(S;lk).(s;q). The formulae (2), (3), and (4) below

can be adapted immediately. Lemma (8) below, however, has an analogue for strings

w E (V; Tk) but not for strings w E Tht’ and we need both cases. El

180 W. H. Hesselink

We start with an investigation of the preservation of Jl A H under the commands

Cl and DO. It is clear from (l), 3(12), and 3(7) that

(2) [wp.Cl.(Il AH) - wp.Cl.Jl A rk”.(S;lk).(s;q;head.r)],

(3) [wp.DO.(Jl AH) - wp.DO.Jl A rk”.(S;l”).((s-z);c;q)].

The suffixes (q;head.r) and (c;q) are both elements of (A; Tk), i.e. they have length

k + 1 and have a suffix of k terminals. This observation suggests to make an analysis

of rk*.(S;_~~).(x;w) with XE A* and w E (A;Tk).

Theory. For a string x E A*, we define the subset N.x of (A; Tk) by

(4) w E N.x = rk*.(S;lk).(x;w).

In view of (2) and (3), we shall need N.x for x = s and for prefixes x of s. Now

the aim is to derive a recurrence equation for function N. For x E A* and w E (A; T”)

we observe

WEN.X A xfs

= ((4))

rk*.(s;l”).(x;w) A x # &

= {use (8) below with n := (S;l”)}

(3u,y,z~A*,c~V,t~TI’:x=v;y A y#& A (c,y;z)~P:

rk*.(S;lk).(v;c;t) A rk*.(z;t).w)

= ((4); 2(l), and 2(2)}

(3y~Suff.x,z~A*,c~V,t~T“:y#~ A (c,y;z)~P:

(c;t)~ N.(x-y) A rk*.(z;t).w).

For any string x E (A*; T’), we now define Rks.x as the subset of (A; T”) given by

(5) w E Rks.x = rk”.x.w.

Now the above calculation implies that, for string x # 8,

(6) N.x =

(u y E SufI.x, z E A*, c E V, f E Tk:

yf e A (c,y;z)~P A (c;t)~ N.(x-y): Rks.(z;t)).

On the other hand, it follows from (4) and (5) that

(7) N.E = Rks.(S;l_“).

The sets Rks.(z;t) need only be computed for finitely many strings: in fact, z

ranges over the finite set of suffixes of productions and t ranges over the finite set

T“. Function Rks can be effectively computed. Since it only depends on the grammar

LR-parsing derived 181

(not on the input string), we may assume that it is known after inspection of the

grammar. This issue is postponed to Section 9. There it turns out that the usual

delicacies of nullable nonterminals are encapsulated in Rks. Now the equations (6)

and (7) can effectively be used to compute N.x for any string x.

It remains to prove the technical result used above.

Lemma. Forx~A* and n, WE(A*;T’) with /nl~ki-l~/wI we have

(8) rk*.n.(x; w) A x # F =

(3u,y,z~A*,c~V,t~T~:~=u;y A Y#E A (c,y;z)~P:

rk”.n.(u;c;t) A rk*.(z;t).w).

Proof. Let the lefthand side of (8) be given. Choose an rk-derivation from n to

(x;w>. In this derivation, choose the first derivative of n of the form (.w;p) with

p~(A*;TI’)andrk”.p.w.Since~w~~k+1,wehave~p~~k+l.Sincex#~,itfollows

that Ix;pl> k + 1 and hence n # (x;p). Let u be the predecessor of (x;p) in the

derivation. Since (x;p) is the first occurrence, we have u # (x;p;b) for all b E T.
Therefore, from (0), we have u = (u;c;t) with u E A*, c E V, and t E T” and there is

an s E A” with (c, S>E P and v;s;r = x;p. Again using that (x;p) is the first occurrence,

we see that x is not a prefix of v. It follows that

so that we can split s into parts y and z with

s=y;z A y#, A v;y=x .A z;t=p.

Thus we obtain the righthand side of (8).

Conversely, let the righthand side of (8) be given. Since x = v;y and y # F, we

have xf E. On the other hand, by (0), the data imply rk.(v;c;t).(x;z;t). Since

rk*.(z;f).w, we have rk*.(x;z;t).(x;w). By transitivity it follows that rk*.n.(x;w).
This proves the lefthand side of (8). q

Program. After these preparations we come back to the algorithm. With respect to

command Cl we observe

(9) wp.Cl.(fl AH)

= ((2) and (4)}

wp.Cl.Jl A q;head.rE N.s

(= 13(13)1

Jl A Y f F A q;head.rE N.s.

