

 University of Groningen

WAIT-FREE LINEARIZATION WITH A MECHANICAL PROOF
Hesselink, Wim H.

Published in:
Distributed computing

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1995

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Hesselink, W. H. (1995). WAIT-FREE LINEARIZATION WITH A MECHANICAL PROOF. Distributed
computing, 9(1), 21-36.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 03-06-2022

https://research.rug.nl/en/publications/890babfc-9790-4799-97d8-3587c9a9d589

Distrib Comput (1995) 9:21-36 DnssB]B D
�9 Springer-Verlag 1995

Wait-free linearization with a mechanical proof
Wim H. Hesselink*

Department of Mathematics and Computing Science, Rijksuniversiteit Groningen, Postbox 800, 9700 AV Groningen, The Netherlands

Received: October 1993 / Accepted: February 1995

Wim H. Hesselink received his
Ph.D. in mathematics from the Uni-
versity of Utrecht in 1975. After ten
years of research in Lie algebras he
turned to computer science. In
1986/1987 he was on leave with the
Department of Computer Sciences of
the University of Texas at Austin.
Currently, he is chairman of the De-
partment of Computing Science at
the University of Groningen. His re-
search interests include distributed
programming, design and correct-
ness of algorithms, mechanical-
theorem proving, and predicate
transformation semantics of recur-

sive procedures with nondeterminacy of various flavors.

Summary. The correctness of a program for wait-flee lin-
earization of an arbitrary shared data object in bounded
memory is verified mechanically. The program uses atomic
read-write registers, an array of consensus registers and
one compare and swap register. In the program, a number
of processes concurrently inspect and modify a pointer
structure without waiting. Consequently, the proof of cor-
rectness is very delicate. The theorem prover N Q T H M of
Boyer and Moore has been used to mechanically certify
the correctness.

Key words: Linearizable - Shared data object - Consensus
- Wait-free - Memory management - Correctness - In-
variant - Grain of atomicity - Mechanical verification
- Boyer Moore logic

1 Introduction of the project

In [-16], we presented an algorithm for wait-flee lineariz-
ation of an arbi trary shared data object in bounded mem-
ory. The algorithm was provided with a complicated proof
of correctness that needed twenty-four invariants. In view

* e-mail: wim@cs.rug.nl

of this complexity we felt the need of mechanical verifica-
tion, even though we were fairly convinced of the validity
of the proof.

We knew the logic of the theorem prover N Q T H M of
Boyer and Moore, cf. [7, 8], but we had no experience with
the prover. In November 1992, we embarked on the pro-
ject to try and verify the program of [-16]. We started with
a pilot project about the correctness of a trivial concurrent
program without communication. This took three weeks.
In March 1993, the proof of the program of [16] was
essentially concluded. This proof was based on a hard-
coded functional translation of the program. We spent
several months more to modify the proof in such a way
that the program together with the declaration of the
program variables is given to the prover in a purely syntac-
tic form. This transformation was done to get cleaner
statements of results and more general applicability of the
methods involved. The present paper is a report of this
work.

The choice of N Q T H M for the project was based on the
following considerations. Both N Q T H M of [8] and H O L
of [11] had recently been made available in our depart-
ment. So the choice was between these two. Since no
higher order functions were involved in the program or its
proof, the greater expressive power of H O L was not neces-
sary. We knew that the logic of N Q T H M was adequate for
the task and, since we knew that logic, it was likely that the
use of N Q T H M would require a smaller initial investment.
Finally, the accomplishments of N Q T H M or rather of its
group of users (e.g., cf. [17] and [6]) justify the choice of
N Q T H M , even if other provers might be better.

To say that we knew the logic does not mean that we
knew how the prover could be most efficiently led to
construct proofs. The Handbook [8] gives ample advice,
but it requires experience to appreciate the advice. Initial
modelling choices are very important, since they may
affect the efficiency of the prover during the whole project.
Actually, we used a kind of incremental design and we
modified the basic set-up a number of times.

Of course, we had to take some initial hurdles. Perhaps,
the main difficulty for the inexperienced user is that
N Q T H M must be guided by rather implicit means. For
example, the order of the hypotheses of a lemma is taken
by the prover as a hint how to choose instantiations in
later applications of the lemma. During the project we got

22

invaluable assistance from J. Moore, one of the con-
structors of NQTHM. On a number of occasions,
N Q T H M seemed unable to make an obvious inference,
but J. Moore was always willing and able to solve the
problem on short notice.

We succeeded in verifying the algorithm. In general, the
arguments used in [16] were sufficient, but it turned out to
be convenient to rearrange the order of usage of the
arguments. Additional arguments were needed only rarely.
Occasionally, the use of the prover led to a better separ-
ation of concerns.

It turns out that the mechanical proof can be extended
with not too much effort in such a way that the program
has a finer grain of atomicity and needs a weaker precondi-
tion. This extension only requires a new traversal of
a modification of the proof. Here, a mechanical proof has
great advantages over a mental proof, especially when
there are many case distinctions that can be affected by the
modification. These advantages are also stressed in the
conclusions of [24].

We regard the proof in [16] of progress of the algorithm
as completely satisfactory. Yet, it turns out that the mech-
anical proof needs a new, and more formal, proof obliga-
tion. The ideas of the proof of [16] are still applicable.
Unfortunately, we are now forced to provide explicit upper
bounds. As a by-product, therefore, the project has led to
a better understanding of the worst-case time complexity.

number of processes, it uses eight shared arrays, each
process has a number of private variables, the program of
all processes has 32 atomic actions.

Of course, our algorithm is dwarfed by the work on the
short stack, reported in [6], but there the complexity is due
to the aim to verify a complete computer system, not
a single algorithm.

Another referee suggested a comparison with [24]. That
paper contains a clear introduction to and convincing
arguments for machine verification of distributed and criti-
cal algorithms. The algorithm treated is the interactive
convergence algorithm for fault-tolerant synchronization
of clocks. It has roughly the same complexity as our
algorithm, but the algorithm and the complexity issues
involved are of a completely different nature. The algo-
rithm is a mathematical procedure to choose adequate
resynchronizations and the correctness conditions are ar-
ithmetical bounds on differences between estimates of
time. The recent paper [22] also deals with asynchronous
clocks. Its focus is entirely on the physical problems intro-
duced by asynchrony, namely how clock rates, delay, and
phase shift affect the received signal. Our algorithm, on the
other hand, is a set of concurrently executed computer
programs and the problems are due to the interleaved
modifications of a shared pointer structure.

3 Introduction of wait-free iinearization

2 Correctness and mechanical verification

The problem we treat in this paper is a problem of the
correct design of a distributed algorithm with shared mem-
ory. So it belongs to the field of programming methodo-
logy. This field seems to have got its momentum by the
threatening possibilities of distributed algorithms, e.g., see
the concluding remarks of [-10]. Yet its results are mainly
applied to sequential programs. The methods proposed for
distributed programs in [3] and [23] are sufficiently
strong but often lead to a horrible growth of proof
obligations.

For this reason, methodologists and theoreticians have
concentrated on developing alternative languages and spe-
cification formalisms, like CCS [20], CSP [18], Unity [9],
ACP [5], action systems [4], to mention only a few. All
these formalisms have merits, but the central problem of
exploding complexity has not been solved.

In the present paper we use the old methods of [3] and
[23], but we apply a mechanical theorem prover to control
the complexity. We are not aware of applications of mech-
anical theorem provers to correctness proofs of distributed
algorithms of this size and kind. Indeed, as suggested by
one of the referees, the project may be regarded as a 'cut-
ting edge' case study in the mechanical verification of
concurrent algorithms. In the rest of this section we give
a comparison with other mechanical verifications of
algorithms.

The algorithm can be compared with the example
treated by Russinoff in [25]. In that example, two pro-
cesses concurrently act on three simple global variables
with programs of four or five atomic actions. Our algo-
rithm is definitely more complex: it allows an arbitrary

We turn to the description of the problem.
A concurrent data object is a data structure shared by

concurrent processes. The object must behave as if the
invocations are processed in some sequential order. This
requirement is formalized in the concept of linearizability
(see [15], we come back to this in Sect. 5). Traditionally,
linearizability is achieved by means of operations that
temporarily block the progress of some processes. The
disadvantage of such operations is that if a process is
delayed (or stopped) other processes are delayed as well.

Therefore, recently, the concept of wait-free implemen-
tations has been proposed. A wait-free implementation of
the concurrent data object is one in which every process
completes its invocation in a bounded number of atomic
actions, regardless of the actions and the execution speeds
of the other processes, see [12, 14]. So, unbounded busy
waiting loops or idle-waiting primitives are forbidden.
There is no assumption that every process makes progress.
A wait-free implementation is fault-tolerant in the sense
that, if some process stops executing, the invocations of
other processes are not affected.

One of the simplest concurrent data objects is the atomic
read-write register: a shared variable, say x, with the only
atomic actions x := u and z := x, for some private variables
u and z. Notice that we use the convention that shared
program variables are in typewriter font. Constants, pri-
vate program variables, parameters and mathematical
variables are in math-italic. From Sect. 8 onward, we shall
also use typewriter font for all expressions in the language
of the theorem prover.

It has been shown by Herlihy [14] that atomic
read-write registers are not sufficient to construct
wait-free implementations of many important data oh-

23

jects. In [11 on the other hand, it is shown that atomic
read-write registers are sufficient to construct useful data
objects like counters.

Another simple data object is the consensus register.
This is a shared variable, say x, with an atomic read action
z := x and an atomic setting action

(i f x = 0 then x := u f i) (1)

where 0 is some constant of the same type as x, and z and
u are private variables as before. If x =r 0, command (1) is
equivalent to skip. There is also an atomic write operation
x := 0. Consensus registers are sometimes called logical
variables or permanents, see e.g. [21] Sect. 1.4.

