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Summary. The correctness of a program for wait-flee lin- 
earization of an arbitrary shared data object in bounded 
memory is verified mechanically. The program uses atomic 
read-write registers, an array of consensus registers and 
one compare and swap register. In the program, a number 
of processes concurrently inspect and modify a pointer 
structure without waiting. Consequently, the proof of cor- 
rectness is very delicate. The theorem prover N Q T H M  of 
Boyer and Moore  has been used to mechanically certify 
the correctness. 
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1 Introduction of the project 

In [-16], we presented an algorithm for wait-flee lineariz- 
ation of an arbi trary shared data object in bounded mem- 
ory. The algorithm was provided with a complicated proof 
of correctness that  needed twenty-four invariants. In view 
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of this complexity we felt the need of mechanical verifica- 
tion, even though we were fairly convinced of the validity 
of the proof. 

We knew the logic of the theorem prover N Q T H M  of 
Boyer and Moore, cf. [7, 8], but we had no experience with 
the prover. In November 1992, we embarked on the pro- 
ject to try and verify the program of [-16]. We started with 
a pilot project about the correctness of a trivial concurrent 
program without communication. This took three weeks. 
In March 1993, the proof  of the program of [16] was 
essentially concluded. This proof  was based on a hard- 
coded functional translation of the program. We spent 
several months more to modify the proof  in such a way 
that the program together with the declaration of the 
program variables is given to the prover in a purely syntac- 
tic form. This transformation was done to get cleaner 
statements of results and more general applicability of the 
methods involved. The present paper  is a report of this 
work. 

The choice of N Q T H M  for the project was based on the 
following considerations. Both N Q T H M  of [8] and H O L  
of [11] had recently been made available in our depart- 
ment. So the choice was between these two. Since no 
higher order functions were involved in the program or its 
proof, the greater expressive power of H O L  was not neces- 
sary. We knew that the logic of N Q T H M  was adequate for 
the task and, since we knew that logic, it was likely that the 
use of N Q T H M  would require a smaller initial investment. 
Finally, the accomplishments of N Q T H M  or rather of its 
group of users (e.g., cf. [17] and [6]) justify the choice of 
N Q T H M ,  even if other provers might be better. 

To say that we knew the logic does not mean that we 
knew how the prover could be most  efficiently led to 
construct proofs. The Handbook  [8] gives ample advice, 
but it requires experience to appreciate the advice. Initial 
modelling choices are very important,  since they may 
affect the efficiency of the prover during the whole project. 
Actually, we used a kind of incremental design and we 
modified the basic set-up a number  of times. 

Of  course, we had to take some initial hurdles. Perhaps, 
the main difficulty for the inexperienced user is that 
N Q T H M  must be guided by rather implicit means. For  
example, the order of the hypotheses of a lemma is taken 
by the prover as a hint how to choose instantiations in 
later applications of the lemma. During the project we got 
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invaluable assistance from J. Moore, one of the con- 
structors of NQTHM.  On a number of occasions, 
N Q T H M  seemed unable to make an obvious inference, 
but J. Moore  was always willing and able to solve the 
problem on short notice. 

We succeeded in verifying the algorithm. In general, the 
arguments used in [16] were sufficient, but it turned out to 
be convenient to rearrange the order of usage of the 
arguments. Additional arguments were needed only rarely. 
Occasionally, the use of the prover led to a better separ- 
ation of concerns. 

It turns out that the mechanical proof can be extended 
with not too much effort in such a way that the program 
has a finer grain of atomicity and needs a weaker precondi- 
tion. This extension only requires a new traversal of 
a modification of the proof. Here, a mechanical proof has 
great advantages over a mental proof, especially when 
there are many case distinctions that can be affected by the 
modification. These advantages are also stressed in the 
conclusions of [24]. 

We regard the proof in [16] of progress of the algorithm 
as completely satisfactory. Yet, it turns out that the mech- 
anical proof  needs a new, and more formal, proof obliga- 
tion. The ideas of the proof of [16] are still applicable. 
Unfortunately, we are now forced to provide explicit upper 
bounds. As a by-product, therefore, the project has led to 
a better understanding of the worst-case time complexity. 

number of processes, it uses eight shared arrays, each 
process has a number of private variables, the program of 
all processes has 32 atomic actions. 

Of course, our algorithm is dwarfed by the work on the 
short stack, reported in [6], but there the complexity is due 
to the aim to verify a complete computer system, not 
a single algorithm. 

Another referee suggested a comparison with [24]. That 
paper contains a clear introduction to and convincing 
arguments for machine verification of distributed and criti- 
cal algorithms. The algorithm treated is the interactive 
convergence algorithm for fault-tolerant synchronization 
of clocks. It has roughly the same complexity as our 
algorithm, but the algorithm and the complexity issues 
involved are of a completely different nature. The algo- 
rithm is a mathematical procedure to choose adequate 
resynchronizations and the correctness conditions are ar- 
ithmetical bounds on differences between estimates of 
time. The recent paper [22] also deals with asynchronous 
clocks. Its focus is entirely on the physical problems intro- 
duced by asynchrony, namely how clock rates, delay, and 
phase shift affect the received signal. Our algorithm, on the 
other hand, is a set of concurrently executed computer 
programs and the problems are due to the interleaved 
modifications of a shared pointer structure. 

3 Introduction of wait-free iinearization 

2 Correctness and mechanical verification 

The problem we treat in this paper is a problem of the 
correct design of a distributed algorithm with shared mem- 
ory. So it belongs to the field of programming methodo- 
logy. This field seems to have got its momentum by the 
threatening possibilities of distributed algorithms, e.g., see 
the concluding remarks of [-10]. Yet its results are mainly 
applied to sequential programs. The methods proposed for 
distributed programs in [3] and [23] are sufficiently 
strong but often lead to a horrible growth of proof 
obligations. 

For  this reason, methodologists and theoreticians have 
concentrated on developing alternative languages and spe- 
cification formalisms, like CCS [20], CSP [18], Unity [9], 
ACP [5], action systems [4], to mention only a few. All 
these formalisms have merits, but the central problem of 
exploding complexity has not been solved. 

In the present paper we use the old methods of [3] and 
[23], but we apply a mechanical theorem prover to control 
the complexity. We are not aware of applications of mech- 
anical theorem provers to correctness proofs of distributed 
algorithms of this size and kind. Indeed, as suggested by 
one of the referees, the project may be regarded as a 'cut- 
ting edge' case study in the mechanical verification of 
concurrent algorithms. In the rest of this section we give 
a comparison with other mechanical verifications of 
algorithms. 

The algorithm can be compared with the example 
treated by Russinoff in [25]. In that example, two pro- 
cesses concurrently act on three simple global variables 
with programs of four or five atomic actions. Our algo- 
rithm is definitely more complex: it allows an arbitrary 

We turn to the description of the problem. 
A concurrent data object is a data structure shared by 

concurrent processes. The object must behave as if the 
invocations are processed in some sequential order. This 
requirement is formalized in the concept of linearizability 
(see [15], we come back to this in Sect. 5). Traditionally, 
linearizability is achieved by means of operations that 
temporarily block the progress of some processes. The 
disadvantage of such operations is that if a process is 
delayed (or stopped) other processes are delayed as well. 

Therefore, recently, the concept of wait-free implemen- 
tations has been proposed. A wait-free implementation of 
the concurrent data object is one in which every process 
completes its invocation in a bounded number of atomic 
actions, regardless of the actions and the execution speeds 
of the other processes, see [12, 14]. So, unbounded busy 
waiting loops or idle-waiting primitives are forbidden. 
There is no assumption that every process makes progress. 
A wait-free implementation is fault-tolerant in the sense 
that, if some process stops executing, the invocations of 
other processes are not affected. 

One of the simplest concurrent data objects is the atomic 
read-write register: a shared variable, say x, with the only 
atomic actions x := u and z := x, for some private variables 
u and z. Notice that we use the convention that shared 
program variables are in typewriter font. Constants, pri- 
vate program variables, parameters and mathematical 
variables are in math-italic. From Sect. 8 onward, we shall 
also use typewriter font for all expressions in the language 
of the theorem prover. 

It has been shown by Herlihy [14] that atomic 
read-write registers are not sufficient to construct 
wait-free implementations of many important data oh- 
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jects. In [11 on the other hand, it is shown that atomic 
read-write registers are sufficient to construct useful data 
objects like counters. 

Another simple data object is the consensus register. 
This is a shared variable, say x, with an atomic read action 
z := x and an atomic setting action 

( i f  x = 0 then x := u f i )  (1) 

where 0 is some constant of the same type as x, and z and 
u are private variables as before. If x =r 0, command (1) is 
equivalent to skip. There is also an atomic write operation 
x :=  0. Consensus registers are sometimes called logical 
variables or permanents, see e.g. [21] Sect. 1.4. 

A slightly more powerful object is the compare and swap 
register. This is a shared variable x with an atomic read 
action z := x and an atomic setting action 

( i f  x = u then x := v f i )  (2) 

where z ,u and v are private variables, cf. [14] p. 135. 
Hertihy [12, 14] and Plotkin [263 have shown that 

wait-free implementations of arbitrary data objects can be 
constructed by means of atomic read-write registers to- 
gether with consensus registers. Let n be the number of 
processes. The implementation of [26] requires memory of 
order n 2 and has a worst-case time complexity of order n 3. 
The implementation of [14] requires memory of order n 3, 
has a worst-case time complexity of order n 2 and, more- 
over, requires unbounded integers. The latter requirement 
is a serious drawback, since unbounded integers are not 
available in bounded space. 

In [13], Herlihy presents a construction based on 
a compare and swap register with memory of order n 2 and 
worst-case time complexity of order n 2. For all three 
implementations, the outline provided is rather sketchy. 
This makes it hard to prove or to refute their correctness. 