182 W. H. Hesselink

With respect to command DO we observe

(10) wp.DO.(Jl A H)

- ((3) and (4))

wp.DO.Jl A c;q E N.(s - z)

C= {3(14)1

Jl A (C,Z)EP A ZESUff.S A C;qEN.(.S-Z).

In the preconditions given by (9) and (lo), predicate Jl occurs instead of Jl A H.

Since the initialisation s = F and the postcondition s = S are incompatible, the body

of the repetition is called at least once. Therefore, we may use the body to establish

Jl A H (if possible). This proves conditional correctness of the annotated program

(11) P2= I[In1

; do{Jl}r#E v s#S +

if r # E A q;head.rE N.s + Cl

0 let(c,z)EP

with z E Sufis A c;q E N.(s - z) + DO

fi{Jl A H}

od {Jl A r = e A s = S, and hence rm*.S.m}

IL
That is, program P2 satisfies condition l(6) in the form

(12) [wapP2.true 3 rm*.S.m].

In Section 6 below, we prove that the implication can be replaced by an equivalence.

This means that program P2 is an angelic acceptor of the language L.G, see l(7).

It follows from the result of Section 8 that, if grammar G is LR(k), program P2 is

deterministic and, hence, a genuine acceptor. Therefore, program P2 can be our

final result.

In program P2, we need the values of N.x for some prefixes x of s. The sets N.x

can be computed by means of (6) and (7). Since string s is only modified at its tail,

it is more efficient to introduce a stack Nst of subsets of (A;Tk), say with stack

pointer h and invariant

Jn: h =I$ A (Vi: 0 sish: Nst.i= N.(sji)).

In order to make Jn an invariant of the repetition of P2, it suffices to extend each

of the commands Inl, Cl and DO with the restoration command

I[h:= Is\ {(Vi: 0 c i < h: Nst.i = N.(s (i))}

; Nst.h:= N.s {use (6) and (7))]I.

Here, Nst.h can be computed in constant time from its predecessors (for a fixed

grammar). The details are left to the reader. In Section 7 below, we present the

usual LR(k) algorithm with its finite automaton and its stack of item sets as another

optimisation of program P2.

LR-parsing derived 183

5. The relevance of rk-derivations

Up to this point we did not use any relationship between relation rm” of Section

3 and relation rk” of Section 4. The fact that every string of the language can be

accepted by program P2, however, depends on the connections between the two

relations. There are two kinds of connections: rk” implies some form of rm” and

rrn* implies some form of rk*.

Theory. The first connection is that for x, y E (A*; T”) we have

(0) rk*.x.y a (3~ E T” : : rm*.x.(y;u)).

So, rk*.x.y implies that y is a prefix of a rightmost derivative of x.

Formula (0) is proved by induction on the length of the rk-derivation. The base

case is x = y, in which case the consequent of (0) holds with u = E. The induction

step is

rk*.x.y A x f y

+ {one step and the induction hypothesis (0) with x := z}

(3z E (A*;Th), u E T* :: rk.x.z A rm*.z.(y;u))

= {4(O)}

(~zE(A*;T’),uE T*::

((3bE T::x=z;b)

v (3v~A*,t~T’,(c,w)~P::x=v;c;t~z=v;w;t))

A rm*.z.(y;u))

* {3(O)}

(32~ (A*;T’), UE T*::((3b~ T::x=z;b) vrm.x.z)~ rm*.z.(y;u))

=+ {calculus, 3(O) and 3(l)}

(3u~ T*::(36~ T::rm*.x.(y;u;b))vrm*.x.(y;u))

= {calculus}

(3~ E T* :: rm*.x.(y;u)).

The converse connection is more complicated. It is expressed in

(1) Theorem. Let x E (A*; T”), y E A*, and t E T* be such that

(2) rm*.x.(y; t) A (y = F v 1ast.y E V).

Then ItIs k and rk*.x.(y;(t)k)).

184 W. H. Hesselink

Proof. The proof uses induction on the length of the rm-derivation from x to (y;t).

If the derivation has length 0, then x = (y;t) and hence y;t E (A*; Tk), so that 1112 k
by the second conjunct of (2), and that rk*.x.(y;(tl k)) follows from repeated

application of the first disjunct of 4(O).

In the case that the derivation is nontrivial, we may split off the last step of the

rm-derivation. By 3(O), there are u E A”, CE V, UE T*, and (c, Z)E P with

(3) rm*.x.(u;c;u) A u;z;v = y;f.

By the induction hypothesis with y := (u;c) and t := v, it follows that /ZJ/ 3 k and

r&*.x.(u;c;(ZJ 1 k)).

Since (c, Z)E P, it follows with 4(O) that

(4) rk”.x.(u;z;(v 1 k)).

