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Abstract. Temporal weakest precondions are introduced for calculational reason- 
ing about the states encountered during execution of not-necessarily terminating 
recursive procedures. The formalism can distinguish error from useful nontermi- 
nation. The precondition functions are constructed in a new and more elegant 
way. Healthiness laws are discussed briefly. Proof rules are introduced that enable 
calculational proofs of various safety and progress properties. The construc- 
tion of the precondition functions is justified in an Appendix that provides the 
operational semantics. 

1. Introduction 

The aim of this paper is to present a calculus for the description of the runtime 
behaviour of (not necessarily terminating) imperative programs during execution. 
The calculus is an extension of Dijkstra's weakest preconditions with temporal 
preconditions introduced by Lukkien and Van de Snepscheut [LuS92] and addi- 
tional precondition functions for safety and absence of errors. Our programming 
language allows arbitrary mutually recursive procedures. We prove soundness of 
proof rules and give examples where they are used to discuss the runtime be- 
haviour of nonterminating procedures. The proof rules (formulated for mutually 
recursive procedures) can easily be specialized to repetitions. 

To be more specific, our programs are commands that act on some state 
space. So, the command starts in some initial state and the command generates a 
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finite or infinite sequence of subsequent states, in a possibly nondeterminate way. 
Given predicates p and r on the state space, we are, for example, interested in the 
question whether there is an intermediate state where p holds or the command 
terminates in a state where r holds. 

Such a question depends on the initial state. We therefore introduce wev.p.S.r 
to stand for the weakest precondition such that execution of command S ever 
reaches a state where predicate p holds or terminates in a state where predicate 
r holds. For example, let k be an integer program variable and let S be given by 

S = w h i l e k > 2 d o k : = k - 3 o d  

In this case an easy operational argument shows that 

wev.(k = 10).S.(k = 0) 
= ( k > 1 0 A k m o d 3 = l )  V ( k > 0 A k m o d 3 = 0 )  

Our aim is to provide formal proof rules that can be used effectively to prove 
such assertions in a calculational style without operational reasoning. 

Nonterminating programs are primarily of practical interest when they are 
reactive, i.e., interact with the environment during their execution. The calculus 
presented here does not specifically support reactive programs. Yet, by taking 
input streams and output streams as part of the state space, it is possible to 
use the calculus to specify reactive programs. Notice that the precondition may 
be a constraint on the input stream, which need not be known at the time that 
the program is started. We nevertheless maintain the word precondition, since its 
logical role has not been changed. 

Relation to Previous Work 

Temporal preconditions for procedures were introduced first by Morris in the 
paper [Mor90]. In that paper, all recursion is simple (nonmutual) tail-recursion 
and, more importantly, the only intermediate states considered are those in which 
recursive calls occur. In [Luk91] and [LuS92], the runtime semantics of while- 
programs is characterized by the sequence of  all intermediate states, possibly 
including the final state. This has the effect that many states are treated twice 
(once as final, once as initial); therefore the formulae are bigger than necessary. 
In this paper (as in [HER93]), we generalize the approach of  Lukkien and Van de 
Snepscheut to (mutually) recursive procedures, but we restrict the intermediate 
states. For us an intermediate state of a computation is one in which a simple 
command is started. 

Novel Contributions 

The semantic functions to describe the runtime behaviour are defined as extreme 
solutions of certain fixpoint equations. In each case the fixpoint equation is easily 
obtained, but it is hard to decide which solution must be chosen. Prompted 
by one of the referees we prove our choices in an Appendix that describes the 
operational semantics. 

The definitions of the semantic functions as extreme fixpoints are the starting 
point of a calculus, which contains healthiness laws and proof rules. The proofs 
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of  these laws and rules are standard variations of the proofs we gave for the 
postcondition semantics in [Hes92], Chapter 4. So, the main step forward in this 
paper is the application of the groundwork done before to the runtime semantics 
of  recursive procedures. The present paper is a companion of  [HER93]: there 
we concentrated on proofs of  healthiness laws. Here we give the operational 
semantics and we provide proof  rules. Moreover, we extend the repertoire of  
[HER93] by introducing two new semantic functions: wep to characterize errorfree 
computations and winv to characterize stability. We give examples in which the 
new functions are used to specify runtime behaviour and examples in which the 
proof  rules are used to prove such specifications. 

Overview of the Paper 

In Section 2, we discuss notations and give some preliminary material on functions 
and orderings. The programming language is presented in Section 3. It is a more 
elegant version of the language used in [Hes92]. In Section 4, we introduce the 
runtime semantic functions. In particular, we give the types and the informal 
meaning, and we present three simple examples. In Section 5, we investigate the 
behaviour of  the semantic functions with respect to sequential composition and 
nondeterminate choice. Section 6 contains the construction of  the functions wp, 
wlp, wep, wev, winv, and wto, as extreme solutions of certain fixpoint equations. 

Section 7 contains a number of  healthiness laws. In Section 8, we give 
three proof  rules. Two of them resemble Hoare's Induction Rule for partial 
correctness of  recursive procedures. The third rule is a generalization of  the Main 
Repetition Theorem. We give some examples to show how these rules can be 
used. Conclusions are drawn in Section 9. We conclude with an Appendix where 
we present the operational semantics and justify the extreme fixpoint definitions 
of the semantic functions introduced. 

2. Notations and Functions 

Function application is denoted by means of the infix operator ".", which binds 
to the left. In this way, currying is allowed. For example, 

wto.p.q.c.r = ( ( ( wto.p).q).c).r 

For sets X and Y, the set of  functions from X to Y is denoted by X ~ Y and 
also by yX.  The operator "--*" binds to the right, so that 

X--~Y--*Z = X - * ( Y - - ~ Z )  

If U is a subset of  X and f c X + Y, then f l U  is the restriction to U, which is 
an element of U --+ Y. 

We write IP to denote the set of the predicates on the state space. For p E IP, 
the assertion [p] means that p holds everywhere on the state space, cf. [DIS90]. 
Predicate p is said to be stronger than q if and only if [p ~ q]. Occasionally, we 
use the notation 

p - < q  -- [p=~q] 

We write P T  = (IP ~ IP). The elements of  P T  are called predicate transformers. 
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A function f E P T  is called monotonic if and only if 

(V p, q 6 lP : [ p ~ q ]  : [ f . p ~  f.q] ) 

We write M T  to denote the set of the monotonic functions f ~ PT. 
If  X is an ordered set and Y is an arbitrary set, the induced order on Y ~ X 

is defined by f _< g ---- (V y E Y :: f . y  < g.y). The above order on IP is a special 
case. The order on 1P induces an order on P T  and hence on its subset MT, and 
various sets of  the form M T  Y = (Y  ~ MT).  

It is wellknown that IP, P T  and M T  with these orders are complete lattices. 
The infimum or greatest lower bound (n) of a family of  predicates p.i with i E I 
is denoted (infi  :: p.i); it is the universal quantification (V i :: p.i). Similarly, 
the supremum or least upper bound (sup/ :: p.i) is the existential quantification 
(3 i :: p.i). The infimum of a family of  predicate transformers f . i  with i E I is the 
predicate transformer given (argumentwise) by (infi  :: f.i).p = (infi :: f.i.p) for 
every predicate p. Similarly for the supremum. 

Recall that the wellknown theorem of  Knaster-Tarski asserts that, for any 
complete lattice W, a monotonic function D ~ W ~ W has a least fixpoint and 
a greatest fixpoint. If  D and D' are monotonic functions with least fixpoints x 
and x' then D _< D' implies x < x' (similarly for greatest fixpoints). 

