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Computing the Visibility Graph via Pseudo-triangulations

Michel Pocchiola” Gert Vegtert

Abstract

We show that the k free bitangents of a collection

of n pairwise disjoint convex plane sets can be com-

puted in time O(k + n log n) and O(n) working s-

pace. The algorithm uses only one advanced data

structure, namely a splittable queue. We introduce

(weakly) greedy pseudo-triangulations, whose combi-

natorial properties are crucial for our method.

1 Introduction

Consider a collection O of pairwise disjoint convex

objects in the plane. We are interested in problem-

s in which these objects arise as obstacles, either in

connection with visibility problems where they can

block the view from an other geometric object, or

in motion planning, where these objects may preven-

t a moving object from moving along a straight line

path. The visibility graph is a central object in such

contexts. For polygonal obstacles the vertices of these

polygons are the nodes of the visibility graph, and t-

wo nodes are connected by an arc if the corresponding

vertices can see each other. [9] describes the first non-

trivial algorithm for computing the visibility graph of

a polygonal scene with a total of n vertices in 0(n2)

time. [4] presents an optimal O(n log n + k) algo-

rithm, where k is the number of arcs of the visibility

graph. A practically feasible O(h log n) algorithm is
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contained in [6].

In this paper we present an optimal—with respect

to both time and working space—algorithm that com-

putes the tangent visibility graph of 0. Recall that a
bitangent is a closed line segment whose supporting

line is tangent to two obstacles at its endpoints; it is

called ~ree if it lies in jree space (i.e., the complement

of the union of the relative interiors of the obstacles).

The endpoints of these bitangents split the bound-

aries of the obstacles into a sequence of arcs; these

arcs and the free bitangents are the edges of the tan-

gent visibility graph, see Figure 1.

Figure 1: The tangent visibility graph.

In [7] we described an optimal method for comput-

ing the so–called visibility complex of the collection

0. Just as the algorithm of Ghosh and Mount, see
[4], it is based on complicated data structures (e.g.

the split-find structure of Gabow and Tarjan, see [3]).

Therefore it is not suitable for a practical implemen-

tation.

We give two practical, yet efficient methods to com-

pute the tangent vibility graph of a collection of n

disjoint convex sets in the plane in output sensitive

time. The first algorithm is very simple, and uses
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O(k log n) time, where k is the number of arcs of the

tangent visibility graph. Throughout the paper we

assume that the complexity of the objects is 0(1),

that is, the common bitangents of any pair of objects

can be computed in constant time. With each unit

vector in the plane we associate a subdivision of free

space, which we call the greedy pseudo–triangulation

associated with this vector. The algorithm maintains

the greedy pseudo–triangulation as the unit vector

rotates over an angle of T. The basic operation that

updates the pseudo–triangulation is a flip of a free bi-

tangent with smallest slope greater than the slope of

the rotating unit vector. Relaxing the order in which

bitangents are flipped we obtain an optimal algorith-

m, using O(k +n log n) time and O(n) working space.

(To the best of our knowledge, even for the case of

line segments, this is the first optimal algorithm that

uses linear working space.)

If the obstacles are points, our second method—

translated into dual space—is an alternative for the

topological sweep algorithm for arrangements of lines,

of Edelsbrunner and Guibas, see [2]. Our pseudotri-

angulations replace their (upper and lower) horizon

trees.

It turns out that, in general, our second method

can be interpreted as a topological sweep of the visi-

bility complex, introduced in [7]. This point is briefly

discussed in the last section.

2 Greedy pseudo–triangulations

Definition and basic properties

Let 0 = {01, 02, . . . . On} be a family of n pairwise

disjoints convex sets (obstacles for short). A pseudo-

traangulation of a set of obstacles is the subdivision

of the plane induced by a maximal (with respect to

inclusion) family of pairwise noncrossing free bitan-

gents. It is clear that a pseudo–triangulation always

exists and that the bitangents of the boundary of the

convex hull of the obstacles are edges of any pseudo–

triangulation. A pseudo–triangulation of a collection

of four obstacles is depicted in Figure 2. The sub-

division owes its name to the special shape of its re-

gions. A pseudotnangle is a simply connected subset

T of the plane, such that (i) the boundary dT con-

sists of three convex chains, that share a tangent at

their common endpoint, and (ii) T is contained in the

triangle formed by the three endpoints of these con-

vex chains. These three endpoints will be called the

cusps of T. (In this paper a chain is an alternating

sequence of free bitangents and arcs, such that suc-

cessive elements share a common endpoint, at which

the bitangent is tangent to the arc. ) Without proof

we mention the following result (it is easy to prove

using Euler’s relation for planar graphs, see the full

version).