In [16], we presented a wait-free implementation of an 
arbitrary data object that requires memory of order nZ and 
that has a worst-case time complexity of order n. The 
implementation uses a compare and swap register, just as 
in [13]. The paper [163 contains an assertional proof of 
correctness, but the proof is so complicated that it is not 
completely convincing. This observation was the starting 
point of the present project. 

The project has resulted in an implementation closely 
related to the implementation of [16] but with a mechan- 
ical proof of correctness and a somewhat finer grain of 
atomicity. In particular, it satisfies the condition that each 
elementary command A may refer to at most one variable 
that can be changed by another process while A is being 
executed, cf. [23]. We have also been able to formalize and 
verify the safety of the non-atomic shared variables. 

In a stricter sense, the result of the project is a file of 
definitions, lemmas and hints that, when loaded into 
NQTHM,  yields proofs of all lemmas that are marked as 
proof obligation. This final verification can be performed 
by every observer with access to the file and to NQTH M.  
The file is named qspace.events and can be obtained by 
anonymous ftp from f tp .cs . rug.nl ,  in the directory 
/pub/boyer-moore .  

4 Overview 

In Sect. 5, we develop a formal description of the problem 
together with the list of proof obligations. In Sect. 6, we 
present a variation of our solution in [16]. This variation 
is a program with a weaker precondition and a finer grain 
of atomicity than the one of [16]. In Sect. 7, the program of 
Sect. 6 is reformulated to facilitate the proof. This refor- 
mulation consists of the addition of auxiliary history vari- 
ables as required by the proof obligations, the addition of 
labels to discuss the execution of the processes, and the 
elimination of composite constructs for i f  and while  by 
means of goto commands since these composite constructs 
are not executed atomically. 

Section 8 contains a sketch of some relevant aspects of 
the theorem prover N Q T H M ,  followed by a description 
how the program is modelled as a function that yields the 
new implementation state in terms of the old implementa- 
tion state, the acting process and one other argument. 
Section 9 contains a description of the formal proof obliga- 
tions, i.e., of the main theorems that are proved by the 
prover. 

Section 10 gives a very short description of our experien- 
ces with the prover. Section 11 gives a description of the 
global structure of the proof. Section 12 describes the 
initial parts of the proof. Section 13 contains some exam- 
ples of invariants and a sketch of how the invariance of 
these predicates is proved by the prover. Finally, in Sect. 
14, we sketch the proof  of wait-free progress. Some con- 
clusions are drawn in Sect. 15. 

5 Data  objects and concurrency  

A data object is a tuple (X,  U, Z, Xo, R)  where X is the 
state space of the object, Xo ~ X is the initial state, U is the 
input space (the set of invocations), Z is the output space 
(the set of result values) and R __q X x U x X x Z is the 
transition relation. If the object is invoked in state x with 
invocation u, it may go into state y and return the output 
z if and only if (x, u, y, z)  ~ R. 

Just as in [163, we assume that the object is total and 
deterministic, in the sense that in every state every invoca- 
tion allows precisely one new state and precisely one 
result: for every pair (x,  u) with x e X and u s U, there is 
precisely one pair (y,  z )  with (x, u, y, z) s R. The require- 
ment of totality (the existence of a resulting pair <y, z)  
for every pair (-x, u)) formalizes the assumption that 
no operation can be blocked. Determinacy is postulated 
for the sake of simplicity of the algorithm. This assump- 
tion is essential for the present algorithm, but a variation 
of the algorithm that avoids this assumption is in prepara- 
tion. 

We assume that there are n processes, with process 
identifiers of type process. A concurrent implementation of 
a data object (X,  U, Z, xo, R)  is a procedure that, concep- 
tually, acts on one global program variable x of type 
X and that could be specified by 

proc apply (in P:process ,  u: U; out z : Z )  

{pre x = w, post (w, u, x, z)  6 R} 
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Here, w is a logical variable that stands for the value o f x  in 
the precondition. Process P calls procedure apply in the 
form apply(P, u, z) for the treatment of invocation u with 
result z. So P and u are input parameters and z is a result 
parameter. 

All processes may call apply concurrently and repeat- 
edly. During execution of such a call the process is said to 
be invoking. The data object itself is passive; the subcom- 
mands of apply are executed by the invoking process. Yet 
the implementation is required to be linearizable, in the 
sense that each call of apply appears to take effect instan- 
taneously at some point between the invocation and the 
response. Linearizability implies that processes appear to 
be interleaved at the granularity of complete operations 
and that the order of non-overlapping operations is 
preserved. See [15] for a detailed exposition. A formal 
proof obligation is presented below. 

The implementation (i.e., procedure apply) is called 
wait-free if it does not contain operations that can be 
blocked and if there is a number  N such that every call 
apply(P, u, z) terminates after at most N elementary ac- 
tions of process P, independently of concurrent calls of 
apply by other processes. 

In order to define linearizability as a concrete proof  
obligation we proceed as follows. When the abstract object 
has a certain state x, a new invocation u, say by process (2, 
may lead to a new state y and a result z. We therefore 
represent the history of the object by a list a of quadruples 
(Q, u, y, z)  with the interpretation that u was an invoca- 
tion value of process Q that induced the new object state 
y and the result z. The most recent quadruple is positioned 
at the head of the list. 

We write V to denote the set of such quadruples and V* 
to denote the set of finite lists over V. Similarly, U* and Z* 
are the sets of finite lists of elements of U and Z, respect- 
ively. Let e be the empty list. For  list a and element v, let 
(v : G) be the list obtained by prefixing o- with the singleton 
v. We define function st t~ V* --, X that yields the most 
recent object state, by 

s t t . ~  ~ X 0 

stt.((Q, u, y, z ) :a )  = y (3) 

A list crs V* is said to be acceptable if and only i fa  corres- 
ponds to a legal sequential history of the object. This is 
formalized in predicate acc, defined by 

acc.e = true 

a c c . ( ( Q , u , y , z ) : a ) - ( s t t . G , u , y , z ) ~ R A a c c . a  (4) 

In order to relate the history a of the object to the 
actions of a particular process Q, we define crlQ to be the 
sublist of a with elements that have first component Q: 

~IQ = g  

( ( Q , u , y , z )  :a)lQ = (Q,u ,  y , z )  :(aLQ) 

( ( P , u , y , z ) : a ) ] Q = ( a [ Q )  i f P , Q  (5) 

We define the functions in ~ V* ~ U* and out ~ V* -~ Z* 
as the projection functions to the components in U and Z, 

respectively. So we have 

in.e = e 

in.((Q, u, y, z)  : a) = u :in.a 

o u t . 8  = S 

out.((Q, u, y, z ) :0 )  = z : out.a (6 )  

So in.a is the list of invocation values of o" and out.~7 is the 
list of result values. It  follows that in.(a] Q) and out.(a [ Q) 
are the sequences of invocation values and result values of 
process Q as recorded in history 0. 

For  every process Q, we introduce ghost variables fl.Q 
of type U* and 7.Q of type Z* for the actual lists of 
invocation values and result values of process Q, both 
ordered with the most  recent value at the head of the list. 
This means that initially ft. Q = e and y.Q = e, and that the 
first action of apply is extended with the assignment 
fl.Q := (u:fl.Q) and that the last action of apply is extended 
with 7.Q:= (z:v.Q). 

Definition. The implementation of the data object is called 
linearizable if one can construct a ghost variable er of type 
V*, initially a = e, that for every execution satisfies the 
invariants 

(CLO) acc.a 
(CL1) if process Q is not invoking then fl.Q = in.(~lQ) 
and 7.Q = out.(a)Q). 

In fact, these conditions imply that ~ is a linearization of 
the invocations according to an order of treatment by the 
object. 

Remark. In [16], we used a different proof  obligation 
which, for deterministic objects, is equivalent to the pre- 
sent one. The present proof  obligation is better, for two 
reasons: it is more symmetric and it is also applicable to 
nondeterministic objects. 

Our  implementation satisfies the additional condition 
that a only grows: 

(CL2) if a = a~ then a t  remains a tail of list a. 

This condition, however, is not necessary. Indeed, it is not 
satisfied by the implementation of [1]. (End of remark) 

The concurrent implementation is to be based on 
a given local implementation 

locapply(in u: U; vat y : X; out z: Z) 

which establishes (w, u, y, z)  s R  ifw is the initial value of 
y. Each process can use locapply on its own private vari- 
ables (moreover, it is allowed either that u stands for 
a shared variable to be read, or that z stands for a shared 
variable to be written). 

The other building blocks of the implementation are 
private variables of arbitrary types, atomic read-write reg- 
isters for booleans and bounded integers, and safe shared 
variables of arbitrary types. A shared variable is called safe 
if concurrent modifying write operations of the same value 
do not interfere with each other; moreover, as expected, 
any read operation not concurrent with a modifying write 
operation must obtain the most recently written value. 
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A safe variable stores in general a composite value that is 
not read or written all at once. So there is no assumption of 
atomicity here. In particular, if two processes are writing 
different values into the same variable, the final state is 
undefined, and if one process is reading the variable while 
another process is modifying it, the value obtained by 
reading is undefined. Note however that a non-modifying 
write operation does not interfere with a concurrent read 
operation. 

If a variable is only assumed to be safe, the programmer 
has to ensure that harmful interferences do not occur. This 
requirement is formalized by the concept of safe treatment: 
we define a concurrent program to treat a shared variable 
v safely if it satisfies the following two conditions: 

(RW-safe) whenever the next action of some process is to 
read v and the next action of another process is to write 
v := y, then v = y holds already. 

(WW-safe) whenever different processes have as next ac- 
tions write actions v := y and v := z, then y = z holds. 

