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Unfoldings of Quasi-periodic Tori 
in Reversible Systems 

H. W. Broer ~ and G. B. Huitema 2 

Received February 4, 1994 

A general KAM-theory for reversible systems is given. The cases of both maximal 
and lower-dimensional tori are covered. In some cases parameters are needed for 
persistence, therefore an unfolding theory is developed. 
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AMS (MOS) Classification Numbers: 58F27, 58F30. 

1. I N T R O D U C T I O N  

Reversibility of a dynamical system involves an involution of the phase 
space, which takes evolutions to evolutions, reversing the time-parametri- 
zation. It is known (see Arnold, 1984; Sevryuk, 1991a) that there exists a 
great similarity between Hamiltonian (symplectic) systems and reversible 
ones. This was illustrated by Moser (1973), who shows that the "classical" 
KAM-theorem also holds in the reversible setting. Here the tori are maximal 
in a sense to be explained now. 

Indeed let M = T" x R m x R 2p be the phase space. The coordinates on 
T" are denoted by x = (xt  ,,.., Xn) rood 27~, on R m by y = (y~,..,, Ym), and on 
R 2p by z = (z~ ..... z2p). Given any linear involution R: R 2p --, R 2p (i.e., with 
R2=Id) ,  we define the involution G: M - - + M  by G(x, y, z) = ( - x ,  y, Rz). 
We assume that G is of type (n + p, m + p), meaning that its submanifold 
of fLxed points has dimension m + p or, equivalently, that R has the eigen- 
value 1 with multiplicity p. A vector field X on M is called (G-) reversible 
if 

G,(X) = - X  (1) 
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This implies that G maps trajectories of X to trajectories of X, reversing the 
time parametrization. Any (G-) equivariant transformation �9 of M (i.e., 
with ~0o G = Go 4)  preserves this reversibility property. If we write 

X(x, y, z) = ~. fy(x, y, z) O/Ox 2 + ~ gk(x, y, z) O/Oyk + ~ ht(x, y, z) O/Oz, 

or, in shorthand notation, X =  fd/Ox + gO~sly + hO/Oz, then Eq. (1) translates 
into 

f (  - x ,  y, Rz) =-f(x, y, z) 

g( - x ,  y, Rz) =- -g(x, y, z) (2) 

h( - x ,  y, Rz) = -Rh(x,  y, z) 

In this non-Hamiltonian context integrability means equivariance with 
respect to the natural T~-action on M (compare Broer et al., 1990; Huitema, 
1988). Therefore the reversible vector field X is integrable, whenever it has 
the x-independent form 

X(x, y, z )=f(y ,  z) a/Ox + g(y, z) O/Oy + h(y, z) O/Oz (3) 

where then g(y, 0 ) - 0  by (2). This means that for any y o U R  m with 
h(Yo, 0)=0,  the torus T"x {Yo} x {0} is X-invariant. Observe that this 
torus also is (G-) invariant, while the dynamics inside the torus is condi- 
tionally periodic (or parallel) with frequency vector f(Yo, 0). 

Historically, the general question concerns the persistence of such tori 
under reversible perturbation, the perturbation not necessarily being 
integrable. In the case p = 0, the tori are called maximal. 

The subcase of this, where n=m, was treated by Moser (1973): This 
is the "classical" KAM-theorem as mentioned before. Notice that now for 
an integrable vector field (3), the phase space M is completely foliated by 
invariant n-tori. Indeed, the integrable vector field has the form X(x, y)= 
f(y)  a/ax, the involution being given by G(x, y) = ( - x ,  y). It is shown that 
many of these tori persist. As is well-known, these persisting tori have 
diophantine frequency vectors. We recall that co=f(yo) is diophantine, if 
for some ~ > n - I and y > 0 

,l<co, k>l ~>r Ikl-" (4) 

for all k e g ~ \ { 0 }. Here we abbreviated < co, k> = ~ cajkj and Ikl ffi 5". Ikjl. 
Observe that an integrable torus with f (yo)=co satisfying (4) has 
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quasi-periodic dynamics. The persistence of these tori is estabiished by con- 
strutting (equivariant) conjugacies with the integrable case. Hence, the 
perturbed dynamics again is quasi-periodic. 

For z and ~, fLxed, the set of all co ~ R" satisfying (4) is a "Cantor set," 
a closed and nowhere dense set, of positive measure. P6schel (1982) further 
extends this result, showing that in the nondegenerate case, where the 
frequency map yo~f (yo)  has maximal rank, these conjugacies are 
Whitney-smooth in Yo- Therefore the union of the persistent quasi-periodic 
tori keeps positive measure. 