Since UE T*, the second conjuncts of (2) and (3) imply that y is a prefix of (u;z),

and hence that v is a suffix of t. This implies that /tl Z= k and that

u;z;(vlk)=y;(flk);w for some WET”.

Repeated application of the first disjunct of 4(O) now implies

(5) rk*.(u;z;(21 j k)).(y;(t 1 k)).

By transitivity, rk*.x.(y;(t / k)) follows from (4) and (5). 0

We need the following two applications of Theorem (1).

(6) Corollary. Let b E A and t E T” with rm”.b.t. Then

(VUE T”::rk*.(b;u).((t;u)jk)).

Proof. We have rm*.(b;u).(t;u). So the assertion follows from Theorem (1) with

x:= b;u and y:= E and I:= t;u. 0

(7) Corollary. Let ZJ E A”, t E T”, and c E V with

rm**(S;L”).(v;c;t).

(a) 7’ken /flakand (c;(f/k))EN.v.
(b) For all s E A*, u E T”, and (c, z) E P we have

s;u=v;z;t A #+;zl + (+kn(u(k+l)~N.s.

Proof. (a) It follows from Theorem (1) with x := (S;i’) and y := v;c that /t[L k and

(8) rk*.(S;l_“).(v;c;(t 1 k)),

so that (c;(t 1 k)) E N.v by definition 4(4).

LR-paming derived IX5

(bf Since /s/ < /v;zl, we have ju/ > (f/ 2 k. The second assertion is proved in

(ujk+l)E N.s

= {definition 4(4))

rk**(S;Lh).(S;(U jk+ 1))

C= {s;(ulk+l) is a prefix of (v;z;(f 1 k)), u E T*, and 4(O)]

rk”.(S;i”).(u;z;(t / k))

= {4(O) and (c, Z)E P and (8)}

true. cl

6. Angelic guidance suffices

Program. We claim that under angelic ~ondet~rrn~na~y any string m in the language

of the given grammar can be recognised by program P2 of 4(11). Since recognition

is equivalent to termination of P2, this means that program P2 may terminate for

the given string m. Formally speaking, the claim is

(0) [rrn*.S.rn =+ wap.P2.true],

which is the converse of implication 4(12). This section is devoted to the proof of

formula (0).

In order to prove (0), we assume rm.*S.m. Then we can choose a rightmost

derivation of string m. Let x.i with 0 G i < g be the consecutive sententiai forms of

the derivation, so that

(1) x.O=S A x.g=m n (Vi:O<isg:rm.(x.(i-l)).(x.i)).

Notice that this implies rm*.(S;_L’).(x.i;l’) for 0s i G g.

It is clear that we may assume

(2) (Vi:O<isg:x.i#S).

By 3(O), it follows from (1) that, for 0 < id g, there exist productions (c.i, z,i) E P

and decompositions

(3) x.(i - 1) = v.i;c.i;w.i,

x.i = v.i;z.i;w.i,

with v.i E A* and w.i E T”.

We force program 4(11) to accept string m = x.g by strengthening the guards of

the alternative statement in the body of the repetition. For this purpose we introduce

a ghost variable i of type integer with the additional invariant

(4) K: OCisg n s;q;r=x.i;l.” A (i=Ov/s/~/v.i;z.ij).

186 W.H. Hesselink

The third conjunct is motivated by Corollary 5(7). It was announced in the first

paragraph of Section 4 by saying that no substring of s - 1ast.s needs to be replaced

by a nont~rminal. The conventional expression is that s is a viable prefix (cf. [6,

p. 2491).

It is easy to see that predicate K is initialised by the extended initialisation

(5) In3 = I[fnl {cf. 3fll))

; i:=g]I.

Since x.O=SE V and q’ Th and rE T*, it follows from (1) and (2) that

(6) [K =+ (i=O = r=&AS=S)]

This proves that the guard of the repetition of 4(11) may be replaced by i # 0.

We extend commands C 1 and DO in order to keep predicate K invariant. Actually,

Cl need not be changed. Since we want to strengthen the guard of Cl in 4(1 I),

we observe

(7) r# F A q;head.rE N.s A wp.Cl.(Jl A H A K)

e= {4(9)]

Jl A r# E A q;head.rG N.s A wp.Cl.K

= ((4) and definition Cl in 3(12); calculus}

Jl A r#E A q;head.rE Ns A O<i<g

A s;q;r = x.i;l“ A (i = 0 v IsI < Iv.i;z.i\)

= i(4); (6) gives i f 0;

Is/ < 1v.i;z.i) implies lq;r)> k so that r # E}

Jl A K A if0 A q;head.rc N.s A /s/ <lv.i;z.i\

= {Corollary 5(7)(b) with u:= q;r}

Jl A K A i#O A \s\<\u*i;z.i\.