3. Commands 

In this section we present the programming language, together with the meanings 
of  the operators and the simple commands, as yet only with respect to the 
postcondition semantics, i.e., the functions wp and wlp. 

The programming language consists of  commands. These are built from 
elementary commands and the empty  command e by means of the operators ";"  
for sequential composition and "H" for demonic nondeterminate choice. We use 
the following syntax for commands. Let A be a set of symbols with e ~ A. The 
elements of A are called elementary commands. Starting from A, we define the 
class Cmd of  command expressions inductively by the clauses 

�9 A ~_ C m d ,  
�9 e ~  C m d ,  
�9 if c, d c Cmd  then (c; d) c C m d ,  
�9 if (i c I :: c.i) is a nonempty family in Cmd then ( I i :: c.i) E Cmd. 

The demonic nondeterminate choice of a family of  two commands c and d is 
denoted by c U d. We give the infix operator "fl" a lower priority than " ; ' .  

The semantics of the commands will be determined by a number of  semantic 
functions. The first two of these functions are the wellknown functions wp and 
wlp, which are interpreted as follows. For a command c and a predicate r, 
condition wp.c.r is regarded as the precondition such that command c terminates 
in a state where r holds. Condition wlp.c.r is regarded as the precondition such 
that command c does not terminate or terminates in a state where r holds. The 
constant ~ and the infix operators ";" and "H" satisfy 

w . s  = t ' ,  

w.(c; d).r = w.c.(w.d.r) 
w.(c n d).r = w.c.r A w.d.r (1) 

for both w = wp and w = wlp. These rules go back to Dijkstra [Dij76]. 
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We assume that the set of  commands A is the disjoint union of two sets S 
and H, which may be infinite. The elements of  S are called simple c o m m a n d s  and 
the restrictions wptS and wlplS are supposed to be given. For definiteness, we 
provide the following simple commands: assignments x := e for program variable 
x and expression e, and guards ?b and assertions !b for predicate b. The formal 
semantics of the assignment is given by 

wp.(x := e).r = r x A des 

x V -~deLe wlp.(x := e).r = r~ 

where predicate des  expresses that e is welldefined. I f  e is not welldefined the 
operators A and V are interpreted in the intuitive way, as has been justified in 
[Bij90]. 

The simple commands ?b and !b test for the validity of predicate b and do 
not modify the state. The difference is that !b forces an error if b does not hold, 
whereas ?b is not executed if b does not hold (in that case, ?b is said to perform 
a miracle). The formal semantics is given by 

wp.(?b).r = ~b v r 
wlp.( ?b).r = ~b V r 
wp.(!b).r = b A r 
wlp.( !b).r = --,b V r (2) 

As is well known, cf. [Hes92] Section 1.5, it follows that the conditional choice 
can be expressed by 

i f b t h e n c e l s e d f i  = (?b; c0 ?-~b; d) 

The elements of  the set H are called procedures or procedure names. Every 
procedure h E H is supposed to be equipped with a body ho@.h E Cmd. In this 
way recursion is possible. For example, a repetition 

L = w h i l e b d o c o d  

is an abbreviation of a recursive procedure L E H with 

body.L = ( ? b ; c ; L !  ?~b) 

We shall construct wp and wlp in such a way that they are functions w E C m d  
M T  that satisfy w.h = w.(body.h) for all h E H. This will be expressed by saying 
that w respects the declaration. The construction is postponed to Section 5 below. 

4. Runtime Semantic  Functions 

In this section, we introduce the new semantic functions. The first one is an 
easy variation in between wp and wlp. The other three functions describe useful 
aspects of the runtime behaviour of  the commands. 

We assume that every simple command only performs one computation step 
that need not terminate: if it does not terminate, it is said to make an error. 
Since nontermination is potentially useful behaviour, errors must not be treated 
as equivalent to nontermination. We therefore treat error as a specific (harmful) 
form of nontermination and introduce a function wep that stands for the weakest 
errorfree precondition. 
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More precisely, wep.c.r is regarded as the weakest precondition such that 
execution of c is errorfree and that c does not terminate or terminates in a state 
that satisfies r. It  follows that wep.s = wp.s for every simple command s, and 
also that wp implies wep  and that wep  implies wlp. We will see that function 
wlp is not made superfluous by the introduction of wep. To summarise, the three 
functions have the types wp, wlp, w e p c  C m d  ~ M T  and the interpretations 

wp.c.r : the precondition of termination in r 
wep.c.r : the precondition of termination in r or errorfree nontermination 
wlp.c.r : the precondition of termination in r or nontermination 

The differences between the three functions wp, wep, and wlp can be illustrated 
by considering the interpretation of  the six extreme cases: 

[ wp.c.false] : c performs a miracle 
[ wp.c.true] : c terminates 

[ wep.c.false] : c is errorfree and does not terminate 
[ wep.c.true] : c is errorfree 
[ wlp.c.false] : c does not terminate 
[ wlp.c.true] : always holds 

Example .  We use function wep  to specify the precondition that a reactive program 
does not generate errors. Let x and y be integer variables and let f and g be 
infinite streams of integers. Let e be the command 

while true do 
read  ( f ,  x) ; read  (g, y) 

; wri te  (x div y) 
od 

Then wp.c. true = false and wlp.c.false = true since c never terminates. Since 
division by zero gives an error, wep.c. true is the predicate that all elements of  
stream g are nonzero. Notice that the precondition here concerns the input, which 
need not be known at the moment  the program starts. [] 

R e m a r k .  Of course, as suggested by a referee, the absence of errors can also be 
discussed by explicit introduction of a program variable e r r o r .  This however has 
the effect that most  of  the useful properties of  the program only hold under the 
assumption --,error. This might lead to an uncomfortable number  of  e r r o r s  in 
the specification. It  does not help to insert guards ?-~error  in the program, for 
then the occurrence of an error "establishes" every postcondition, even ~ e r r o r .  
[] 

The other three functions to be introduced have the types 

w e v  ~ IP ~ C m d  ~ M T  
w i n v  c C m d  ~ P T  

wto  ~ IP ~ IP ~ Cmd- -~  M T  

The intended interpretations are as follows. Recall that for us an intermediate 
state of  a computat ion is one in which a simple command is started. For a 
command c and predicates p, q, r, we interpret 

wev.p.c.r : the precondition of ever p or termination in r 
winv.c.r : the precondition such that, if ever r, subsequently always r 

wto.p.q.c.r : the precondition such that, if ever p, subsequently 
ever q or termination in r (3) 
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Here, "ever p" means that the computat ion has an intermediate state where p 
holds. The phrase "subsequently always r" means that r holds in all subsequent 
states and that no error occurs. 

Notice that wto.p.q.c.r implies that every intermediate state where p holds 
is followed (after one or more steps) by an intermediate state where q holds 
or by termination in r; errors are only allowed when every occurrence of p 
has been followed by some occurrence of q. For us, the term "subsequently" 
excludes simultaneity. So, with respect to wee and wto, we deviate slightly from 
the definitions of  [Luk91] and [LuS92]. The reason for these deviations is that 
our choices give drastically simpler expressions for the wee and wto of simple 
commands  (see also [HER93]). 

We now give two introductory examples. Since they are only intended to 
sharpen the intuition, we do not give proofs. 