This result was further generalized by Parasyuk (1982) for the case 
p = 0, n > m, by Arnold and Sevryuk (1986) and Sevryuk (1986) for the case 
p = 0, n ~< m, and by Huitema (1988, Section 9b) for p = 0 and general n, m. 
Huitema's theory requires introducing parameters, as will be explained 
below. 

In the case p > 0 the invariant n-tori are called lower dimensional. 
It has been shown that the Hamiltonian KAM-theorems on lower dimen- 
sional tori hare analogues in the reversible setting. For an overview see 
Sevryuk (1990, 1991a, b, 1993). For more details, see below. 

Exami)le (Moser, 1966). Consider a weakly forced oscillator 

�9 ~! + a 2 z I  =ef(t, z l ,  -~i) 

which is reversible in the sense that f ( - t ,  zl ,  - z l ) = f ( t ,  zl, zl). Also, the 
forcing is quasi-periodic, meaning that for rationally independent (or even 
diophantine) frequencies co~, o~2 ..... co,, we have f(t, u, v)= F(tco~, to~2,..., 
to~,, u, v), for a function F: T" x R 2 ~ R. Presently the frequencies % are 
fixed and the problem is to determine, for small [el, response solutions with 
these same frequencies. 

The above equation of motion can be written as a vector field 

0.~/~)r "Jr" aZ2(~/(~Z 1 + ( --t/Z 1 "[" (/~/a) F(.~, Zl, ,~2)) ~/~z2 

with 1"" x R 2 as the phase space. This brings us into the present setup, with 
m = 0 and p = 1, where the involution R is given by R(zl, z2) = (zl, --z2). 
The n-torus Tnx {0} is invariant for the unperturbed system, where the 
dynamics is quasi-periodic with frequency vector a). The above response 
problem now translates to the question of persistence of this torus for small 
values of the perturbation parameter e, the dynamics in which remains con- 
jugate to the unperturbed one. It turns out that the (normal) frequency a 
here also is needed as a parameter, suitably included in diophantine condi- 
tions. For details see below. 
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The present paper is concerned with the case of arbitrary n, m, and p, 
but assumes the presence of sufficiently many external parameters. This 
unfolding theory is embedded in the general Lie algebra setup of Broer et al. 
(1990) and Huitema (1988), as will be explained now. For simplicity every- 
thing will be phrased in terms of vector fields, but a similar theory holds 
for reversible diffeomorphisms. 

Remark. The results of Quispel and Sevryuk (1993), however, show 
that the diffeomorphism case has aspects that are more complicated. 

2. SETUP AND RESULTS 

A first general (i.e., not necessarily Hamiltonian) KAM-theory was 
given by Moser (I 966, 1967). This theory is formulated at once for various 
contexts, e.g., for Hamiltonian or volume-preserving systems, but also for 
the general (dissipative) case. The idea is to express such a preservation of 
structure in terms of the Lie algebra of all vector fields and its subalgebras. 
Another idea is the introduction of modifying terms, viz., parameters, 
needed for the persistence of the tori. 

These ideas were taken up by Broer et al. (1990) and Huitema (1988), 
who have developed an unfolding theory of quasi-periodic tori in a general 
Lie algebra context. The main point is that the parameters allow for 
variation of all internal and normal frequencies of the integrable tori. This 
involves the unfolding theory of Arnold (1971), applied to the appropriate 
subalgebra of the general linear algebra. 

The persistent, near-integrable n-tori then smoothly foliate over closed, 
nowhere dense "Cantor" subsets of the parameter space, that have positive 
measure. See above; here the techniques of P6schel (1982) are used. 
Moreover, the results are formulated in terms of structural stability, where 
the (Whitney~) smooth conjugacies restrict to a suitable union of quasi- 
periodic (diophantine) invariant tori. For the occasion we speak of quasi- 
periodic stability. A discussion of the relation with the modifying terms of 
Moser (1966, 1967) is given by Broer etat. (1990) and Huitema (1988, 
Section 7). 

However, since the reversible vector fields do not form a Lie algebra, 
these formulations do not apply directly. Nevertheless, as we shall see 
below, the proof of the main result of Broer etal. (1990) and Huitema 
(1988) to this setting also applies here. For an indication of this, see also 
Moser (1966, 1967). 