This suggests to replace the first alternative in 4(11) by

isI< jv.i;z.ij + Cl.

In view of the postulated invariance of K, it remains to produce an alternative with

guard s = 0.i;z.i. We now expect an application of DO of 3(7). Production (c.i,t.i)

is an obvious candidate for usage in DO. Since the usage of a production is a step

in the derivation, we also need i := i - 1. So, since s - z.i = v-i, we propose the

refinement D3 of DO given by

(8) 03 = I[s := v.i;c.i

; i:=i-1 11.

LR-parsing derived 187

Since we want to strengthen the guard of DO in 4(11) we observe that, under

assumption of O< is g and s = v.i;z.i,

(9) c.i;q E N.(v.i) A wp.D3.(Jl A H A K)

+= {4(10)1

Jl h C.i;qG N.(V.i) A WPD3.K

G= {(3), (4), and Corollary 5(7)(a)}

Jl A K A wp.03.K

= {definition of K in (4) and of 03 in (8); calculus}

Jl A K A u.i;c.i;q;r=x.(i-1);1”

A (i-l=Ovlu.i;c.il~lu.(i-l);z.(i-l)l)

= {remaining proof obligation, see (10) below}

Jl A K.

It remains to observe that, for 0 < is g,

(10) v.i;c.i;q;r = x.(i - l);l’

A (i-l=Ovlv.i;c.ijSjv.(i-I);z.(i-I)/)

= {(3) and c.iE V and ~.(i--I)E T”}

v.i;z.i;q;r = x.i;l”

e= f(4))

K n s = v.i;z.i.

Putting (7) and (9) together we have proved conditional correctness of the annotated

program P3 given by

(11) P3 = I[In3 {cf. (5))

; do{.JI A K)i#O

if /sI < Iv,i;z.ij +

{ri & iz q;head.rf fV.s} Cl

0 s = v.i;z.i +

{c.i;q~ N.(v.i)} 03

fi

od {Jl A K A i =0, and hence rm*.S.m}

II*

Since K implies the disjunction of the guards of the alternative statement, the body

of the loop terminates. The loop itself also terminates, as is easily seen, since the

variant function ii \r/ decreases with 1 in each of the commands Cl and 03.

Therefore, program P3 terminates. The assertions in P3 show that P3 is a refinement

of program P2 of 4(11). This proves that P2 can be guided towards termination,

i.e. that Wap.P2.true holds for the given string m. This concludes the proof of (0).

188 W. H. Hesselink

7. The birth of the automaton

The recurrence equations for N.x given in 4(6) and 4(7) may admit (for a fixed

grammar) computation in constant time, but are yet inefficient, and inadequate for

preprocessing. The same holds for the pattern matching required in the second

alternative of program 4(11). In this section we describe the standard LR(~)-parsing

algorithm as an optimisation of program P2 in which these inefficiencies are avoided.

The idea is that both computations mentioned above require knowledge of the

strings c; t E N.(x - y) where y is a suffix of x that allows a production (c, y;z). This

suggests the three definitions of the next paragraph.

Theory. An item is defined to be a quadruple (c, y, z, t) with c E V, y, z E A*, t E Tk,
and (c, ~;z)E P. We write Item to denote the set of all items. Notice that Item is a

finite set because of the finiteness of TI‘ and P. For a string x E A* we define M.x

as the subset of Item given by

(0) (c,y,z,t)~M.x = y~Suff.x A c;t~N.(x-y).

Now formula 4(6) implies that, for x # E,

(1) N.x = (u (c, y, z, t)~ M.x: y # 8: Rks.(z;t)).

We want to eliminate function N from the program. Recall from 4(4) that N.x is

a subset of (A; Tk). For every x E A* we define

(2) E.x = T”+’ n N.x.

Program. Because of definitions (0) and (2), and the fact that 9 E T”, program P2

of 4(11) is equivalent to

(3) I[In1
; do(fl}r#E v sfS +

if r f E A q;head.r E E.s + Cl

0 let c, z with (c, 2, E, q) E M.s + DO
fi (I1 A H}

od (11 A r = E A s = S, and hence rm*.S.p)

71.

It remains to compute the sets E.s and Ms.

Theory. The set ME is determined by observing that, for every item (c, y, z, t),

(c, Y, z, t)E ME

= {CO))

y=~ A c;tE N.E

= {4(7)1

y= F A c;t~ Rks.(S;lk).