A Toy Example with a Practical Flavour 

Consider a financial institution with own capital x. Let a be an array variable 
such that a.i holds the current balance of client i. Bank transfers of  values y are 
repeatedly executed by command h given by 

while true do 
read(i, j ,  y) 

; if y > 0  A y + l < a . i  then 
b := false 

; a . i : = a . i  y 1 
; a.j : = a . j + y  
; x : = x + l  
; b := true 
else ~ fi 

od 

The bank is interested now in the validity of  the following propositions 

[ winv.h.(x > C)] : the own capital never decreases 
[ winv.h.(a.i >_ 0)] : client i never becomes a debtor 

I f  we define p = b A x + ~ i  a.i = D, the invariance of  the total amount  of  
money can be expressed by 

[ wto.p.p.h.false] 

Finally, a negative transfer only occurs when ~b A y < O. So, in order to show 
that no client can affect a negative transfer, we need to have invariant validity of  
r _= b V y ___ O. This follows from 

[b =~ r A winv.h.r] [] 

An Example in Which all Six Functions Occur 

Let k be an integer program variable. Consider the repetition 

L = w h i l e k s ~ 0 d o  ! (k@7)  ; k : = k - - 1  od 
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Command L never terminates with k = 1: 

wp.L . (k  = 1) = fa lse  

Errorfree nontermination occurs if and only if k < 0: 

w e p . L . ( k = l )  = ( k < 0 )  

Nontermination (with error) also occurs if k > 7: 

w l p . L . ( k = l )  = ( k < 0  V k > 7 )  

The value 7 is reached if and only if k > 7; termination with postcondition true 
is reached if and only if 0 < k < 7. These assertions are combined in: 

wev.(k  = 7) .L . t rue  = (k _> 0) 

If  k < 0, the condition k > 0 is never reached; if 0 < k < 7, condition k _> 0 
remains valid until termination; otherwise an error occurs: 

w i n v . L . ( k > O )  = ( k < 7 )  

If  k = --1 initially, the condition k > --1 is broken in the first step; k > 7 
implies k > --1 but leads to an error; in this way we obtain 

w i n v . L . ( k > - - l )  = ( k < 7  A k ~ - - l )  

If  k _> 7, the condition k > 2 holds but k = 1 is not reached since an error 
occurs; otherwise, either k = 1 is reached or k > 2 is not reached: 

wto.(k  > 2).(k = 1).L.false = (k < 7) 

The two cases for w i n v  show that the predicate transformer winv .L  is not 
monotonic. [] 

5. Properties of e, Composition and Choice 

In this section we postulate the runtime properties of  sequential composition and 
demonic choice. The properties are viewed as properties of  the functions. Ab- 
straction then leads to the concepts of  multiplicative functions, homomorphisms, 
and accumulators. 

The empty command e is not a simple command and therefore has no 
intermediate states. It thus satisfies 

wep.e.r = wev.p.e.r = r 
winv.e.r = wto.p.q.e.r = true (4) 

The new semantic functions are supposed to satisfy the following rules for the 
sequential composition: 

wep.(c; d).r = wep.c.(wep.d.r)  
wev.p.(c; d).r = wev.p.c.(wev.p.d.r)  (5) 
winv.(c ; d).r = winv.c.r A wlp.c.( winv.d.r) 
wto.p.q.( c ; d).r = wto.p.q.c.( wev.q.d.r ) A wlp.c.( wto.p.q.d.r ) 

The reader may try and convince himself of the plausability of these rules. The 
rules for w e v  and wto  are due to Lukkien [Luk91]. Lukkien proves them in 
an operational semantics based on sequences of  states. It is easy to extend the 
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arguments to wep and winv. In the rules for winv  and wto, function wlp must not 
be replaced by wep. For winv, this can be seen as follows: if, during execution of 
c, predicate ~r  keeps valid until an error occurs, then winv.(c;d).r is satisfied but 
wep.c.(winv.d.r) is false. A similar argument holds for wto. 

We call a function w E C m d  --* P T  mult ipl icative if and only if w.e.r = r and 
w.(c; d).r = w.c.(w.d.r) for all c, d E C m d  and all r E IP, or equivalently, if 

w.e = M (the identity function) 
w.(c;d) = w.c o w.d for all c,d E C m d  (6) 

In view of (1), (4), and (5), we shall construct wp, wlp, wep, and wev.p as 
multiplicative functions. 

A function w E C m d  ~ P T  is said to respect  demonic  choice if and only if 

w.( U i E I :: c.i).r = (V i E I :: w.(c.i).r) 

for every nonempty family of commands (i E I :: c.i) and every predicate r. We 
shall construct the functions wp, wlp, wep, wev.p, winv  and wto.p.q in such a way 
that they respect demonic choice. 

Let us define a function w to be a h o m o m o r p h i s m  if and only if w E C m d  --* 
M T  and w is multiplicative and respects demonic choice. As a first example, we 
define the function 

k d  E C m d  ---> M T  given by kd.c.r = r (7) 

This function is easily seen to be a homomorphism; here we use that the demonic 
choice is defined for nonempty families only. Below, we construct wp, wlp, wep, 
and wev.p as homomorphisms. 

We now give a unified view of the last two formulae of (5). Let w E C m d  
M T  be a homomorphism. A function g E C m d - - .  P T  is called a w-accumu la to r  
if and only if it respects demonic choice and satisfies, for all c, d E C m d  and 
r c ] P ,  

g.&r = t r u e  

g.(c;d).r = g.c.(w.d.r) A wlp.c.(g.d.r) (8) 

In view of  (4) and (5), we shall construct the functions winv  and wto.p.q in such 
a way that winv  is a kd-accumulator and that wto.p.q is a wev.q-accumulator.  

6. Construction of  the Semantics  

In this section we construct the semantic functions wp, wlp, wep, wev, winv, 
and wto. This construction uses structural induction over the commands. In each 
case, the first step is to construct the function for the simple commands. The 
behaviour with respect to composition and choice then yields a definition for all 
commands, provided we have a definition for the procedure names. As is usual, 
the idea that a procedure name must be indistinguishable from its body leads to 
a fixpoint equation. This fixpoint equation has a least and a greatest solution, by 
the Theorem of Knaster-Tarski. Ultimately the definition is the choice of either 
the least fixpoint or the greatest one. The justification of these choices requires 
an operational semantics and is therefore postponed to the Appendix. 

Recall that S is the set of  simple commands, which contains the assignments, 
the guards ?b, and the assertions !b. Also recall that wp.s and wlp.s are given for 
all simple commands s E S. In order to construct wp and wlp for all commands, 
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we apply renaming and define functions wso, WSl E S ~ M T  by ws0 --- (wplS) 
and wsl = (wlplS). So, now the semantics of  the simple commands  are given by 
ws0 and WSl. 

Recursive procedures are introduced as follows. Recall that the function body 
determines, for every procedure h E H, the body body.h E Cmd. A function 
g ~ Cmd  ~ P T  is said to respect the declaration if and only if g.h = g.(body.h) 
for every h E H, or equivalently (gill) -- g o body. 

Remark .  It  is not difficult to construct a function g that does not respect the 
declaration. For example, it could be such that g.h is the identity for all h E H. 
[] 

We propose to construct the functions wp, wlp, wep, and wev.p in such a way 
that they are homomorphisms that respect the declaration. 

By induction over the structure of  Cmd, one can easily prove that, for every 
function v E A ~ MT, there is precisely one homomorphism w E C m d ~ M T  
with restriction (wlA) = v. This function is called the homomorphic  extension 
hom.v = w of v. Moreover, the function horn is monotonic: if u < v then 
hom.u < hom.v. In order to prove this, one uses induction over the structure of  
Cmd and monotonicity of  the functions hom.u.c ~ MT.  Notice that h o m  is a 
function (A ~ M73 ~ ( Cmd  ~ MY) .  