To be precise, as before M =  T"x Rmx R z" is our phase space, with 
coordinates (x, y, z). We also introduce a finite-dimensional parameter 
space P, with coordinate/z. Instead of individual vector fields, from now on 
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we consider families of those, parametrized by/z e P. So we are dealing with 
a family X, given in shorthand notation by 

X(x ,y , z ,# )=f (x , y , z ,  lt)O/Ox+g(x,y,z,g)O/Oy+h(x,y,z, lz)O/az (5) 

where G-reversibility means that for each value of/z, the relations (2) hold. 
As in (3), integrability amounts to x-independence of X. For simplicity we 
assume real analyticity in all arguments, noting that a straightforward 
adaptation exists for the case of C k, with k ~< oo sufficiently large. Compare 
PSschel (1982) or the appendix of Broer et al. (1990) and Huitema (1988). 

A first, naieve starting point for the KAM perturbation analysis is an 
integrable family X, with an invariant n-torus of the form 

v o,,,o = T " •  {yo} • {0} = Tn• Rm• R 2" 

so with h(Yo, O, go)=O. Observe that Vy0,~0 is G-invariant. We shall 
investigate the persistence of such tori under small reversible perturbation. 

In the present real analytic setting we use a topology that is natural 
for the perturbation analysis; compare Broer etal. (1990) and Huitema 
(1988). In fact, we consider M as the real part of A~r=(C"/(2rrZ)")x 
C m x C zp. Any of our vector fields then has a complex analytic extension to 
a neighborhood of M in ~r, and likewise for the parameter space P. In the 
complex analytic setting we consider the usual compact-open topology, for 
our real analytic families just taking the restriction. We refer to this as the 
real analytic topology. 

2.1. Nonisolatedness and Localization 

In our reversible case, the invariant n-tori Vy o in integrable systems are 
not isolated. In fact, as in the Hamiltonian case, these tori occur in continua, 
parametrized by Y0. This is illustrated by the following example. 

Example (Sevryuk (1991a, b). Let Y be a vector field and G an 
involution on R n +' '  + 2p, with n ~< m. Let us assume that Y has the origin as 
an equilibrium, which is fixed by G. Moreover, we assume the following. 

1. The linear part D O Y has the eigenvalue 0 with multiplicity m -  n; 
all other eigenvalues are different from 0 and simple. 

2. Do Y has at least n pairs of purely imaginary eigenvalues. 

3. The type o f G i s  (n+p,m+p).  

Then, under generic conditions, involving finitely many nonresonance 
conditions on the eigenvalues of Do Y, the following normal forms can be 
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obtained for Y and G. The vector field I", up to a small pertubation, has 
the G-reversible, integrable form 

X(x, y, z) = og(y) 8/ax + g2(y) z~/az 

for (x, y, z) ~ 1 TM x R m x R ~, where the involution G has the familiar form 
G: (x, y, z)~--~(-x, y, Rz) with R of type (p, p). We conclude that the 
invariant n-tori of the vector field X form a continuum parametrized by y, 
which fills up the manifold {z=0}o 

R e m a r k s .  

(i) For m > n the above condition 1 on the eigenvalues of Do Y is 
still open (el. Sevryuk, 1992), also compare the lemma below. In 
the Hamiltonian setup, however, multiple eigenvalues always 
mean positive codimension and bifurcation. For a Hamiltonian 
analogue with a double-zero eigenvalue, e.g., see Broer et al. 
(1993). 

(ii) In earlier work of Scheurle 0987), a similar case is studied, 
where m = n, and where a parameter/z is included of at least 
dimension n - 1. In fact, here Do Y must have at least n pairs of 
simple, purely imaginary eigenvalues, while the other eigenvalues 
should be away from the imaginary axis (but do not have to be 
simple). In this case, again under generic assumptions, a similar 
reversible, integrable form is obtained, but now both co and f2 
depend only on/z (rather than on y). 

Next let us return to our general situation. The unperturbed problem 
concerns an integrable, reversible family X, compare (3) and (5), with an 
invariant n-torus Vyo,~, o contained in {z = 0}. 

Lemma 1. Given the integrable family ,Y(x, y, z,#) = f (  y, z,/t ) O/Ox + 
g( y, z,/z) O/Oy + h( y, z, I~ ) O/Oz of  reversible vector fields, with the invariant 
n-toms Vy,#,,=Tnx {Yo} x {0}. Assume that deth=(yo, 0,/Zo)~0. Then 
Vy,.m is embedded in a smooth continuum of  invariant n-tori, parametrized 
by (y, lz). Moreover, there exists an equivariant (local) change o f  coor- 
dinates, after which this continuum coincides with the submanifold {z =~0}. 