A slightly more powerful object is the compare and swap
register. This is a shared variable x with an atomic read
action z := x and an atomic setting action

(i f x = u then x := v f i) (2)

where z ,u and v are private variables, cf. [14] p. 135.
Hertihy [12, 14] and Plotkin [263 have shown that

wait-free implementations of arbitrary data objects can be
constructed by means of atomic read-write registers to-
gether with consensus registers. Let n be the number of
processes. The implementation of [26] requires memory of
order n 2 and has a worst-case time complexity of order n 3.
The implementation of [14] requires memory of order n 3,
has a worst-case time complexity of order n 2 and, more-
over, requires unbounded integers. The latter requirement
is a serious drawback, since unbounded integers are not
available in bounded space.

In [13], Herlihy presents a construction based on
a compare and swap register with memory of order n 2 and
worst-case time complexity of order n 2. For all three
implementations, the outline provided is rather sketchy.
This makes it hard to prove or to refute their correctness.

In [16], we presented a wait-free implementation of an
arbitrary data object that requires memory of order nZ and
that has a worst-case time complexity of order n. The
implementation uses a compare and swap register, just as
in [13]. The paper [163 contains an assertional proof of
correctness, but the proof is so complicated that it is not
completely convincing. This observation was the starting
point of the present project.

The project has resulted in an implementation closely
related to the implementation of [16] but with a mechan-
ical proof of correctness and a somewhat finer grain of
atomicity. In particular, it satisfies the condition that each
elementary command A may refer to at most one variable
that can be changed by another process while A is being
executed, cf. [23]. We have also been able to formalize and
verify the safety of the non-atomic shared variables.

In a stricter sense, the result of the project is a file of
definitions, lemmas and hints that, when loaded into
NQTHM, yields proofs of all lemmas that are marked as
proof obligation. This final verification can be performed
by every observer with access to the file and to NQTH M.
The file is named qspace.events and can be obtained by
anonymous ftp from f tp .cs . rug.nl , in the directory
/pub/boyer-moore .

4 Overview

In Sect. 5, we develop a formal description of the problem
together with the list of proof obligations. In Sect. 6, we
present a variation of our solution in [16]. This variation
is a program with a weaker precondition and a finer grain
of atomicity than the one of [16]. In Sect. 7, the program of
Sect. 6 is reformulated to facilitate the proof. This refor-
mulation consists of the addition of auxiliary history vari-
ables as required by the proof obligations, the addition of
labels to discuss the execution of the processes, and the
elimination of composite constructs for i f and while by
means of goto commands since these composite constructs
are not executed atomically.

Section 8 contains a sketch of some relevant aspects of
the theorem prover N Q T H M , followed by a description
how the program is modelled as a function that yields the
new implementation state in terms of the old implementa-
tion state, the acting process and one other argument.
Section 9 contains a description of the formal proof obliga-
tions, i.e., of the main theorems that are proved by the
prover.

Section 10 gives a very short description of our experien-
ces with the prover. Section 11 gives a description of the
global structure of the proof. Section 12 describes the
initial parts of the proof. Section 13 contains some exam-
ples of invariants and a sketch of how the invariance of
these predicates is proved by the prover. Finally, in Sect.
14, we sketch the proof of wait-free progress. Some con-
clusions are drawn in Sect. 15.

5 Data objects and concurrency

A data object is a tuple (X, U, Z, Xo, R) where X is the
state space of the object, Xo ~ X is the initial state, U is the
input space (the set of invocations), Z is the output space
(the set of result values) and R __q X x U x X x Z is the
transition relation. If the object is invoked in state x with
invocation u, it may go into state y and return the output
z if and only if (x, u, y, z) ~ R.

Just as in [163, we assume that the object is total and
deterministic, in the sense that in every state every invoca-
tion allows precisely one new state and precisely one
result: for every pair (x, u) with x e X and u s U, there is
precisely one pair (y, z) with (x, u, y, z) s R. The require-
ment of totality (the existence of a resulting pair <y, z)
for every pair (-x, u)) formalizes the assumption that
no operation can be blocked. Determinacy is postulated
for the sake of simplicity of the algorithm. This assump-
tion is essential for the present algorithm, but a variation
of the algorithm that avoids this assumption is in prepara-
tion.

We assume that there are n processes, with process
identifiers of type process. A concurrent implementation of
a data object (X, U, Z, xo, R) is a procedure that, concep-
tually, acts on one global program variable x of type
X and that could be specified by

proc apply (in P:process , u: U; out z : Z)

{pre x = w, post (w, u, x, z) 6 R}

24

Here, w is a logical variable that stands for the value o f x in
the precondition. Process P calls procedure apply in the
form apply(P, u, z) for the treatment of invocation u with
result z. So P and u are input parameters and z is a result
parameter.

All processes may call apply concurrently and repeat-
edly. During execution of such a call the process is said to
be invoking. The data object itself is passive; the subcom-
mands of apply are executed by the invoking process. Yet
the implementation is required to be linearizable, in the
sense that each call of apply appears to take effect instan-
taneously at some point between the invocation and the
response. Linearizability implies that processes appear to
be interleaved at the granularity of complete operations
and that the order of non-overlapping operations is
preserved. See [15] for a detailed exposition. A formal
proof obligation is presented below.

The implementation (i.e., procedure apply) is called
wait-free if it does not contain operations that can be
blocked and if there is a number N such that every call
apply(P, u, z) terminates after at most N elementary ac-
tions of process P, independently of concurrent calls of
apply by other processes.

In order to define linearizability as a concrete proof
obligation we proceed as follows. When the abstract object
has a certain state x, a new invocation u, say by process (2,
may lead to a new state y and a result z. We therefore
represent the history of the object by a list a of quadruples
(Q, u, y, z) with the interpretation that u was an invoca-
tion value of process Q that induced the new object state
y and the result z. The most recent quadruple is positioned
at the head of the list.

We write V to denote the set of such quadruples and V*
to denote the set of finite lists over V. Similarly, U* and Z*
are the sets of finite lists of elements of U and Z, respect-
ively. Let e be the empty list. For list a and element v, let
(v : G) be the list obtained by prefixing o- with the singleton
v. We define function st t~ V* --, X that yields the most
recent object state, by

s t t . ~ ~ X 0

stt.((Q, u, y, z) :a) = y (3)

A list crs V* is said to be acceptable if and only i fa corres-
ponds to a legal sequential history of the object. This is
formalized in predicate acc, defined by

acc.e = true

a c c . ((Q , u , y , z) : a) - (s t t . G , u , y , z) ~ R A a c c . a (4)

In order to relate the history a of the object to the
actions of a particular process Q, we define crlQ to be the
sublist of a with elements that have first component Q:

~IQ = g

((Q , u , y , z) :a)lQ = (Q,u , y , z) :(aLQ)

((P , u , y , z) : a)] Q = (a [Q) i f P , Q (5)

We define the functions in ~ V* ~ U* and out ~ V* -~ Z*
as the projection functions to the components in U and Z,

respectively. So we have

in.e = e

in.((Q, u, y, z) : a) = u :in.a

o u t . 8 = S

out.((Q, u, y, z) :0) = z : out.a (6)

So in.a is the list of invocation values of o" and out.~7 is the
list of result values. It follows that in.(a] Q) and out.(a [Q)
are the sequences of invocation values and result values of
process Q as recorded in history 0.

For every process Q, we introduce ghost variables fl.Q
of type U* and 7.Q of type Z* for the actual lists of
invocation values and result values of process Q, both
ordered with the most recent value at the head of the list.
This means that initially ft. Q = e and y.Q = e, and that the
first action of apply is extended with the assignment
fl.Q := (u:fl.Q) and that the last action of apply is extended
with 7.Q:= (z:v.Q).

Definition. The implementation of the data object is called
linearizable if one can construct a ghost variable er of type
V*, initially a = e, that for every execution satisfies the
invariants

(CLO) acc.a
(CL1) if process Q is not invoking then fl.Q = in.(~lQ)
and 7.Q = out.(a)Q).

In fact, these conditions imply that ~ is a linearization of
the invocations according to an order of treatment by the
object.

Remark. In [16], we used a different proof obligation
which, for deterministic objects, is equivalent to the pre-
sent one. The present proof obligation is better, for two
reasons: it is more symmetric and it is also applicable to
nondeterministic objects.

Our implementation satisfies the additional condition
that a only grows:

(CL2) if a = a~ then a t remains a tail of list a.

This condition, however, is not necessary. Indeed, it is not
satisfied by the implementation of [1]. (End of remark)

The concurrent implementation is to be based on
a given local implementation

locapply(in u: U; vat y : X; out z: Z)

which establishes (w, u, y, z) s R ifw is the initial value of
y. Each process can use locapply on its own private vari-
ables (moreover, it is allowed either that u stands for
a shared variable to be read, or that z stands for a shared
variable to be written).

The other building blocks of the implementation are
private variables of arbitrary types, atomic read-write reg-
isters for booleans and bounded integers, and safe shared
variables of arbitrary types. A shared variable is called safe
if concurrent modifying write operations of the same value
do not interfere with each other; moreover, as expected,
any read operation not concurrent with a modifying write
operation must obtain the most recently written value.

25

A safe variable stores in general a composite value that is
not read or written all at once. So there is no assumption of
atomicity here. In particular, if two processes are writing
different values into the same variable, the final state is
undefined, and if one process is reading the variable while
another process is modifying it, the value obtained by
reading is undefined. Note however that a non-modifying
write operation does not interfere with a concurrent read
operation.

If a variable is only assumed to be safe, the programmer
has to ensure that harmful interferences do not occur. This
requirement is formalized by the concept of safe treatment:
we define a concurrent program to treat a shared variable
v safely if it satisfies the following two conditions:

(RW-safe) whenever the next action of some process is to
read v and the next action of another process is to write
v := y, then v = y holds already.

