

 University of Groningen

Safety and Progress of Recursive Procedures
Hesselink, Wim H.

Published in:
Formal Aspects of Computing

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1995

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Hesselink, W. H. (1995). Safety and Progress of Recursive Procedures. Formal Aspects of Computing, 7.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 03-06-2022

https://research.rug.nl/en/publications/a340cc40-9409-4605-9b2e-7d8e0dcb83d0

Formal Aspects of Computing (1995) 7:389-411
(~ 1995 BCS Formal Aspects

of Computing

Safety and Progress of Recursive Procedures
Wim H. Hesselink
Rijksuniversiteit Groningen, Department of Computing Science, Groningen, The Netherlands

Dedicated to the memor y o f
Jan van de Snepscheut

Keywords: Predicate transformers; Weakest preconditions; Recursive procedures;
Operational semantics; Proof rules; Safety; Progress

Abstract. Temporal weakest precondions are introduced for calculational reason-
ing about the states encountered during execution of not-necessarily terminating
recursive procedures. The formalism can distinguish error from useful nontermi-
nation. The precondition functions are constructed in a new and more elegant
way. Healthiness laws are discussed briefly. Proof rules are introduced that enable
calculational proofs of various safety and progress properties. The construc-
tion of the precondition functions is justified in an Appendix that provides the
operational semantics.

1. Introduction

The aim of this paper is to present a calculus for the description of the runtime
behaviour of (not necessarily terminating) imperative programs during execution.
The calculus is an extension of Dijkstra's weakest preconditions with temporal
preconditions introduced by Lukkien and Van de Snepscheut [LuS92] and addi-
tional precondition functions for safety and absence of errors. Our programming
language allows arbitrary mutually recursive procedures. We prove soundness of
proof rules and give examples where they are used to discuss the runtime be-
haviour of nonterminating procedures. The proof rules (formulated for mutually
recursive procedures) can easily be specialized to repetitions.

To be more specific, our programs are commands that act on some state
space. So, the command starts in some initial state and the command generates a

Correspondence and offprint requests to: Wim H. Hesselink, Rijksuniversiteit Groningen, Department
of Computer Science, PO Box 800, 9700 AV Groningen, The Netherlands. email: wim@cs.rug.nl

390 W.H. Hesselink

finite or infinite sequence of subsequent states, in a possibly nondeterminate way.
Given predicates p and r on the state space, we are, for example, interested in the
question whether there is an intermediate state where p holds or the command
terminates in a state where r holds.

Such a question depends on the initial state. We therefore introduce wev.p.S.r
to stand for the weakest precondition such that execution of command S ever
reaches a state where predicate p holds or terminates in a state where predicate
r holds. For example, let k be an integer program variable and let S be given by

S = w h i l e k > 2 d o k : = k - 3 o d

In this case an easy operational argument shows that

wev.(k = 10).S.(k = 0)
= (k > 1 0 A k m o d 3 = l) V (k > 0 A k m o d 3 = 0)

Our aim is to provide formal proof rules that can be used effectively to prove
such assertions in a calculational style without operational reasoning.

Nonterminating programs are primarily of practical interest when they are
reactive, i.e., interact with the environment during their execution. The calculus
presented here does not specifically support reactive programs. Yet, by taking
input streams and output streams as part of the state space, it is possible to
use the calculus to specify reactive programs. Notice that the precondition may
be a constraint on the input stream, which need not be known at the time that
the program is started. We nevertheless maintain the word precondition, since its
logical role has not been changed.

Relation to Previous Work

Temporal preconditions for procedures were introduced first by Morris in the
paper [Mor90]. In that paper, all recursion is simple (nonmutual) tail-recursion
and, more importantly, the only intermediate states considered are those in which
recursive calls occur. In [Luk91] and [LuS92], the runtime semantics of while-
programs is characterized by the sequence of all intermediate states, possibly
including the final state. This has the effect that many states are treated twice
(once as final, once as initial); therefore the formulae are bigger than necessary.
In this paper (as in [HER93]), we generalize the approach of Lukkien and Van de
Snepscheut to (mutually) recursive procedures, but we restrict the intermediate
states. For us an intermediate state of a computation is one in which a simple
command is started.

Novel Contributions

The semantic functions to describe the runtime behaviour are defined as extreme
solutions of certain fixpoint equations. In each case the fixpoint equation is easily
obtained, but it is hard to decide which solution must be chosen. Prompted
by one of the referees we prove our choices in an Appendix that describes the
operational semantics.

The definitions of the semantic functions as extreme fixpoints are the starting
point of a calculus, which contains healthiness laws and proof rules. The proofs

Safety and Progress of Recursive Procedures 391

of these laws and rules are standard variations of the proofs we gave for the
postcondition semantics in [Hes92], Chapter 4. So, the main step forward in this
paper is the application of the groundwork done before to the runtime semantics
of recursive procedures. The present paper is a companion of [HER93]: there
we concentrated on proofs of healthiness laws. Here we give the operational
semantics and we provide proof rules. Moreover, we extend the repertoire of
[HER93] by introducing two new semantic functions: wep to characterize errorfree
computations and winv to characterize stability. We give examples in which the
new functions are used to specify runtime behaviour and examples in which the
proof rules are used to prove such specifications.

Overview of the Paper

In Section 2, we discuss notations and give some preliminary material on functions
and orderings. The programming language is presented in Section 3. It is a more
elegant version of the language used in [Hes92]. In Section 4, we introduce the
runtime semantic functions. In particular, we give the types and the informal
meaning, and we present three simple examples. In Section 5, we investigate the
behaviour of the semantic functions with respect to sequential composition and
nondeterminate choice. Section 6 contains the construction of the functions wp,
wlp, wep, wev, winv, and wto, as extreme solutions of certain fixpoint equations.

Section 7 contains a number of healthiness laws. In Section 8, we give
three proof rules. Two of them resemble Hoare's Induction Rule for partial
correctness of recursive procedures. The third rule is a generalization of the Main
Repetition Theorem. We give some examples to show how these rules can be
used. Conclusions are drawn in Section 9. We conclude with an Appendix where
we present the operational semantics and justify the extreme fixpoint definitions
of the semantic functions introduced.

2. Notations and Functions

Function application is denoted by means of the infix operator ".", which binds
to the left. In this way, currying is allowed. For example,

wto.p.q.c.r = (((wto.p).q).c).r

For sets X and Y, the set of functions from X to Y is denoted by X ~ Y and
also by yX. The operator "--*" binds to the right, so that

X--~Y--*Z = X - * (Y - - ~ Z)

If U is a subset of X and f c X + Y, then f l U is the restriction to U, which is
an element of U --+ Y.

We write IP to denote the set of the predicates on the state space. For p E IP,
the assertion [p] means that p holds everywhere on the state space, cf. [DIS90].
Predicate p is said to be stronger than q if and only if [p ~ q]. Occasionally, we
use the notation

p - < q -- [p=~q]

We write P T = (IP ~ IP). The elements of P T are called predicate transformers.

392 W . H . Hesse l ink

A function f E P T is called monotonic if and only if

(V p, q 6 lP : [p ~ q] : [f . p ~ f.q])

We write M T to denote the set of the monotonic functions f ~ PT.
If X is an ordered set and Y is an arbitrary set, the induced order on Y ~ X

is defined by f _< g ---- (V y E Y :: f . y < g.y). The above order on IP is a special
case. The order on 1P induces an order on P T and hence on its subset MT, and
various sets of the form M T Y = (Y ~ MT).