LR-parsing derived 189

This implies that

(4) M.E = (SET c, z, t: (c, Z)E PA c;t~ Rks.(S;lk): (c, F, z, t)).

We determine a recurrence equation for M.x, in which M.(x;b) is expressed in

terms of M.x. For every item (c, y, z, t) with y f E we observe that

(5) (c, Y, z, j) E M.(x;b)

= ((0); we give “;” higher priority than “-“}

y E SuE(x;b) A c;t E N.(x;b -y)

= {y + E and calculus}

bE.9uff.y A y-bESuff.x A c;tEN.(x-(y-b))

= ((0))

bESuff.y A (c,y-b,(b;z),t)EM.x.

For items of the form (c, E, z, t) we have

(6) (c, e, z, t)~ M.(x;b)

= i(O)1

c;t E N.(x;b)

= ((1) and x;b# e}

(3(d, w, v, q)E M.(x;b): w f F: c;t~ Rks.(u;q))

= ((5) with w # E; introduce u = w-b}

(3d, 1.4, v, q: (d, u, (b;u), q)E M.x: c;t~ Rks.(u;q)).

Traditionally, the items of (5) are called kernel items and the items of (6) are called

closure items.

Combining (5) and (6), we obtain for every item (c, y, z, t)

(7) (c, y, z, t)~ M.(x;b) =

(34 u, II, q: (d, u, (b;u), q)E M.x:

(c,y,z,t)=(d,(u;b),v,q) v (y=eAc;t~Rks.(v;q))).

Since Item is a finite set, formula (7) suggests the following form of preprocessing.

For any subset U of Item and any symbol b E A, we define step.b. U as the subset

of Item given by

(8) (c, y, z, t) E step.b. U =

(34 u, u, q: (4 u, (bin), q) E u:

(c,y,z,t)=(d,(u;b),v,q) v (y=~~c;t~Rks.(v;q))).

Then formula (7) reduces to

(9) M.(x;b) = step.b.(M.x).

190 W. l-i. Hesselink

Let Q be the power set of the finite set Item. Now step is a function A + (Q --, Q).
The triple (Q, step, M.e) is a version of the finite automaton that usually occurs in

LR-parsing. Function step can be computed in the preprocessing phase, for it clearly

does not depend on the input string.

We now want to eliminate function E of formula (2) from the program. It follows

from (2) and 4(7) that

(10) E.E = Th+’ n Rks.(S;I”).

It follows from (1) and (2) that, for x f E,

(II) E.x = e.(A4.x)

where, for every subset U of Item, the set e.U is defined by

(12) e.U=(U(c,y,z, t)~ U:y#e: T”+‘nRks.(z;t)).

Clearly, function e is a function from Q to the power set of Tki’ that can be

computed in the preprocessing phase.

Program. We now come back to the algorithm. In the program of (3) we need the

values of E.s and MS for the application of the two commands. Therefore, after

the application we need the values of E.s’ and M.s’ where s’ is the new value of s.

Since s’ is always nonempty, we can use formula (11) to compute Es’ from M.s’.
In the case of Cl, we have s’ = (s;b) with b E T, so that M.s’ can be obtained

from M.s with formula (9). In the case of DO we have s’ = ((s - z);c) with (c, z) E P,

so that M.s’ can be obtained from M.(s - z). Therefore, we introduce a stack Mst
for the values M.x where x is a prefix of s. Let h be the stack pointer (the identifiers

s and p being in use for strings). We introduce a variable F to keep the value of

E.s. The invariant Jl is extended accordingly with

(13) Jm: F=E.s A h=/s/ A (Vi:Osi6h: Mst.i=M.(sji)).

It is clear that Jm is initialised by

(34) In4 = ([In1 {cf. 3(11)}

; Iz := 0

; F:= E.& {cf. (10))

; Mst.O:= M.E {cf. (4))]I.

To preserve Jm, command Cl is extended to

(15) C4 = I[Mst.(h + 1) := step.(head.(q;r)).(A4st.h)

; h:=h+1

; F := e.(Mst.h)

; Cl Il.

Instead of head.(q;r) we may write head.q if k > 0 and head.r if k = 0.

LR-parsing derived 191

Command DO is extended to

(16) 04 = I[Mst.(h - IzI + 1) := step.c.(Mst.(h - 1~1))

; h:=h-/z/+1

; F := e.(A4st.h)

; s:=((s-2);c)]I.

Now the program of (3) is equivalent to our final result

(17) P4= I[In4

; do{Jl/\Jm}rf& v s#S +

if rf F A q;head.rE F + C4

0 let c, z with (c, z, F, q) E A4st.h + 04

fi{JlAJf?l A H}

od {Jl A r = E A s = S, and hence rm*.S.m}

II.