(WW-safe) whenever different processes have as next ac-
tions write actions v := y and v := z, then y = z holds.

The assertion that the implementation is wait-free is
proved by constructing an integral state function gw (for
gamma weight) that is proportional to the length of list
?.Q (up to a bounded error term), that is incremented at
every action in apply of process Q and that is not de-
cremented by actions of other processes. It will follow that,
if process Q performs sufficiently many actions, it obtains
a new result (i.e., the implementation is wait-free). More
formally stated, the proof obligation is:

(WF) for every process Q, there exist a constant N and
a state function v f with 0 < v f<<_ N such that the state
function

gw = N x (#~/.Q) + v f (7)

satisfies, for every action A of process Q and for every
action B of other processes, and for all numbers t, the
Hoare triples

{gw=t} {gw>_t+l}

{ow = t} B {gw >__ t} (8)

We now prove that condition (WF) implies that the num-
ber of actions of process Q between an invocation and the
corresponding result is bounded by N. In fact, suppose
that Q is idle and has # 7 . Q = r. At that moment
gw > N x r by formula (7). Now Q submits a new invoca-
tion and performs N actions. The Hoare triples (8) then
imply that gw > N x r + N and hence # ?. Q > r, again by
(7). This proves that, after N actions of Q, process Q has
obtained a new result.
Remark. One may propose to replace (WF) by the weaker
proof obligation

(AL) there exist a constant N > 0 and a state function
gw < N x (# 7.Q + 1) that satisfy the Hoare triples (8).

Condition (AL) expresses that the amortized complexity
for invocations of Q is linear, but it allows unboundedly
many actions between an invocation of Q and the corres-
ponding result. Indeed, the above argument now fails. We
therefore prefer to prove (WF). (End of remark)

To summarize, the list of proof obligations consists of
the linearizability conditions (CL0), (CL1), the safety con-
ditions (RW-safe) and (WW-safe) for the non-atomic
shared variables, and progress condition (WF).

6 Implementing an arbitrary object

We now turn to the presentation of the wait-free con-
current implementation of an arbitrary data object
(X, U, Z, Xo, R). The final algorithm will be a variation of
the algorithm of [16]. At the end of this section we indicate
the changes we have made and the reasons for these
changes. In the presentation we give reasons for some
design decisions, but we do not give proofs. In fact, in
general, when we signal some problem and present some
solution to the problem, it will not be apparent that the
solution indeed solves the problem.

In the first approximation, applyO of Fig. 1, the shared
variable s ta holds the current state of the object. For each
process P, there are variables m v . P and r e s .P to hold the
most recent invocation and result values, and a variable
w a . P to indicate that process P has a pending invocation
(wa is short for waiting). In the body of the loop, process
P treats the invocation of some waiting process Q.

The implementation applyO is indeed linearizable. Since
the loop body is one big atomic action, however, the grain
of atomicity of applyO is too coarse. Moreover, applyO is
not wait-free. In a later refinement, the choice of Q will be
implemented in such a way that the algorithm becomes
wait-free. At this point, the obvious implementation of the
choice of Q would be Q:= P. This implementation is
too eager, however, for then the algorithm cannot be
made wait-free when the big atomic action is being split
into smaller ones. So we use the variable Q for greater
flexibility.

Since we want to split the big atomic action, we prepare
the possibility that some process is treating an invocation
that was treated before by some other process, or is using
an outdated version of the state of the object. We therefore
introduce a memory space, called address, such that each
address can hold an invocation, a state, a result, and a flag
to indicate waiting. We introduce a shared variable gg for
the address of the current state and we give each process
P a variable a~.P for the address of its current invocation.
We thus get the declarations

type process = 0.. n - 1 {n is number of processes}
; address = 0. . top - 1 {top to be chosen later};
var gg: address
; sty: array address of X
; inv: array address of U
; res: array address of Z
; wa: array address of boolean
; aa: array process of address

The types process and address are subranges of the inte-
gers. Without changing the grain of atomicity the program
becomes as given in Fig. 2. The program uses two private
variables: i for the address of some waiting invocation and
y for the state of the object.

26

proc apply 0 (in P: process, u:U; out z: Z);
[inv.P:= u
; w a . P : = true
; while w a . P do

(choose a process Q such that wa .Q
; locapply (inv. Q, s ta , res . Q)
," w a . Q : = false) od

Z:= r e s . P ~.

Fig. l. The first app rox ima t ion

proc apply 1 (in P: process, u: U; out z : Z) ;
[choose a free address a~.P
; i n v . (a a . P) := u
; w a . (a a . P) := t rue
; while w a . (a a . P) do

(choose an address i such that wa . i
; y:= s t a .gg
; locapply (inv.i , y, r es . i)
; s t~ . i := y
; w a . i : = false
; g g : = i)od

; z : = r e s . (a a . e) ~.

Fig. 2. The second approximation

We now turn to the splitting of the big atomic com-
mand. This will lead to the program given in Fig. 3.

The first problem to address is the choice of address i as
the successor of the current address gg. This choice must
be separated from the call of procedure locapply and it
must be made atomically. We therefore declare

var nx: array addres s of address

and we use nx .gg 4= 0 to record that nx .gg has been
chosen as successor of gg. The processes have to achieve
consensus concerning the successor of gg. Therefore,
nx .gg is made into a consensus register, to be modi fed by
consensus actions of the form

(i f nx .h = 0 then nx .h := i fi)

where h is a private copy of the shared variable gg. Notice
that address 0 is being used as a nilpointer.

In order to make a fair choice of an address i with wa.i,
the current state is tagged with a sequence number seq.gg
that indicates the number of the process whose invocation
is to be treated next. So we have the additional declaration

var seq: array address of process

and the choice of address i is implemented by

h : = g g
; p f := seq.h {default process}
; i:= a a . p f {its invocation address}
; i f--n w a . i then i := a a . P fi

where the conditional statement gives an eager alternative
in the case that the default process is not waiting. Unfortu-
nately, it is not guaranteed that process P itself is still
waiting. If P is not waiting anymore, the assignment
i :=aa .P in part D of Fig. 3 might lead to a double
treatment of P's invocation, i.e. to violation of requirement
CL1. This is the reason that in part D the assignment

proc apply (in P: process, u : U; out z : Z) ;
[[i f # s s . P > m t h e n A f i
; choose aa.Psaddr.P\ss.P
; inv.(aa.P):= u
; n .x .(aa.P) := 0
; wa.(a~.P):= true
; ss.P:= ss.Pw{aa.P}
; while wa.(a~.P) do

h := gg; bb. P := h
; if h = gg then D fi od

; z : = r e s . (a a . e)]].

A:~ ss.P:= {gg, aa.P}caaddr.P
; for each T ~ process with T ~ P do

i := b b . T
; ss.P:=ss.Pw({i, nx.i}naddr.P) od ~.

D : i f wa. (aa . P) then
p f := seq .h ; i := a~.pf

; if -7 wa . i then i := aa . P fi
; (i f r~x .h=Othenn.x .h:=i f i)
; i:= nx.h; y:= st~.h
; locapply (inv./, y, z)
; s t~ . i := y; r e s . i : = z
; s eq . i := (p f + 1)modn
; wa.i:= false
; (i f gg=h thengg:=i f i) ft.

Fig. 3. The program as a procedure with refinements

pf:= seq.h is preceded by a second test of wa.(aa.P). It
follows that, if process P is not waiting when it enters D,
part D is equivalent to skip. It turns out that, if P enters
D while waiting but is no longer waiting when i:= a a . P
and nx .h :-- i are executed, there will be invariants that
preclude harmful behaviour.

Now the development of part D of Fig. 3 can be con-
cluded. Since it is not guaranteed that process P itself has
executed nx .h := i, the conditional statement is followed
by i := nx .h to obtain the predicate nx .h = i (see invariant
kp8 in part 6 of Sect. 13 below). A private variable z is
introduced, so that the call of locapply only refers to one
shared variable (inv). The sequence number seq.i of the
new state is obtained from the old one by circular in-
crementation. Finally, variable gg, the pointer to the cur-
rent state, is modified only if it still equals the value of its
private copy h. Otherwise, the work done in part D was
superfluous (an important aspect of the proof is to show
that all superfluous work is harmless; this follows, how-
ever, when the proof obligations mentioned at the end of
Sect. 5 are met).

It remains to implement the choice of a free address for
aa .P. In order to avoid that different processes choose the
same free address concurrently, we give each process its
own pool of addresses. The range address is therefore
partitioned into sets addr.Q given by

ksaddr .Q =_ m x Q < k 6 m x (Q + 1) (9)

where m is sufficiently large. We take top = m x n + 1. It
follows that every nonzero address belongs to precisely
one process. Slightly deviating from [16], we give each
process Q a global private variable ss. Q to stand for the set
of addresses in its pool that are not free for a new invoca-
tion. So we have the additional declaration

var ss: array process of set of address

27

The variables ss. Q is only accessed by process Q. Since it is
global, it need not be computed in every invocation.

When process P has no free addresses left (i.e., when
ss.P > m), it executes the garbage collector command
A of Fig. 3. Command A reconstructs ss.P as the set of
addresses in the pool of P which are still referred to by
other processes T. For this purpose, command A needs the
values of the private variables h. These values are broad-
casted by a shared variable

var bb: array process of address

To get accurate broadcasting, an additional test is placed
in the loop body. This body therefore becomes

h:= gg; bb .P:= h
; if h = gg then D fi

The two-seemingly superfluous consecutive tests h = gg
and wa.(aa .P) cannot be omitted. The program even
becomes incorrect if the tests are permuted. The danger to
avoid here is that process P may be idle for an extended
period (e.g. just before the assignment bb .P := h) and then
start executing again (this was described once by M.O.
Rabin as the problem of the senile politician). The incor-
rectness in case of permutation of the two tests requires
a delicate scenario, which is given in Sect. 7 of [16].