Lemma 1 The bounded free faces of any pseudo-

triangulaiion are pseudotriangles. Furthermore the

number of pseudotriangles (of a pseudo-triangulation

of a collection of n obstacles) is 2n—2 and the number

of bitangents is 3n – 3.

Consider a unit vector u in the plane. The u–slope
of a directed line segment b is defined as the positive

(counterclockwise) angle over which we have to rotate

u in order to obtain a vector parallel to b. The greedy

pseudo–triangulation, associated with a unit vector

u, is the pseudo–triangulation induced by the family

B(U) = {bl, bz, . . ., ba-s } of bitangents, recursively

defined as follows.

1. bl is the bitangent with smallest u–slope in the set

of free bitangents.

2. bi+l is the bitangent with smallest u–slope in the

set of free bitangents disjoint from bl, b2, . . . . b~.

Figure 2 depicts a greedy pseudo-triangulation. The

greedy pseudo-triangulation associated with u, will

be denoted by T(u).

Figure 2: The greedy pseudo-triangulation T(u)

(with respect to u).

If t is a free bitangent, then either t E B(u), or

t intersects at least one bitangent of l?(u) whose u–

slope is less than the u–slope oft. This property holds

for all bitangents in B(u), intersecting t:

Proposition 2 The u-slope of a free bitangent t, t $!

B(u), is larger than the u-slope of every bitangent in

the sequence B(u), intersecting t.

Proof. Suppose the result does not hold. Let t

be a free bitangent of minimal u-slope, intersecting

a bitangent in B(u) of larger u–slope. As we have

just observed, there also is a bitangent in B(u), in-

tersecting t,of smaller u–slope than t. In particular,
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there are b, b’ c B(u) intersecting t,such that (i) the

u–slope of t is greater than the u–slope of b, but less

than the u–slope of b’, and (ii) there is no bitangent

in B(u) intersecting t between its points of intersec-

tion with b and b’. In other words: b and b’ are in the

boundary of the same pseudtitriangle in T(u). Let

us denote this pseudotriangle by T.

Consider the point q ~ dT whose tangent line is

parallel to t. If t intersects b before (after) b’, the

point q lies to the left (right) oft, see Figure 3. Let

p be the tail (head) of b.

Figure 3: Proof of the basic property, in case t inter-

sects b before b!.

For a point ~ in the boundary of T let e: (p;) be

the directed free line segment starting (terminating)

at z, and extending in forward (backward) direction

along the tangent line of 8T at z, until it hits some

obstacle, This object is called the visibility of z along

the ray.

As z moves from p to q along OT, let p’ be the

first and q’ be the last point on 8T for which the

corresponding ray intersects the bit angent b’. Note

that p and p’, as well as q and q’, may coincide. Fur-

thermore Q$ (e;) intersects b’ for all points ~ E dT

between p’ and q’. As x travels along 6’T from p’ to

q’, the u–slope of .o~ is increasing, so in particular it

is less than the u–slope oft. We shall argue that, as a
point ~ moves along dT from p’ to q’, the object visi-

ble from z along Q$ (g;) changes. Suppose we know

this is true, then there is a point z E 8T between

p’ and r, such that Q$ contains a point of tangen-

cy y. Therefore Zy is a free bit angent intersecting b’,

whose u–slope is larger than the u–slope of b’. Since t

is the free bitangent with minimal u–slope satisfying

this property, the u–slope of Zy is smaller than the

u–slope of t. But we just observed that the u–slope

of e:, and hence the u–slope of XU, is smaller than

the u–slope oft. This is a contradiction.

So it remains to prove that the visibility along @$

is not constant. We only do so in the case where

t intersects b before b’. The other case is treated

similarly. Assume that we see the same object, O’

say, along .o~ and Q$ (otherwise we’re done). Let 1

be the open line segment connecting the endpoints of

these rays, then I c O’, so in particular I and t are

disjoint.

Let r E 8T be the point where the tangent line

[T of dT through r contains the endpoint oft. Ob-

viously r lies between p’ and q on dT. It even lies

between p’ and q’. Indeed, if this were not the case

then Q$ would end at the head of bf, which would

therefore be a point of 1. Then the line supporting

p; would intersect I before t.On the other hand, the

line supporting Q$ obviously intersects t before I. S-

ince the line supporting e: intersects both t and I,

for all x E 8T between p’ and q’, the segments t and I

would not be disjoint. This contradiction proves that

r lies between p! and q’.

Let 0“ be the object containing the endpoint oft.

Since I and t are disjoint, the line 1. intersects 0“

before O’, so the object visible from r along Q: is

different from O’. ❑

Lemma 3 The greedy pseudo-triangulation of a col-

lection of n disjoint convex obstacles in the plane

with respect to some unit vector can be computed in

O(n log n) time.