Since program P4 is equivalent to P2, it follows from 4(12) and 6(O) that

(18) [rm*.S.m = wap.P4.true],

which is the analogue of formula l(7).

8. The determinstic acceptor

Program. As argued in Section 1, formula 7(18) implies that program P4 is an

acceptor of the language if it is deterministic (cf. l(8)). The nondeterminacy of P4

consists of the occurrence of two points of choice. One point is the choice between

the first and the second alternative. If this choice occurs, it is called a shift-reduce

conflict. The other point is the choice of a production (c, z) in the second alternative.

If this choice occurs, it is called a reduce-reduce conflict.

More formally, let us consider triples (q, F, U) with q E T”, F c Thf’, and U c

Item. We define a triple (q, F, U) or the pair (q, F) to allow a shif if and only if

q;b E F for some b E T We define the triple (q, F, U) or the pair (q, U) to allow a

reduction (c, z) E P if and only if (c, z, E, q) E U. A triple is defined to allow conflicts

if and only if it allows a shift and a reduction or at least two different reductions.

If all reachable triples do not allow conflicts, grammar G is said to be LR(k) (cf. [7]).

Let grammar G be LR(k). This implies that a string m belongs to L.G if and

only if P4 terminates. So, if m g L.G, the program does not terminate. One possibility

is that the alternative statement aborts since (q, A4st.h) does not allow a reduction

and either r = e or (q;head.r) E F. In this case, abortion can be replaced by an error

message. In principle, another possibility would be that the repetition of P4 does

not terminate, but we now show that this is not possible.

192 W. H. Hem-link

(0) Theorem. Let G be LR(k) and rn& L.G. Then the alternative statement in the

body of the repetition of P4 aborts in a state where (q, Mst.h) does not allow a reduction

and either r = F or (q;head.r) $ F.

Proof. Since P4 is equivalent to P2, we may use P2 to argue about. The body of

the repetition of P2 establishes /I A H. Now we observe

Jl A H

- {4(l)}

Jl A rk*.(S;l”).(s;q)

* {formula 5(O)}

Jl A (CUE T*:: rm*.(S;l”).(s;q;u))

+ {3(10), 3(O), and calculus}

m;_L’ =p;q;r A (3~ E T” :: rm*.(S;l”).(p;q;u)).

Since m@ L.G, we have Trm*.(S;_L”).(m;l’). If string r would be equal to string

u of the existential quantification, then program P2 can terminate. Since grammar

G is LR(k), program P2 is deterministic. So, if Y = u, program P2 necessarily

terminates. Therefore, the number of steps performed without inspection of r is

finite. This implies that the number of reductions performed in states with fixed p

and q is finite. Since input string m is finite the number of shifts is finite. This

implies that the only source of nontermination is the alternative statement. 0

9. The determination of function Rks

Theory. In this section we finally obtain an effective characterisation of the crucial

function Rks introduced in 4(5), and used in 7(6) and 7(8). It is here that the

possibility of e-productions complicates the algorithm and the proof. It turns out

that our definition of Rks has served to isolate this complication, which in Knuth’s

paper led to the introduction of the function H;(W) (cf. [7], p. 6151).

Recall from 4(5) that, for x E (A*; Th), the set Rks.x is the subset of (A; T“) given

by

(0) w E Rks.x = rk”.x.w.

So, the determination of Rks depends on the determination of rk*.x.w for w E

(A; Tk).

Since an rk-derivation from x to w may pass through strings of arbitrary length,

it is not obvious that rk*.x.w can effectively be determined. We shall enforce finiteness

of computation by transforming the derivations in such a way that the intermediate

strings have bounded length. We first extend the freedom of relation rk drastically

LR-parsing derived 193

by introducing a relation frk (for free rk). In the second step, the freedom of frk

is reduced again by introducing a relation brk (for bounded rk) in which productive

rewritings are only allowed in small strings.

The transformation requires special treatment of the nzdfable nonterminals, i.e.

the elements of the set VO defined by

(1) CE VO = CE V~rm”.c.e,

and of the productive symbols: the elements of the set Al defined by

(2) beA = (3u~ T”::rm*.b.u).

Notice that T u VO c A 1. There are well-known algorithms to determine the nullable

nonterminals and the productive ones (cf. [6], Lemma 4.1 and Theorem 4.31).