It follows from (9) that addr.P has m elements. Since
fragment A clearly establishes the postcondition # ss.P
< 2 x n , the subsequent choice of a a .P is possible if

2 x n < m. Thus, at this point, we can state the require-
ments on the system parameters n, m and top:

n > 0 A 2 • (10)

The choice of a a . P in addr. P \ ss.P can be implemented in
a completely arbitrary way. The obvious way is to use
linear search. Since it is a private computation, it need not
concern us here, but can be dealt with by the implementer.

In this way, we arrive at procedure apply as given in Fig.
3. It remains to say that nx.(aa.P):= 0 is a necessary reset
operation and that s s .P :=ss .Pw{aa .P} records that
address aa. P is put into usage. The first assignment to ss. P
in part A is motivated by the fact that at that part of the
program we have nx .gg = aa. P if nx. gg ~ addr. P, and by
the condition that an atomic command may contain at
most one variable that can be modified by other processes
(recall that we only give design considerations and that the
proof is postponed).

Crucial atomic commands in this algorithm are the two
commands enclosed in () in fragment D. The atomic
conditional modification of nx.h indicates that nx is an
array of consensus registers, see (1). In view of its atomic
conditional modification, variable gg is a compare&swap
register, see (2).

By now the data structure is complete. It is subject to the
following initial condition:

mem.gg A sta .gg = Xo A nx.gg = 0 A seq.gg = 0

A (V k ~ address" : -~ wa. k)

A (V r ~ process:" mem.(a~. T) A {gg} c~ addr. r ~_ ss. T)

(11)

where mem.k expresses 0 < k < top.

The initial value 0 of seq.gg is not required in [16], but
0 is a natural starting point and this choice was more
convenient for the mechanical proof. In [16], the initial
conditions on a a . T and s s .T are much stronger. The
present initial conditions are made possible by some modi-
fications in the invariants.

The algorithm of Fig. 3 only deviates from [163 in the
following points. Instead of ss.P, we used in [16] the
equivalent variable s.P, related to ss.P by means of

s. P = ss. P w (address \ addr. P)

ss.P = s .P naddr .P (12)

The treatment of ss.P is the direct translation of the
treatment o f s .P in [16]. There is one point where a second
program transformation has been applied. In the first
conditional command of apply, the translated test would
have been ss.P = addr.P. This has been replaced by
ss. P > m to avoid the necessity of a test on set equality.
The present version is also more convenient for the prover.

The local variables p f, y and z have been introduced
here to eliminate commands in which two or more shared
variables are accessed. For example, part D as developed
in [16] contains composite assignments i:= aa.(seq.h),
and seq.i := (seq.h + 1) rood n. The present program uses
p f to keep the value of seq.h. Of course, such a separa-
tion of variable accesses requires the introduction of new
invariants.

The last point is that, in [16], we used the atomicity rule
([2] Theorem 6.26) to argue that the assignments to
wa. (aa .P) and ss.P in apply could be regarded as being
combined in a single atomic command. For the prover it
turned out to be only a minor complication to treat the
two assignments as separate commands. See the end of
part 6 in Sect. 13.

7 A nonterminating goto program

In this section, the program is reformulated to facilitate the
proof. We add the history variables required by (CL0) and
(CL1) and we add labels to discuss the execution of the
processes. We eliminate composite constructs for if and
while by means of goto commands. The resulting program
is given in Fig. 4. We now discuss the transformations
applied in more detail.

For every process Q, at every moment, at most one
incarnation of procedure apply is active. We may therefore
replace procedure apply by one unbounded repetition for
every process, with the body of apply as body of the loop.
The input-parameter u of apply may be regarded as a value
that is chosen non-deterministically each time that Q en-
ters its loop body.

We use the auxiliary variables fl, 7 and a, as introduced
in Sect. 5. This means that, at every choice of a new
invocation value u, the l i s t /LP is replaced by (u:fl.P). At
the end of the loop body, list 7-P is replaced by
(res.(aa. P): 7. P). Now the result parameter z can be omit-
ted, but we must remember that res . (aa .P) is actually
being read.

We choose to update cr in the atomic command in
fragment D where wa.i is made false. More precisely, if

28

Fig. 4.

0 choose u; fl.P:= u:fl.P
1 i f#ss .P < m goto 8
2 A: ss.P:= {gg, a~.P} c~addr.P
3 plist := process \ { P}
4 if plist = ~ goto 8
5 shuffle plist; i:= bb.(car plist)
6 ss.P:= ss .P~({i , tax.i} ~addr.P)
7 plist := (cdr plist); goto 4
8 choose aa.P ~addr.P\ss .P
9 mv.(aa. P) := u

10 n.x.(a~. P) := 0
11 wa.(a~.P) := true
12 ss.P:= ss.Pw{aa.P~
13 if"nwa.(aa.P) goto 31
14 h:=gg
15 bb.P:= h
16 if h 4~ gg goto 13
17 D: if-nwa.(aa.P) goto 13
18 p f:= seq. h
19 i:= aa.pf
20 if wa.i goto 22
21 i:= a~.P
22 if n.x. h = 0 then n x . h := i fi
23 i:= nx.h
24 y:= st~.h
25 locapply (my. i, y, z)
26 st~.i:= y
27 res.i:= z
28 seq.i:= (p f + 1) rood n
29 if wa. i then a := (pown.i, i nv . i, y, z) : a fi

; wa.i:= false
30 if gg = h then g g : = i fi ; goto 13
31 7.P:= res.(a~.P):,/.P ; goto 0

The program as a goto program

wa. i holds, this command is extended with

a : = (p o w n . i , inv./, y, z):

where function pown gives the process that submitted the
invocation located at address i, i.e.,

pown. i = Q if i ~ a d d r . Q (13)

The for-loop in fragment A of Fig. 3 involves the nondeter-
minate choice of a process T that is to be treated next. In
order to model this nondeterminate choice, we have
chosen to introduce a local variable plist of process P such
that T s p l i s t means that T has yet to be treated in the
for-loop. The selection of an arbitrary element of plist is
implemented by a nondeterminate shuffle of the list fol-
lowed by selection of its car (i.e., head).

In the mechanical proof, we need the program counters
of the processes to keep track of the concurrent executions.
Having introduced the program counters, we eliminate the
loops and the composite conditionals by means of goto
commands. In this way we arrive at the program for
process P given in Fig. 4. In commands 5 and 7, we use the
LISP symbols car and cdr to denote the head and the tail
of list plist.

Now that the program of Fig. 4 has been concluded, we
can discuss the atomicity of the commands. The com-
mands 0, 1, 3, 4 and 7 only refer to private variables and
may therefore be regarded as atomic. The variables wa.k ,
seq. k (k ~ address) and aa . P, bb. P (P ~ process) are atomic
read-write variables. An action on such a variable may be
combined atomically with actions on private variables.

We may therefore assume atomicity of the commands
5, 8, 12, 15, 18, 19, 20, 21, 28. Since a is only an auxiliary
variable, the conditional assignment to a and the inspec-
tion of inv. i can be combined atomically with the assign-
ment to wa in 29.

Since gg is a compare and swap variable and nx.h is
a consensus variable, the commands 6, 14, 16, 22,23, 30
are regarded as atomic. Notice that actions on these vari-
ables may also be combined atomically with actions on
private variables. Since a~. P is only modified by process
P itself, commands 2, 10, 11, 13 and 17 may also be re-
garded as atomic.

The remaining commands 9, 24, 25, 26, 27 and 31 are
not atomic. They are the central actions of value transfer
and computation. These commands are marked with the
symbol ~ . Commands 24, 25 and 31 are read actions of
shared variables s ta . k, inv. k and res . k. Commands 9, 26
and 27 are write actions for such variables. These variables
are assumed to be safe variables, as discussed in Sect. 5.

8 M o d e l l i n g t h e p r o g r a m in N Q T H M

In the next sections, we describe how the program of
Fig. 4 is treated with the theorem prover N Q T H M . We go
into the N Q T H M details for two reasons. On the one
hand, we want to give readers who want to use N Q T H M
for similar purposes an impression of the kind of hurdles
one encounters. On the other hand, we want to give the
insiders of N Q T H M a handle to certify our claims.

Many proofs published by Boyer, Moore, and their
associates (eg. [22]) rephrase definitions and lemmas into
more tranditional notation to make it more broadly ac-
cessible. We have three reasons for not doing so. Firstly,
we want to give a faithful representation of the encodings
used for readers who consider the use of N Q T H M for
a similar project. Secondly, it is our experience, e.g. while
reading [-22] with a group of non-users of NQTHM, that
rendering into more traditional notation frequently raises
questions that can only be solved by discussion of the
N Q T H M notation. Thirdly, this paper uses the interpreta-
tion of quoted constants for which a more traditional
notation is not readily available.

We refer to the Handbook [8] for the description of the
language, the logic and the theorem-proving capabilities of
NQTHM. The language of N Q T H M is a variation of pure
LISP. In particular, it is an untyped, purely functional
language in which almost all functions are total.

We treat the program as a syntactic constant and use it
to construct a function step that yields the new global
program state in terms of the old program state x, the
acting process P and a nondeterminate argument nd.