Proof. Omitted from this version. The construc-

tion is based on a standard rotational sweep & la

Bentley–Ottmann, from direction O to direction T,

during which we maintain the visibility map associ-

ated to the current direction. The O(n) events corre-

spond to the detection of free bitangents of the greedy

pseudo–triangulation. •1

3 The greedy flip algorithm

The idea of the first version of the algorithm is very

simple: just maintain T(u) as u rotates over an an-

gle of m, starting from the horizontal direction U..

It is obvious that T(u) remains constant as long as

it is not parallel to any of the free bit angents of 0.

It turns out that we can obtain all greedy pseudo–

triangulations of the collection O by flipping the bi-

tangent of minimal slope with respect to the current

unit vector. To make this idea more precise, consider

two pseudotriangles T1 and T2 that share a bitangent,
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b say. We obtain a new pseudo-triangulation by flip-

ping b, i.e. by replacing b by the common bitangent

of T1 and T2. (To see that this common bitangent is

unique, observe that two distinct tangent lines of 8Ti

cross inside Ti. ) E.g. in Figure 4, flipping bl amounts

to replacing it by b“ (here T1 and T2 are the shaded

regions incident upon b = bl ). Flipping a bitangent

in the boundary of the convex hull boils down to re-

verting its direction.

Lemma 4 Let b be the bitangent of 7(u) of minimal

u–slope. Let u’ be a unit vector obtained by infinites-

imally rotating u beyond b. Then ‘T(u’) is obtained

from ‘T(u) by flipping the bitangent b.

Proof. Let B(u) = {bl) . . . , bs~.-~} and I?(u’) =
{b; ,... , b~n_3}. Furthermore let b* be the free bitan-

gent obtained by flipping bl. First assume that bl is

an internal bitangent, i.e. it is not in the boundary

of the convex hull of the collection of objects. Then

there is an index i, with 1 ~ i < 3n – 3, such that

b; = bj+l, for 1 ~ ~ < i, and b: # bi+l. We shall

successively prove:

(i) b; intersects bl.

(ii) u-slope(b~) < u-slope(b”).

(iii) bj = b*.

(iv) b~=bj, fori<j<3n–3.

This will obviously prove the lemma. To prove (i),

assume that b; and bl are disjoint. Since 7(u’) is a

greedy pseudo-triangulation, that b: is the bitangent

with smallest u’–slope in the set of free bitangents

disjoint from bz, . . . . bi - ~, and hence also in the set of

free bitangents disjoint from bl, . . . . bi _ ~. But then

bj = bi, since T(u) is a greedy pseudo-triangulation.

This contradiction proves (i).

Since b“ is disjoint from all bitangents in

{b2,..., bi} = {b~, . . .. bj_l}. and bj is the free bi-

tangent of smallest u’–slope among the free bitan-

gents that are disjoint from 6(, . . . . b{_ ~, we see that

u–slope(bj) ~ u–slope(b” ), which proves (ii).

To prove (iii), assume that b* # b;. Since bj inter-

sects bl, bj must intersect the boundary of the quad-

rangle Q obtained by merging the pseudotriangles of

7(u), incident upon bl, see figure 4.

Note that the bitangents in dQ, whose u–slope is

larger than the u-slope of b*, lie either between the

heads or between the tails of bl and b*. The crucial

observation is that b: intersects only bitangents in

the boundary of dQ whose u–slope is less than the

u–slope of b:, see proposition 2. In particular b; is

disjoint from this part of 8Q (note that it also can’t be

tangent to this part of 8Q, since its u–slope does not

exceed the u–slope of b*). But then b{ intersects b*

from right to left (note that, in view of (i), it intersects

bl from right to left). This is a contradiction with (ii),

Figure 4: The pseudo–quadrangle Q, and its diago-

nals bl and b*. Bitangent b“ is obtained by flipping

bl.

sob” =b:.

Finally (iv) is an immediate consequence of (i), (ii)

and (iii). The case in which bl is in the boundary

of the convex hull is obvious, since flipping bl here

amounts to reverting its direction. c1

Lemma 4 suggests a simple algorithm: conceptually

we rotate a unit vector u, starting at position uo,

over an angle ~. We maintain the set of bitangents in

the current pseudo–triangulation in a priority queue,

where the weight of a bitangent in the queue is its

u–slope. As long as the queue is non–empty, extract

the minimal weight bitangent, flip it, and insert the

new bit angent into the queue if its uo–slope is less

than m (so it has not yet been detected). We shall

call this method the greedy flip algorithm.

In this way the total time for the operations on

the queue is O(k log n), since every free bitangent is

deleted from the queue exactly once. The total cost

of all flips is O(k) (amortized). This will become clear

in the next section, where we prove a more general

result. Summarizing we have:

Theorem 5 The greedy f7ip algorithm computes the

tangent vtstbility graph of a collection of n disjoint

convex objects in the plane in O(k log n) time, where

k is the number of free bitangents.