It is wellknown that IP, P T and M T with these orders are complete lattices.
The infimum or greatest lower bound (n) of a family of predicates p.i with i E I
is denoted (infi :: p.i); it is the universal quantification (V i :: p.i). Similarly,
the supremum or least upper bound (sup/ :: p.i) is the existential quantification
(3 i :: p.i). The infimum of a family of predicate transformers f . i with i E I is the
predicate transformer given (argumentwise) by (infi :: f.i).p = (infi :: f.i.p) for
every predicate p. Similarly for the supremum.

Recall that the wellknown theorem of Knaster-Tarski asserts that, for any
complete lattice W, a monotonic function D ~ W ~ W has a least fixpoint and
a greatest fixpoint. If D and D' are monotonic functions with least fixpoints x
and x' then D _< D' implies x < x' (similarly for greatest fixpoints).

3. Commands

In this section we present the programming language, together with the meanings
of the operators and the simple commands, as yet only with respect to the
postcondition semantics, i.e., the functions wp and wlp.

The programming language consists of commands. These are built from
elementary commands and the empty command e by means of the operators ";"
for sequential composition and "H" for demonic nondeterminate choice. We use
the following syntax for commands. Let A be a set of symbols with e ~ A. The
elements of A are called elementary commands. Starting from A, we define the
class Cmd of command expressions inductively by the clauses

�9 A ~_ C m d ,
�9 e ~ C m d ,
�9 if c, d c Cmd then (c; d) c C m d ,
�9 if (i c I :: c.i) is a nonempty family in Cmd then (I i :: c.i) E Cmd.

The demonic nondeterminate choice of a family of two commands c and d is
denoted by c U d. We give the infix operator "fl" a lower priority than " ; ' .

The semantics of the commands will be determined by a number of semantic
functions. The first two of these functions are the wellknown functions wp and
wlp, which are interpreted as follows. For a command c and a predicate r,
condition wp.c.r is regarded as the precondition such that command c terminates
in a state where r holds. Condition wlp.c.r is regarded as the precondition such
that command c does not terminate or terminates in a state where r holds. The
constant ~ and the infix operators ";" and "H" satisfy

w . s = t ' ,

w.(c; d).r = w.c.(w.d.r)
w.(c n d).r = w.c.r A w.d.r (1)

for both w = wp and w = wlp. These rules go back to Dijkstra [Dij76].

Safety and Progress of Recursive Procedures 393

We assume that the set of commands A is the disjoint union of two sets S
and H, which may be infinite. The elements of S are called simple c o m m a n d s and
the restrictions wptS and wlplS are supposed to be given. For definiteness, we
provide the following simple commands: assignments x := e for program variable
x and expression e, and guards ?b and assertions !b for predicate b. The formal
semantics of the assignment is given by

wp.(x := e).r = r x A des

x V -~deLe wlp.(x := e).r = r~

where predicate des expresses that e is welldefined. I f e is not welldefined the
operators A and V are interpreted in the intuitive way, as has been justified in
[Bij90].

The simple commands ?b and !b test for the validity of predicate b and do
not modify the state. The difference is that !b forces an error if b does not hold,
whereas ?b is not executed if b does not hold (in that case, ?b is said to perform
a miracle). The formal semantics is given by

wp.(?b).r = ~b v r
wlp.(?b).r = ~b V r
wp.(!b).r = b A r
wlp.(!b).r = --,b V r (2)

As is well known, cf. [Hes92] Section 1.5, it follows that the conditional choice
can be expressed by

i f b t h e n c e l s e d f i = (?b; c0 ?-~b; d)

The elements of the set H are called procedures or procedure names. Every
procedure h E H is supposed to be equipped with a body ho@.h E Cmd. In this
way recursion is possible. For example, a repetition

L = w h i l e b d o c o d

is an abbreviation of a recursive procedure L E H with

body.L = (? b ; c ; L ! ?~b)

We shall construct wp and wlp in such a way that they are functions w E C m d
M T that satisfy w.h = w.(body.h) for all h E H. This will be expressed by saying
that w respects the declaration. The construction is postponed to Section 5 below.

4. Runtime Semantic Functions

In this section, we introduce the new semantic functions. The first one is an
easy variation in between wp and wlp. The other three functions describe useful
aspects of the runtime behaviour of the commands.

We assume that every simple command only performs one computation step
that need not terminate: if it does not terminate, it is said to make an error.
Since nontermination is potentially useful behaviour, errors must not be treated
as equivalent to nontermination. We therefore treat error as a specific (harmful)
form of nontermination and introduce a function wep that stands for the weakest
errorfree precondition.

394 W.H. Hesselink

More precisely, wep.c.r is regarded as the weakest precondition such that
execution of c is errorfree and that c does not terminate or terminates in a state
that satisfies r. It follows that wep.s = wp.s for every simple command s, and
also that wp implies wep and that wep implies wlp. We will see that function
wlp is not made superfluous by the introduction of wep. To summarise, the three
functions have the types wp, wlp, w e p c C m d ~ M T and the interpretations

wp.c.r : the precondition of termination in r
wep.c.r : the precondition of termination in r or errorfree nontermination
wlp.c.r : the precondition of termination in r or nontermination

The differences between the three functions wp, wep, and wlp can be illustrated
by considering the interpretation of the six extreme cases:

[wp.c.false] : c performs a miracle
[wp.c.true] : c terminates

[wep.c.false] : c is errorfree and does not terminate
[wep.c.true] : c is errorfree
[wlp.c.false] : c does not terminate
[wlp.c.true] : always holds

Example . We use function wep to specify the precondition that a reactive program
does not generate errors. Let x and y be integer variables and let f and g be
infinite streams of integers. Let e be the command

while true do
read (f , x) ; read (g, y)

; wri te (x div y)
od

Then wp.c. true = false and wlp.c.false = true since c never terminates. Since
division by zero gives an error, wep.c. true is the predicate that all elements of
stream g are nonzero. Notice that the precondition here concerns the input, which
need not be known at the moment the program starts. []

R e m a r k . Of course, as suggested by a referee, the absence of errors can also be
discussed by explicit introduction of a program variable e r r o r . This however has
the effect that most of the useful properties of the program only hold under the
assumption --,error. This might lead to an uncomfortable number of e r r o r s in
the specification. It does not help to insert guards ?-~error in the program, for
then the occurrence of an error "establishes" every postcondition, even ~ e r r o r .
[]

The other three functions to be introduced have the types

w e v ~ IP ~ C m d ~ M T
w i n v c C m d ~ P T

wto ~ IP ~ IP ~ Cmd- -~ M T

The intended interpretations are as follows. Recall that for us an intermediate
state of a computat ion is one in which a simple command is started. For a
command c and predicates p, q, r, we interpret

wev.p.c.r : the precondition of ever p or termination in r
winv.c.r : the precondition such that, if ever r, subsequently always r

wto.p.q.c.r : the precondition such that, if ever p, subsequently
ever q or termination in r (3)

Safety and Progress of Recursive Procedures 395

Here, "ever p" means that the computat ion has an intermediate state where p
holds. The phrase "subsequently always r" means that r holds in all subsequent
states and that no error occurs.