Both frk and brk are relations on the set A”, whereas rk of definition 4(O) is a

relation on (A*;T”). The relations frk and brk also differ from relation rk in two

other aspects. They allow more symbol deletions: both allow deletion of productive

symbols at the end of the string and of nullable symbols not in the beginning. On

the other hand, each has its own condition under which productive rewritings are

allowed. Relation frk on A* is defined by

(3) frk.x.y =

(YbEAI::x=y;b)

v (3r,tsA*,cE VO::r#e A x=r;c;r A y=r;t)

v (3rEA*, tE T*,(c, w)EP::

ItlSk A x=r;c;t h y=r;w;t).

Relation brk on A* is defined by

(4) brk.x.y =

(ZbcAl::x=y;b)

v (Zlr,tEA*,cEVO::r#e A x=r;c;t A y=r;t)

v (FIrEA*, tE T”,(c, w)Er’P::

/xjS/~+l A x=r;c;t A y=r;w;t).

We use frk” and brk” to denote the reflexive transitive closures of frk and brk,

respectively. We use frk-derivations and brk-derivations completely analogous to

the rk-derivations introduced after definition 4(O).

For a given string x, the set of strings y with brk*.x.y can effectively be computed.

In fact, the lengths of the intermediate strings is bounded by the maximum of 1x1

194 W. H. Hesselink

and k+j where j is the maximal length of a production. Therefore, the goal of the

present section is to prove

(5) Theorem. For x E (A*; T”) and y E (A; T”) we have

rk*.x.y = brk”.x.y.

Remark. Since it is only an auxiliary concept, we do not mention relation frk” in

this theorem. Relation frk” has been introduced above, since it plays a role in the

concept formation and in the proof of the theorem. Cl

Proof. It follows from the definitions (3) and 4(O) that relation frk” is a weakening

of rk* in the sense that

(Vx,y E (A”; T“) : : rk*.x.y =$ frk*.x.y).

It follows from (3) and (4) that frk” is also a weakening of brk” in the sense that

(Vx,y E A* :: brk*.x.y =+ frk”.x.y).

Therefore, using (A; T”) = (A”; T“) c A*, we see that it suffices to prove the following

reverse implications:

(6) (Vx E (A*; Th), y E (A; T”) : : frk*.x.y + rk*.x.y),

(7) (VXE A”,~E{A;T~):: frk*.x.y - brk*.x.y).

Since formula (6) cannot serve as an induction hypothesis, it is generalised in Lemma

(8) below. In fact, formula (6) follows from (8) by taking u := E. Formula (7) is

proved in Lemma (10) below. 0

(8) Lemma. Let XE A* and ye (A;T”) with frk*.x.y. Then

(VUE T*::(x;u)E(A”;T’) 9 rk*.(x;u).y).

Proof. We use induction on the length of the frk-derivation from x to Y. In the

base case x = y it suffices to observe that relation rk” allows the deletion of all

symbols of u, since y E (A; T“) and u E T*.
Now, let x # y. In the frk-derivation from x to y, we may assume that the deletion

of nullable nonterminals is performed as late as possible and then from right to

left. Let z E A” is the first intermediate string of this frk-derivation from x to y. We

then have frk.x.z and frk*.z.y and, by induction,

(9) (VUG T”:: (z;v)~ (A*;T”) =3 rk”.(z;v).y).

Now let u E T* be such that (x;u) E (A*; Th). In view of frk.x.z and definition (3)

we djstinguish three cases.

LR-parsing derived 195

We first consider the deletion of a productive symbol at the end of x. More

precisely, we assume that x = z;b with b E Al. If b E T then b;u E T” and we have

(z;b;u) = (X;U)E (A*;T”); formula (9) yields rk*.(z;b;u).y and hence rk*.(x;u).y,

as required. If b E Vn Al then u E T’. It then follows from (2) and Corollary 5(6)

that rk*.(b;u).v for some string v E T”. This implies that rk*.(x;u).(z;u). Using (9)

and transitivity of rk*, we get rk*.(x;u).y.
We next consider a productive rewriting of x. So, assume that x = r;c;t and

z=r;w;t with rEA*, tE T”, (c, w)EP, and It/s k. We have /t;ula k, so we can

choose a prefix z7 of u with It;ul= k. We then have rk*.(x;u).(x;u) and rk.(x;u).(z;v),
and rk*.(z;u).y from (9). This implies rk*.(x;u).y.