4 The weakly greedy flip algo-

rithm
In this section we improve the time complexity of

the algorithm by relaxing the constraint that bitan-

gents are flipped in order of increasing slope. To

achieve this goal we enlarge the class of pseudo–

triangulations, and replace the linear order, induced
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by the slope of the bitangents, by a partial order

on the set of bitangents in the pseudo–triangulation,

such that the set of bitangents that are candidates

for flipping can be maintained in constant time per

flip. Furthermore, the class of pseudo–triangulations

should be invariant under flipping of candidate edges.

The crucial feature of this class is the property proved

in proposition 2, which we now require to hold by

definition. We then prove invariance under flipping,

and describe an efficient implementation of the flip–

operation, whose amortized cost is finally analyzed.

Weakly greedy pseudo–triangulations
First we need some terminology. Let B be a set of free

bitangents. For a subset A in the plane the set of ele-

ments of B intersecting A is denoted by BA. So if B

is the set of all bitangents of a pseudo–triangulation

T, and T is a pseudotriangle of T, the set BT consists

of all bitangents in 8T, In this case the pseudotrian-

gle of 7 incident upon b c B and —locally—to the

left (right) of b is denoted by Itriang(b) (rtriang(b)).

Consider a pseudotriangle T, and fix some (direct-

ed) bitangent bT E BT. The direction of the tan-

gent line in a point of 8T is uniquely determined

by the requirement that its b~-slope is less than

n’. This b~–slope is also called the slope of this

point. The base-point of T, denoted by pT, is the

tail of bT, if T = rtr’iang(bT), or the head of bT,

if T = &2ang(bT). (It is the unique point on 8T

at which the slope is not well–defined; by definition,

we set this slope equal to O). The positive (nega-

tive) orientation of 8T corresponds to increasing (de-

creasing) slope. A subsegment of 13T with positive

(negative) orientation will be called a walk (reverse

walk) along 8T. In particular, the walk starting at

the base–point of T defines a linear order on the set

of bitangents BT, called the slope order (with respect

to bT). The successive cusps we pass during a walk

starting at the base-point of T, are denoted by XT,

VT and ZT. The forward and backward view of point

p in 8T are the points of intersection of 8T with the

tangent line at p, lying ahead and behind p, respec-

tively. The point whose forward (backward) view is

pT, ifT = r’tr’iang(bT) (T = /tr’iang(bT)) is denoted

by qT .

Definition 6 A pseudo–triangulation T is called

weakly greedy if there is a partial order < on its

set B of bitangents such that

(i) for every pseudotriangle T in T the restriction of

+ to BT as a linear order +T, that corresponds to

the slope order with respect to the minimal element

of BT.

(ii) Every free biiangent t can be given a unique di-

rection that is compatible with the slopes of both its

endpoints, such that alt bitangents in Bt intersect t

from left to right. This unique direction will be called

the canonical direction oft (with respect to <).

Obviously proposition 2 tells us that every greedy

pseudo–triangulation is weakly greedy. If T is a pseu-

dotriangle of a weakly greedy pseudo–triangulation T

with partial order <, we denote the minimal element

of BT with respect to + by bT. We say that T is a

weakly greedy pseudotriangle if it is a pseudotriangle

in a weakly greedy pseudo–triangulation. For later

use we isolate a simple, but crucial feature of weakly

greedy pseudotriangles.

Lemma 7 Let T be a weakly greedy pseudotriangle.

1. If %T # pT, then the pad of 8T between ZT and pT

is an arc.

.2. If VT lies between zT and qT, then the part of 8T

between y’1’ and ql’ is an arc (i.e. it contains no bi-

tangents).

Proof. We shall prove that no bitangent t c BT haa

forward an backward views of smaller slope. This will

prove 1, since all points on the segments ZTpT have

both forward and backward view of smaller slope. A

similar argument proves 2.

To prove the claim, suppose that both the back-

ward and forward view, p. and pl say, oft have small-

er slopes than t.We only consider the case in which

p. has smaller slope than pl, see Figure 5. Then

T = Itriang(t ), and the part of dT between p. and pl

lies completely to the left of the line supporting t.

Figure 5: Backward and forward views p. and pl of

t can’t both have smaller slope than t.

Observe that the object containing tail(t) is differ-

ent from the one containing head(t). Arguing as in

the proof of proposition 2, we can show that there is

a free bitangent t’, intersecting t,whose tail p’ is a

point on 8T between p. and pl. But t intersects t’
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from right to left, in contradiction with the weakly

greediness of the pseudo–triangulation. This proves

the lemma. •1

Flipping <–minimal bitangents
If we work in the class of weakly greedy pseudo–

triangulations we can, in general, flip more bitangents

than just the one with minimal uo–slope, without dis-

turbing the weakly greediness. (From now on U. will

be a fixed, say horizontal, direction.) More precisely,

we shall prove that any +–minimal bitangent can be

flipped.