Notice that wto.p.q.c.r implies that every intermediate state where p holds
is followed (after one or more steps) by an intermediate state where q holds
or by termination in r; errors are only allowed when every occurrence of p
has been followed by some occurrence of q. For us, the term "subsequently"
excludes simultaneity. So, with respect to wee and wto, we deviate slightly from
the definitions of [Luk91] and [LuS92]. The reason for these deviations is that
our choices give drastically simpler expressions for the wee and wto of simple
commands (see also [HER93]).

We now give two introductory examples. Since they are only intended to
sharpen the intuition, we do not give proofs.

A Toy Example with a Practical Flavour

Consider a financial institution with own capital x. Let a be an array variable
such that a.i holds the current balance of client i. Bank transfers of values y are
repeatedly executed by command h given by

while true do
read(i, j , y)

; if y > 0 A y + l < a . i then
b := false

; a . i : = a . i y 1
; a.j : = a . j + y
; x : = x + l
; b := true
else ~ fi

od

The bank is interested now in the validity of the following propositions

[winv.h.(x > C)] : the own capital never decreases
[winv.h.(a.i >_ 0)] : client i never becomes a debtor

I f we define p = b A x + ~ i a.i = D, the invariance of the total amount of
money can be expressed by

[wto.p.p.h.false]

Finally, a negative transfer only occurs when ~b A y < O. So, in order to show
that no client can affect a negative transfer, we need to have invariant validity of
r _= b V y ___ O. This follows from

[b =~ r A winv.h.r] []

An Example in Which all Six Functions Occur

Let k be an integer program variable. Consider the repetition

L = w h i l e k s ~ 0 d o ! (k@7) ; k : = k - - 1 od

396 W.H. Hesselink

Command L never terminates with k = 1:

wp.L . (k = 1) = fa lse

Errorfree nontermination occurs if and only if k < 0:

w e p . L . (k = l) = (k < 0)

Nontermination (with error) also occurs if k > 7:

w l p . L . (k = l) = (k < 0 V k > 7)

The value 7 is reached if and only if k > 7; termination with postcondition true
is reached if and only if 0 < k < 7. These assertions are combined in:

wev.(k = 7) .L . t rue = (k _> 0)

If k < 0, the condition k > 0 is never reached; if 0 < k < 7, condition k _> 0
remains valid until termination; otherwise an error occurs:

w i n v . L . (k > O) = (k < 7)

If k = --1 initially, the condition k > --1 is broken in the first step; k > 7
implies k > --1 but leads to an error; in this way we obtain

w i n v . L . (k > - - l) = (k < 7 A k ~ - - l)

If k _> 7, the condition k > 2 holds but k = 1 is not reached since an error
occurs; otherwise, either k = 1 is reached or k > 2 is not reached:

wto.(k > 2).(k = 1).L.false = (k < 7)

The two cases for w i n v show that the predicate transformer winv .L is not
monotonic. []

5. Properties of e, Composition and Choice

In this section we postulate the runtime properties of sequential composition and
demonic choice. The properties are viewed as properties of the functions. Ab-
straction then leads to the concepts of multiplicative functions, homomorphisms,
and accumulators.

The empty command e is not a simple command and therefore has no
intermediate states. It thus satisfies

wep.e.r = wev.p.e.r = r
winv.e.r = wto.p.q.e.r = true (4)

The new semantic functions are supposed to satisfy the following rules for the
sequential composition:

wep.(c; d).r = wep.c.(wep.d.r)
wev.p.(c; d).r = wev.p.c.(wev.p.d.r) (5)
winv.(c ; d).r = winv.c.r A wlp.c.(winv.d.r)
wto.p.q.(c ; d).r = wto.p.q.c.(wev.q.d.r) A wlp.c.(wto.p.q.d.r)

The reader may try and convince himself of the plausability of these rules. The
rules for w e v and wto are due to Lukkien [Luk91]. Lukkien proves them in
an operational semantics based on sequences of states. It is easy to extend the

Safety and Progress of Recursive Procedures 397

arguments to wep and winv. In the rules for winv and wto, function wlp must not
be replaced by wep. For winv, this can be seen as follows: if, during execution of
c, predicate ~r keeps valid until an error occurs, then winv.(c;d).r is satisfied but
wep.c.(winv.d.r) is false. A similar argument holds for wto.

We call a function w E C m d --* P T mult ipl icative if and only if w.e.r = r and
w.(c; d).r = w.c.(w.d.r) for all c, d E C m d and all r E IP, or equivalently, if

w.e = M (the identity function)
w.(c;d) = w.c o w.d for all c,d E C m d (6)

In view of (1), (4), and (5), we shall construct wp, wlp, wep, and wev.p as
multiplicative functions.

A function w E C m d ~ P T is said to respect demonic choice if and only if

w.(U i E I :: c.i).r = (V i E I :: w.(c.i).r)

for every nonempty family of commands (i E I :: c.i) and every predicate r. We
shall construct the functions wp, wlp, wep, wev.p, winv and wto.p.q in such a way
that they respect demonic choice.

Let us define a function w to be a h o m o m o r p h i s m if and only if w E C m d --*
M T and w is multiplicative and respects demonic choice. As a first example, we
define the function

k d E C m d ---> M T given by kd.c.r = r (7)

This function is easily seen to be a homomorphism; here we use that the demonic
choice is defined for nonempty families only. Below, we construct wp, wlp, wep,
and wev.p as homomorphisms.

We now give a unified view of the last two formulae of (5). Let w E C m d
M T be a homomorphism. A function g E C m d - - . P T is called a w-accumu la to r
if and only if it respects demonic choice and satisfies, for all c, d E C m d and
r c] P ,

g.&r = t r u e

g.(c;d).r = g.c.(w.d.r) A wlp.c.(g.d.r) (8)

In view of (4) and (5), we shall construct the functions winv and wto.p.q in such
a way that winv is a kd-accumulator and that wto.p.q is a wev.q-accumulator.

6. Construction of the Semantics

In this section we construct the semantic functions wp, wlp, wep, wev, winv,
and wto. This construction uses structural induction over the commands. In each
case, the first step is to construct the function for the simple commands. The
behaviour with respect to composition and choice then yields a definition for all
commands, provided we have a definition for the procedure names. As is usual,
the idea that a procedure name must be indistinguishable from its body leads to
a fixpoint equation. This fixpoint equation has a least and a greatest solution, by
the Theorem of Knaster-Tarski. Ultimately the definition is the choice of either
the least fixpoint or the greatest one. The justification of these choices requires
an operational semantics and is therefore postponed to the Appendix.

Recall that S is the set of simple commands, which contains the assignments,
the guards ?b, and the assertions !b. Also recall that wp.s and wlp.s are given for
all simple commands s E S. In order to construct wp and wlp for all commands,

398 W.H. Hesselink

we apply renaming and define functions wso, WSl E S ~ M T by ws0 --- (wplS)
and wsl = (wlplS). So, now the semantics of the simple commands are given by
ws0 and WSl.

Recursive procedures are introduced as follows. Recall that the function body
determines, for every procedure h E H, the body body.h E Cmd. A function
g ~ Cmd ~ P T is said to respect the declaration if and only if g.h = g.(body.h)
for every h E H, or equivalently (gill) -- g o body.

Remark . It is not difficult to construct a function g that does not respect the
declaration. For example, it could be such that g.h is the identity for all h E H.
[]

We propose to construct the functions wp, wlp, wep, and wev.p in such a way
that they are homomorphisms that respect the declaration.