The assertion that the implementation is wait-free is 
proved by constructing an integral state function gw (for 
gamma weight) that is proportional to the length of list 
?.Q (up to a bounded error term), that is incremented at 
every action in apply of process Q and that is not de- 
cremented by actions of other processes. It will follow that, 
if process Q performs sufficiently many actions, it obtains 
a new result (i.e., the implementation is wait-free). More 
formally stated, the proof obligation is: 

(WF) for every process Q, there exist a constant N and 
a state function v f  with 0 < v f<<_ N such that the state 
function 

gw = N x (#~/.Q) + v f  (7) 

satisfies, for every action A of process Q and for every 
action B of other processes, and for all numbers t, the 
Hoare triples 

{gw=t} {gw>_t+l} 

{ow = t} B {gw >__ t} (8) 

We now prove that condition (WF) implies that the num- 
ber of actions of process Q between an invocation and the 
corresponding result is bounded by N. In fact, suppose 
that Q is idle and has # 7 . Q  = r. At that moment 
gw > N x r by formula (7). Now Q submits a new invoca- 
tion and performs N actions. The Hoare triples (8) then 
imply that gw > N x r + N and hence # ?. Q > r, again by 
(7). This proves that, after N actions of Q, process Q has 
obtained a new result. 
Remark. One may propose to replace (WF) by the weaker 
proof obligation 

(AL) there exist a constant N > 0 and a state function 
gw < N x ( #  7.Q + 1) that satisfy the Hoare triples (8). 

Condition (AL) expresses that the amortized complexity 
for invocations of Q is linear, but it allows unboundedly 
many actions between an invocation of Q and the corres- 
ponding result. Indeed, the above argument now fails. We 
therefore prefer to prove (WF). (End of remark) 

To summarize, the list of proof obligations consists of 
the linearizability conditions (CL0), (CL1), the safety con- 
ditions (RW-safe) and (WW-safe) for the non-atomic 
shared variables, and progress condition (WF). 

6 Implementing an arbitrary object 

We now turn to the presentation of the wait-free con- 
current implementation of an arbitrary data object 
(X,  U, Z, Xo, R). The final algorithm will be a variation of 
the algorithm of [16]. At the end of this section we indicate 
the changes we have made and the reasons for these 
changes. In the presentation we give reasons for some 
design decisions, but we do not give proofs. In fact, in 
general, when we signal some problem and present some 
solution to the problem, it will not be apparent that the 
solution indeed solves the problem. 

In the first approximation, applyO of Fig. 1, the shared 
variable s ta  holds the current state of the object. For each 
process P, there are variables m v . P  and r e s .P  to hold the 
most recent invocation and result values, and a variable 
w a . P  to indicate that process P has a pending invocation 
(wa is short for waiting). In the body of the loop, process 
P treats the invocation of some waiting process Q. 

The implementation applyO is indeed linearizable. Since 
the loop body is one big atomic action, however, the grain 
of atomicity of applyO is too coarse. Moreover, applyO is 
not wait-free. In a later refinement, the choice of Q will be 
implemented in such a way that the algorithm becomes 
wait-free. At this point, the obvious implementation of the 
choice of Q would be Q:= P. This implementation is 
too eager, however, for then the algorithm cannot be 
made wait-free when the big atomic action is being split 
into smaller ones. So we use the variable Q for greater 
flexibility. 

Since we want to split the big atomic action, we prepare 
the possibility that some process is treating an invocation 
that was treated before by some other process, or is using 
an outdated version of the state of the object. We therefore 
introduce a memory space, called address, such that each 
address can hold an invocation, a state, a result, and a flag 
to indicate waiting. We introduce a shared variable gg for 
the address of the current state and we give each process 
P a variable a~.P for the address of its current invocation. 
We thus get the declarations 

type process = 0..  n - 1 {n is number of processes} 
; address = 0. .  top - 1 {top to be chosen later}; 
var gg: address 
; sty: array address of X 
; inv: array address of U 
; res:  array address of Z 
; wa: array address of boolean 
; aa: array process of address 

The types process and address are subranges of the inte- 
gers. Without changing the grain of atomicity the program 
becomes as given in Fig. 2. The program uses two private 
variables: i for the address of some waiting invocation and 
y for the state of the object. 
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proc apply 0 (in P: process, u:U; out z: Z);  
[ inv.P:= u 
; w a . P : =  true 
; while w a . P  do 

( choose a process Q such that  wa .Q 
; locapply (inv. Q, s ta ,  res .  Q) 
," w a . Q : =  false) od 

Z:= r e s . P  ~. 

Fig. l.  The first app rox ima t ion  

proc apply 1 (in P: process, u: U; out z : Z ) ;  
[ choose a free address a~.P 
; i n v . ( a a . P )  := u 
; w a . ( a a . P )  := t rue 
; while w a . ( a a . P )  do 

( choose an  address  i such that  wa . i  
; y:= s t a .gg  
; locapply (inv.i ,  y, r es . i )  
; s t~ . i :=  y 
; w a . i : =  false 
; g g : = i  )od  

; z : = r e s . ( a a . e )  ~. 

Fig. 2. The second approximation 

We now turn to the splitting of the big atomic com- 
mand. This will lead to the program given in Fig. 3. 

The first problem to address is the choice of address i as 
the successor of the current address gg. This choice must 
be separated from the call of procedure locapply and it 
must be made atomically. We therefore declare 

var nx:  array addres s  of  address 

and we use nx .gg  4= 0 to record that nx .gg  has been 
chosen as successor of gg. The processes have to achieve 
consensus concerning the successor of gg. Therefore, 
nx .gg  is made into a consensus register, to be modi fed  by 
consensus actions of the form 

( i f  nx .h  = 0 then nx .h  := i fi) 

where h is a private copy of the shared variable gg. Notice 
that address 0 is being used as a nilpointer. 

In order to make a fair choice of an address i with wa.i, 
the current state is tagged with a sequence number  seq.gg 
that indicates the number  of the process whose invocation 
is to be treated next. So we have the additional declaration 

var seq:  array address of process 

and the choice of address i is implemented by 

h : = g g  
; p f := seq.h {default process} 
; i:= a a . p f  {its invocation address} 
; i f--n w a . i  then i := a a . P  fi 

where the conditional statement gives an eager alternative 
in the case that the default process is not waiting. Unfortu- 
nately, it is not guaranteed that process P itself is still 
waiting. If P is not waiting anymore, the assignment 
i :=aa .P  in part D of Fig. 3 might lead to a double 
treatment of P's invocation, i.e. to violation of requirement 
CL1. This is the reason that in part D the assignment 

proc apply (in P: process, u : U; out z : Z ) ;  
[[ i f # s s . P > m t h e n A f i  
; choose aa.Psaddr.P\ss.P 
; inv.(aa.P):= u 
; n .x .(aa.P)  := 0 
; wa.(a~.P):= true 
; ss.P:= ss.Pw{aa.P} 
; while wa.(a~.P) do 

h := gg; bb. P := h 
; if h = gg then D fi od 

; z : =  r e s . ( a a . e )  ]]. 

A:~ ss.P:= {gg, aa.P}caaddr.P 
; for each T ~ process with T ~ P do 

i :=  b b . T  
; ss.P:=ss.Pw({i,  nx.i}naddr.P) od ~. 

D : i f  wa. (aa .  P) then 
p f  := seq .h ;  i :=  a~.pf  

; if -7 wa . i  then i := aa .  P fi 
; ( i f r~x .h=Othenn.x .h:=i f i  ) 
; i:= nx.h; y:= st~.h 
; locapply (inv./,  y, z) 
; s t~ . i :=  y; r e s . i : =  z 
; s eq . i :=  ( p f +  1)modn 
; wa.i:= false 
; ( i f gg=h thengg:=i f i )  ft. 

Fig. 3. The program as a procedure with refinements 

pf:= seq.h is preceded by a second test of wa.(aa.P). It 
follows that, if process P is not waiting when it enters D, 
part  D is equivalent to skip. It turns out that, if P enters 
D while waiting but is no longer waiting when i:= a a . P  
and nx .h  :-- i are executed, there will be invariants that 
preclude harmful behaviour. 

Now the development of part  D of Fig. 3 can be con- 
cluded. Since it is not guaranteed that process P itself has 
executed nx .h  := i, the conditional statement is followed 
by i := nx .h  to obtain the predicate nx .h  = i (see invariant 
kp8 in part 6 of Sect. 13 below). A private variable z is 
introduced, so that the call of locapply only refers to one 
shared variable (inv). The sequence number  seq.i of the 
new state is obtained from the old one by circular in- 
crementation. Finally, variable gg, the pointer to the cur- 
rent state, is modified only if it still equals the value of its 
private copy h. Otherwise, the work done in part D was 
superfluous (an important aspect of the proof  is to show 
that all superfluous work is harmless; this follows, how- 
ever, when the proof obligations mentioned at the end of 
Sect. 5 are met). 

It remains to implement the choice of a free address for 
aa .P.  In order to avoid that different processes choose the 
same free address concurrently, we give each process its 
own pool of addresses. The range address is therefore 
partitioned into sets addr.Q given by 

ksaddr .Q =_ m x Q  < k 6 m x ( Q  + 1) (9) 

where m is sufficiently large. We take top = m x n + 1. It 
follows that every nonzero address belongs to precisely 
one process. Slightly deviating from [16], we give each 
process Q a global private variable ss. Q to stand for the set 
of addresses in its pool that are not free for a new invoca- 
tion. So we have the additional declaration 

var ss: array process of set of address 
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The variables ss. Q is only accessed by process Q. Since it is 
global, it need not be computed in every invocation. 

When process P has no free addresses left (i.e., when 
# ss.P > m), it executes the garbage collector command 
A of Fig. 3. Command A reconstructs ss.P as the set of 
addresses in the pool of P which are still referred to by 
other processes T. For this purpose, command A needs the 
values of the private variables h. These values are broad- 
casted by a shared variable 

var bb: array process of address 

To get accurate broadcasting, an additional test is placed 
in the loop body. This body therefore becomes 

h:= gg; bb .P:= h 
; if  h = gg then D fi 

The two-seemingly superfluous consecutive tests h = gg 
and wa.(aa .P)  cannot be omitted. The program even 
becomes incorrect if the tests are permuted. The danger to 
avoid here is that process P may be idle for an extended 
period (e.g. just before the assignment bb .P  := h) and then 
start executing again (this was described once by M.O. 
Rabin as the problem of the senile politician). The incor- 
rectness in case of permutation of the two tests requires 
a delicate scenario, which is given in Sect. 7 of [16]. 