The partial order <’

To introduce the partial order on the new pseudo-

triangulation, consider a <–minimal bitangent b, with

R = rtriang(b) and L = hriang(b). Let b* be the

bitangent obtained by flipping b, and let ‘T* be the

pseudo–triangulation after the flip. The right and

left pseudotriangles of b* are denoted by R’ and L’,

respectively. The partial order +* on the set of bi-

tangents of T* is the transitive closure of the rela-

tion, defined by the collection of linear orders -+, for

T E T*. If T # R’, L’, then T is a pseudotriangle in

both T and ‘T”, and we take ++ equal to 4T. So it

remains to define <+ for T = R!, L’.

First consider the pseudotriangle R’. Let b~ be the

+-successor of b in BR. The <“-minimal element

of BR, is one of the bitangents b~ and b*, viz the

one with minimal b–slope. So b* = IIIin~&, if p* =

tail(b” ) lies between b and b~, and b~ = minBw,

otherwise. Hence there are three basic cases, that

will return throughout this section, see Figure 6.

Case 1 b and b~ are not separated by a cusp of R.

Then R’ = rtriang(b~), and p“ doesn’t lie on the arc

between b and b~. Therefore minBR, = I&.

Case 2 b and b~ are separated by a cusp of R, but

p* doesn’t lie on the arc between b and b~.

Then R’ = ltriang(b~) and minBRl = b~. (Note: in

this case xR = head(b~), aa in Figure 6, or ZR =

head(b).)

Case 3 b and b~ are separated by a cusp of R, but

p* lies on the arc between b and b~.

Then R’ = rtriang(b”) and min.t?R, = b“.

The restriction of +*, restricted to BL1, is defined

similarly.

To make sure that the flipping terminates, we only

flip bitangents whose uo-slope is less than m. This

condition, as it turns out, guarantees that the partial

order, restricted to J3T, for T c 7, is compatible with

the linear order according to increasing uo–slope.

Lemma 8 Let (T,<) be a weakly greedy pseudo-

triangulation. Let b be a ~-minimal bitangent of

T, whose uo-slope is less than r. Then the pseudo-

triangulation (T*, <*), obtained by flipping b, is a-

gain weakly greedy. Furthermore, the canonical di-

rection of all free bitangents t, t # b, doesn’t change

due to the flip, whereas the canonical direction of b is

reversed.

Proof. The proof is built from ingredients of the

proof of lemma 4. We refer to figure 4 for an illus-

tration of the proof, with the understanding that b is

identified with bl.

Since the uo-slope of b is less than ~, the relation

+“ is compatible with the order according to increas-

ing uo–slope, so its transitive closure is a partial or-

der. Therefore it remains to prove that for all free

bitangents t # b, b“, the canonical direction oft with

respect to <“ is well–defined, and that the ‘left–to–

right’ property holds. To this end it is sufficient to

prove that for all such bitangents t # b, b*, having

exactly one endpoint on 8L U 8R, the slope at that

endpoint doesn’t change due to flipping b. Consider

a bitangent t,having exactly one endpoint on 8R.

Assume, by contradiction, that the slope at this end-

point changes upon flipping b. Now all points of 13R,

whose slope is reversed after flipping b, lie on the arc

c between b and its successor b~ in BR. Therefore

t is tangent to c. In particular the slope of t is less

Figure 7: All free bitangents, # b, keep the same

canonical direction.

than the slope of b~, and hence less than the slope

of all bitangents in BR \ {b}. By definition 6.(ii), t

is therefore disjoint from all bitangents in BR \ {b},

so t intersects 8R in a point of b. Since, again by

definition, b intersects t from left to right, we con-

clude that tail(t) c c, see Figure 7. Since all Points

of OR, whose slope is reversed, lie between the base-

point of R and the basepoint of R’ = rtriang(b” ),

even slope(t) < slope (b”).
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Figure 6: The partial order <“ , restricted to the bitangents of OR’. (Note that in case 2 either XR = head (b~),

as in the Figure, or xR = head(b).)

Now all bitangents t’, satisfying (i) t’n b + 0, (ii)

tad(f) G c9R, and (iii) slope(t) < slope(t’), have their

head to the left of the line supporting t, see Figure 7.

Therefore head (b” ) lies to the left of this line. On

the other hand t is different from both b and b“, so

it intersects tlL in a bit angent b“, different from b.