The first thing to do is to make a formalism to structure
the state space of the program that is to be interpreted by
means of a declaration of the program variables. As
a preparation for the concrete declaration, we then intro-
duce (in Fig. 5) N Q T H M constants (n), (m) and (top) to
represent the constants n, m and top as restricted by For-
mula (10). In fact, the constrain expression introduces two
function symbols n and m of arity zero and postulates
(n) > 0 and (m) > (n) x 2. In the N Q T H M logic, this
implies that (n) and (m) are natural numbers. The term

29

(constrain axiom-constants (rewrite)
(and (lessp 0 (n)) ; 0 < (n)

(lessp (times (n) 2) (m))) ; (n) �9 2 < (m)
((n (lambda () 1)) (m (lambda () 3))))

(defn top () (addi (times (n) (m)))) ; (top) = 1 + (n) , (m)

Fig. 5. Declaration of constants

(defn declaration ()
(list '(sigma) '(gg) (list 'wa (top)) (list 'nx (top))

(list 'inv (top)) (list 'res (top)) (list 's ta (top))
(list 'seq (top)) (list 'aa (n)) (list 'bb (n))
(n) ' (pc) ' (uu) ' (beta) ' (gamma) ' (s s) ' (h_h)

'(li) '(plist) '(pf) '(yy) '(zz)))

Fig. 6. Declaration of variables and arrays

(r e w r i t e) indicates to the prover how the ax iom is to be
used; a x i o m - c o n s t a n t s is the name of the axiom. The last
line p rov ides a mode l ((n) = 1 and (m) = 3) tha t is used
by N Q T H M to verify the consis tency of the axiom. The
second express ion defines the cons tan t (t o p) . Semicolons
with subsequent characters are r ega rded as comment .

The concre te declara t ion of the p r o g r a m state is intro-
duced by Fig. 6. I t declares shared var iables ' s i g m a (for a)
and 'gg and shared arrays ' w a up to 'bb toge the r with the
lengths of these arrays. It next declares an anonymous
a r ray of pr iva te states of length (n) . Each pr ivate state
consists of pr ivate variables 'pc up to 'zz. W e have chosen
to represent the pr ivate variables u, h, i, y, z by 'uu, 'hh,
etc. The reader should not be worr ied by the parentheses
and the quotes in Fig. 6. Exp lana t i on of those details
would require a genuine in t roduc t ion to N Q T H M and an
explicit descr ip t ion of our da ta representa t ion . Let it
suffice to say tha t the quotes are needed since the names in
the p r o g r a m must be represented as values.

Since the p r o o f has to argue a b o u t them, the auxil iary
var iables ' s i g m a , ' b e t a and ' g a m m a are t rea ted as ordi-
nary variables . The private var iable ' pc is the p rogram
counter of its process.

The dec la ra t ion serves to s t ructure the p r o g r a m state
x as a tree. The associated formal ism con ta ins a function
v a l such tha t (v a l dec u x) yields the subt ree of tree
x accord ing to roo t path u in dec l a r a t i on dec. F o r
example , co r re spond ing to the in te rpre ted var iab le 'wa, we
define funct ion w a by

(d e f n w a (k x)
(v a l (d e c l a r a t i o n) (l i s t ' w a k) x))

N o w (w a k x) is the value w a . k in s ta te x.
Hav ing s t ruc tured the p rog ram s ta te we turn to the

p rogram. The da t a object to be l inear ized is unknown.
Since it is supposed to be total and determinis t ic , it is
mode l led by two unknown funct ions n e w s t and n e w r e s
that de te rmines the new state of the objec t and the new
result with as a rguments the old state and the new invoca-
t ion value. Similarly, the initial state x0 is mode l l ed by an
unknown funct ion ini tobj with no a rguments . This is done
by the dec la ra t ions in

(dc 1 in i tobj ()) ; t h e i n i t i a l s t a t e of t h e ob jec t
(dcl n e w s t (u x)) ; n e w s t a t e f o r i n v o c a t i o n u a n d o ld

s t a t e x
(d c l n e w r e s (u x)) ; t h e n e w r e s u l t

The p r o g r a m is submi t ted to the p rove r as the syntac t ic
ent i ty given in Fig. 7. It is an assoc ia t ion list with a modif i-
ca t ion c o m m a n d for every value of the p r o g r a m counter .
This modi f ica t ion c o m m a n d is a list of ass ignments , to be
executed sequentially. The go to c o m m a n d s in 1, 7, 13, etc.
now have become ass ignments to 'pc. C o m p a r e Fig. 4.

A smal l general pu rpose in te rpre te r s t e p is p rov ided , see
Fig. 8. I t is buil t by means of a funct ion m o d i f y * which is
such tha t (modi fy* dec p n d a l x) is the new s ta te buil t
f rom the old state x by means of ass ignment list al, the
a rgumen t s p and nd, and the dec la ra t ion dec. The inter-
p re te r s t e p presupposes tha t ' pc is a p r iva te var iab le of the
processes. By default it increments ' pc p r io r to execut ion of
the c o m m a n d . The p a r a m e t e r p gives the iden t i ty of the
ac t ing process; it gives values to the syntact ic t e rm (se l f) in

(defn program ()
' ((0 . (((uu). (extern))

((beta). ((extern). (beta)))))
(1 . (((pc). (if (lessp (length (ss)) (m)) 8 2))))
(2 . (((ss) . (ladd2 (gg) (aa (self)) (self) (m) ()))))
(3 . (((plist) . (delete (self) (segment (n))))))
(4 . (((pc). (if (listp (plist)) 5 8))))
(5 . (((plist). (shuffle (extern) (plist)))

((fi) . Cob (car (plist))))))
(6 . (((ss) . (ladd2 (fi) (nx (ii)) (self) (m) (ss)))))
(7 . (((plist). (cdr (plist)))

((pc). 4)))
(8 . (((aa (self)). (choose (self) (ss) (extern)))))
(9 . (((inv (aa (self))) . (uu))))
(10 (((nx (aa (self))) . O)))
(11 (((wa (aa (self))) . (t rue))))
(12 (((ss) . (add-to-set (aa (self)) (ss)))))
(13 (((pc). (if (wa (aa (self))) 14 31))))
(14 (((hh). (gg))))
(15 ((Cob (self)). (hh))))
(16 (((pc). (if (equal (h_h) (gg)) 17 13))))
(17 (((pc). (if (wa (aa (self))) 18 13))))
(18 (((pf) . (seq (h_h)))))
(19 (((ii) . (aa (pf)))))
(20 (((pc). (if (wa (ii)) 22 21))))
(21 (((i i) . (aa (self)))))
(22 (((nx (hh)). (if (zerop (nx (h_h)))

(fi) (nx (h_h))))))
(23 . (((ii) . (nx (hh)))))
(24 . (((yy) . (sta (hh)))))
(25 . (((zz). (newres (inv (ii)) (yy))) ; sequential!

((yy) . (newst (inv (fi)) (yy)))))
(26. (((sta (Ii)). (yy))))
(27 . (((res (fi)). (zz))))
(28 . (((seq (ii)) . (sucmod (pf) (n)))))
(29 . (((sigma). (if (wa (ii))

(((pown (ii) (m)) (inv (ii))
(yy) (zz)). (sigma))

(sigma)))
((wa (fi)). (false))))

(30 . (((gg). (if (equal (gg) (hh)) (ii) (gg)))
((pc). 13)))

(31 . (((gamma) . ((res (aa (self))) . (gamma)))
((pc). O)))))

Fig. 7. The program to be interpreted

30

(defn step (p nd x)
(if (and (lessnum p (n))

(assoc (pc p x) (p r o g r a m)))
(modify* (declarat ion) p n d

(cdr (assoc (pc p x) (program)))
(add lpc p (pc p x) x))

x))

Fig. 8. The interpreter of declaration and program

(defn pown (k m)
(if (zerop k) nil (quotient (s u b l k) m)))
; if k = 0 t hen "n i l " else (k - 1) div m fi

(defn sucmod (q n)
(if (lessp (add l q) n) (add l q) 0))
; if q + 1 < n t h e n q + 1 else 0 fi

Fig. 9. The definitions of pown and sucmod

(cons t ra in shuffle-axiom (rewri te)
(and (equal (length (shuff le n d s)) (length s))

(equal (listp (shuff le rid s)) (listp s))
(equal (member y (shuff le n d s)) (member y s)))

((shuffle (lambda (rid s) s))))

(const ra in choose-axiom (rewr i te)
(implies (and (numberp p)

(lessp (length s) (m)))
(and (equal (pov0-n (choose p s rid) (m))

p)
(not (member (choose p s nd) s))))

((choose (lambda (p s nd) (ownchoose p s)))))

Fig. 10. The axiomatic introduction of shuffle and choose

the program. The parameter nd is used to give values to
the syntactic term (ex t e rn) that governs the nondeter-
minacy in the commands 0,5 and 8. Notice that the
program refers in a direct way to the private variables of
the acting process: the interpreter does not allow reference
to private variables of other processes.

The program contains the standard N Q T H M functions
if, t rue, false, lessp, car , cdr, listp, equal, zerop. It
contains the defined functions length, ladd2, delete,
segment, sucmod, pown. These functions are straightfor-
ward translations of the expressions used in Fig. 4, see lines
1, 2, 3, 3, 28 and 29. The definitions of pown and suemod
are shown in Fig. 9.

The functions shuff le and choose are introduced axio-
matically by means of the expressions in Fig. 10. We give
shuffle and choose an additional argument nd to model
the nondeterminacy supposed in the program of Fig. 4. In
fact, we shall make no assumption about nd. So at every
step its value can be different. It is easy to provide a model
for shuffle. The construction of function ownehoose as
a model for choose turned out to be nontrivial.

The initial condition of the state is characterized by
a predicate ini tpred that combines the initial condition
(11) and the initialization of the program counters and the
auxiliary variables

a = e A (V T ~ p r o c e s s : : p c . T = 0 A f l . T = e A ~ . T = e)

We have taken satisfiability of m..itpred to be our first
proof obligation. We shall not discuss the proof here.