It follows from (9) that addr.P has m elements. Since 
fragment A clearly establishes the postcondition # ss.P 
< 2 x n ,  the subsequent choice of a a .P  is possible if 

2 x n < m. Thus, at this point, we can state the require- 
ments on the system parameters n, m and top: 

n > 0 A 2 •  (10) 

The choice of a a . P  in addr. P \ ss.P can be implemented in 
a completely arbitrary way. The obvious way is to use 
linear search. Since it is a private computation, it need not 
concern us here, but can be dealt with by the implementer. 

In this way, we arrive at procedure apply as given in Fig. 
3. It remains to say that nx.(aa.P):= 0 is a necessary reset 
operation and that s s .P :=ss .Pw{aa .P}  records that 
address aa. P is put into usage. The first assignment to ss. P 
in part A is motivated by the fact that at that part of the 
program we have nx .gg  = aa. P if nx.  gg ~ addr. P, and by 
the condition that an atomic command may contain at 
most one variable that can be modified by other processes 
(recall that we only give design considerations and that the 
proof is postponed). 

Crucial atomic commands in this algorithm are the two 
commands enclosed in ( )  in fragment D. The atomic 
conditional modification of nx.h indicates that nx  is an 
array of consensus registers, see (1). In view of its atomic 
conditional modification, variable gg is a compare&swap 
register, see (2). 

By now the data structure is complete. It is subject to the 
following initial condition: 

mem.gg A sta .gg = Xo A nx.gg = 0 A seq.gg = 0 

A (V k ~ address" : -~ wa. k) 

A (V r ~ process:" mem.(a~. T) A {gg} c~ addr. r ~_ ss. T)  

(11) 

where mem.k expresses 0 < k < top. 

The initial value 0 of seq.gg is not required in [16], but 
0 is a natural starting point and this choice was more 
convenient for the mechanical proof. In [16], the initial 
conditions on a a . T  and s s .T  are much stronger. The 
present initial conditions are made possible by some modi- 
fications in the invariants. 

The algorithm of Fig. 3 only deviates from [163 in the 
following points. Instead of ss.P, we used in [16] the 
equivalent variable s.P, related to ss.P by means of 

s. P = ss. P w (address \ addr. P) 

ss.P = s .P naddr .P  (12) 

The treatment of ss.P is the direct translation of the 
treatment o f s .P  in [16]. There is one point where a second 
program transformation has been applied. In the first 
conditional command of apply, the translated test would 
have been ss.P = addr.P. This has been replaced by 
# ss. P > m to avoid the necessity of a test on set equality. 
The present version is also more convenient for the prover. 

The local variables p f, y and z have been introduced 
here to eliminate commands in which two or more shared 
variables are accessed. For  example, part D as developed 
in [16] contains composite assignments i:= aa.(seq.h), 
and seq.i := (seq.h + 1) rood n. The present program uses 
p f  to keep the value of seq.h. Of course, such a separa- 
tion of variable accesses requires the introduction of new 
invariants. 

The last point is that, in [16], we used the atomicity rule 
([2] Theorem 6.26) to argue that the assignments to 
wa. (aa .P)  and ss.P in apply could be regarded as being 
combined in a single atomic command. For  the prover it 
turned out to be only a minor complication to treat the 
two assignments as separate commands. See the end of 
part 6 in Sect. 13. 

7 A nonterminating goto program 

In this section, the program is reformulated to facilitate the 
proof. We add the history variables required by (CL0) and 
(CL1) and we add labels to discuss the execution of the 
processes. We eliminate composite constructs for if and 
while by means of goto commands. The resulting program 
is given in Fig. 4. We now discuss the transformations 
applied in more detail. 

For  every process Q, at every moment, at most one 
incarnation of procedure apply is active. We may therefore 
replace procedure apply by one unbounded repetition for 
every process, with the body of apply as body of the loop. 
The input-parameter u of apply may be regarded as a value 
that is chosen non-deterministically each time that Q en- 
ters its loop body. 

We use the auxiliary variables fl, 7 and a, as introduced 
in Sect. 5. This means that, at every choice of a new 
invocation value u, the l i s t /LP  is replaced by (u:fl.P). At 
the end of the loop body, list 7-P is replaced by 
(res.(aa. P): 7. P). Now the result parameter z can be omit- 
ted, but we must remember that res . (aa .P)  is actually 
being read. 

We choose to update cr in the atomic command in 
fragment D where wa.i  is made false. More precisely, if 
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Fig. 4. 

0 choose u; fl.P:= u:fl.P 
1 i f#ss .P  < m goto 8 
2 A: ss.P:= {gg, a~.P} c~addr.P 
3 plist := process \ { P} 
4 if plist = ~ goto 8 
5 shuffle plist; i:= bb.(car plist) 
6 ss.P:= ss .P~({i ,  tax.i} ~addr.P) 
7 plist := (cdr plist); goto 4 
8 choose aa.P ~addr.P\ss .P 
9 mv.(aa. P) := u 

10 n.x.(a~. P) := 0 
11 wa.(a~.P) := true 
12 ss.P:= ss.Pw{aa.P~ 
13 if"nwa.(aa.P) goto 31 
14 h:=gg 
15 bb.P:= h 
16 if h 4~ gg goto 13 
17 D: if-nwa.(aa.P) goto 13 
18 p f:= seq. h 
19 i:= aa.pf  
20 if wa.i goto 22 
21 i:= a~.P 
22 if n.x. h = 0 then n x .  h := i fi 
23 i:= nx.h 
24 y:= st~.h 
25 locapply (my. i, y, z) 
26 st~.i:= y 
27 res.i:= z 
28 seq.i:= ( p f +  1) rood n 
29 if wa. i then a := (pown.i, i nv .  i, y, z)  : a fi 

; wa.i:= false 
30 if gg = h then g g : =  i fi ; goto 13 
31 7.P:= res.(a~.P):,/.P ; goto 0 

The program as a goto program 

wa. i  holds, this command is extended with 

a : =  ( p o w n . i ,  inv./, y, z): 

where function pown gives the process that submitted the 
invocation located at address i, i.e., 

pown. i  = Q if i ~ a d d r . Q  (13) 

The for-loop in fragment A of Fig. 3 involves the nondeter- 
minate choice of a process T that is to be treated next. In 
order to model this nondeterminate choice, we have 
chosen to introduce a local variable plist  of process P such 
that T s p l i s t  means that T has yet to be treated in the 
for-loop. The selection of an arbitrary element of plist  is 
implemented by a nondeterminate shuffle of the list fol- 
lowed by selection of its car (i.e., head). 

In the mechanical proof, we need the program counters 
of the processes to keep track of the concurrent executions. 
Having introduced the program counters, we eliminate the 
loops and the composite conditionals by means of goto 
commands. In this way we arrive at the program for 
process P given in Fig. 4. In commands  5 and 7, we use the 
LISP symbols car and cdr to denote the head and the tail 
of list plist. 

Now that the program of Fig. 4 has been concluded, we 
can discuss the atomicity of the commands. The com- 
mands 0, 1, 3, 4 and 7 only refer to private variables and 
may therefore be regarded as atomic. The variables wa.k ,  
seq. k (k ~ address) and aa .  P, bb.  P (P ~ process) are atomic 
read-write variables. An action on such a variable may be 
combined atomically with actions on private variables. 

We may therefore assume atomicity of the commands 
5, 8, 12, 15, 18, 19, 20, 21, 28. Since a is only an auxiliary 
variable, the conditional assignment to a and the inspec- 
tion of inv. i  can be combined atomically with the assign- 
ment to wa  in 29. 

Since gg is a compare  and swap variable and nx.h is 
a consensus variable, the commands 6, 14, 16, 22,23, 30 
are regarded as atomic. Notice that actions on these vari- 
ables may also be combined atomically with actions on 
private variables. Since a~. P is only modified by process 
P itself, commands 2, 10, 11, 13 and 17 may also be re- 
garded as atomic. 

The remaining commands  9, 24, 25, 26, 27 and 31 are 
not atomic. They are the central actions of value transfer 
and computation. These commands are marked with the 
symbol ~ .  Commands  24, 25 and 31 are read actions of 
shared variables s ta .  k, inv.  k and res .  k. Commands 9, 26 
and 27 are write actions for such variables. These variables 
are assumed to be safe variables, as discussed in Sect. 5. 

8 M o d e l l i n g  t h e  p r o g r a m  in N Q T H M  

In the next sections, we describe how the program of 
Fig. 4 is treated with the theorem prover N Q T H M .  We go 
into the N Q T H M  details for two reasons. On the one 
hand, we want to give readers who want to use N Q T H M  
for similar purposes an impression of the kind of hurdles 
one encounters. On the other hand, we want to give the 
insiders of N Q T H M  a handle to certify our claims. 

Many proofs published by Boyer, Moore, and their 
associates (eg. [22]) rephrase definitions and lemmas into 
more tranditional notation to make it more broadly ac- 
cessible. We have three reasons for not doing so. Firstly, 
we want to give a faithful representation of the encodings 
used for readers who consider the use of N Q T H M  for 
a similar project. Secondly, it is our experience, e.g. while 
reading [-22] with a group of non-users of NQTHM,  that 
rendering into more traditional notation frequently raises 
questions that can only be solved by discussion of the 
N Q T H M  notation. Thirdly, this paper uses the interpreta- 
tion of quoted constants for which a more traditional 
notation is not readily available. 