Since b“ also intersects t from left to right, all points

of 8L to the left oft have slope between slope(b) and

slope (b”). Therefore slope(b*) < s/ope(b”), and hence

slope (b” ) < siope(t). This contradiction proves that

the slope at td(t ) is not reversed. Similarly one can

prove that the slope at head(t) is not affected by the

flipping of b.

We finally have to prove that either b* and t are

disjoint, or b* intersects t from left to right. So ss-

sume b* n t # 0. As in the proof of lemma 4, let Q

be the quadrangle obtained by merging the pseudo-

triangles L and R, see figure 4. Let 6’QtOP (i?QbOttO~)

be the part of 8Q between the heads (tails) of b

and b*. Since T is weakly greedy, t is disjoint from

dQtOP U dQbOttO~, since otherwise it would intersect

the bitangents in this subset of dQ from left to right.

Since t intersects b from right to left, it therefore also

intersects b* from right to left. The preceding ar-

gument also shows that the ‘left–to–right’ property

holds. ❑

The pseudotriangles R’ and L’

VVe now consider the pseudotriangle Rf in more de-

tail, in particular its cusps xRJ, ~R/ and ~Rl. (The

story for L’ is completely similar. ) To this end we

consider each of the cases 1–3 introduced above see

also Figure 6.

Case 1 R’ = rtriang(b~).

In this situation b and b~ are not separated by a cusp,

so xRl = ZR. Furthermore, if p“ lies between xR and

YR, then the second CUSP yRJ is equal to p“, otherwise

it is equal to yR, see Figure 8a. Similarly the third

cusp %Rl is equal to yL, if q* lies between XL and ~L,

otherwise it is equal to q*, see Figure 8b.

Case 2 R’ = ltriang(b~) and b~ = minBR,.

In this case the basepoint of R’ is head (b~), which lies

between xR and yR. Therefore the first cusp x& is is

equal to p*, if p* lies between xR and yR, otherwise

it is equal to ~R, see Figure 8a. Similarly the second

cusp .ZR1 is equal tO YL, if q* hi!S between xL and YL,

otherwise it is equal to q“, see Figure 8b. Finally the

third cusp %R/ is equal to z~, if head(b) = xR, other-

wise it is equal to xR, see Figure 8c.

Case 3 R’ = rtriang(b”) and b* = minBB/.

In this case head(b) = xR, and the tail p* of b* lies

on the arc of 8R separating b and b~. Therefore the

basepoint of R’ is p*, which is also equal to the third

cusp ZR,, see the left part of Figure 8a. Since in this

case XR is a cusp of R, the second cusp is equal to zL,

see the left part of Figure 8c. Finally the first cusp is

equal to yL or q“, depending on whether q* lies be-

tween yL and ~L or between xL and yL, see figure 8b.

Figure 9 summarizes the previous discussion.

The algorithm
Every pseudotriangle in a weakly greedy pseudo–

triangulation has a unique minimal bitangent. If a bi-

tangent is minimal for both its left and right pseudo-

triangles, lemma 8 guarantees that it can be flipped.

Such bitangents are called candidates.

Definition 9 A bitangent, belonging to a weakly

greedy pseudo–triangulation (7, <), is called a can-

didate if it is a minimal element with respect to ~,

and its U. –slope is less than x.

Lemma 8 suggests a very simple algorithm. It main-

tains the set of candidates in a set C:
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Figure8: Thecuspsof R’.

1 compute the greedy pseudo–triangulation with

respect to the horizontal direction U.;

2 put all candidate edges in a set C

3 while C # 0 do

4 select a bit angent b from C;
~ flip b;

6 update C.;

The major improvement is that we abandoned the

priority queue in favor of any simple data structure

for the representation of sets, that allows us to insert

and delete an element in 0(1) time. Of course we

still have to prove that the algorithm is correct, and

that the total time needed for flipping (viz step 5)

Figure 9: The cusps of R’.

and updating the set of candidates (viz step 6) is

O(k). We shall say that the algorithm detects a free

bitangent at the moment it is flipped (in step 5). The

correctness of the algorithm follows from:

Lemma 10 The weakly greedy algorithm detects ev-

ery free bitangent (or, equivalently, every edge of the

tangent visibility graph).

Proof. Let (T, +) and (T*, <“) be the initial and

final pseudo-triangulations, respectively. For every

free bitangent t the canonical direction oft with re-

spect to < lies between U. and —u.. whereas its

canonical direction with respect to <“ lies between

–u. and UO. Therefore lemma 8 implies that t has

been flipped. ❑

The splittable queue Awake [T]

Conceptually the flipping can be done by walking—

in positive direction, starting at the basepoint-along

the boundaries of the triangles L (left) and R (right),

incident upon the flipped bitangent b, with one leg in

every triangle, such that at any moment the tangent

lines at the points underneath our left and right legs

are parallel. We keep walking until these tangent lines

coincide. At that point we have found b“. This is

too expensive, since some bitangents may be passed

during many walks involved in the flip operations.