By induction over the structure of Cmd, one can easily prove that, for every
function v E A ~ MT, there is precisely one homomorphism w E C m d ~ M T
with restriction (wlA) = v. This function is called the homomorphic extension
hom.v = w of v. Moreover, the function horn is monotonic: if u < v then
hom.u < hom.v. In order to prove this, one uses induction over the structure of
Cmd and monotonicity of the functions hom.u.c ~ MT. Notice that h o m is a
function (A ~ M73 ~ (Cmd ~ MY) .

Let a function u E M T s be given, which is to be interpreted as providing the
meaning of the simple commands. We now want to extend u to a homomorphism
that respects the declaration. For any x E M T u we write u + x to denote the
function in A ~ M T with restrictions u on S and x on H. One easily verifies:

Theorem. A function w E C m d ~ M T i s a homomorphism that extends u E S
M T and respects the declaration if and only if w = hom.(u + (w o body)). The
latter condition is equivalent to w = D.u.w where function D is given by

D.u.w = hom.(u + (w o body))

Notice that, since w E Cmd ~ MT, we have w o body E M T H and hence
hom.(u + (w o body)) E Cmd ~ MT.

Function D.u E (C m d ~ MT) ~ (C m d ~ M T) is easily seen to be monotonic.
By the theorem of Knaster-Tarski , the function D.u has a least fixpoint and a
greatest fixpoint. We now define #.u as the least fixpoint of D and v.u as the
greatest fixpoint of D. It follows that #.u and v.u are homomorphisms Cm d ~ M T ,
which extend function u and respect the declaration. One can prove that, if u < u I
in M T s, then #.u _/~.u' and v.u <_ v.u'.

The functions wp, wep and wlp are defined as the homomorphisms

wp = #. wso, wep = v. wso , wlp = v. wsl (9)

The choices for wp and wlp are wellknown, see [DIS90] and [dRo76]. All three
choices will be justified in the Appendix.

I t follows from these definitions that indeed wp, wep and wlp are homo-
morphisms that respect the declaration and that wp[S = weplS = wso and
wlplS = wsl.

Remark. In [Hes92] and [HER93], the restrictions wpiH and wlplH are con-
structed as extreme fixpoints and then extended to the set of all commands.
The present construction is equivalent and more elegant. It was proposed by
R.M. Dijkstra. The same kind of modification has been made in the construc-
tions below of wev and wto. []

Safety and Progress of Recursive Procedures 399

Since wev.p is supposed to be a homomorphism that respects the declaration
and since wev.false should be equal to wp, the definition of wp suggests to define

wev.p = #.(wvs.p) (10)

where wvs.p = (wev.piS) is still to be determined. Since wev.p.s.r expresses "ever p
or termination in r" and since we regard the initial state as the only intermediate
state of a simple command, we define

wvs.p.s.r = p V wso.s.r for p, r E IP and s E S. (11)

We give an operational justification of the definitions (10) and (11) in the Ap-
pendix. Definition (10) implies that wev.p is a homomorphism that respects the
declaration.

We now turn to the construction of w i n v and wto. Let us first consider the
restriction to simple commands. In view of (2), we define wsi E S --* P T by

wsi.s.r = ~ r V wso.s.r for s E S and r E IP (12)

and we require w i n ~ S = wsi. With respect to wto, we recall that, for a simple
command, the initial state is the only intermediate state and that there is no
subsequent intermediate state. We therefore require wto.p.q.s.r = ~ p V wso.s.r and
hence wto.p.qtS = wvs.(~p).

Now let w E C m d ~ M T be a homomorphism. The construction of C m d
from A is such that, for every function v ~ A ~ PT, there is precisely one
w-accumulator g E C m d ~ P T with restriction (gfA) -- v. Let this extension be
denoted acc.w.v = g. By induction over the structure of Cmd, one can prove that
function acc.w ~ (A -* PT) ~ (C m d ~ PT) is monotonic.

Let the meaning of w i n v or wto on the simple commands be given by a
function u ~ S ~ PT. For any function x c P T H, we have a combined function
u + x E A ~ P T and hence a w-accumulator acc.w.(u + x) E C m d ~ PT. Again
one can verify:

Theorem. A function g E Cmd--- , P T is a w-accumulator that extends u ~ S
P T and respects the declaration if and only if g = acc.w.(u + (g o body)). The latter
condition is equivalent to g -- E.w.u.g where function E is given by

E.w.u.g = acc.w.(u + (g o body))

The function E.w.u E (C m d - - . PT) ~ (C m d ~ PT) is monotonic. We define
z.w.u to be the greatest fixpoint of E.w.u in C m d --, PT. By construction, this
function z.w.u is the greatest w-accumulator that respects the declaration and
restricts to u ~ S ~ PT. Now the functions w i n v and wto are defined by

w i n v = z.kd. wsi
wto.p.q = z.(wev.q).(wvs.(~p)) (13)

Indeed, in this way, w i n v is a kd-accumulator that respects the declaration and
wto.p.q is a w e v . q - a c c u m u l a t o r that respects the declaration. Moreover, for a
simple command s E S, we have

winv.s.r = wsi.s.r = -~r V wso.s.r
wto.p.q.s.r = ~ p V wso.s.r

These formulae correspond to the informal description (3). We refer to the
Appendix for a proof that we must take the greatest fixpoints. Lukkien gave a
proof for the case of wto of while-programs in [Luk91], Theorem 62.

400 W.H. Hesselink

One can easily prove that, if u ~ M T s, then z.w.u E C m d ~ MT. It follows
that wto.p.q.c c M T for every c c C m d and p, q ff 1P.

7. Hea l th ines s L a w s and Assoe iat iv i ty

In this section we discuss a number of healthiness laws. The most important
result is that sequential composition is associative and that e is its unit element.
The proof of these facts requires universal conjunctivity of wlp, which is one of
the classical healthiness laws. Other healthiness laws are mentioned briefly.

Recall that a function f E P T is called universally conjunctive if and only if

/ . (VpE U : : p) = (V p E U ::f.p)

for every subset U of IP. We need the following postulate concerning the semantics
of the simple commands:

Function wsl.s is universally conjunctive for every s E S. (14)

This postulate is one of the healthiness laws of [DIS90], [Hes92], and [HER93].
It is used to prove

Theorem. For every command c E Cmd, the function wlp.c is universally con-
junctive. In particular, wlp.c.(p A q) = wlp.c.p A wlp.c.q and [wlp.c.true]. (15)

Proof. See [Hes92] Theorem 4(30) or [HER93] Theorem (19). []

We now use Theorem (15) to prove the unit property of e and the associativity
of sequential composition, both with respect to the semantic functions under
consideration.

Theorem. Let w c C m d - , M T be a homomorphism and let c, d, e E Cmd.

(a) w.(~;c) = w . c = w.(c;~).
(b) w.(c;(d;e)) = w.((c;d);e) .

If g is a w-accumulator then

(c) g.(e;c) = g.c = g.(c;e) and g.(c;(d;e)) = g.((c;d);e) .

Proof.

(16)

(a) This follows from the fact that w is multiplicative and that the identity
function id is the unit for function composition.

(b) Composition of functions is associative, so it suffices to observe that both
sides reduce to the composition w.c o w.d o w.e.