Let a function u E M T  s be given, which is to be interpreted as providing the 
meaning of  the simple commands.  We now want to extend u to a homomorphism 
that respects the declaration. For any x E M T  u we write u + x to denote the 
function in A ~ M T  with restrictions u on S and x on H. One easily verifies: 

Theorem. A function w E C m d  ~ M T i s  a homomorphism that extends u E S 
M T  and respects the declaration if and only if w = hom.(u + (w o body)). The 
latter condition is equivalent to w = D.u.w where function D is given by 

D.u.w = hom.(u + (w o body)) 

Notice that, since w E Cmd  ~ MT,  we have w o body E M T  H and hence 
hom.(u + (w o body)) E Cmd ~ MT.  

Function D.u E ( C m d  ~ MT)  ~ ( C m d  ~ M T )  is easily seen to be monotonic. 
By the theorem of  Knaster-Tarski ,  the function D.u has a least fixpoint and a 
greatest fixpoint. We now define #.u as the least fixpoint of  D and v.u as the 
greatest fixpoint of  D. It  follows that #.u and v.u are homomorphisms Cm d ~ M T ,  
which extend function u and respect the declaration. One can prove that, if u < u I 
in M T  s, then #.u _/~.u' and v.u <_ v.u'. 

The functions wp, wep and wlp are defined as the homomorphisms 

wp = #. wso, wep = v. wso , wlp = v. wsl (9) 

The choices for wp and wlp are wellknown, see [DIS90] and [dRo76]. All three 
choices will be justified in the Appendix. 

I t  follows from these definitions that indeed wp, wep and wlp are homo- 
morphisms that respect the declaration and that wp[S = weplS = wso and 
wlplS = wsl. 

Remark.  In [Hes92] and [HER93], the restrictions wpiH and wlplH are con- 
structed as extreme fixpoints and then extended to the set of  all commands. 
The present construction is equivalent and more elegant. It  was proposed by 
R.M. Dijkstra. The same kind of modification has been made in the construc- 
tions below of wev and wto. [] 
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Since wev.p is supposed to be a homomorphism that respects the declaration 
and since wev.false should be equal to wp, the definition of wp suggests to define 

wev.p = #.( wvs.p) (10) 

where wvs.p = (wev.piS)  is still to be determined. Since wev.p.s.r expresses "ever p 
or termination in r" and since we regard the initial state as the only intermediate 
state of  a simple command,  we define 

wvs.p.s.r = p V wso.s.r for p, r E IP and s E S. (11) 

We give an operational justification of the definitions (10) and (11) in the Ap- 
pendix. Definition (10) implies that wev.p is a homomorphism that respects the 
declaration. 

We now turn to the construction of w i n v  and wto. Let us first consider the 
restriction to simple commands. In view of (2), we define wsi E S --* P T  by 

wsi.s.r = ~ r  V wso.s.r for s E S and r E IP (12) 

and we require w i n ~ S  = wsi. With respect to wto, we recall that, for a simple 
command,  the initial state is the only intermediate state and that there is no 
subsequent intermediate state. We therefore require wto.p.q.s.r = ~ p  V wso.s.r and 
hence wto.p.qtS = wvs.(~p).  

Now let w E C m d  ~ M T  be a homomorphism. The construction of  C m d  
from A is such that, for every function v ~ A ~ PT, there is precisely one 
w-accumulator  g E C m d  ~ P T  with restriction (gfA) -- v. Let this extension be 
denoted acc.w.v = g. By induction over the structure of  Cmd,  one can prove that 
function acc.w ~ (A -*  PT)  ~ ( C m d  ~ PT)  is monotonic. 

Let the meaning of w i n v  or wto on the simple commands  be given by a 
function u ~ S ~ PT. For any function x c P T  H, we have a combined function 
u + x E A ~ P T  and hence a w-accumulator  acc.w.(u + x) E C m d  ~ PT.  Again 
one can verify: 

Theorem. A function g E Cmd--- ,  P T  is a w-accumulator  that extends u ~ S 
P T  and respects the declaration if and only if g = acc.w.(u + (g o body)). The latter 
condition is equivalent to g -- E.w.u.g where function E is given by 

E.w.u.g = acc.w.(u + (g o body)) 

The function E.w.u  E ( C m d - - .  PT)  ~ ( C m d  ~ PT)  is monotonic. We define 
z.w.u to be the greatest fixpoint of  E.w.u  in C m d  --, PT.  By construction, this 
function z.w.u is the greatest w-accumulator  that respects the declaration and 
restricts to u ~ S ~ PT. Now the functions w i n v  and wto  are defined by 

w i n v  = z.kd. wsi  
wto.p.q = z.( wev.q).( wvs.( ~p)  ) (13) 

Indeed, in this way, w i n v  is a kd-accumulator  that respects the declaration and 
wto.p.q is a w e v . q - a c c u m u l a t o r  that respects the declaration. Moreover, for a 
simple command s E S, we have 

winv.s.r = wsi.s.r = -~r V wso.s.r 
wto.p.q.s.r = ~ p  V wso.s.r 

These formulae correspond to the informal description (3). We refer to the 
Appendix for a proof  that we must take the greatest fixpoints. Lukkien gave a 
proof  for the case of  wto  of while-programs in [Luk91], Theorem 62. 
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One can easily prove that, if u ~ M T  s, then z.w.u E C m d  ~ MT.  It follows 
that wto.p.q.c c M T  for every c c C m d  and p, q ff 1P. 

7. Hea l th ines s  L a w s  and Assoe iat iv i ty  

In this section we discuss a number of healthiness laws. The most important 
result is that sequential composition is associative and that e is its unit element. 
The proof of these facts requires universal conjunctivity of wlp, which is one of 
the classical healthiness laws. Other healthiness laws are mentioned briefly. 

Recall that a function f E P T  is called universally conjunctive if and only if 

/ . (VpE  U : : p ) = ( V p E  U ::f.p) 

for every subset U of IP. We need the following postulate concerning the semantics 
of the simple commands: 

Function wsl.s is universally conjunctive for every s E S. (14) 

This postulate is one of the healthiness laws of [DIS90], [Hes92], and [HER93]. 
It is used to prove 

Theorem. For every command c E Cmd, the function wlp.c is universally con- 
junctive. In particular, wlp.c.(p A q ) =  wlp.c.p A wlp.c.q and [ wlp.c.true]. (15) 

Proof. See [Hes92] Theorem 4(30) or [HER93] Theorem (19). [] 

We now use Theorem (15) to prove the unit property of e and the associativity 
of sequential composition, both with respect to the semantic functions under 
consideration. 

Theorem. Let w c C m d - ,  M T  be a homomorphism and let c, d, e E Cmd. 

(a) w.(~;c) = w . c  = w.(c;~). 
(b) w.(c;(d;e))  = w.((c;d);e) . 

If  g is a w-accumulator then 

(c) g.(e;c) = g.c = g.(c;e) and g.(c;(d;e)) = g.((c;d);e) . 

Proof. 

(16) 

(a) This follows from the fact that w is multiplicative and that the identity 
function id  is the unit for function composition. 

(b) Composition of functions is associative, so it suffices to observe that both 
sides reduce to the composition w.c o w.d o w.e. 