To cut the budget, we shall need an auxiliary data

structure, that enables us to start the walk at a more

favorable point.

Observe that the tail p“ of b* lies between the first

cusp xR and the point qR, whose tangent contains

the base–point tail(b) of R. Similarly q* lies between

xL and qL. For a pseudotriangle T, a point in c9T

is called awake if it lies between X2” and qT. Note

that the points of 13R that are awake have forward

view of smaller slope, whereas the points awake in L

have backward view of smaller slope, see Figure 10.

Lemma 7 tells us that the set of points that are awake

is a sequence of arcs and bitangents on a convex chain,

possibly followed by a single arc between y~ and qT

(in case qT does not lie between ZT and VT).

If b and its successor b~ in BR are not separated

by the cusp x~ (so case 1 occurs), the point P* lies

even between q~ and qJZ, where q~ is the point whose

tangent contains tail(b~), see Figure 10.

So the walk along tlR starts at q~ in case 1, and in

xR, otherwise. Similarly the walk along @L starts in

q~ or in xL. Now %T can be determined in O(1) time,

but how do we determine q; efficiently, for T = L, R?

To this end we consider the segment ZTQT of Points

in 8T that are awake as an alternating sequence of

bitangents and arcs, or atoms for short, where the
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Figure 10: The set of points that are awake in R is

the segment xRqR. When the algorithm flips b = bR,

the walk on 13R starts in q~ (case 1), or in the cusp

XR (cases 2 and 3).

atoms are in slope order. This sequence will be rep-

resented by a splittable queue, denoted by Awake [T],

a data structure for ordered lists that allows for the

following operations:

(i) enqueue an atom, either at the head or at the tail

of the list;

(ii) dequeue the head or the tail of the list;

(iii) split the sequence at an atom z; this split is pre-

ceeded by a search for the atom x.

A few comments on the split operation are in order.

We assume that the initial search for the atom x is

guided by a real-valued function, t say, defined for

atoms in the sequence, that is monotonic with re-

spect to the order of the atoms in the sequence. Now

a split amounts to determining the atom z for which

$(z) = O, and successively splitting the sequence (de-

structively) into the subsequences of atoms with nega-

tive ~–values and those with positive $–values. More

specifically, to find the point q; (in case 1) we do a

split operation in Awake [T], where the search for q+

is guided by the position of tail(b~ ) with respect to

the tangent lines at the endpoints of an atom.

Lemma 11 There is a data structure, implementing

a splittable queue, such that an enqueue or dequeue

operation takes O(1) amortized time, and a split op-

eration at an atom x on a queue of n atoms takes

O(log min(d, n – d)) amortized time, where d is the

rank of x in the sequence represented by the queue.

Moreover, a sequence of m enqueue, deqaeue and

split operations on a collection of n initially empty

splittable queues is performed in O(m) time.

Splittable queues can be implemented using red-

black trees with parent–pointers, where atoms are

stored in the leaves. Splittable queues are in fact

a special case of finger trees, implemented w level–

linked red–black trees (see [5], and also [1] for similar

ideas). In our case we don’t need level links, however,

since the search implicit in the split operation can be

implemented as a dovetailing search up the ridges of

the tree, starting from the minimal and maximal leaf

of the tree. For more details and a sketch of the proof

we refer to the full version of this paper.

We now describe in some detail (i) how to com-

pute b*, using Awake [R] and Awake [L], and (ii) how

to compute the queues Awake [R’] and Awake [L’].

We shall argue that doing all flips and maintaining

the collection of queues Awake [T], T c T, cost O(k)

enqueue, dequeue and split operations. Hence the

total cost of (i) and (ii) is O(k), see Lemma 11.

Construction of b“.

If b and its successor b~ in BR are not separated by

the cusp XR of R, then the walk along 8R starts in q~.

In this case we split Awake [R] at q~ into AwakeMin [R]

and AwaJreMax [R], where the atoms in the former

queue have smaller slope than the atoms in the latter

queue. Otherwise, viz if b and b~ are separated by the

cusp ~R, the walk along 8R starts in xR, and we set

AwakeMin [R] + 0 and AwakeMax [R] + Awake [R].

Here @ denotes the empty queue. In either case p“

lies on an arc, represented by an atom in the queue

AwakeMax [R]. We similarly initialize the splittable

queues AwakeMin [L] and AwakeMax [L].