(c) The equality g.(c; e) = g.c is proven in

g.(c; ~).r
= { (8) }

g.c.(w.~.r) A wlp.c.(g.e.r)
= { (s))

g.c.r A wlp.c.true
= { (1 5))

g.c.r

The verification of g.(e; c) = g.c is similar and simpler, and is therefore left

Safety and Progress of Recursive Procedures 401

to the reader. With respect to the associativity, it suffices to verify that, for
every r E IP,

g.(c; (d; e)).r
= { (8) }

g.c.(w.(d;e).r) A wlp.c.(g.(d;e).r)
= {(6) and (8)}

g.c.(w.d.(w.e.r)) A wlp.c.(g.d.(w.e.r) A wlp.d.(g.e.r))
= {(15);this is the reason to postulate (14)}

g.c.(w.d.(w.e.r)) A wlp.c.(g.d.(w.e.r)) A wlp.c.(wlp.d.(g.e.r))
= { (8) and (6)}

g.(c;d).(w.e.r) A wlp.(c;d).(g.e.r)
= { (8) }

g.((c;d);e) .r []

This proves that the six semantic functions respect the semantic equality c; (d; e)
(c; d); e. In [Hes92], we enforced associativity of the sequential composition syn-
tactically. For our present purposes that choice is less convenient.

R e m a r k . The above theorem is not as innocent as it looks. In fact, several
authors ([BvW90], [Mrg90], [MoGg0], [Mor87], see also [Hes94]), have proposed
an operator for angelic choice, say "~" , with the property that

wp.(c 4? d).p = wp.c.p V wp.d.p

The introduction of this operator in the theory almost inevitably leads to violation
of Theorem (15). Consequently, the proof of part (c) of Theorem (16) would fail
and, presumably, part (c) would not be valid. We have therefore refrained from
introducing this operator here. []

There is a vast number of other healthiness laws and not all of them are
equally important. We mention the ones we have come across, but we do not
prove them here. Most of them have been proven in [HER93]. All of them can
easily be verified in the operational semantics of the Appendix. We assume that
the simple commands satisfy what might be called the termination postulate:

wso.s.r = WSo.S. true A WSl.S.r for all s ~ S and r ~ IP

With this postulate it is possible to prove the two termination laws:

wp.c.r = wp.c. true A wlp.c.r
wep.c.r = wep.c. true A wlp.c.r for all c E Cmcl and r E IP

Immediately from the definitions we get

[wp.c.r ~ wep.c.r]
wp = wev.fMse

It is easy to prove the monotonicity rules:

[p ~ p'] ~ [wev.p.c.r ~ wev.p'.c.r]
[p' ~ p] A [q ~ q'] ~ [wto.p.q.c.r ~ wto.p'.q'.c.r]

More interesting are the transitivity rules:

[wev.(p V q).c.r A wto.p.q.c.r ~ wev.q.c.r]
[wto.p.(q V r).c.m A wto.q.r.c.m ~ wto.p.r.c.m]

402 w.H. Hesselink

The proofs of the last two formulae are highly nontrivial, see [HER93].
The paper [HER93] also contains healthiness laws concerning semantic func-

tions wlev and wlto. These functions are liberal versions of wev and wto, defined
by taking wsl and v instead of wso and #. These liberal versions are of theoretical
interest, but they are often too liberal for actual specifications.

8. Proof Rules

The proof rules presented in this section serve to prove specifications of recursive
procedures h.i by means of preconditions p.i and postconditions q.i. The rules are
induction principles: in order to prove the validity of the specification, it suffices
to prove that the procedure bodies satisfy the specification under assumption that
the recursive calls satisfy the specification.

The first rule, (16), is a generalization of Hoare's Induction Rule: in this case
the proof obligation must be met for an abstraction of the semantic function
under consideration. The second rule, (22), is a generalization of the Main
Repetion Theorem. So, a variant functions is needed to force termination. Rule
(24) again is a variation of Hoare's Rule. The rules may be compared with the
rules for the postcondition semantics, as discussed in [Hes92] Chapter 2 and
[Hes93].

All three rules are formulated in such a way that arbitrary families of Hoare
triples (p.i, h.i, q.i) can be dealt with. This is useful if parameters or specification
values occur, see [Hes93] and [Hes92] Chapter 2. In the examples here, we do
not use this additional power.

As announced above, the first rule is a generalization and rephrasing of
Hoare's classical induction rule for partial correctness, cf. [Hoa71]. It applies to
an arbitrary greatest fixpoint homomorphism v.u.

Theorem. Let (i E I :: h.i) be a family of procedure names and let (i E I :: p.i)
and (i E I :: q.i) be families of predicates. Let u E S ~ M T be a function such
that, for every homomorphism w with (wlS) = u,

(V i :: [p.i ~ w.(h.i) .(q.i)])
(V i :: [p.i ~ w,(body.(h.i)) .(q.i)])

Then [p.i ~ v.u.(h.i).(q.i)] for every i E I. (17)

Proof . This is proven in the same way as [Hes92] Theorem 4(44). []

R e m a r k . In Theorem (17), the goal is an assertion about v.u, but the proof
obligation is an implication concerning an abstraction w of v.u. The antecedent
of this implication is usually called the induction hypothesis. It is not sufficient to
prove the proof obligation for the special case w = v.u. For, in that special case,
the proof obligation holds trivially if the goal is false. []

As an application of this rule, we present a simple example. Let t be an
integer program variable and let procedure h be declared by

body.h =
(! t > 0 ; t : = t + l
H h; t : = t - 1 ; h)

We claim that t > 0 implies that procedure h is errorfree and does not terminate

Safety and Progress of Recursive Procedures 403

or terminates with t > 1, i.e.,

[t > 0 ~ wep.h . (t > 1)] (18)

Since w e p = v.wso, Theorem (17) can be applied with u = ws0. All families are
singletons, the precondition is p = (t > 0) and the postcondition is q = (t > 1).
Now Theorem (17) implies that it suffices to prove that every homomorphism w
with (wlS) = wso satisfies

[t > 0 ~ w . h . (t > l)] ~ [t > 0 ~ w. (body .h) . (t> l)] (19)

We regard the antecedent of (19) as the induction hypothesis and we prove the
consequent of (19) in the following calculation:

w.(body.h)(t > I)
= {declaration of h, w is a homomorphism}

w.(! t > 0).(w.(t := t + 1).(t > 1))
A w.h . (w . (t := t - 1).(w.h.(t > 1)))

{(wlS) = ws0, i.e., wplS; induction hypothesis, monotonicity}
wp.(! t > 0).(wp.(t := t + 1).(t > 1))
A w.h . (wp . (t := t -- 1).(t > 0))

= {(1) and w p of assignment}
t > 0 A t + l > l A w . h . (t - l > 0)

{calculus and induction hypothesis}
t > 0

This proves claim (18).
For the discussion of the other proof rules, we use a slightly more difficult

example. Let t be an integer program variable and let procedure h be declared
by

body.h =
(? (t < 0) ; t : = t + b

I ?(t > 0) ; t : = t - - c ; h; h) (20)

where b and c are integer constants with 0 < c ___ b. One can argue operationally
about this procedure, but such arguments are tricky and error prone. Let us only
say that the operational intuition suggests the following claims.