(c) The equality g.(c; e) = g.c is proven in 

g.(c; ~).r 
= { ( 8 ) }  

g.c.(w.~.r) A wlp.c.(g.e.r) 
= { ( s ) )  

g.c.r A wlp.c.true 
= { ( 1 5 ) )  

g.c.r 

The verification of g.(e; c) = g.c is similar and simpler, and is therefore left 
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to the reader. With respect to the associativity, it suffices to verify that, for 
every r E IP, 

g.(c; (d; e)).r 
= { ( 8 ) }  

g.c.(w.(d;e).r) A wlp.c.(g.(d;e).r) 
= {(6) and (8)} 

g.c.(w.d.(w.e.r)) A wlp.c.(g.d.(w.e.r) A wlp.d.(g.e.r)) 
= {(15);this is the reason to postulate (14)} 

g.c.(w.d.(w.e.r)) A wlp.c.(g.d.(w.e.r)) A wlp.c.(wlp.d.(g.e.r)) 
= { ( 8 )  and (6)} 

g.(c;d).(w.e.r) A wlp.(c;d).(g.e.r) 
= { ( 8 ) }  

g.( (c;d);e) .r  [] 

This proves that the six semantic functions respect the semantic equality c; (d; e) 
(c; d); e. In [Hes92], we enforced associativity of the sequential composition syn- 
tactically. For our present purposes that choice is less convenient. 

R e m a r k .  The above theorem is not as innocent as it looks. In fact, several 
authors ([BvW90], [Mrg90], [MoGg0], [Mor87], see also [Hes94]), have proposed 
an operator for angelic choice, say "~" ,  with the property that 

wp.(c 4? d).p = wp.c.p V wp.d.p 

The introduction of this operator in the theory almost inevitably leads to violation 
of Theorem (15). Consequently, the proof of part (c) of Theorem (16) would fail 
and, presumably, part (c) would not be valid. We have therefore refrained from 
introducing this operator here. [] 

There is a vast number of other healthiness laws and not all of them are 
equally important. We mention the ones we have come across, but we do not 
prove them here. Most of them have been proven in [HER93]. All of them can 
easily be verified in the operational semantics of the Appendix. We assume that 
the simple commands satisfy what might be called the termination postulate: 

wso.s.r = WSo.S. true A WSl.S.r for all s ~ S and r ~ IP 

With this postulate it is possible to prove the two termination laws: 

wp.c.r = wp.c. true A wlp.c.r 
wep.c.r = wep.c. true A wlp.c.r for all c E Cmcl and r E IP 

Immediately from the definitions we get 

[ wp.c.r ~ wep.c.r ] 
wp  = wev.fMse 

It is easy to prove the monotonicity rules: 

[ p ~ p' ] ~ [ wev.p.c.r ~ wev.p'.c.r ] 
[ p' ~ p ] A [ q ~ q'] ~ [ wto.p.q.c.r ~ wto.p'.q'.c.r ] 

More interesting are the transitivity rules: 

[ wev.(p V q).c.r A wto.p.q.c.r ~ wev.q.c.r ] 
[ wto.p.(q V r).c.m A wto.q.r.c.m ~ wto.p.r.c.m] 
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The proofs of the last two formulae are highly nontrivial, see [HER93]. 
The paper [HER93] also contains healthiness laws concerning semantic func- 

tions wlev  and wlto. These functions are liberal versions of wev  and wto, defined 
by taking wsl and v instead of wso and #. These liberal versions are of theoretical 
interest, but they are often too liberal for actual specifications. 

8. Proof Rules 

The proof rules presented in this section serve to prove specifications of recursive 
procedures h.i by means of preconditions p.i and postconditions q.i. The rules are 
induction principles: in order to prove the validity of the specification, it suffices 
to prove that the procedure bodies satisfy the specification under assumption that 
the recursive calls satisfy the specification. 

The first rule, (16), is a generalization of Hoare's Induction Rule: in this case 
the proof obligation must be met for an abstraction of the semantic function 
under consideration. The second rule, (22), is a generalization of the Main 
Repetion Theorem. So, a variant functions is needed to force termination. Rule 
(24) again is a variation of Hoare's Rule. The rules may be compared with the 
rules for the postcondition semantics, as discussed in [Hes92] Chapter 2 and 
[Hes93]. 

All three rules are formulated in such a way that arbitrary families of Hoare 
triples (p.i, h.i, q.i) can be dealt with. This is useful if parameters or specification 
values occur, see [Hes93] and [Hes92] Chapter 2. In the examples here, we do 
not use this additional power. 

As announced above, the first rule is a generalization and rephrasing of 
Hoare's classical induction rule for partial correctness, cf. [Hoa71]. It applies to 
an arbitrary greatest fixpoint homomorphism v.u. 

Theorem. Let (i E I :: h.i) be a family of procedure names and let (i E I :: p.i) 
and (i E I :: q.i) be families of predicates. Let u E S ~ M T  be a function such 
that, for every homomorphism w with (wlS) = u, 

(V i :: [p.i ~ w.(h.i) .(q.i)]) 
(V i :: [p.i ~ w,(body.(h.i)) .(q.i)])  

Then [p.i ~ v.u.(h.i).(q.i)] for every i E I. (17) 

Proof .  This is proven in the same way as [Hes92] Theorem 4(44). [] 

R e m a r k .  In Theorem (17), the goal is an assertion about v.u, but the proof 
obligation is an implication concerning an abstraction w of v.u. The antecedent 
of this implication is usually called the induction hypothesis. It is not sufficient to 
prove the proof obligation for the special case w = v.u. For, in that special case, 
the proof obligation holds trivially if the goal is false. [] 

As an application of this rule, we present a simple example. Let t be an 
integer program variable and let procedure h be declared by 

body.h = 
( ! t  > 0 ;  t : = t + l  
H h;  t : = t - 1  ; h) 

We claim that t > 0 implies that procedure h is errorfree and does not terminate 
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or terminates with t > 1, i.e., 

[ t  > 0  ~ wep.h . ( t  > 1)] (18) 

Since w e p  = v.wso, Theorem (17) can be applied with u = ws0. All families are 
singletons, the precondition is p = (t  > 0) and the postcondition is q = (t  > 1). 
Now Theorem (17) implies that it suffices to prove that every homomorphism w 
with (wlS)  = wso satisfies 

[ t > 0  ~ w . h . ( t > l ) ]  ~ [ t > 0  ~ w. (body .h) . ( t> l ) ]  (19) 

We regard the antecedent of  (19) as the induction hypothesis and we prove the 
consequent of (19) in the following calculation: 

w.(body.h)(t > I) 
= {declaration of h, w is a homomorphism} 

w.( ! t  > 0).(w.(t := t + 1).(t > 1)) 
A w.h . (w . ( t  := t - 1).(w.h.(t > 1))) 

{(wlS) = ws0, i.e., wplS; induction hypothesis, monotonicity} 
wp.( ! t  > 0).(wp.(t := t + 1).(t > 1)) 
A w.h . (wp . ( t  := t -- 1).(t > 0)) 

= {(1) and w p  of  assignment} 
t > 0  A t + l > l  A w . h . ( t - l > 0 )  

{calculus and induction hypothesis} 
t > 0  

This proves claim (18). 
For the discussion of  the other proof rules, we use a slightly more difficult 

example. Let t be an integer program variable and let procedure h be declared 
by 

body.h = 
( ? ( t < 0 ) ;  t : = t + b  

I ?(t > 0 ) ;  t : = t - - c ;  h;  h) (20) 

where b and c are integer constants with 0 < c ___ b. One can argue operationally 
about this procedure, but such arguments are tricky and error prone. Let us only 
say that the operational intuition suggests the following claims. 

If t > 0 initially, then procedure h does not terminate: 

[ t > 0 ~ wlp.h.s 

Every execution of h reaches some state where t < 0 holds: 

[ wev.(t _< O).h.s (21) 

I f  during execution, ever t _< b holds, then t <_ b remains valid" 

[ winv .h . ( t  N b)] (22) 

The first claim can again be proven by means of Theorem (17), now with u = WSl. 
We therefore leave this as an exercise to the reader. We proceed by providing 
proof  rules that allow calculational proofs of the claims (21) and (22). The rule 
for homomorphisms like wev.p is as follows (see also [Hes93]). 