The simultaneous walk along OR and 8L can be im-

plemented by dequeueing atoms from AwakeMax [R]

and AwakeMax [L], until the atoms (arcs) are found

that contain p“ and q*, respectively. Obviously, this

sequence of synchronous dequeue–operations takes

time proportional to the number of dequeued atom-

s. So we construct b* at the cost at most one split

on Awake [R] and at most one split on Awake [L], fol-

lowed by a number of successive dequeue operations.

We finally adjust the first atoms in the queues

AwakeMax [R] and Awake [L], (viz the atoms contain-

ing p* and q*, respectively), by replacing their end-

points of smaller slope with p* and q*, respective-

ly. After this final operation the splittable queues

AwakeMax [R] and AwakeMax [L] represent the seg-

ments p* qR of dR and q* qA of 8L, respectively. We

shall use these queues in the construction of the

queues Awake [R’ ] and Awake [L’].

Construction of Awake [R’] and Awake [L’]

We only describe the construction of Awake [R’] if

for both R’ and L’ case 1 occurs, viz when R’ =

rtriang(b~) and L’ = ltriang(b~). In this situa-

tion head(b) = zA = qA, see Figure 6a, and aiso

tail(b) = ZR = qR. Furthermore, the basepoint of R’
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is tail(b~), so we have qRl = q~, Hence, by definition,

all points that are awake in R’ lie between XR (= $Rl )

and q~j so we set Awake [R ) ] + AwakeMi.n [R]. Simi-

larly, set Awake [L’ ] - AwakeMin [L].

If case 2 or 3 occurs for R or L, the computation of

Awake [R’ ] and Awake [L’] is even simpler: It requires

only a number of dequeue and at most two enqueue

operations on the splittable queues AwakeMax [R] or

AwakeMax [L]. (The full version contains further de-

tails.)

As for the amortized time complexity, observe that

the initial collection of splittable queues—one for each

pseudotriangle in the greedy pseudotriangulation we

start out with—can be computed in O(n log n) time

(for instance simply by enqueueing the bitangents and

arcs, that are awake in the boundary of each pseudo-

triangle). This amounts to O(n) enqueue–operations.

As we have just indicated, doing all flips and main-

taining the collection of queues Awake [T], T E T,

cost O(k) further enqueuey dequeue and split opera-

tions. Note that at any time the storage needed for

all these queues is O(n), see Lemma 1. Together with

Lemma 11 this observation implies our main result.

Theorem 12 The weakly greedy flip algorithm is op-

timal: it computes the tangent visibility graph of a

collection of n disjoint conuex objects in the plane in

O(n log n + k) time and O(n) working storage, where

k is the number of free bitangents,

5 Topological sweep of the vis-

ibility complex

It is worth noting that, translated in “dual space” our

algorithm implements an efficient “topological sweep”

of the visibility complex, introduced in 17]. We ex-

plain this briefly. Recall that the underlying space

1X1 of the visibility complex X is the quotient space

of the space of free rays 3’ x 7? under the equiva-

lence relation (p, u) N (q, u) iff the line segment ~, q]

lies in free space 7 and the slope of the line (pq) is

equal to u modulo T. The topology of IX I induces

a natural structure of a 2–dimensional regular cel-

1 complex on IX I (see [7]). In particular there is an

onto–mapping b H Ibl from the set X. of vertices of

X to the set of free bitangents. (The preimage of

the bitangent b = ~, q] and direction u is the set of

rays (p, u + kr), k ~ 2.) Let z be a face (= vertex,

edge or facet) of X. We define sup z (inf z) to be the

ray 1 with maximal (minimal) slope in the closure

of z. We turn X into a poset (X, <) by taking the

transitive closure of the relation inf z + z < sup z.

1By a slight abuse of terminology a point in IX] is still called

a ray.

(See e.g. [8], chapter 3, for terminology on posets.) A

cut of X is a maximal antichain of (X \ X., <). A

cut depends only on its subset of edges, and there is

exactly one edge per oriented obstacle. We extend +

to the set C of cuts by setting @ + @’ iff Ej + E{,

for all i, where Ei is the edge in the cut 0 associated

with the oriented obstacle i. One can check that if

@’ covers @ then @ \ @ and @ \ @ are composed of

2 edges and 1 facet incident to the same vertex b, i.e.

sup @ \ @ = inf @ \ @ = b; we will say that @ cov-

ers @ via b. Now the intuitive notion of a topological

sweep of X is formally defined as a topological sort-

ing of (X, <) or, equivalently, as a maximal chain of

the poset (C, <). The following theorem asserts that

the flip algorithm realizes a topological sweep of the

visibility complex.

Theorem 13 Let @ be a cut of X.

Then sup @ is a weakly greedy pseudo-triangulation.

Furthermore a vertex b is minimal in sup@ ifl @ is

covered by some @’ via b. In that case sup @ is ob-

tained from sup @ by flipping b.
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