If t > 0 initially, then procedure h does not terminate:

[t > 0 ~ wlp.h.s

Every execution of h reaches some state where t < 0 holds:

[wev.(t _< O).h.s (21)

I f during execution, ever t _< b holds, then t <_ b remains valid"

[winv .h . (t N b)] (22)

The first claim can again be proven by means of Theorem (17), now with u = WSl.
We therefore leave this as an exercise to the reader. We proceed by providing
proof rules that allow calculational proofs of the claims (21) and (22). The rule
for homomorphisms like wev.p is as follows (see also [Hes93]).

Theorem. Let w be a homomorphism that respects the declaration. Let (i E I ""
h.i) be a family of procedure names and let (i E I "" p.i) and (i E I "" q.i)

404 W.H. Hesselink

be families of predicates. Let (i ~ I "" vf.i) be a family of integer valued state
functions such that for every integer m:

(Vi ' " [p . i A v f . i < m A m > _ O =~ w.(h.i).(q.i)])

(V i "" [p.i A vf.i = m ~ w.(body.(h.i)) .(q.i)])

Then [p.i ~ w.(h.i).(q.i)] for every i E I. (23)

Proof . The proof is an immediate generalization of [Hes92] Theorem 2(16). []

R e m a r k . As suggested by a referee, Theorem (23) can be illustrated by showing
that it is a generalization of the main repetition theorem. This has been done in
Section 2.8 of [Hes92]. []

We here use Theorem (23) to prove formula (21) in the example of procedure
h declared in (20). So we apply (23) with w = wev.(t < 0). The families are
singletons with p = true and q = false. We use the state function v f = t .
According to (23), it suffices to prove, for every integer m,

[t < m A m > _ 0 =~ w.h.false]
[t = m ~ w.(body.h).false] (24)

We take the antecedent of (24) as an induction hypothesis and prove the conse-
quent. First observe that, since w = wev.(t < 0), it follows from (2), (10) and (11)
that

w . (? (t _ 0)) . r
= z_<0 v (t > 0 v r)
= true

and

w . (? (t > 0) ; t : = t - c).r
= t__O v (t_<O v w . (t : = t - c) . r)
= t _ < 0 v ws0.(t : = t - c) . r

Now it remains to verify the consequent of (24) in

w.(hody.h). false
= {declaration h in (20); first branch is true}

t _<0 V wso.(t : = t - c) . (w . (h ; h) . f a l s e)
{ [w . h . f a l s e ~ f a l s e] and w homomorphism}

t _< 0 V WS0.(t := t -- c).(w.h.false)
{induction hypothesis}

t_<O V wso.(t :=t--c).(t<mArn>__O)
= {calculus}

t <_ O V (t - - c < m A m > O)
{ c > 0 }

t ~ m

This concludes the proof of (21).
For the proof of (22), we need a proof rule for accumulators of the form z.w.u.

This is a variation of Hoare's Induction Rule.

Theorem. Let w be a homomorphism. Let (i E I :: h.i) be a family of procedure
names and let (i E I :: p.i) and (i E I "" q.i) be families of predicates. Let

Safety and Progress of Recursive Procedures 405

u e S -* P T b e a function such that, for every w-accumula tor g with (glS) = u,

(Vi "' [p.i ~ g.(h.i) .(q.i)])
(V i "' [p.i ~ g.(body.(h.i)) .(q.i)]).

Then [p.i ~ ~.w.u.(h.i).(q.i)] for every i c I. (25)

Proof . Since z.w.u is constructed by means of a greatest fixpoint, this assertion
can be proven in the same way as [Hes92] Theorem 4(44). []

In the example o f procedure h of declarat ion (20), Theorem (25) is applied to
the function w i n v = z .kd .wsi , see (13). We use the rule to prove (22) in the form

[true ~ winv .h . (t <_ b)]

So we use Theorem (25) with singleton families and p = true and q = (t < b).
It suffices to prove that, for every kd-accumula to r g with (glS) = wsi

[g.h.(t < b)] ~ [g.(bo@.h).(t < b)]. (26)

Let g be a kd-accumula to r with (glS) = ws i One easily verifies with (12) that
wsi.(?p).r = true for all predicates p and r. It follows with (2), (7), and (8) that
g.(?p; c).r = (p ~ g.c.r) for every predicate p. Assuming the antecedent of (26),
the consequent is proven in

g.(body.h).(t _< b)
= {(20)}

g . (? (t_< 0) ; t : = t + b
D ? (t > 0) ; t : - - t - c ; h; h).(t_<b)

= {rule obtained above and calculus}
(t___0 =~ g.(t : = t + b) . (t _ < b))

A (t > 0 ~ g.(t : = t - - c ; h ; h) . (t _ < b))
= {first conjunct is true, f rom (glS) = wsi and (12)}

t > 0 ~ g.(t : = t - c ; h ; h) . (t_<b)
= {g is a kd-accumula tor , (7), (8)}

t > O
g.(t :---= t -- c).(t < b)

A wlp . (t := t -- c).(g.h.(t < b) A wlp.h.(g.h.(t <_ b)))
= {(giN) = wsi, (12), calculus and c > 0}

t > O
wlp . (t := t - c).(g.h.(t _< b) A wlp.h.(g.h.(t <_ b)))

= {antecedent of (26), twice}
t > 0 ~ wlp . (t := t - c).(wlp.h. true)

= {(15), calculus}
t rue .

This concludes the p roo f of (22).

9. Conclusions

We have shown that the theory of predicate t ransformat ion semantics, originally
designed for the usual postcondi t ion semantics, can also be used in an effective
and elegant way to construct predicate t ransformat ion functions to describe the
runtime semantics o f (not necessarily terminating) recursive procedures.

These functions are constructed as extreme solutions of fixpoint equations.

406 W.H. Hesselink

This made it possible to use earlier work and thus to obtain proof rules that
enable calculational proofs of temporal properties of (not necessarily terminating)
recursive procedures. Even in simple cases, however, the calculations are quite
long. It seems therefore that mechanical support will be indispensable for real
applications.

Experience will have to show which predicate transformation functions are
the most useful for specification of runtime behaviour. In [HER93], we used a
slightly different set of functions. Other functions could also be suggested.

References

[BvW90]

[Bij90l

[Dij76]
[DIS90]

[Hes88]

[Hes92]

[Hes93]

[Hes94]

[HER93]

[HoaT1]

[Luk91]

[LuS92]

[Mrg90]
[MoG90]

[Mor87]

[Mor90]

[dRo76]