We refer to the Handbook  [8] for the description of the 
language, the logic and the theorem-proving capabilities of 
NQTHM.  The language of N Q T H M  is a variation of pure 
LISP. In particular, it is an untyped, purely functional 
language in which almost all functions are total. 

We treat the program as a syntactic constant and use it 
to construct a function step that yields the new global 
program state in terms of the old program state x, the 
acting process P and a nondeterminate argument nd. 

The first thing to do is to make a formalism to structure 
the state space of the program that is to be interpreted by 
means of a declaration of the program variables. As 
a preparation for the concrete declaration, we then intro- 
duce (in Fig. 5) N Q T H M  constants (n), (m) and (top) to 
represent the constants n, m and top as restricted by For- 
mula (10). In fact, the constrain expression introduces two 
function symbols n and m of arity zero and postulates 
(n) > 0 and ( m ) >  ( n ) x  2. In the N Q T H M  logic, this 
implies that (n)  and (m)  are natural numbers. The term 
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(constrain axiom-constants (rewrite) 
(and (lessp 0 (n)) ; 0 < (n) 

(lessp (times (n) 2) (m)))  ; (n) �9 2 < (m) 
((n (lambda ()  1)) (m (lambda () 3))) ) 

(defn top ()  (addi (times (n) (m))))  ; (top) = 1 + (n) , (m) 

Fig. 5. Declaration of constants 

(defn declaration ( ) 
(list '(sigma) '(gg) (list 'wa (top)) (list 'nx (top)) 

(list 'inv (top)) (list 'res (top)) (list 's ta (top)) 
(list 'seq (top)) (list 'aa (n)) (list 'bb (n)) 
(n) ' (pc) ' (uu) ' (beta) ' (gamma) ' (s s) ' (h_h) 

'(li) '(plist) '(pf) '(yy) '(zz) ) ) 

Fig. 6. Declaration of variables and arrays 

( r e w r i t e )  indicates  to the prover  how the ax iom is to be 
used; a x i o m - c o n s t a n t s  is the name of  the axiom. The last 
line p rov ides  a mode l  ( (n)  = 1 and ( m )  = 3) tha t  is used 
by N Q T H M  to verify the consis tency of  the axiom. The 
second express ion defines the cons tan t  ( t o p ) .  Semicolons 
with subsequent  characters  are r ega rded  as comment .  

The  concre te  declara t ion  of the p r o g r a m  state  is intro- 
duced by Fig. 6. I t  declares shared var iables  ' s i g m a  (for a) 
and 'gg  and  shared arrays ' w a  up to 'bb  toge the r  with the 
lengths of  these arrays.  It next declares  an  anonymous  
a r ray  of pr iva te  states of length (n) .  Each  pr ivate  state 
consists of  pr ivate  variables 'pc  up to 'zz.  W e  have chosen 
to represent  the pr ivate  variables u, h, i, y, z by 'uu,  'hh,  
etc. The  reader  should  not  be worr ied  by the parentheses  
and the quotes  in Fig. 6. Exp lana t i on  of  those  details 
would  require  a genuine in t roduc t ion  to N Q T H M  and an 
explicit  descr ip t ion  of our  da ta  representa t ion .  Let it 
suffice to say tha t  the quotes are needed since the names in 
the p r o g r a m  must  be represented as values.  

Since the p r o o f  has to argue a b o u t  them, the auxil iary 
var iables  ' s i g m a ,  ' b e t a  and ' g a m m a  are  t rea ted  as ordi-  
nary variables .  The  private var iable  ' pc  is the p rogram 
counter  of  its process.  

The  dec la ra t ion  serves to s t ructure  the p r o g r a m  state 
x as a tree. The  associated formal ism con ta ins  a function 
v a l  such tha t  ( v a l  dec u x )  yields the subt ree  of tree 
x accord ing  to roo t  path  u in dec l a r a t i on  dec. F o r  
example ,  co r re spond ing  to the in te rpre ted  var iab le  'wa,  we 
define funct ion w a  by 

( d e f n  w a  ( k  x )  
( v a l  ( d e c l a r a t i o n )  ( l i s t  ' w a  k )  x )  ) 

N o w  ( w a  k x )  is the value w a . k  in s ta te  x. 
Hav ing  s t ruc tured  the p rog ram s ta te  we turn  to the 

p rogram.  The  da t a  object to be l inear ized is unknown.  
Since it is supposed  to be total  and  determinis t ic ,  it is 
mode l led  by  two unknown funct ions n e w s t  and  n e w r e s  
that  de te rmines  the new state of the objec t  and  the new 
result  with as a rguments  the old state and  the new invoca- 
t ion value.  Similarly,  the initial state x0 is mode l l ed  by an 
unknown  funct ion ini tobj  with no a rguments .  This  is done 
by the dec la ra t ions  in 

(dc  1 in i tobj  ( ) )  ; t h e  i n i t i a l  s t a t e  of  t h e  ob jec t  
(dcl  n e w s t  (u  x ) )  ; n e w  s t a t e  f o r  i n v o c a t i o n  u a n d  o ld  

s t a t e  x 
( d c l  n e w r e s  (u x ) )  ; t h e  n e w  r e s u l t  

The  p r o g r a m  is submi t ted  to the p rove r  as the syntac t ic  
ent i ty  given in Fig. 7. It is an assoc ia t ion  list with a modif i-  
ca t ion  c o m m a n d  for every value of  the p r o g r a m  counter .  
This  modi f ica t ion  c o m m a n d  is a list of  ass ignments ,  to be 
executed sequentially.  The  go to  c o m m a n d s  in 1, 7, 13, etc. 
now have  become ass ignments  to 'pc.  C o m p a r e  Fig. 4. 

A smal l  general  pu rpose  in te rpre te r  s t e p  is p rov ided ,  see 
Fig. 8. I t  is buil t  by means  of  a funct ion m o d i f y *  which is 
such tha t  (modi fy*  dec p n d  a l  x )  is the new s ta te  buil t  
f rom the old  state x by means  of  ass ignment  list al,  the 
a rgumen t s  p and nd,  and  the dec la ra t ion  dec. The  inter-  
p re te r  s t e p  presupposes  tha t  ' pc  is a p r iva te  var iab le  of the 
processes.  By default  it increments  ' pc  p r io r  to  execut ion  of  
the c o m m a n d .  The p a r a m e t e r  p gives the iden t i ty  of  the 
ac t ing process;  it gives values to the syntact ic  t e rm ( se l f )  in 

(defn program ( ) 
' ( (0 .  ( ((uu).  (extern)) 

((beta).  ( (extern).  (beta)))  )) 
(1 . ( ((pc). (if (lessp (length (ss)) (m)) 8 2)) )) 
(2 .  ( ( (ss) .  (ladd2 (gg) (aa (self)) (self) (m) ( ) ) ) ) )  
(3 . (((plist)  . (delete (self) (segment (n)) ) ) ) )  
(4 .  ( ((pc). (if (listp (plist)) 5 8)) )) 
(5 .  ( ((plist).  (shuffle (extern) (plist))) 

((fi) . Cob (car (plist))))))  
(6 .  ( ( (ss) .  (ladd2 (fi) (nx (ii)) (self) (m) (ss) ) ) ) )  
(7 .  ( ((plist).  (cdr (plist))) 

((pc).  4) )) 
(8 .  ( ((aa (self)).  (choose (self) (ss) (extern)))))  
(9 .  ( ((inv (aa (self))) .  (uu))))  
(10 ( ((nx (aa (self))) .  O) )) 
(11 ( ((wa (aa (self))) . ( t rue))))  
(12 ( ( (ss )  . (add-to-set (aa (self)) (ss)))))  
(13 ( ((pc). (if (wa (aa (self))) 14 31)) )) 
(14 ( ((hh). (gg)))) 
(15 ( (Cob (self)). (hh))))  
(16 ( ((pc). (if (equal (h_h) (gg)) 17 13)) )) 
(17 ( ((pc). (if (wa (aa (self))) 18 13)) )) 
(18 ( ( (pf) .  (seq (h_h))))) 
(19 ( ((ii) .  (aa (pf)) ) ) )  
(20 ( ((pc). (if (wa (ii)) 22 21)) )) 
(21 ((( i i )  . (aa (self))))) 
(22 ( ((nx (hh)).  (if (zerop (nx (h_h))) 

(fi) (nx (h_h)))))) 
(23 .  ( ((ii) .  (nx (hh)))))  
(24 .  ( ( (yy) .  (sta (hh)))))  
(25 .  ( ((zz).  (newres (inv (ii)) (yy))) ; sequential! 

( (yy) .  (newst (inv (fi)) (yy) ) ) ) )  
(26.  ( ((sta (Ii)). (yy)) ) )  
(27 .  ( ((res (fi)). (zz))))  
(28 .  ( ((seq (ii)) . (sucmod (pf) (n) ) ) ) )  
(29 .  ( ((sigma). (if (wa (ii)) 

(((pown (ii) (m)) (inv (ii)) 
(yy) (zz)). (sigma)) 

(sigma))) 
((wa (fi)). (false))))  

(30 .  ( ((gg). (if (equal (gg) (hh)) (ii) (gg))) 
((pc).  13) )) 

(31 . (((gamma) . ( (res (aa (self))) . (gamma))) 
((pc).  O) )) ) ) 

Fig. 7. The program to be interpreted 
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(defn step (p nd  x) 
(if (and  ( lessnum p (n))  

(assoc (pc p x)  ( p r o g r a m ) ) )  
(modify* (declarat ion) p n d  

(cdr (assoc (pc p x)  (program)))  
( add lpc  p (pc p x)  x) ) 

x ) )  

Fig. 8. The interpreter of declaration and program 

(defn pown (k m) 
(if (zerop k) nil  (quotient  ( s u b l  k) m) )) 
; if k = 0 t hen  "n i l "  else (k - 1) div m fi 

(defn sucmod (q n)  
(if (lessp (add l  q) n)  ( add l  q) 0) ) 
; if q +  1 < n t h e n q  + 1 else 0 fi 

Fig. 9. The definitions of pown and  sucmod 

(cons t ra in  shuffle-axiom (rewri te)  
(and (equal ( length (shuff le  n d  s)) ( length s)) 

(equal (listp (shuff le  rid s))  (listp s)) 
(equal (member  y (shuff le  n d s ) )  (member  y s)) ) 

((shuffle ( lambda (rid s) s ) ) )  ) 

(const ra in  choose-axiom ( rewr i te )  
(implies ( and  (numberp  p) 

(lessp ( length s) ( m ) ) )  
(and  (equal (pov0-n (choose p s rid) (m)) 

p) 
(not  (member  (choose p s nd) s)) ) ) 

((choose ( lambda (p s nd)  (ownchoose p s)))) ) 

Fig. 10. The axiomatic introduction of shuffle and choose 

the program. The parameter nd  is used to give values to 
the syntactic term (ex t e rn )  that governs the nondeter- 
minacy in the commands 0,5 and 8. Notice that the 
program refers in a direct way to the private variables of 
the acting process: the interpreter does not allow reference 
to private variables of other processes. 