The third possibility is the deletion of a nullable symbol. So we have x = r;c;t
and z = r; t with r E A*, r # P, t E A*, and CE VO. Recall that, in the fik-derivation

from x to y, the deletion of nullable nonterminals is performed as late as possible

and then from right to left. This implies that the derivation from z to y does not

contain deletions of productive or nullable symbols from substring t of x = r;c;t,
and also no rewritings of nonterminals from t. Therefore, t survives as a suffix of

y. Since r # E and there is an fik-derivation from r; t to y in which t survives, and

since y E (A; T”), it follows from (3) that It) G k. Since t is a suffix of y, it follows

that t E T”. Again, we can choose a prefix v of u such that (t; u) E T”. Since c E VO,

we have rk*.(c;t;u).(t;u) by Corollary 5(6), and hence rk*.(x;v).(z;v). We also

have rk*.(x;u).(x;u) and rk*.(z;u).y from (9). This implies rk*.(x;u).y. 0

(10) Lemma. Let x E A* and y E (A;T”) with frk*.x.y. Then brk*.x.y.

Proof. Again, we use induction on the length of the frk-derivation from x to y. The

base case x=y is trivial. So, let xf y. In the frk-derivation from x to y we may

assume that the productive rewritings occur as late as possible. Let z E A* be the

first intermediate string. We have frk.x.z and, by induction, brk*.z.y. If the frk-step

from x to z is a brk-step then brk*.x.y and we are done.

It remains to consider an frk-step that is not a brk-step. So it is a rewriting and

there exist r E A*, t E T”, and (c, w) E P with

x=r;c;t A z=r;w;t A (t/Sk.

Since lbrk.x.z, we have 1x13 k+2 and, hence jr;c(32 and r f F. Again using

lbrk.x.z, we get w # F, for otherwise the productive rewriting can be regarded as

the deletion of a nullable symbol. It follows that IzI 2 k +2.

It follows from (4) that the brk-derivation from z to y begins with (zl-(k-t 1)
symbol deletions. Since, in the frk-derivation from x to y, the productive rewritings

occur as late as possible, the brk-derivation from z to y does not contain symbol

deletions from r and t. It follows that the brk-derivations from z to y begins with

(z[- (k + 1) symbol deletions from the substring w of z = r; w; t. Now we observe that

lwl=IzI-/r;t(=/z(-(1x(-l)slzI-(k+l).

196 W. H. Hesselink

Therefore,]wI =]z/ - (k + 1) and the fik-derivation from z to y begins with the

stepwise deletion of string w, followed by a brk-derivation from (r;r) to y. Recall

that w + E. If 1 f E then the stepwise deletion of w implies that rm*‘.w.t: and hence

that c E VO; this implies brk.x.(r;t). If t = F, the stepwise deletion of w implies that

c E Al and again brk.x.(r;t). In either case, it follows that brk*.x.y. q

Remark. The global structure of the proofs of Theorem (5) and Lemmas (8) and

(10) is quite satisfactory. The details are somewhat messy, but that may be due to

the accumulated complexity of the definitions (l), (2) and (4). c!

10. Concluding remarks

We regard our presentation of LR-parsing as a derivation, since, after the initial

choices 4(O) and 4(l), there is essentially only one path forward and this path leads

to the programs of 4(11) and 7(17). The algorithm of 7(17) is a direct descendant

of Knuth’s second method for testing the LR(k) condition (cf. [7, pp. 615-6181).

Distinctive features are that we have isolated the finite automaton and the stack

of item sets in the optimisation treated in Section 7, and that we have isolated

the delicacies of nul~able nontermina~s in function Rks which is determined in

Section 9.

Another distinctive feature is that our proofs are virtually complete whereas Knuth

only gives a recipe. We hope that these features form a sufficient justification for

writing a heavy paper about a well-known algorithm that was treated in four pages,

26 years ago. A related analysis of Earley’s algorithm (cf. [5]), is given in 141.

Acknowledgement

The present version is the result of a major revision of a version from 1989. The

revision was prompted and assisted by criticisms and suggestions of H. Doornbos,

a referee, J. Jongejan and J.E. Jonker.

References

[I] J. de Bakker, Marhematicat Theory of Program Correctness (Prentice-Hall, Englewood Cliffs, NJ,

1980).
[2] E.W. Dijkstra, A Discipline oJ’Z+ogramming (Prentice-Hall, Englewood Cliffs, NJ, 1976).

[3] E.W. Dijkstra and C.S. Scholten, Predicate Cu/culus and Program Semantics (Springer, Berlin, 1990).

[4] H. Doornbos, A simplification of Earley’s algorithm, Computing Science Notes CS 9102, Groningen,

Netherlands (1991).
[5] .I. Earley, An efficient context-free parsing algorithm, Comm. ACM 13 (1970) 94-102.

[6] J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languages and Computation
(Addison-Wesley, Reading, MA, 1979).

[7] D.E. Knuth, On the translation of languages from left to right, Znfarm. Confrol8 (1965) 607-639.