Back, R. J. R. and Wright, J. yon.: Refinement calculus, Part I: Sequential Nondeter-
ministic Programs. In: J.W. de Bakker, W. P. de Roever, G. Rozenberg (eds) Stepwise
Refinement of Distributed Systems. Lecture Notes in Computer Science 430. Springer,
Berlin, 1990, pp. 4~66.
Bijlsma, A.: Semantics of quasi-boolean expressions. In: W.H.J. Feijen et al. (eds.):
Beauty is our business, a birthday salute to Edsger W. Dijkstra. Springer. 1990, pp. 27
35.
Dijkstra, E. W. : A discipline of programming. Prentice-Hall 1976.
Dijkstra, E. W. and Scholten, C. S.: Predicate calculus and program semantics. Springer.
1990.
Hesselink, W. H.: Interpretations of recursion under unbounded nondeterminacy. The-
oretical Computer Science 59 (1988) 211-234.
Hesselink, W. H.: Programs, Recursion and Unbounded Choice, predicate transformation
semantics and transformation rules. Cambridge University Press 1992.
Hesselink, W. H.: Proof rules for recursive procedures. Formal Aspects of Computing 5
(1993) 554~570.
Hesselink, W. H.: Nondeterminacy and recursion via stacks and games. Theoretical
Computer Science 124 (1994) 273-295.
Hesselink, W. H. and Reinds, R.: Temporal preconditions of recursive procedures. In:
J.W. de Bakker, W.-R de Roever, G. Rozenberg (eds.): Semantics: Foundations and
Applications. Proceedings of REX Workshop Beekbergen 1992. Springer Verlag 1993
(LNCS 666), pp. 236-260.
Hoare, C. A. R. : Procedures and parameters: an axiomatic approach. In: Symposium on
Semantics of Algorithmic Languages. (ed. E. Engeler), Springer Verlag (Lecture Notes
in Math. 188) 1971, pp. 102-116.
Lukkien, J. J.: Parallel Program Design and Generalized Weakest Preconditions. Thesis,
Groningen, 1991.
Lukkien, J. J. and van de Snepscheut, J. L. A.: Weakest preconditions for progress.
Formal Aspects of Computing 4 (1992) 195-236.
Morgan, C.: Programming from Specifications. Prentice Hall, 1990.
Morgan, C. and Gardiner, R H. B.: Data refinement by calculation. Acta Informatica 27
(1990) 481-503.
Morris, J. M.: A theoretical basis for stepwise refinement and the programming calculus.
Science of Comp. Programming 9 (1987) 287-306.
Morris, J. M.: Temporal predicate transformers and fair termination. Acta Informatica
27 (1990) 287-313.
de Roever, W. R: Dijkstra's predicate transformer, non~leterminism, recursion, and
termination. In: Mathematical Foundations of Computer Science 1976 (Lect. Notes
Comp. Sci., vol. 45) Berlin, Heidelberg, New York: Springer Verlag 1976, pp. 472-481.

Appendix: The Formal Operational Semantics

I n order to jus t i fy the def in i t ions in Sec t ion 6 of wep, wev, winv, veto as ex t reme
f ixpoints o f ce r ta in opera tors , we descr ibe the o p e r a t i o n a l semant ics . The m a i n
idea is to formal ize the concep t o f c o m p u t a t i o n by desc r ib ing it in t e rms o f pairs

Safety and Progress of Recursive Procedures 407

(x, c) where x is the current state and c is the command that is still to be executed.
Such a pair will be called a configuration. Every computat ion step corresponds to
a transition f rom one configuration to another. The configurations will therefore
form a directed graph. Every computat ion is a path in this graph.

This idea is formalized as follows. With respect to the commands, we treat e
as the unit for sequential composition and thus identify e;c = c = c; e for every
c ~ Cmd. We also treat sequential composition as associative and therefore omit
parentheses in (e; d); e and c; (d; e). These identifications are justified by Theorem
(16).

We write X to denote the state space. Let IB be the set of the truth values. So
we have IP = IB x, the set of the boolean functions on X. The value of a predicate
r 6 IP in a state x 6 X is the boolean r.x c IB.

The semantics of a simple command s ~ S are supposed to be given by an
input -output relation [[sl] _c X x X and an error set Err.s ~ X : here (x ,y) ~ ~s~
means that s executed in state x may have result state y, and x c Err.s means
that s executed in state x may make an error. Then we have

WSl.S.p.x - (V y : (x ,y) ~ ~s~ : p.y)
wso.s.p.x = WSl.S.p.x /X x ~ Err.s

We now introduce the set of configurations. A contiguration is either the error
configuration 3- or a pair (x, c) with x c X and c E Cmd. In the latter case, we
interpret c as a command still to be executed and to be started in state x. A
configuration is called l~nal if it is of the form (x, e) with x ~ X.

The set of the configurations is made into a directed graph by defining a tran-
sition relation "--*" between configurations. There are four types of transitions,
namely

(x, h;c) ~ (x, body.h;c)
(x, (~ i E 1 ::c.i);d) ~ (x, c. j;d) f o r j E I
(x, s;c) ~ (y,c) i f (x ,y) c [[s]]
(x , s ; c) ~ 3_ i f x ~ E r r . s

for x, y E X, and h E H, and c, d, e E Cmd, and all c.i E Cmd, and s E S.
A path in the configuration graph is called a computat ion if it is either infinite,

or ends in the error configuration _1_, or ends in a final configuration. Only in the
third case we say that the computat ion terminates (in the second case, it is linite,
but does not terminate).

Remark. A configuration is called failing if it has no outgoing transitions and
yet is not a final configuration and differs from the error configuration _1_. A
configuration is failing if and if it is of the form (x, s; c) with s c S and
(V y :: (x ,y) ~ ~s~) and x ~ Err.s. A path in the configuration graph that
cannot be extended is either a computat ion or ends in a failing configuration. An
executing mechanism that enters a failing configuration will have to backtrack.
[]

A configuration is said to satisfy predicate p if it is not the error configuration
and its state component satisfies p. A configuration is called simple if it is of the
form (x, s; c) with s E S and c E Cmd. A computat ion is called a p-computa t ion
if p holds in every simple configuration that occurs in it.

In order to justify the fixpoint definitions of the semantic functions, we abolish
these definitions and replace them by definitions in terms of the operational
semantics. We then prove that, in each case, the operationally defined function

408 W.H. Hesselink

is indeed the extreme solution of the fixpoint equation as announced. So, we
now give the operational definitions of the semantic functions wp, wlp, wep, wev,
winv, and wto. Compare the informal descriptions of (3).

�9 wp.c.r.x means that every computation starting in configuration (x, c) termi-
nates in a final configuration where r holds.

�9 wlp.c.r.x means that every terminating computation starting in configuration
(x, c) terminates in a final configuration where r holds.

�9 wep.c.r.x means that every finite computation starting in configuration (x, c)
terminates in a final configuration where r holds.

�9 wev.p.c.r.x means that every (-~p)-computation starting in configuration (x, c)
terminates in a final configuration where r holds.

�9 winv.c.r.x means that, in every computation starting in configuration (x, c), if
r holds in some configuration it holds in all subsequent configurations.

�9 wto.p.q.c.r.x means that, in every computation that starts in configuration
(x, c), every simple configuration where p holds is followed (after one or more
transitions) by a simple configuration where q holds or by termination in a
final configuration where r holds.

The postulates of Section 5 are justified by the following result, the proof of
which is surprisingly complicated.

Theorem. The functions wp, wep, wlp, wev.p are homomorphisms Cm d ~ M T
that respect the declaration and that satisfy

wPlS = wso , wlplS = WS1

weplS = wso , wev.pIS = wvs.p

Function winv is a kd-accumulator Cmd ~ P T that respects the declaration and
satisfies winqS = wsi. Function wto.p.q is a wev.p-accumulator C m d ~ M T t h a t
respects the declaration and satisfies wto.p.qiS = wvs.(-~p).

The reader who wants to is invited to give a proof of this result. The ideas
are not new, see for instance [Hes88], Section 2. We shall concentrate on the
remaining part: the characterizations as extreme fixpoints.

Let a configuration be called rewritable if it is of the form (x, d;e) where
d is a procedure name or a demonic choice. In that case, the configuration
has one or more transitions to configuration(s) with the same state component
x (these transitions will be called rewritings). By inspection of the transition
relation and the other relevant definitions, one can easily obtain the following
two lemmas.

Lemma. Let (x, c) be a rewritable configuration. Let r ~ IP and let w be a
homomorphism that respects the declaration.