The program contains the standard N Q T H M  functions 
if, t rue,  false, lessp, car ,  cdr, listp, equal, zerop. It 
contains the defined functions length, ladd2, delete, 
segment,  sucmod, pown. These functions are straightfor- 
ward translations of the expressions used in Fig. 4, see lines 
1, 2, 3, 3, 28 and 29. The definitions of pown and suemod 
are shown in Fig. 9. 

The functions shuff le  and choose are introduced axio- 
matically by means of the expressions in Fig. 10. We give 
shuffle and choose an additional argument nd to model 
the nondeterminacy supposed in the program of Fig. 4. In 
fact, we shall make no assumption about nd. So at every 
step its value can be different. It is easy to provide a model 
for shuffle. The construction of function ownehoose as 
a model for choose turned out to be nontrivial. 

The initial condition of the state is characterized by 
a predicate ini tpred that combines the initial condition 
(11) and the initialization of the program counters and the 
auxiliary variables 

a = e A ( V T ~ p r o c e s s : : p c . T  = 0 A f l . T  = e A ~ . T  = e) 

We have taken satisfiability of m..itpred to be our first 
proof obligation. We shall not discuss the proof here. 

9 The main theorems to be proved 

In this section, we present the theorems that comprise the 
main proof obligations. These theorems have all been 
proved by N Q T H M ,  but there is a large gap between the 
program as described above and these theorems. The way 
we have filled that gap is described later. 

In distributed programming there is no complete agree- 
ment concerning the concept of invariant. We take the 
following definitions. A predicate J is called a strong in- 
variant if it holds initially and is preserved by every pos- 
sible step, i.e., if it satisfies the two implications 

(initpred x) ~ (J x), 
(J x) ~ (J (step p nd x)) 

for all values x, p and nd. A predicate J is called an 
invariant if it is implied by a strong invariant. 

Proof obligation (CL0) is fulfilled by the construction of 
a strong invariant j-object that satisfies the lemmas of 
Fig. 11. In fact, predicate aoc is the direct translation of acc 
as defined in (4). The first lemma states that j-object implies 
acc .~  and the other two lemmas state that j-object is 
a strong invariant. 

For proof obligation (CL1), we translate the definitions 
(5) and (6) to construct functions lmvlist  and lreslist such 
that 

(linvlist q x) = in.(a [q) in state x 
(lreslist q x) = o u t . ( a l q )  in state x 

Then proof obligation (CL1) is fulfilled by the lemmas in 
Fig. 12. Here, j-tnvoc and j-result  are strong invariants 
when applied to a genuine process q. We have suppressed 
the lemmas for the strong invariance of j-result. Process 
q is idle if and only if its program counter is zero. Therefore 
the two final lemmas of Fig. 12 imply (CL1). 

Proof obligation (WF) of Sect. 5 is fulfilled by the lem- 
mas in Fig. 13. We first give the definition of function gw 
that corresponds to (7). So we take N = (c22) and 
v f  = (c22) - (vfloop). For  the present purposes the value 
of (c22) is irrelevant. We then prove that predicate j- 
progress, which is a strong invariant, implies the bounds 
required for function vfloop. The two final lemmas of Fig. 
13 are the Hoare triples (8). The functions lessp  and leq 
are prefix functions for < and < ,  respectively. 

The proof obligations that the shared variable s ~  is 
treated safely, are fulfilled in Fig. 14. The first lemma states 
that variable 's ta  is being read only by command 24, at 
index 'hh, and that ' s ta  is written only in command 26, at 
index 'ii with the value o f 'yy .  The other two lemmas verify 
RW-safety and WW-safety of 'sta. We use the strong 
invariant globmvariant ,  which is a conjunction of univer- 
sal quantifications of a large number of invariants. The 

(prove-lemma j-object-implies-aec ( ) 
(implies (j-object x)  (acc (sigma x)))  ) 

(prove-lemma init-j-object (rewri te)  
(implies ( ini tpred x)  (j-object x))  ) 

(prove-lemma j-object-kept-valid (rewri te)  
(implies (j-object x)  (j-object (step p nd  x)) )  ) 

Fig. 11. Proof obligation (CL0) 
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(prove-lemrn a init-j-invoc (rewrite) 
(implies (and ( ini tpred x) 

( lessnum q ( n ) ) )  
(j-invoc q x) ) ) 

(prove-lemma j -invoc-kept-valid (rewrite) 
(implies (j-invoc q x) 

(j-invoc q (step p nd x)) ) ) 

(prove-lemrna invoc-correct ( )  
(implies (and (j-invoc q x) 

(zerop (pc q x)) ) 
(equal (beta  q x) (linvlist q x))  ) ) 

(prove-lemma result-correct  0 
(implies (and (j-result  q x) 

(zerop (pc q x)) ) 
(equal (gamma q x) (lreslist q x))  ) ) 

Fig. 12. Proof obligation (CL1) 

(defn gw (q x) ; gammaweight  
(plus (t imes ( length (gamma q x))  (c22)) 

(difference (c22) (vfloop q x)) ) ) 

(prove-lemma range-vfloop ()  
(implies ( j-progress q x) 

(and  (not  (zerop vfloop q x)))  
(lessp (vfloop q x) ( c22 ) ) )  ) ) 

(prove-lemma gw-increases-eq 0 
(implies (j-progress p x) 

(lessp (gw p x) 
(gw p (step p nd x)) ) ) ) 

(prove-lemma gw-ascends-dif 0 
(implies (and  (j-process q x) 

(not  (equal p q)) ) 
(leq (gw q x) 

(gw q (step p nd x)) ) ) ) 

Fig. 13. Bounded delay: the proof obligation (WF) 

proof obligations for inv and res are handled in the same 
way. 

It may be granted here that this verification of RW- 
safety and WW-safety is not completely formal. A human 
interpreter is needed to verify that Fig. 14 indeed captures 
safe treatment of the variable sta. A completely formal 
verification would require some careful trading between 
the syntactic and the semantic level, which a human inter- 
preter of Fig. 14 does almost automatically. We refrained 
from this formalization, since our main concern in this 
project was the correctness of the concurrent treatment of 
shared data and not the formalization and verification of 
the whole trajectory from specification to implementation. 

10 Using N Q T H M  

From a global point of view, N Q T H M  has served us as 
a proof checker rather than a theorem prover. We had to 
invent all definitions, theorems and intermediate lemmas. 
In many cases we had to provide one or more hints in 
order to get a lemma proved. 

The most straightforward way of hinting is to advise the 
prover that it may use a specific instantiation of a lemma 
proved previously. Such use hints are by no means always 

(prove- lemma sta-touched 0 
(and  (equal  (areadprog (progam) ' s ta)  

' ( ( 2 4 .  ( ( ( h h ) ) ) ) ) )  
(equal  (awri teprog (program)  ' s ta)  

' ( ( 2 6 .  ((((ii)) . ( y y ) ) ) ) ) )  ) ) 

(prove- lemma sta-read-safe 0 
(implies (and  (g lobinvar iant  x) 

( lessntun p (n))  
(lessnum q (n)) 
(equal (pc p x) 26) 
(equal (ii p x) (hh q x)) 
(equal (pc q x) 24)  ) 

(equal (s ta  (ii p x) x) (Sty p X)) ) ) 

(prove- lemma sta-write-safe 0 
(implies ( and  (globinvar iant  x)  

( lessnum p (n))  
( lessnum q (n))  
(equal 26 (pc p x))  
(equal 26 (pc q x))  
(equal (ii p x) (ii q x))  ) 

(equal  (yy p x) (yy q x)) ) ) 

Fig. 14. Safe treatment of variable s ta  

necessary or productive. A more subtle way of hinting is to 
disable some definitions or lemmas. For  example, if 
a lemma can be proved by using an already established 
property of a function, it may be useful to disable the 
definition of the function. For, otherwise, it may be that 
the definition is unfolded and that application of the prop- 
erty is not considered. It is possible and often useful to 
disable a definition or lemma globally when its main 
corollaries have been obtained. In that case, the prover can 
be allowed to use the disabled information by means of 
a hint that enables it again. 

In order to avoid unnecessary renaming, we always use 
p to denote the acting process; other processes are q and x. 
We always use x and nd to denote the old program state 
and a nondeterminate argument, respectively. This has the 
effect that the new program state is always (step p nd x).  

11 The global structure of the proof 

The proof we have constructed consists of 6485 lines of 
N Q T H M  code. It contains 1057 events, i.e., definitions, 
lemmas and disabling commands. It can be divided in 
eleven parts. Mainly to show the relative sizes of the parts, 
we give for each of them the number of lines and the 
number of events. 