9 The main theorems to be proved

In this section, we present the theorems that comprise the
main proof obligations. These theorems have all been
proved by N Q T H M , but there is a large gap between the
program as described above and these theorems. The way
we have filled that gap is described later.

In distributed programming there is no complete agree-
ment concerning the concept of invariant. We take the
following definitions. A predicate J is called a strong in-
variant if it holds initially and is preserved by every pos-
sible step, i.e., if it satisfies the two implications

(initpred x) ~ (J x),
(J x) ~ (J (step p nd x))

for all values x, p and nd. A predicate J is called an
invariant if it is implied by a strong invariant.

Proof obligation (CL0) is fulfilled by the construction of
a strong invariant j-object that satisfies the lemmas of
Fig. 11. In fact, predicate aoc is the direct translation of acc
as defined in (4). The first lemma states that j-object implies
acc .~ and the other two lemmas state that j-object is
a strong invariant.

For proof obligation (CL1), we translate the definitions
(5) and (6) to construct functions lmvlist and lreslist such
that

(linvlist q x) = in.(a [q) in state x
(lreslist q x) = o u t . (a l q) in state x

Then proof obligation (CL1) is fulfilled by the lemmas in
Fig. 12. Here, j-tnvoc and j-result are strong invariants
when applied to a genuine process q. We have suppressed
the lemmas for the strong invariance of j-result. Process
q is idle if and only if its program counter is zero. Therefore
the two final lemmas of Fig. 12 imply (CL1).

Proof obligation (WF) of Sect. 5 is fulfilled by the lem-
mas in Fig. 13. We first give the definition of function gw
that corresponds to (7). So we take N = (c22) and
v f = (c22) - (vfloop). For the present purposes the value
of (c22) is irrelevant. We then prove that predicate j-
progress, which is a strong invariant, implies the bounds
required for function vfloop. The two final lemmas of Fig.
13 are the Hoare triples (8). The functions lessp and leq
are prefix functions for < and < , respectively.

The proof obligations that the shared variable s ~ is
treated safely, are fulfilled in Fig. 14. The first lemma states
that variable 's ta is being read only by command 24, at
index 'hh, and that ' s ta is written only in command 26, at
index 'ii with the value o f 'yy . The other two lemmas verify
RW-safety and WW-safety of 'sta. We use the strong
invariant globmvariant , which is a conjunction of univer-
sal quantifications of a large number of invariants. The

(prove-lemma j-object-implies-aec ()
(implies (j-object x) (acc (sigma x))))

(prove-lemma init-j-object (rewri te)
(implies (ini tpred x) (j-object x)))

(prove-lemma j-object-kept-valid (rewri te)
(implies (j-object x) (j-object (step p nd x))))

Fig. 11. Proof obligation (CL0)

31

(prove-lemrn a init-j-invoc (rewrite)
(implies (and (ini tpred x)

(lessnum q (n)))
(j-invoc q x)))

(prove-lemma j -invoc-kept-valid (rewrite)
(implies (j-invoc q x)

(j-invoc q (step p nd x))))

(prove-lemrna invoc-correct ()
(implies (and (j-invoc q x)

(zerop (pc q x)))
(equal (beta q x) (linvlist q x))))

(prove-lemma result-correct 0
(implies (and (j-result q x)

(zerop (pc q x)))
(equal (gamma q x) (lreslist q x))))

Fig. 12. Proof obligation (CL1)

(defn gw (q x) ; gammaweight
(plus (t imes (length (gamma q x)) (c22))

(difference (c22) (vfloop q x))))

(prove-lemma range-vfloop ()
(implies (j-progress q x)

(and (not (zerop vfloop q x)))
(lessp (vfloop q x) (c22)))))

(prove-lemma gw-increases-eq 0
(implies (j-progress p x)

(lessp (gw p x)
(gw p (step p nd x)))))

(prove-lemma gw-ascends-dif 0
(implies (and (j-process q x)

(not (equal p q)))
(leq (gw q x)

(gw q (step p nd x)))))

Fig. 13. Bounded delay: the proof obligation (WF)

proof obligations for inv and res are handled in the same
way.

It may be granted here that this verification of RW-
safety and WW-safety is not completely formal. A human
interpreter is needed to verify that Fig. 14 indeed captures
safe treatment of the variable sta. A completely formal
verification would require some careful trading between
the syntactic and the semantic level, which a human inter-
preter of Fig. 14 does almost automatically. We refrained
from this formalization, since our main concern in this
project was the correctness of the concurrent treatment of
shared data and not the formalization and verification of
the whole trajectory from specification to implementation.

10 Using N Q T H M

From a global point of view, N Q T H M has served us as
a proof checker rather than a theorem prover. We had to
invent all definitions, theorems and intermediate lemmas.
In many cases we had to provide one or more hints in
order to get a lemma proved.

The most straightforward way of hinting is to advise the
prover that it may use a specific instantiation of a lemma
proved previously. Such use hints are by no means always

(prove- lemma sta-touched 0
(and (equal (areadprog (progam) ' s ta)

' ((2 4 . (((h h))))))
(equal (awri teprog (program) ' s ta)

' ((2 6 . ((((ii)) . (y y))))))))

(prove- lemma sta-read-safe 0
(implies (and (g lobinvar iant x)

(lessntun p (n))
(lessnum q (n))
(equal (pc p x) 26)
(equal (ii p x) (hh q x))
(equal (pc q x) 24))

(equal (s ta (ii p x) x) (Sty p X))))

(prove- lemma sta-write-safe 0
(implies (and (globinvar iant x)

(lessnum p (n))
(lessnum q (n))
(equal 26 (pc p x))
(equal 26 (pc q x))
(equal (ii p x) (ii q x)))

(equal (yy p x) (yy q x))))

Fig. 14. Safe treatment of variable s ta

necessary or productive. A more subtle way of hinting is to
disable some definitions or lemmas. For example, if
a lemma can be proved by using an already established
property of a function, it may be useful to disable the
definition of the function. For, otherwise, it may be that
the definition is unfolded and that application of the prop-
erty is not considered. It is possible and often useful to
disable a definition or lemma globally when its main
corollaries have been obtained. In that case, the prover can
be allowed to use the disabled information by means of
a hint that enables it again.

In order to avoid unnecessary renaming, we always use
p to denote the acting process; other processes are q and x.
We always use x and nd to denote the old program state
and a nondeterminate argument, respectively. This has the
effect that the new program state is always (step p nd x).

11 The global structure of the proof

The proof we have constructed consists of 6485 lines of
N Q T H M code. It contains 1057 events, i.e., definitions,
lemmas and disabling commands. It can be divided in
eleven parts. Mainly to show the relative sizes of the parts,
we give for each of them the number of lines and the
number of events.

1. Declaration: the structuring of the state, 545 lines, 105
events.

2. The program, its functions and initial conditions, 578
lines, 104 events.

3. The semantic lemmas, 864 lines, 182 events.
4. Accumulating easy invariants, 356 lines, 67 events.
5. The top-level invariants, 525 lines, 76 events.
6. Invariants of the pointer structure, 1217 lines, 152

events.
7. Invariants of value transfer and computation, 368

lines, 49 events.
8. Aggregation of invariants, 373 lines, 84 events.
9. Proof obligations of correctness, 176 lines, 25 events.

32

10. Predicates for bounded delay, 843 lines, 114 events.
11. Bound functions and bounded delay, 640 lines, 99
events.

12 Initial set-up

The parts 1, 2 and 3 form an initial set-up that can serve as
a prototype for many distributed algorithms.

Part 1. Declaration: the structuring of the state
The contents of this part of the proof have been de-

scribed in Sect. 8. In addition to the function val men-
tioned there, the formalism contains a function put such
that (put dec u w x) is a new state built from x by
substituting w for the subtree of x of root path u in dec.
Now N Q T H M is guided to prove lemmas that describe
how the value of a variable changes when the state is
modified by means of a pu t command. These low-level
lemmas form a preparation for the lemmas to be described
in part 3 of the proof.

Part 2. The program, its functions and initial conditions
This part contains the definitions in Figs, 7 and 8 and

the definitions of the functions length, ladd2, delete,
segment, sucmod and pown that are used in the program
of Fig. 7. It also contains the expressions of Fig. 10, the
definition of imtpred and the proofs of satisfiability of the
axioms and of initpred.

Part 3. The semantic lemmas
A list of rewrite lemmas is constructed to describe the

effect of every command on every program variable. When
this list is completed the interpreter can leave the stage (i.e.,
be disabled) and the program itself can almost be forgot-
ten. As an example we give in Fig. 15 the new value o fwa .k
when process P performs one step. This lemma states that
wa.k only changes when some process P executes com-
mand 11 or 29, and k equals a a . P or i.P (respectively); it
also gives the new values: ture and false.

Remark. This part is rather dull. It may be possible to
construct a tool that can generate all the necessary lem-
mas. The results of this part, however, form a checkpoint
of the correctness of the interpretation by the interpreter
and of the data representation. (End of remark)

13 lnvariants of the program

In the parts 4, 5, 6, 7, 8 and 10 of the proof, we construct
lots ofinvariants. We only give a few of them in this report.
Of course, the input file to the prover contains all invari-
ants. Most invariants can be recognized by lemma names
of the form J-kept-valid. The list of invariants of [16] is
a close approximation, but the finer grain of atomicity here
requires some reformulations and some new invariants.