(a) w.c.r.x holds if and only if w.d.r.x holds for every transition (x, c) ~ (x, d).
(b) If g is a w-accumulator that respects the declaration then g.c.r.x holds if

and only if g.d.r.x holds for every transition (x, c) ~ (x, d). (27)

Lemma. Consider a simple configuration (x, s; c) with s E S and c E Cmd. Let
w be a homomorphism and let r E IP.

(a) Assume wlS = wso. Then w.(s;c).r.x holds if and only if every transition
from (x, s; c) goes to a configuration (y, c) such that w.c.r.y holds.

Safety and Progress of Recursive Procedures 409

(b) Assume wlS = wsl. Then w.(s;c).r.x holds if and only if every transition
from (x, s;c) goes to • or to a configuration (y,c) such that w.c.r.y
holds. (28)

Theorem. Let w be a homomorphism that respects the declaration. Let c 6 C m d
and r 6 IP.

(a) If wlS = wso then [w.c.r ~ wep.c.r].

(b) If wlS = wsl then [w.c.r ~ wlp.c.r].

Proof.

(29)

(a) According to the definition of wep, it suffices to show that w.c.r.x implies that
every finite computation starting in (x, c) terminates in a final configuration
where r holds. This is proven as follows. By induction, the lemmas (27) and
(28) imply that all configurations of the computation differ from _1_ and are
of the form (y, d) with w.d.r.y. Since it is a finite computation, there is a
last configuration (y, d). The definition of computation implies that the last
configuration (y, d) is a final one with d = e. Now w.d.r.y implies r.y.

(b) Here one uses a largely similar argument in which "finite computation" has
been replaced by "terminating computation". []

Since wep is itself a homomorphism w that respects the declaration and
satisfies w[S = wSo, Theorem (29)(a) implies that it is the greatest one. This
proves that wep = v.wSo. Similarly, Theorem (29)(b) implies that wlp = v.WSl.
Therefore, the present definitions of wep and wlp coincide with the definitions
(9).

We need the following lemma for the treatment of function wev.

Lemma. Let p E lP. Let w be a homomorphism such that w[S = wvs.p. Let a
simple configuration (x, s;c) and a predicate r be given. Then w.(s;c).r.x holds
if and only if p.x holds or every transition from (x, s; c) goes to a configuration
(y, c) where w.c.r.y holds. (30)

Proof.. We first compute

w.(s; c).r.x
= {w is a homomorphism and s ~ S}

wvs.p.s.(w.c.r).x
= {definition wvs in (10)}

(p v wso.s.(w.c.r)).x
= {calculus}

p.x V wso.s.(w.c.r).x

It remains to observe that wSo.s.q.x holds if and only if every transition from
(x, s;c) goes to a configuration (y,c) where q.y holds. []

Theorem. Let p ~ IP. Let w be a homomorphism that respects the declaration
and satisfies wlS = wvs.p. Then wev.p implies w. (31)

Proof. We give a proof by contradiction in order to avoid a case distinction. Let
r be a predicate. It suffices to prove that the function h given by

h.(x, c) =- wev.p.c.r.x A -~w.c.r.x

is everywhere false. So, assume that h.(x, c) holds. Since wev.p and w both satisfy
the conditions of the lemmas (27), (28), and (30), we have:

410 w.H. Hesselink

�9 if configuration (x, c) is rewritable there is a transition (x, c) --* (x, d) such that
h.(x, d) holds.

�9 if configuration (x ,c) is simple, then -,p.x holds and there is a transition
(x, c) --* (y, d) such that h.(y, d) holds.

Since h.(y, e) = false by convention, this shows that there is an infinite (~p)-
computation starting in (x, c). This implies =wev.p.c.r.x and hence contradicts the
assumption. []

Since wev.p is itself a homomorphism w that respects the declaration and
satisfies wIS = wvs.p, Theorem (31) shows that it is the least one. This proves
that wev.p = #.(wvs.p). By specialization to the case p = false, we get w p = #. wso.
Therefore, the present definitions of w e v and wp coincide with the definitions in
(10) and (9).

Lemma. Let w be a homomorphisme and let g be a w-accumulator that respects
the declaration. If the configuration graph has a path from (x, c) to (y, d) then
g.c.r.x implies g.d.r.y. (32)

Proof. This is proven by induction in the length of the path. So it suffices to
consider a single transition. If the transition is a rewriting, the assertion follows
from Lemma (27)(b). In the case of a simple transition, it follows from the
implication

[g.(s;d) .r ~ WSl.S.(g.d.r)]

which follows from (8). []

Theorem. Let g be a k d - a c c u m u l a t o r that respects the declaration and satisfies
glS = wsi. Then g implies winv. (33)

Proof . We prove that g.c.r.x implies winv.c.r.x for every predicate r, every
command c, and every state x. Assume g.c.r.x. Consider a computation that
starts in (x, c), and let (y, d) be a configuration in this computation where r holds.
We have to prove that r holds in all subsequent configurations. By induction it
suffices to show that r holds in the next configuration. Since r remains valid in
every rewriting, we may assume that (y,d) is a simple configuration, say d = s ;e
with s ~ S, e E Cmd. Lemma (31) implies g.d.r.y. We observe

r.y A g.d.r.y
=> {d = s ;e and g is a kd-accumulator, (7) and (8)}

r.y A g.s.r.y
= {glS = wsi and definition of wsi in (12)}

r.y A (-~r V wso.s.r).y
=> {calculus}

wso.s.r, y .

This implies that every transition from (y, d) goes to a configuration where
r holds. In particular, r holds in the next configuration of the computation
considered. []

Since w i n v is itself a kd-accumulator that respects the declaration and satisfies
glS = wsi, Theorem (33) shows that it is the greatest one. This proves that
w i n v = z.kd.wsi. Therefore, the present definition of w i n v coincides with the one
in (13).

Safety and Progress of Recursive Procedures 411

Theorem. Let p, q E IP. Let g be a wev.q-accumulator that respects the declaration
and satisfies gIS = wvs.(-~p). Then g implies wto.p.q. (34)

Proof. We prove that g.c.r.x implies wto.p.q.c.r.x for every predicate r, every
command c, and every state x. Assume g.c.r.x. Consider a computation that
starts in (x, c), and let (y, d) be a simple configuration in this computation where
p holds. Lemma (32) implies g.d.r.y. Since configuration (y, d) is simple, we can
write d = s;e with s E S. We have

p.y A g.d.r.y
{d = s; e and g is a wev.q-accumulator}

p.y /x g.s.(wev.q.e.r).y
-= {glS = wvs.(~p) and definition wvs in (11)}

p.y /~ (-~p v wso.s.(wev.q.e.r)).y
=*- {calculus}

wso.s.(wev.q.e.r). y

Therefore, every transition from (y, d) goes to a configuration (z, e) such that
wev.q.e.r.z holds. This implies that the configuration (y, d) is followed after one
or more transitions by a simple configuration where q holds or by termination in
a configuration where r holds. This proves wto.p.q.c.r.x. []

Since wto.p.q is itself a wev.q-accumulator that respects the declaration and
satisfies glS = wvs.(~p), Theorem (34) shows that it is the greatest one. This
proves that

wto.p.q = ~.(wev.q).(wvs(~p)).

Therefore, the present definition coincides with the one in (13).

Received September 1993
Accepted in revised form November 1994 by C. B. Jones