1. Declaration: the structuring of the state, 545 lines, 105 
events. 

2. The program, its functions and initial conditions, 578 
lines, 104 events. 

3. The semantic lemmas, 864 lines, 182 events. 
4. Accumulating easy invariants, 356 lines, 67 events. 
5. The top-level invariants, 525 lines, 76 events. 
6. Invariants of the pointer structure, 1217 lines, 152 

events. 
7. Invariants of value transfer and computation, 368 

lines, 49 events. 
8. Aggregation of invariants, 373 lines, 84 events. 
9. Proof  obligations of correctness, 176 lines, 25 events. 
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10. Predicates for bounded delay, 843 lines, 114 events. 
11. Bound functions and bounded delay, 640 lines, 99 
events. 

12 Initial set-up 

The parts 1, 2 and 3 form an initial set-up that can serve as 
a prototype for many distributed algorithms. 

Part 1. Declaration: the structuring of the state 
The contents of this part of the proof have been de- 

scribed in Sect. 8. In addition to the function val  men- 
tioned there, the formalism contains a function put  such 
that (put  dec u w x)  is a new state built from x by 
substituting w for the subtree of x of root path u in dec. 
Now N Q T H M  is guided to prove lemmas that describe 
how the value of a variable changes when the state is 
modified by means of a pu t  command. These low-level 
lemmas form a preparation for the lemmas to be described 
in part 3 of the proof. 

Part 2. The program, its functions and initial conditions 
This part contains the definitions in Figs, 7 and 8 and 

the definitions of the functions length, ladd2, delete, 
segment,  sucmod and pown that are used in the program 
of Fig. 7. It also contains the expressions of Fig. 10, the 
definition of imtpred  and the proofs of satisfiability of the 
axioms and of initpred. 

Part 3. The semantic lemmas 
A list of rewrite lemmas is constructed to describe the 

effect of every command on every program variable. When 
this list is completed the interpreter can leave the stage (i.e., 
be disabled) and the program itself can almost be forgot- 
ten. As an example we give in Fig. 15 the new value o fwa .k  
when process P performs one step. This lemma states that 
wa.k only changes when some process P executes com- 
mand 11 or 29, and k equals a a . P  or i.P (respectively); it 
also gives the new values: ture and false. 

Remark. This part is rather dull. It may be possible to 
construct a tool that can generate all the necessary lem- 
mas. The results of this part, however, form a checkpoint 
of the correctness of the interpretation by the interpreter 
and of the data representation. (End of remark) 

13 lnvariants of  the program 

In the parts 4, 5, 6, 7, 8 and 10 of the proof, we construct 
lots ofinvariants. We only give a few of them in this report. 
Of course, the input file to the prover contains all invari- 
ants. Most invariants can be recognized by lemma names 
of the form J-kept-valid. The list of invariants of [16] is 
a close approximation, but the finer grain of atomicity here 
requires some reformulations and some new invariants. 

Since the commands have been made as small as pos- 
sible, a variable is often modified at other points in the 
program than would be most convenient for the phrasing 
of the invariants. The difficulty can often be solved by the 
introduction of a companion, i.e., a state function that is 
usually equal to the variable but changes at other points in 

(prove-lemma wa-new (rewrite) 
(equal (wa k (step p nd x)) 

(if (lessnum k (top)) 
(if (and (equal 11 (pc p x)) 

(equal (aa p x) k) ) 
(true) 
(if (and (equal 29 (pc p x))  

(equal (ii p x) k) ) 
(false) 
(wa k x) ) ) 

(wa k x) ) ) ) 

Fig. 15. The new value of 'wa 

the program. We give some examples below, see function 
vpl as discussed below in part 4, and function vs in part 6. 
The concept of companion is not completely formal, but it 
seems to be very useful in completely formal proofs of 
algorithms with fine grain concurrency. 

Part 4. Accumulating easy invariants 
The invariants of part 4 are obtained incrementally. The 

first aim is to prove that, in command 8, process P can 
indeed choose an address a a . P  in addr.P\ss.P. So we 
have to show that this set is nonempty. For this purpose, 
we use the axiomatization of function choose in Fig. 10 
together with the invariant ks2 which asserts that 
#ss.Q < m when pc.Q -- 8. It is given by 

(defn ks2 (q x) 
(implies (equal 8 (pc q x))  

(lessp (length (ss q x))  ( m ) ) )  ) 

The proof of invariance of ks2 is based on Formula (10) 
together with the invariant k s l  which asserts 

pc.Q s {3, 4, 5, 6,7} ~ #ss.Q + 2 x #vpl.Q < 2 x n  

Here, vpl. Q is a companion of the private variable plist: i.e., 
a state function usually equal to plist which is modified at 
more convenient points in the program. More precisely, 
vpl.Q = plist.Q if pc.Q ~ 3, 7, and vpl.Q = process\{Q} if 
pc.Q = 3 and vpl.Q = (cdr plist.Q) if pc.Q = 7. So when 
vpl.Q differs from plist.Q, it has the value that plist.Q will 
get after the next action of (2. Function vpl is introduced to 
allow the separation of the commands 2 and 3 and of the 
commands 6 and 7. In fact, by inspection of Fig. 4, one sees 
that, if vpl would be replaced by plist, predicate ks2 could 
become invalid at command 6. 

In order to prove the invariance of ks l ,  we need the 
obvious invariant ksO which asserts that plist.Q ,t = ~ when 
pc.Q ~ {5, 6, 7}. 

Part 5. The top-level invariants 
This part contains a preparation of the lemmas in Figs. 

11, 12. Here, predicate j-invoo is defined and the three 
lemmas about j-invoe are proved. The lemmas about j- 
object and j-result  are only proved under some assump- 
tions, which are justified in the parts 6, 7 and 8, One of the 
invariants introduced here is jjO, which expresses that the 
most recent state of the object stt.a equals sta.gg or 
s ta . (nx.gg)  and that the second case only occurs if 
nx.gg :# 0 and --nwa.(gg). Figure 16 shows how this is 
expressed. Predicate jjO is one of the constituents of the 
strong invariant j-object mentioned earlier. 



(defn ng  (x) (lax (gg x) x))  

(defn gphase (x) 
(or (zerop (ng x))  

(wa (ng x) x) ) ) 

(defnjjO (x) 
(equal (st t  (s igma x))  

(if (gphase x) 
(s ta  (gg x) x)  
(sta (ng x) x) ) ) ) 

Fig. 16. Definition for 2dO 

(defn kgO (k x) 
(or (zerop k) 

(not  (wa k x))  
(equal 0 (nx  k x))  ) ) 

(prove-lemma kgO-kept-valid (rewrite) 
(implies (and (kpO p x) 

(nwah  p x) 
(kgO k x))  

(kgO k (step p nd  x)) ) 
((do-not-induct t ) )  ) ; [0.0 1.7 0.3] 

Fig. 17. The invariant kg0 

Part 6. Invariants of the pointer structure 
The main difficulty of the program is that all processes 

concurrently inspect and modify a shared pointer struc- 
ture. It follows that the proof requires many invariants 
concerning this pointer structure. We only give some 
examples. The invariant kgO of Fig. 17 expresses 

k ~ 0 A wa.k ~ n x . k  = 0, 

i.e., a wailing invocation has no successor. Lemma kgO- 
kept-valid announces the invariance of kgO. This lemma 
uses two other invariants kpO and nwa~  Predicate kpO 
expresses that nx . (aa .P)  = 0 when pc.P = 11. Predicate 
nwah expresses that wa.(h.P) is false when 17 < 
pc.P < 31. Both kpO and nwah  are invariant (this is not 
obvious, since other processes may modify the arrays n x  
and wa). 

The last line of Fig. 17 is a hint to the prover that it 
should not use induction. In the final proof, this hint is 
superfluous, but during the design it serves to terminate 
failing proof attempts. After the comment separator ";",  
we give the time triple reported by NQTHM: the first 
number is the number of seconds spent for input of the 
lemma, the second number the number of seconds spent 
for the proof, the third number is the number of seconds 
spent printing information to the user. The numbers given 
here were obtained on a HP 9000-720. Since the invariance 
of kgO depends on the invariance of the other predicates, 
the actual proof of invariance of kgO is postponed to part 
8 below. 

Since we need the invariant kgO for all addresses k, we 
also form kkgO, the universal quantification of (kgO k x)  
for all values k less than top, see Fig. 18. The invariance of 
kkgO is proved by induction. The last line of kkgO-kept- 
valid indicates to the prover that it should not unfold the 
definitions of kgO, nwah,  kpO. Notice that top is a variable 
symbol here, whereas (top) is a constant. The lemma will 
only be used with top = (top). If it would have been stated 

kl~O: (Vk:O < k < t o p : - l w a . k v n x . k  =O) 

(defn kkgO (top x) 
(if (zerop top) ( true) 

(and (kgO (sub l  top) x) 
(kkgO (subl  top) x) ) ) ) 

(prove-lemroa kkgO-kept-valid (rewrite) 
(implies (and  (kpO p x) 

(nwah p x) 
(kkgO top x))  

(kkgO top (step p nd  x))  ) 
((disable kgO nwah  kpO)) ) ; [0.0 0.1 0.1] 

Fig. 18, The invariant kkgo, the quantification of kgO 
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k p 8 : 2 4 < p c . Q < 3 1  =.n.x.(h.Q)=i.Q 

(defn kp8 (q x) 
(implies (between 24 31 (pc q x)) 

(equal (nh  q x) (ii q x))  ) ) 

(prove- lemma kp8-eq (rewri te)  
(implies (and  ( lessnum p (n))  

(kp8 p x) ) 
(kp8 p (step p nd  x))  ) ) ; [0.0 9.9 10.4] 

(prove- lemma kp8-dif (rewri te)  
(implies ( and  (not (equal p q)) 

( ahn  p q x) 
(memi q x) 
(kp8 q x) 

(kp8 q (step p n d x ) )  ) ) ; [0.0 2.7 0.6] 

(prove- lemma kp8-kept-valid (rewrite)  
(implies (and (ahn  p q x)  

(memi q x) 
(kp8 q x) ) 

(kp8 q (step p nd  x)) ) 
((disable kp8 memi ahn)  
(use (kpS-eq) (kp8-dif))) ; [0.0 0.5 0.0] 

Fig. 19. The invariant kp8 

with the constant (top) instead of the variable top, how- 
ever, it could not have been proved by induction. 