Theorem. Let w be a homomorphism that respects the declaration. Let (i E I "" 
h.i) be a family of  procedure names and let (i E I "" p.i) and (i E I "" q.i) 
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be families of predicates. Let (i ~ I "" vf.i) be a family of integer valued state 
functions such that for every integer m: 

(Vi ' "  [ p . i A  v f . i < m A m > _  O =~ w.(h.i).(q.i)]) 

(V i "" [p.i A vf.i = m ~ w.(body.(h.i)) .(q.i)]) 

Then [p.i ~ w.(h.i).(q.i)] for every i E I. (23) 

Proof .  The proof is an immediate generalization of [Hes92] Theorem 2(16). [] 

R e m a r k .  As suggested by a referee, Theorem (23) can be illustrated by showing 
that it is a generalization of the main repetition theorem. This has been done in 
Section 2.8 of [Hes92]. [] 

We here use Theorem (23) to prove formula (21) in the example of procedure 
h declared in (20). So we apply (23) with w = wev.( t  < 0). The families are 
singletons with p = true and q = false. We use the state function v f  = t .  
According to (23), it suffices to prove, for every integer m, 

[ t < m A m > _ 0  =~ w.h.false] 
[ t = m ~ w.(body.h).false] (24) 

We take the antecedent of (24) as an induction hypothesis and prove the conse- 
quent. First observe that, since w = wev.( t  < 0), it follows from (2), (10) and (11) 
that 

w . ( ? ( t  _ 0)) . r  
= z_<0  v ( t > 0  v r) 
= true 

and 

w . ( ? ( t  > 0) ; t : =  t - c).r 
= t__O v (t_<O v w . ( t : = t - c ) . r )  
= t _ < 0  v ws0.(t : = t - c ) . r  

Now it remains to verify the consequent of (24) in 

w.(hody.h). false 
= {declaration h in (20); first branch is true} 

t _<0 V wso.(t : = t - c ) . ( w . ( h ; h ) . f a l s e )  
{ [ w . h . f a l s e ~ f a l s e ]  and w homomorphism} 

t _< 0 V WS0.(t := t -- c).(w.h.false) 
{induction hypothesis} 

t_<O V wso.(t :=t--c).(t<mArn>__O) 
= {calculus} 

t <_ O V ( t - - c  < m A m > O )  
{ c > 0 }  

t ~ m  

This concludes the proof  of (21). 
For the proof  of  (22), we need a proof  rule for accumulators of the form z.w.u. 

This is a variation of Hoare's Induction Rule. 

Theorem. Let w be a homomorphism. Let (i E I :: h.i) be a family of procedure 
names and let (i E I :: p.i) and (i E I "" q.i) be families of predicates. Let 
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u e S -*  P T b e  a function such that, for every w-accumula tor  g with (glS) = u, 

(Vi "' [p.i ~ g.(h.i) .(q.i)]) 
(V i "' [p.i ~ g.(body.(h.i)) .(q.i)]).  

Then [p.i ~ ~.w.u.(h.i).(q.i)] for every i c I. (25) 

Proof .  Since z.w.u is constructed by means of  a greatest fixpoint, this assertion 
can be proven in the same way as [Hes92] Theorem 4(44). []  

In the example o f  procedure h of  declarat ion (20), Theorem (25) is applied to 
the function w i n v =  z .kd .wsi ,  see (13). We use the rule to prove (22) in the form 

[ true ~ winv .h . ( t  <_ b)] 

So we use Theorem (25) with singleton families and p = true and q = ( t  < b). 
It suffices to prove that, for every kd-accumula to r  g with (glS) = wsi  

[g.h.( t  < b)] ~ [g.(bo@.h).(t  < b)]. (26) 

Let  g be a kd-accumula to r  with (glS) = ws i  One easily verifies with (12) that  
wsi.(?p).r = true for all predicates p and r. It follows with (2), (7), and (8) that  
g.(?p; c).r = (p ~ g.c.r) for every predicate p. Assuming the antecedent  of  (26), 
the consequent  is proven in 

g.(body.h).(t _< b) 
= {(20)} 

g . (? ( t_<  0) ; t : = t + b  
D ? ( t > 0 ) ;  t : - - t - c ;  h;  h).(t_<b) 

= {rule obtained above and calculus} 
(t___0 =~ g.(t  : = t + b ) . ( t _ < b ) )  

A ( t > 0  ~ g.(t  : = t - - c ;  h ; h ) . ( t _ < b ) )  
= {first conjunct  is true, f rom (glS) = wsi  and (12)} 

t > 0  ~ g.( t  : = t - c ;  h ;  h) . ( t_<b)  
= {g is a kd-accumula tor ,  (7), (8)} 

t > O  
g.(t  :---= t -- c).(t < b) 

A wlp . ( t  := t -- c).(g.h.(t  < b) A wlp.h.(g.h.( t  <_ b))) 
= {(giN) = wsi, (12), calculus and c > 0} 

t > O  
wlp . ( t  := t - c).(g.h.(t _< b) A wlp.h.(g.h.( t  <_ b))) 

= {antecedent of  (26), twice} 
t > 0 ~ wlp . ( t  := t - c).(wlp.h. true) 

= {(15), calculus} 
t rue .  

This concludes the p roo f  of  (22). 

9. Conclusions 

We have shown that  the theory of  predicate t ransformat ion semantics, originally 
designed for the usual postcondi t ion semantics, can also be used in an effective 
and elegant way to construct  predicate t ransformat ion functions to describe the 
runtime semantics o f  (not necessarily terminating) recursive procedures.  

These functions are constructed as extreme solutions of  fixpoint equations. 
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This made it possible to use earlier work and thus to obtain proof rules that 
enable calculational proofs of temporal properties of (not necessarily terminating) 
recursive procedures. Even in simple cases, however, the calculations are quite 
long. It seems therefore that mechanical support will be indispensable for real 
applications. 

Experience will have to show which predicate transformation functions are 
the most useful for specification of runtime behaviour. In [HER93], we used a 
slightly different set of functions. Other functions could also be suggested. 

References 

[BvW90] 

[Bij90l 

[Dij76] 
[DIS90] 

[Hes88] 

[Hes92] 

[Hes93] 

[Hes94] 

[HER93] 

[HoaT1] 

[Luk91] 

[LuS92] 

[Mrg90] 
[MoG90] 

[Mor87] 

[Mor90] 

[dRo76] 