Since the commands have been made as small as pos-
sible, a variable is often modified at other points in the
program than would be most convenient for the phrasing
of the invariants. The difficulty can often be solved by the
introduction of a companion, i.e., a state function that is
usually equal to the variable but changes at other points in

(prove-lemma wa-new (rewrite)
(equal (wa k (step p nd x))

(if (lessnum k (top))
(if (and (equal 11 (pc p x))

(equal (aa p x) k))
(true)
(if (and (equal 29 (pc p x))

(equal (ii p x) k))
(false)
(wa k x)))

(wa k x))))

Fig. 15. The new value of 'wa

the program. We give some examples below, see function
vpl as discussed below in part 4, and function vs in part 6.
The concept of companion is not completely formal, but it
seems to be very useful in completely formal proofs of
algorithms with fine grain concurrency.

Part 4. Accumulating easy invariants
The invariants of part 4 are obtained incrementally. The

first aim is to prove that, in command 8, process P can
indeed choose an address a a . P in addr.P\ss.P. So we
have to show that this set is nonempty. For this purpose,
we use the axiomatization of function choose in Fig. 10
together with the invariant ks2 which asserts that
#ss.Q < m when pc.Q -- 8. It is given by

(defn ks2 (q x)
(implies (equal 8 (pc q x))

(lessp (length (ss q x)) (m))))

The proof of invariance of ks2 is based on Formula (10)
together with the invariant k s l which asserts

pc.Q s {3, 4, 5, 6,7} ~ #ss.Q + 2 x #vpl.Q < 2 x n

Here, vpl. Q is a companion of the private variable plist: i.e.,
a state function usually equal to plist which is modified at
more convenient points in the program. More precisely,
vpl.Q = plist.Q if pc.Q ~ 3, 7, and vpl.Q = process\{Q} if
pc.Q = 3 and vpl.Q = (cdr plist.Q) if pc.Q = 7. So when
vpl.Q differs from plist.Q, it has the value that plist.Q will
get after the next action of (2. Function vpl is introduced to
allow the separation of the commands 2 and 3 and of the
commands 6 and 7. In fact, by inspection of Fig. 4, one sees
that, if vpl would be replaced by plist, predicate ks2 could
become invalid at command 6.

In order to prove the invariance of ks l , we need the
obvious invariant ksO which asserts that plist.Q ,t = ~ when
pc.Q ~ {5, 6, 7}.

Part 5. The top-level invariants
This part contains a preparation of the lemmas in Figs.

11, 12. Here, predicate j-invoo is defined and the three
lemmas about j-invoe are proved. The lemmas about j-
object and j-result are only proved under some assump-
tions, which are justified in the parts 6, 7 and 8, One of the
invariants introduced here is jjO, which expresses that the
most recent state of the object stt.a equals sta.gg or
s ta . (nx.gg) and that the second case only occurs if
nx.gg :# 0 and --nwa.(gg). Figure 16 shows how this is
expressed. Predicate jjO is one of the constituents of the
strong invariant j-object mentioned earlier.

(defn ng (x) (lax (gg x) x))

(defn gphase (x)
(or (zerop (ng x))

(wa (ng x) x)))

(defnjjO (x)
(equal (st t (s igma x))

(if (gphase x)
(s ta (gg x) x)
(sta (ng x) x))))

Fig. 16. Definition for 2dO

(defn kgO (k x)
(or (zerop k)

(not (wa k x))
(equal 0 (nx k x))))

(prove-lemma kgO-kept-valid (rewrite)
(implies (and (kpO p x)

(nwah p x)
(kgO k x))

(kgO k (step p nd x)))
((do-not-induct t))) ; [0.0 1.7 0.3]

Fig. 17. The invariant kg0

Part 6. Invariants of the pointer structure
The main difficulty of the program is that all processes

concurrently inspect and modify a shared pointer struc-
ture. It follows that the proof requires many invariants
concerning this pointer structure. We only give some
examples. The invariant kgO of Fig. 17 expresses

k ~ 0 A wa.k ~ n x . k = 0,

i.e., a wailing invocation has no successor. Lemma kgO-
kept-valid announces the invariance of kgO. This lemma
uses two other invariants kpO and nwa~ Predicate kpO
expresses that nx . (aa .P) = 0 when pc.P = 11. Predicate
nwah expresses that wa.(h.P) is false when 17 <
pc.P < 31. Both kpO and nwah are invariant (this is not
obvious, since other processes may modify the arrays n x
and wa).

The last line of Fig. 17 is a hint to the prover that it
should not use induction. In the final proof, this hint is
superfluous, but during the design it serves to terminate
failing proof attempts. After the comment separator ";",
we give the time triple reported by NQTHM: the first
number is the number of seconds spent for input of the
lemma, the second number the number of seconds spent
for the proof, the third number is the number of seconds
spent printing information to the user. The numbers given
here were obtained on a HP 9000-720. Since the invariance
of kgO depends on the invariance of the other predicates,
the actual proof of invariance of kgO is postponed to part
8 below.

Since we need the invariant kgO for all addresses k, we
also form kkgO, the universal quantification of (kgO k x)
for all values k less than top, see Fig. 18. The invariance of
kkgO is proved by induction. The last line of kkgO-kept-
valid indicates to the prover that it should not unfold the
definitions of kgO, nwah, kpO. Notice that top is a variable
symbol here, whereas (top) is a constant. The lemma will
only be used with top = (top). If it would have been stated

kl~O: (Vk:O < k < t o p : - l w a . k v n x . k =O)

(defn kkgO (top x)
(if (zerop top) (true)

(and (kgO (sub l top) x)
(kkgO (subl top) x))))

(prove-lemroa kkgO-kept-valid (rewrite)
(implies (and (kpO p x)

(nwah p x)
(kkgO top x))

(kkgO top (step p nd x)))
((disable kgO nwah kpO))) ; [0.0 0.1 0.1]

Fig. 18, The invariant kkgo, the quantification of kgO

33

k p 8 : 2 4 < p c . Q < 3 1 =.n.x.(h.Q)=i.Q

(defn kp8 (q x)
(implies (between 24 31 (pc q x))

(equal (nh q x) (ii q x))))

(prove- lemma kp8-eq (rewri te)
(implies (and (lessnum p (n))

(kp8 p x))
(kp8 p (step p nd x)))) ; [0.0 9.9 10.4]

(prove- lemma kp8-dif (rewri te)
(implies (and (not (equal p q))

(ahn p q x)
(memi q x)
(kp8 q x)

(kp8 q (step p n d x)))) ; [0.0 2.7 0.6]

(prove- lemma kp8-kept-valid (rewrite)
(implies (and (ahn p q x)

(memi q x)
(kp8 q x))

(kp8 q (step p nd x)))
((disable kp8 memi ahn)
(use (kpS-eq) (kp8-dif))) ; [0.0 0.5 0.0]

Fig. 19. The invariant kp8

with the constant (top) instead of the variable top, how-
ever, it could not have been proved by induction.

Another typical invariant is kp8 of Fig. 19 which ex-
presses that nx.(h.Q) = i.Q after the assignment to i.Q in
command 23. Here, h.Q and i.Q stand for the private
variables h and i of process Q. The invariance of kp8 is
proved by means of a case distinction. Lemma kp8-eq
shows that kp8 of process P is invariant under the actions
of P. In lemma kp8-dif, it is shown that kp8 of Q is
invariant when P @ Q performs a command. Predicate
memi expresses that 20 <__ pc.Q < 31 implies mem.(i.Q).
Predicate ahn expresses

9 < pc.P <12 A 1 7 < p c . Q < 3 1

= a a . P ~ h.Q A a~.P + nx.(h.Q)

This means that process P does not place an invocation at
an address where process Q is working.

The final lemma of Fig. 19 combines the results of the
previous lemmas. Alternatively, it is possible to submit this
final lemma directly, without the preparation and the hints
for "use" and "disable". When we did this, N Q T H M made
a huge case distinction and reported the time triple [0.0
166.1 246.2]. This shows that the case distinction yields
a speed-up by a factor 17.

34

The two invariants kgO and kp8 are relatively innocent.
A more critical example is k p 6 which expresses that ad-
dress i.P is waiting when process P effectively executes
command 22. It is given by

pc.P = 22 A nx.(h.P) = 0 ~ wa.(i .P)

The proof of invariance of k p 6 needs the support Of five
other invariants.

In [16"1, we use the atomicity rule of [2] Theorem 6.26 to
argue that it is allowed to regard commands 11 and 12 as
one command. Such an argument cannot be used to con-
vince the theorem prover. Since we wanted the prover to
support the program as it is presented, we had to provide
a different argument. The solution is to simulate ss.P by
a companion vs.P with the value

vs.P = if pc.P = 12 then s s . P w {aa.P} else ss.P fi

This function can then be used in the invariants at those
positions where the update action 12 would be late. Com-
pare the use of vpl as described above in part 4.

Part 7. Invariants of value transfer and computation
In this part, we treat the values of the private variables

y and z, and arrays inv, r e s and sta. A typical invariant is
kq2 which asserts

pc.Q e{26,27,28,29}

(sta.(h.Q),inv.(i .Q), y . Q , z . Q) e R

Part 8. Aggregation of invariants
In this part, we prove that the predicates dubbed as

invariants in the preceding parts are indeed invariants.
More precisely, we form a conjunction of (universal quan-
tifications of) these predicates and prove that this conjunc-
tion is a strong invariant that implies its constituents.
In this way, we obtain the strong invariant called
globinvariant. It follows that the above mentioned predi-
cates kkgO, kpO, nwah , kp8 , ahn , metal, kp6 and kq2
are indeed invariants.

At first sight, this part may look trivial. It is an impor-
tant verification, however, of the completeness of the sys-
tem of constituent invariants.

Part 9. Proof obligations of correctness
This part serves as a first main summary. Using all

preparations in the previous parts, we here fulfill our proof
obligations for correctness, i.e., prove the lemmas given in
Figs. 11, 12, 14, and also the lemmas for the safety o f i n v
and res.