Another typical invariant is kp8 of Fig. 19 which ex- 
presses that nx.(h.Q) = i.Q after the assignment to i.Q in 
command 23. Here, h.Q and i.Q stand for the private 
variables h and i of process Q. The invariance of kp8 is 
proved by means of a case distinction. Lemma kp8-eq 
shows that kp8 of process P is invariant under the actions 
of P. In lemma kp8-dif, it is shown that kp8 of Q is 
invariant when P @ Q performs a command. Predicate 
memi  expresses that 20 <__ pc.Q < 31 implies mem.(i.Q). 
Predicate ahn  expresses 

9 < pc.P <12 A 1 7 < p c . Q < 3 1  

= a a . P  ~ h.Q A a~.P + nx.(h.Q) 

This means that process P does not place an invocation at 
an address where process Q is working. 

The final lemma of Fig. 19 combines the results of the 
previous lemmas. Alternatively, it is possible to submit this 
final lemma directly, without the preparation and the hints 
for "use" and "disable". When we did this, N Q T H M  made 
a huge case distinction and reported the time triple [0.0 
166.1 246.2]. This shows that the case distinction yields 
a speed-up by a factor 17. 
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The two invariants kgO and kp8  are relatively innocent. 
A more critical example is k p 6  which expresses that ad- 
dress i.P is waiting when process P effectively executes 
command 22. It is given by 

pc.P = 22 A nx.(h.P)  = 0 ~ wa.(i .P) 

The proof of invariance of k p 6  needs the support Of five 
other invariants. 

In [16"1, we use the atomicity rule of [2] Theorem 6.26 to 
argue that it is allowed to regard commands 11 and 12 as 
one command. Such an argument  cannot be used to con- 
vince the theorem prover. Since we wanted the prover to 
support the program as it is presented, we had to provide 
a different argument. The solution is to simulate ss.P by 
a companion vs.P with the value 

vs.P = if pc.P = 12 then s s . P w  {aa.P} else ss.P fi 

This function can then be used in the invariants at those 
positions where the update action 12 would be late. Com- 
pare the use of vpl as described above in part 4. 

Part 7. Invariants of value transfer and computation 
In this part, we treat the values of the private variables 

y and z, and arrays inv, r e s  and sta. A typical invariant is 
kq2 which asserts 

pc.Q e{26,27,28,29} 

(sta.(h.Q),inv.(i .Q), y . Q , z . Q )  e R 

Part 8. Aggregation of invariants 
In this part, we prove that  the predicates dubbed as 

invariants in the preceding parts are indeed invariants. 
More precisely, we form a conjunction of (universal quan- 
tifications of) these predicates and prove that this conjunc- 
tion is a strong invariant that implies its constituents. 
In this way, we obtain the strong invariant called 
globinvariant.  It follows that the above mentioned predi- 
cates kkgO, kpO, nwah ,  kp8 ,  ahn ,  metal, kp6 and kq2 
are indeed invariants. 

At first sight, this part  may  look trivial. It is an impor- 
tant verification, however, of the completeness of the sys- 
tem of constituent invariants. 

Part 9. Proof obligations of correctness 
This part serves as a first main summary. Using all 

preparations in the previous parts, we here fulfill our proof  
obligations for correctness, i.e., prove the lemmas given in 
Figs. 11, 12, 14, and also the lemmas for the safety o f i n v  
and res. 

14 The proof of wait-free progress 

Part 10. Predicates for bounded delay 
The proof of bounded delay for process Q begins with 

the observation that, whenever process Q traverses from 
command 13, via 16, 17 or 30, back to 13 again, variable gg 
is modified at least once (but not necessarily by process Q). 
For  this purpose, we define predicate gstep to mean that 
some process, say P, executes command 30 with gg = h.P. 

We construct a state function nrgs teps ,  initially 0, that 
is incremented whenever some process performs a gstep. 
This function is a companion of # o-, the length of o-. It is 
defined by 

nrgs teps  = (gphase (~ ( # cr)) -- 1 

where gphase  is the function defined in Fig. 16 and oper- 
ator (~ is conditional incrementation given by 

b ~ x = i f b t h e n x + l  e l s ex f i  

We then prove that every gstep has the effect that the 
state function seq.gg is incremented by 1 modulo n. It 
follows that, invariantly, seq.gg equals ra.rgsteps modulo 
n. Since seq.gg is the default process to be given priority 
for invocation treatment, this is the key step in the proof 
that individual starvation does not occur. 

Part 11. Bound functions and bounded delay. 
The next value for n rgs teps  at which process Q is to be 

scheduled by default is defined as wupb.Q;  it is the least 
number y such that 

Q = y rood n A 

(nrgs teps  < y V (nrgsteps = y A kwO 1)) 

Here kwO 1 expresses that the default process is still sched- 
ulable. More precisely, it is the condition 

(nx.gg = 0 V n.x.gg = aa.(seq.gg)) 

A (V T ~ process : : h. T = gg A 20 =< pc. T < 31 

i. T = aa.(seq.gg) A pc. T ~ 21) 

Remark. 
necessity 
This was 
a human 
not have 

In our mental proof, cf. [16], we had not seen the 
of the conjunct pc. T =4= 21 at the end of kwO1. 
one of the rare instances that the prover signaled 
error. If it had not been for this error, we would 
mentioned predicate kwO1. (End of remark) 

The difference between nrgs teps  and wupb.Q is a de- 
scending measure for the waiting time of process Q. More 
precisely, we construct vfg .Q as the companion of this 
difference given by 

(pc.Q > 14 A gg 4= h.Q) �9 (waapb.Q - nrgsteps)  

We now prove that, while wa.(aa .Q)  holds, i.e., while 
process Q is waiting, vfg.Q does not increase, and it 
decreases whenever Q makes a backward jump at 16, 17 or 
30. We then define vfgg.Q as the number  

if pc.Q < ]3 t hen  n + 2 
elsif wa.(aa .Q)  t hen  vfg.Q + 1 
elsif 14 =< pc.Q < 31 then  1 else 0 fi 

We define vlength.  Q as 

if pc. Q < 4 t hen  n - 1 else # plist. Q fi 

and vfloop.Q as the number 

4 x v length .Q + 18 x vfgg.Q + (32 - pc.Q) 
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It is proved that vfloop.Q is bounded by the constant 
(c22) = 22 x n + 65, that it decreases at every command 
of Q apart from command 31, and that it descends at every 
command of another process. In this way, we obtain the 
results announced in Fig. 13. 

15 Conclusions 

order functions did not matter much: for the problem at 
hand, low level reasoning was necessary anyhow, because 
of the potential interleavings. After some time, we found 
the LISP-like syntax and the lack of infix operators com- 
fortable to live with. In conclusion, we think that, for the 
problem at hand, N Q T H M  was a good prover. It seems 
likely that, if we would have to start all over again, a new 
proof would be obtained much more quickly. 

The first conclusion is the correctness of the program of 
Fig. 4 with respect to the five proof obligations mentioned 
in Sect. 5. The input to NQTHM is a file of roughly 6500 
lines. N Q T H M  needs around 75 minutes for the verifica- 
tion on a HP  9000-720. 

The use of the prover enabled us to reach a finer grain of 
atomicity. For  example, the sequential composition of 
commands 24, 25, 26 and 27 of the program is represented 
by one command in the program of [16]. Since four 
different shared variables are involved, this representation 
is not justified. The use of a mechanical prover has the 
advantage that it encourages a stricter separation between 
proof obligation and actual proof. This is especially useful 
when there are many proof obligations and long proofs. In 
[16], we did not yet have a good proof obligation for the 
safety of the non-atomic shared variables which occur in 
the commands 24, 25, 26 and 27. The proofs of safety, 
however, were straightforward extensions of the argu- 
ments of [16]. 

In the proof of progress, we followed the arguments of 
[16]. It soon became apparent, however, that our mental 
arguments rely heavily on our intuitive understanding of 
progress. In the end, it turned out that we obtained the 
proof obligation for progress as a side effect of the con- 
struction of the proof. 

The initial predicate does not specify the initial values of 
array bb. This implies that the array inspection of nx.i  in 
command 6 may be out of range. This point is not found 
by the mechanical proof since the prover works with an 
untyped language and all its functions are total. Actually, if 
bb.Q has not been set by process Q, the values i = bb.Q 
and nx.  i are superfluous in ss. Q. It can be proved that, if 
the initial predicate is strengthened with mem.(bb. T) for 
all processes T, then all array inspections and modifica- 
tions are within range and the arrays wa, n.x, sta, res, m y  
and seq are not inspected and modified at address 0. 

One may ask whether the use of a mechanical theorem 
prover was justified: would not a careful reworking of the 
paper proof  have yielded the same increase in confidence 
and insight as the effort to use the prover? In our view, the 
prover was indispensable to handle the amount of case 
distinctions needed for this method of proof. A satisfactory 
handwritten proof would require totally new insights 
to eliminate most of the case distinctions. Indeed, 
we would prefer such a result, but we do not see how to 
get it. 

Let us finally answer the question whether we were 
satisfied with the capabilities of the N Q T H M  theorem 
prover. This question gains perspective by the wishes and 
requirements mentioned in [19] and [24]. We had some 
problems with the arithmetical weakness of NQTHM. 
This may be due to our isolated activity: we did not use or 
consult the existing libraries. NQTHM's  lack of higher 
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