Back, R. J. R. and Wright, J. yon.: Refinement calculus, Part I: Sequential Nondeter- 
ministic Programs. In: J.W. de Bakker, W. P. de Roever, G. Rozenberg (eds) Stepwise 
Refinement of Distributed Systems. Lecture Notes in Computer Science 430. Springer, 
Berlin, 1990, pp. 4~66. 
Bijlsma, A.: Semantics of quasi-boolean expressions. In: W.H.J. Feijen et al. (eds.): 
Beauty is our business, a birthday salute to Edsger W. Dijkstra. Springer. 1990, pp. 27 
35. 
Dijkstra, E. W. : A discipline of programming. Prentice-Hall 1976. 
Dijkstra, E. W. and Scholten, C. S.: Predicate calculus and program semantics. Springer. 
1990. 
Hesselink, W. H.: Interpretations of recursion under unbounded nondeterminacy. The- 
oretical Computer Science 59 (1988) 211-234. 
Hesselink, W. H.: Programs, Recursion and Unbounded Choice, predicate transformation 
semantics and transformation rules. Cambridge University Press 1992. 
Hesselink, W. H.: Proof rules for recursive procedures. Formal Aspects of Computing 5 
(1993) 554~570. 
Hesselink, W. H.: Nondeterminacy and recursion via stacks and games. Theoretical 
Computer Science 124 (1994) 273-295. 
Hesselink, W. H. and Reinds, R.: Temporal preconditions of recursive procedures. In: 
J.W. de Bakker, W.-R de Roever, G. Rozenberg (eds.): Semantics: Foundations and 
Applications. Proceedings of REX Workshop Beekbergen 1992. Springer Verlag 1993 
(LNCS 666), pp. 236-260. 
Hoare, C. A. R. : Procedures and parameters: an axiomatic approach. In: Symposium on 
Semantics of Algorithmic Languages. (ed. E. Engeler), Springer Verlag (Lecture Notes 
in Math. 188) 1971, pp. 102-116. 
Lukkien, J. J.: Parallel Program Design and Generalized Weakest Preconditions. Thesis, 
Groningen, 1991. 
Lukkien, J. J. and van de Snepscheut, J. L. A.: Weakest preconditions for progress. 
Formal Aspects of Computing 4 (1992) 195-236. 
Morgan, C.: Programming from Specifications. Prentice Hall, 1990. 
Morgan, C. and Gardiner, R H. B.: Data refinement by calculation. Acta Informatica 27 
(1990) 481-503. 
Morris, J. M.: A theoretical basis for stepwise refinement and the programming calculus. 
Science of Comp. Programming 9 (1987) 287-306. 
Morris, J. M.: Temporal predicate transformers and fair termination. Acta Informatica 
27 (1990) 287-313. 
de Roever, W. R: Dijkstra's predicate transformer, non~leterminism, recursion, and 
termination. In: Mathematical Foundations of Computer Science 1976 (Lect. Notes 
Comp. Sci., vol. 45) Berlin, Heidelberg, New York: Springer Verlag 1976, pp. 472-481. 

Appendix: The Formal Operational Semantics 

I n  order  to jus t i fy  the def in i t ions  in  Sec t ion  6 of  wep, wev, winv, veto as ex t reme 
f ixpoints  o f  ce r ta in  opera tors ,  we descr ibe  the o p e r a t i o n a l  semant ics .  The  m a i n  
idea  is to formal ize  the concep t  o f  c o m p u t a t i o n  by  desc r ib ing  it  in  t e rms  o f  pairs  
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(x, c) where x is the current state and c is the command  that is still to be executed. 
Such a pair will be called a configuration. Every computat ion step corresponds to 
a transition f rom one configuration to another. The configurations will therefore 
form a directed graph. Every computat ion is a path in this graph. 

This idea is formalized as follows. With respect to the commands,  we treat e 
as the unit for sequential composition and thus identify e;c = c = c; e for every 
c ~ Cmd. We also treat sequential composition as associative and therefore omit 
parentheses in (e; d); e and c; (d; e). These identifications are justified by Theorem 
(16). 

We write X to denote the state space. Let IB be the set of  the truth values. So 
we have IP = IB x, the set of  the boolean functions on X. The value of a predicate 
r 6 IP in a state x 6 X is the boolean r.x c IB. 

The semantics of  a simple command s ~ S are supposed to be given by an 
input -output  relation [[sl] _c X x X and an error set Err.s ~ X :  here (x ,y)  ~ ~s~ 
means that s executed in state x may have result state y, and x c Err.s means 
that s executed in state x may make an error. Then we have 

WSl.S.p.x - (V y : (x ,y)  ~ ~s~ : p.y) 
wso.s.p.x = WSl.S.p.x /X x ~ Err.s 

We now introduce the set of  configurations. A contiguration is either the error 
configuration 3- or a pair (x, c) with x c X and c E Cmd. In the latter case, we 
interpret c as a command  still to be executed and to be started in state x. A 
configuration is called l~nal if it is of  the form (x, e) with x ~ X. 

The set of  the configurations is made into a directed graph by defining a tran- 
sition relation "--*" between configurations. There are four types of  transitions, 
namely 

(x, h;c) ~ (x, body.h;c) 
(x, ( ~ i E 1  ::c.i);d) ~ (x, c. j;d) f o r j E I  
(x, s;c) ~ (y,c) i f (x ,y )  c [[s]] 
( x , s ; c )  ~ 3_ i f x ~ E r r . s  

for x, y E X, and h E H, and c, d, e E Cmd, and all c.i E Cmd, and s E S. 
A path  in the configuration graph is called a computat ion if it is either infinite, 

or ends in the error configuration _1_, or ends in a final configuration. Only in the 
third case we say that the computat ion terminates (in the second case, it is linite, 
but does not terminate). 

Remark.  A configuration is called failing if it has no outgoing transitions and 
yet is not a final configuration and differs from the error configuration _1_. A 
configuration is failing if and if it is of  the form (x, s; c) with s c S and 
(V y :: (x ,y)  ~ ~s~) and x ~ Err.s. A path in the configuration graph that 
cannot  be extended is either a computat ion or ends in a failing configuration. An 
executing mechanism that enters a failing configuration will have to backtrack. 
[] 

A configuration is said to satisfy predicate p if it is not the error configuration 
and its state component  satisfies p. A configuration is called simple if it is of  the 
form (x, s; c) with s E S and c E Cmd. A computat ion is called a p-computa t ion  
if p holds in every simple configuration that occurs in it. 

In order to justify the fixpoint definitions of  the semantic functions, we abolish 
these definitions and replace them by definitions in terms of  the operational 
semantics. We then prove that, in each case, the operationally defined function 
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is indeed the extreme solution of the fixpoint equation as announced. So, we 
now give the operational definitions of the semantic functions wp, wlp, wep, wev, 
winv, and wto. Compare the informal descriptions of (3). 

�9 wp.c.r.x means that every computation starting in configuration (x, c) termi- 
nates in a final configuration where r holds. 

�9 wlp.c.r.x means that every terminating computation starting in configuration 
(x, c) terminates in a final configuration where r holds. 

�9 wep.c.r.x means that every finite computation starting in configuration (x, c) 
terminates in a final configuration where r holds. 

�9 wev.p.c.r.x means that every (-~p)-computation starting in configuration (x, c) 
terminates in a final configuration where r holds. 

�9 winv.c.r.x means that, in every computation starting in configuration (x, c), if 
r holds in some configuration it holds in all subsequent configurations. 

�9 wto.p.q.c.r.x means that, in every computation that starts in configuration 
(x, c), every simple configuration where p holds is followed (after one or more 
transitions) by a simple configuration where q holds or by termination in a 
final configuration where r holds. 

The postulates of Section 5 are justified by the following result, the proof of 
which is surprisingly complicated. 

Theorem. The functions wp, wep, wlp, wev.p are homomorphisms Cm d ~ M T  
that respect the declaration and that satisfy 

wPlS = wso , wlplS = WS1 

weplS = wso , wev.pIS = wvs.p 

Function winv is a kd-accumulator Cmd ~ P T  that respects the declaration and 
satisfies winqS  = wsi. Function wto.p.q is a wev.p-accumulator C m d  ~ M T t h a t  
respects the declaration and satisfies wto.p.qiS = wvs.(-~p). 

The reader who wants to is invited to give a proof of this result. The ideas 
are not new, see for instance [Hes88], Section 2. We shall concentrate on the 
remaining part: the characterizations as extreme fixpoints. 

Let a configuration be called rewritable if it is of the form (x, d;e) where 
d is a procedure name or a demonic choice. In that case, the configuration 
has one or more transitions to configuration(s) with the same state component 
x (these transitions will be called rewritings). By inspection of the transition 
relation and the other relevant definitions, one can easily obtain the following 
two lemmas. 