14 The proof of wait-free progress

Part 10. Predicates for bounded delay
The proof of bounded delay for process Q begins with

the observation that, whenever process Q traverses from
command 13, via 16, 17 or 30, back to 13 again, variable gg
is modified at least once (but not necessarily by process Q).
For this purpose, we define predicate gstep to mean that
some process, say P, executes command 30 with gg = h.P.

We construct a state function nrgs teps , initially 0, that
is incremented whenever some process performs a gstep.
This function is a companion of # o-, the length of o-. It is
defined by

nrgs teps = (gphase (~ (# cr)) -- 1

where gphase is the function defined in Fig. 16 and oper-
ator (~ is conditional incrementation given by

b ~ x = i f b t h e n x + l e l s ex f i

We then prove that every gstep has the effect that the
state function seq.gg is incremented by 1 modulo n. It
follows that, invariantly, seq.gg equals ra.rgsteps modulo
n. Since seq.gg is the default process to be given priority
for invocation treatment, this is the key step in the proof
that individual starvation does not occur.

Part 11. Bound functions and bounded delay.
The next value for n rgs teps at which process Q is to be

scheduled by default is defined as wupb.Q; it is the least
number y such that

Q = y rood n A

(nrgs teps < y V (nrgsteps = y A kwO 1))

Here kwO 1 expresses that the default process is still sched-
ulable. More precisely, it is the condition

(nx.gg = 0 V n.x.gg = aa.(seq.gg))

A (V T ~ process : : h. T = gg A 20 =< pc. T < 31

i. T = aa.(seq.gg) A pc. T ~ 21)

Remark.
necessity
This was
a human
not have

In our mental proof, cf. [16], we had not seen the
of the conjunct pc. T =4= 21 at the end of kwO1.
one of the rare instances that the prover signaled
error. If it had not been for this error, we would
mentioned predicate kwO1. (End of remark)

The difference between nrgs teps and wupb.Q is a de-
scending measure for the waiting time of process Q. More
precisely, we construct vfg .Q as the companion of this
difference given by

(pc.Q > 14 A gg 4= h.Q) �9 (waapb.Q - nrgsteps)

We now prove that, while wa.(aa .Q) holds, i.e., while
process Q is waiting, vfg.Q does not increase, and it
decreases whenever Q makes a backward jump at 16, 17 or
30. We then define vfgg.Q as the number

if pc.Q <]3 t hen n + 2
elsif wa.(aa .Q) t hen vfg.Q + 1
elsif 14 =< pc.Q < 31 then 1 else 0 fi

We define vlength. Q as

if pc. Q < 4 t hen n - 1 else # plist. Q fi

and vfloop.Q as the number

4 x v length .Q + 18 x vfgg.Q + (32 - pc.Q)

35

It is proved that vfloop.Q is bounded by the constant
(c22) = 22 x n + 65, that it decreases at every command
of Q apart from command 31, and that it descends at every
command of another process. In this way, we obtain the
results announced in Fig. 13.

15 Conclusions

order functions did not matter much: for the problem at
hand, low level reasoning was necessary anyhow, because
of the potential interleavings. After some time, we found
the LISP-like syntax and the lack of infix operators com-
fortable to live with. In conclusion, we think that, for the
problem at hand, N Q T H M was a good prover. It seems
likely that, if we would have to start all over again, a new
proof would be obtained much more quickly.

The first conclusion is the correctness of the program of
Fig. 4 with respect to the five proof obligations mentioned
in Sect. 5. The input to NQTHM is a file of roughly 6500
lines. N Q T H M needs around 75 minutes for the verifica-
tion on a HP 9000-720.

The use of the prover enabled us to reach a finer grain of
atomicity. For example, the sequential composition of
commands 24, 25, 26 and 27 of the program is represented
by one command in the program of [16]. Since four
different shared variables are involved, this representation
is not justified. The use of a mechanical prover has the
advantage that it encourages a stricter separation between
proof obligation and actual proof. This is especially useful
when there are many proof obligations and long proofs. In
[16], we did not yet have a good proof obligation for the
safety of the non-atomic shared variables which occur in
the commands 24, 25, 26 and 27. The proofs of safety,
however, were straightforward extensions of the argu-
ments of [16].

In the proof of progress, we followed the arguments of
[16]. It soon became apparent, however, that our mental
arguments rely heavily on our intuitive understanding of
progress. In the end, it turned out that we obtained the
proof obligation for progress as a side effect of the con-
struction of the proof.

The initial predicate does not specify the initial values of
array bb. This implies that the array inspection of nx.i in
command 6 may be out of range. This point is not found
by the mechanical proof since the prover works with an
untyped language and all its functions are total. Actually, if
bb.Q has not been set by process Q, the values i = bb.Q
and nx. i are superfluous in ss. Q. It can be proved that, if
the initial predicate is strengthened with mem.(bb. T) for
all processes T, then all array inspections and modifica-
tions are within range and the arrays wa, n.x, sta, res, m y
and seq are not inspected and modified at address 0.

One may ask whether the use of a mechanical theorem
prover was justified: would not a careful reworking of the
paper proof have yielded the same increase in confidence
and insight as the effort to use the prover? In our view, the
prover was indispensable to handle the amount of case
distinctions needed for this method of proof. A satisfactory
handwritten proof would require totally new insights
to eliminate most of the case distinctions. Indeed,
we would prefer such a result, but we do not see how to
get it.

Let us finally answer the question whether we were
satisfied with the capabilities of the N Q T H M theorem
prover. This question gains perspective by the wishes and
requirements mentioned in [19] and [24]. We had some
problems with the arithmetical weakness of NQTHM.
This may be due to our isolated activity: we did not use or
consult the existing libraries. NQTHM's lack of higher

Acknowledgements. I would like to thank Jan Eppo Jonker and
Rutger M. Dijkstra for their stimulating questions and criticisms
about various versions of this paper, J. Moore for his ability and
willingness to explain and solve the problems I had with NQTHM,
and two anonymous referees for their suggestions that have led to
a much better presentation.

References

1. Anderson JH, Gro~elj B: Beyond atomic registers: bounded
wait-free implementations of nontrivial objects. Sci Comput Pro-
gram 19:197-237 (1992)

2. Apt KR, Olderog E-R: Verification of sequential and concurrent
programs. Springer, Berlin Heidelberg New York 1991

3. Ashcroft EA, Manna Z: Formalization of properties of parallel
programs. Machine Intelligence 6. University of Edinburgh
Press, Edinburgh 1971, pp 17-41

4. Back R JR, Sere K: Stepwise refinement of action systems. In: van
de Snepscheut JLA (ed) Mathematics of program construction.
Lect Notes Comput Sci, vol. 375 Springer, Berlin Heidelberg
New York 1989, pp 115-138

5. Baeten JCM (ed): Applications of process algebra. Cambridge
University Press 1990

6. Bevier WR, Hunt WA, Moore JS, Young WD: An approach to
systems verification. J Autom Reasoning 5:411-428 (1989)

7. Boyer RS, Moore JS: A computational logic. Academic Press,
Orlando 1979

8. Boyer RS, Moore JS: A computational logic handbook.
Academic Press, Boston 1988.

9. Chandy KM, Misra J: Parallel program design, a foundation.
Addison-Wesley 1988

10. Dijkstra EW: Co-operating sequential processes. In: Genuya
F (ed): Programming languages (NATO Advanced Study Insti-
tute). Academic Press, London New York 1968, pp 43-112

11. Gordon MJC: HOL: A proof generating system for higher-order
logic: In: Birtwistle G, Subrahmanyam PA (eds) VLSI specifica-
tion, verification and synthesis. Kluwer Academic Publishers
1988

12. Herlihy MP: Impossibility and universality results for wait-free
synchronization. In: Proc 7th Annual ACM Symposium on
Principles of Distributed Computing, August 1988

13. Herlihy MP: A methodology for implementing highly concur-
rent data structures. In: 2nd ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming. SIGPLAN
Notices 25(3): 197-206 (1990)

14. Herlihy MP: Wait-free synchronization. ACM Trans Program
Lang Syst 13:124-149 (1991)

15. Herlihy MP, Wing J: Linearizability: a correctness condition for
concurrent objects. ACM Trans Program Lang Syst 12:463-492
(1990)

16. Hesselink WH: Wait-free linearization with an assertional proof.
Distrib Comput 8:65-80 (1994)

17. Hunt WA Jr: FM8501: A verified microprocessor. Ph.D. Thesis,
University of Texas at Austin, 1985

18. Hoare CAR: Communicating sequential processes. Prentice Hall
1985

19. Lindsay PA: A survey of mechanical support for formal reason-
ing. Softw Eng J, pp 3-27 (1988)

20. Milner R: A calculus of communicating systems. Lect Notes
Comput Sci, vol 92. Springer, Berlin Heidelberg New York 1980

36

21. Misra J: Loosely-coupled processes. In: Aarts EHL, Van
Leeuwen J, Rem M (eds): Parallel architectures and languages
europe, vol 2. Lect Notes Comput Sci, vol 506. Springer, Berlin
Heidelberg New York, pp 1-26

22. Moore J: A formal model of asynchronous communication and
its use in mechanically verifying a biphase mark protocol. For-
mal Asp Comput 6:60-91 (1994).

23. Owicki S, Gries D: An axiomatic proof technique for parallel
programs. Acta Inf 6:319-340 (1976)

24. Rushby JM, von Henke F: Formal verification of algorithms for
critical systems. IEEE Trans Software Eng 19:13-23 (1993)

25. Russinoff DM: A verification system for concurrent programs
based on the Boyer-Moore prover. Formal Asp Comput 4:
597-611 (1992)

26. Plotkin SA: Sticky bits and universality of consensus. In:
Proceedings of the 8th ACM Symposium on Principles of Dis-
tributed Computing 1989, pp 159-176