Lemma. Let (x, c) be a rewritable configuration. Let r ~ IP and let w be a 
homomorphism that respects the declaration. 

(a) w.c.r.x holds if and only if w.d.r.x holds for every transition (x, c) ~ (x, d). 
(b) If  g is a w-accumulator that respects the declaration then g.c.r.x holds if 

and only if g.d.r.x holds for every transition (x, c) ~ (x, d). (27) 

Lemma. Consider a simple configuration (x, s; c) with s E S and c E Cmd. Let 
w be a homomorphism and let r E IP. 

(a) Assume wlS = wso. Then w.(s;c).r.x holds if and only if every transition 
from (x, s; c) goes to a configuration (y, c) such that w.c.r.y holds. 
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(b) Assume wlS = wsl. Then w.(s;c).r.x holds if and only if every transition 
from (x, s;c) goes to • or to a configuration (y,c)  such that w.c.r.y 
holds. (28) 

Theorem. Let w be a homomorphism that respects the declaration. Let c 6 C m d  
and r 6 IP. 

(a) If  wlS = wso then [ w.c.r ~ wep.c.r ]. 

(b) If wlS = wsl then [w.c.r ~ wlp.c.r]. 

Proof. 

(29) 

(a) According to the definition of wep, it suffices to show that w.c.r.x implies that 
every finite computation starting in (x, c) terminates in a final configuration 
where r holds. This is proven as follows. By induction, the lemmas (27) and 
(28) imply that all configurations of the computation differ from _1_ and are 
of the form (y, d) with w.d.r.y. Since it is a finite computation, there is a 
last configuration (y, d). The definition of computation implies that the last 
configuration (y, d) is a final one with d = e. Now w.d.r.y implies r.y. 

(b) Here one uses a largely similar argument in which "finite computation" has 
been replaced by "terminating computation". [] 

Since wep is itself a homomorphism w that respects the declaration and 
satisfies w[S = wSo, Theorem (29)(a) implies that it is the greatest one. This 
proves that wep = v.wSo. Similarly, Theorem (29)(b) implies that wlp = v.WSl. 
Therefore, the present definitions of wep and wlp coincide with the definitions 
(9). 

We need the following lemma for the treatment of function wev. 

Lemma. Let p E lP. Let w be a homomorphism such that w[S = wvs.p. Let a 
simple configuration (x, s;c) and a predicate r be given. Then w.(s;c).r.x holds 
if and only if p.x holds or every transition from (x, s; c) goes to a configuration 
(y, c) where w.c.r.y holds. (30) 

Proof.. We first compute 

w.(s; c).r.x 
= {w is a homomorphism and s ~ S} 

wvs.p.s.(w.c.r).x 
= {definition wvs in (10)} 

(p v wso.s.(w.c.r)).x 
= {calculus} 

p.x V wso.s.( w.c.r ).x 

It remains to observe that wSo.s.q.x holds if and only if every transition from 
(x, s;c)  goes to a configuration (y,c) where q.y holds. [] 

Theorem. Let p ~ IP. Let w be a homomorphism that respects the declaration 
and satisfies wlS = wvs.p. Then wev.p implies w. (31) 

Proof. We give a proof by contradiction in order to avoid a case distinction. Let 
r be a predicate. It suffices to prove that the function h given by 

h.(x, c) =- wev.p.c.r.x A -~w.c.r.x 

is everywhere false. So, assume that h.(x, c) holds. Since wev.p and w both satisfy 
the conditions of the lemmas (27), (28), and (30), we have: 
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�9 if configuration (x, c) is rewritable there is a transition (x, c) --* (x, d) such that 
h.(x, d) holds. 

�9 if configuration (x ,c)  is simple, then -,p.x holds and there is a transition 
(x, c) --* (y, d) such that h.(y, d) holds. 

Since h.(y, e) = false by convention, this shows that there is an infinite (~p)- 
computation starting in (x, c). This implies =wev.p.c.r.x and hence contradicts the 
assumption. [] 

Since wev.p is itself a homomorphism w that respects the declaration and 
satisfies wIS = wvs.p, Theorem (31) shows that it is the least one. This proves 
that wev.p = #.(wvs.p).  By specialization to the case p = false, we get w p  = #. wso. 
Therefore, the present definitions of w e v  and wp coincide with the definitions in 
(10) and (9). 

Lemma. Let w be a homomorphisme and let g be a w-accumulator that respects 
the declaration. If  the configuration graph has a path from (x, c) to (y, d) then 
g.c.r.x implies g.d.r.y. (32) 

Proof.  This is proven by induction in the length of the path. So it suffices to 
consider a single transition. If  the transition is a rewriting, the assertion follows 
from Lemma (27)(b). In the case of a simple transition, it follows from the 
implication 

[g.(s;d) .r  ~ WSl.S.(g.d.r)] 

which follows from (8). [] 

Theorem. Let g be a k d - a c c u m u l a t o r  that respects the declaration and satisfies 
glS = wsi. Then g implies winv. (33) 

Proof .  We prove that g.c.r.x implies winv.c.r.x for every predicate r, every 
command c, and every state x. Assume g.c.r.x. Consider a computation that 
starts in (x, c), and let (y, d) be a configuration in this computation where r holds. 
We have to prove that r holds in all subsequent configurations. By induction it 
suffices to show that r holds in the next configuration. Since r remains valid in 
every rewriting, we may assume that (y,d) is a simple configuration, say d = s ;e  
with s ~ S, e E Cmd.  Lemma (31) implies g.d.r.y. We observe 

r.y A g.d.r.y 
=> {d = s ;e  and g is a kd-accumulator, (7) and (8)} 

r.y A g.s.r.y 
= {glS = wsi  and definition of wsi  in (12)} 

r.y A (-~r V wso.s.r).y 
=> {calculus} 

wso.s.r, y . 

This implies that every transition from (y, d) goes to a configuration where 
r holds. In particular, r holds in the next configuration of the computation 
considered. [] 

Since w i n v  is itself a kd-accumulator that respects the declaration and satisfies 
glS = wsi, Theorem (33) shows that it is the greatest one. This proves that 
w i n v  = z.kd.wsi.  Therefore, the present definition of w i n v  coincides with the one 
in (13). 
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Theorem. Let p, q E IP. Let g be a wev.q-accumulator that respects the declaration 
and satisfies gIS = wvs.(-~p). Then g implies wto.p.q. (34) 

Proof. We prove that g.c.r.x implies wto.p.q.c.r.x for every predicate r, every 
command c, and every state x. Assume g.c.r.x. Consider a computation that 
starts in (x, c), and let (y, d) be a simple configuration in this computation where 
p holds. Lemma (32) implies g.d.r.y. Since configuration (y, d) is simple, we can 
write d = s;e with s E S. We have 

p.y A g.d.r.y 
{d = s; e and g is a wev.q-accumulator} 

p.y /x g.s.(wev.q.e.r).y 
-= {glS = wvs.(~p) and definition wvs in (11)} 

p.y /~ (-~p v wso.s.(wev.q.e.r)).y 
=*- {calculus} 

wso.s.( wev.q.e.r ). y 

Therefore, every transition from (y, d) goes to a configuration (z, e) such that 
wev.q.e.r.z holds. This implies that the configuration (y, d) is followed after one 
or more transitions by a simple configuration where q holds or by termination in 
a configuration where r holds. This proves wto.p.q.c.r.x. [] 

Since wto.p.q is itself a wev.q-accumulator that respects the declaration and 
satisfies glS = wvs.(~p), Theorem (34) shows that it is the greatest one. This 
proves that 

wto.p.q = ~.( wev.q).( wvs(~p) ). 

Therefore, the present definition coincides with the one in (13). 
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