Proof. For the duration of this proof we suppress the parameter/z. 
By assumption there exists a direct sum splitting R 2e= R e ~  R e, z= 
(zi, z2), in which the involution R takes the form R: (zt, z2) ~ (zl, --z2). 
In accordance with this splitting we also decompose h= (h~, h2). 
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The reversibility conditions (2) now imply that 

g( y, z l , - z2) -- - g (  y, zl , z2) 

hi(y, zl ,  - z 2 )  =- --hi(y, zl ,  z2) 

h2(y, zl ,  - z 2 ) =  h2(y, zl ,  z2) 

It follows that both g(y, z l , 0 )  = 0  and hl(y ,z~ ,O)--O.  Hence 
ahx/az~(yo, O,O)=O, and the assumption of the lemma implies that 
det ah~JOz~(yo, 0, 0) # 0. By the Implicit Function Theorem we then locally 
solve the equation h2(y, z l , 0 ) = O  for z l = Z 1 ( y ) ,  with Zl (yo)=0.  This 
indeed means that y parametrizes a local m-parameter continuum of 
invariant n-toil. Finally, it is easy to check that 

(x, y,  z~, z2) ~ (x, y,  z~ - Z~(y),  z2) 

is a coordinate change as desired. [] 

Remark. In the corresponding general Hamiltonian case one has 
m = n  with-symplectic form ZT=t dxj ^ dYi+~.~=l dzj A dzp+/. In that case 
the normalization of Lemma 1 holds automatically, e.g., compare Broer 
etal. (1990) and Huitema (1988, Sections 3 and 6). 

In the sequel our unperturbed system will be the integrable, reversible 
family X in the generic setting of Lemma 1, so with the corresponding 
properties g(y, 0, / to)=0 and h(y, 0,/z0)=0, for y near Yo-We then say 
that the family X is normalized at the torus Vyo,~, o. Also, we shall use the 
notations V~, = Uy Vy.~, and V= I.)~, V~. So for each fixed value of/z, the 
family X has an m-parameter family V , =  I.Jy Vy,, of invariant n-toil, 
parametrized by y. For technical reasons, however, it is more convenient to 
have only one torus per parameter value. 

The latter situation can be achieved by the following localization, 
e.g., compare Broer etal. (1990) and Huitema (1988, Section5b). First 
we introduce Plor as an open subset of R" and Vioc={((x, y, z), v, /z) e 
M x Plo~ x P I Y = v a n d  z = 0 } .  Also, we define the variable Yto~ = Y - v 
giving a local analysis near Vlo~ in the variables x, Yloc, z, v, and/z. Notice 
that the involution G now gets the form (x, Yloc, z) ~ ( - x ,  Ylo~, Rz). Thus 
we obtain, from our integrable and reversible family X, a family X~or 
defined by Xlo~(x, yloc, z, V, lz)= X(x, Ylo~ + v, z, lz), which is again inte- 
grable and reversible. 

From now on we work in this localized situation, for simplicity writing 
y again, instead ofy~or Note that the phase space is still the same manifold 
M = T n • 2 1 5  2e. Here we are dealing with an integrable family 
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,Y~oc=X~oc(x, y, z, v,/~) with invariant tori that are n o w  given by  the 
equations y = 0, z = 0. Persistence results in the localized setting are easily 
translated to the original one. 

2.2. Normal Linearization 

It is technically convenient to transfer this perturbation problem to the 
normal bundle N(Vv, j,) of Vv,~, in M. Compare Broer etal. (1990) and 
Huitema (1988, Sections 2a, 6b). 

To this end we consider the following situation, for the moment  
dropping all subscripts loc. Let X=X(x ,  y,z, v,l~) be a general, i.e., not 
necessarily integrable, reversible family (5), with Vv.~, as an invariant toms. 
This means that 

g(x, O, O, v, la)=0 =h(x, O, O, v,g) 

for all x ~ T".~ On a neighborhood of Vv, t, in M and for e > 0, we now define 
a scaling operator D,: M ~  N(V,.u), given by 

D,: (x, y, z ) ~  (x, ~- ly,  ~-lz)  

Here we identify N(Vv.~,) with a neighborhood of V,.~,. One easily defines an 
involution N(G) on N(V~.~,), such that N(G) oD,=D,oG. This means that 
the scaling D, does not take us out of the reversible setting. Suppressing all 
parameters, we get 

(19,). X(x, y, z) =f ix ,  ey, ~z) O/Ox + ~-' g(x, ~y, ~z) O/Oy 

+ e-  th(x, ey, ~z) O/az 

Expanding 

g(x, y, z)= gy(x, O, O) y + gz(x, O, O) z + O(lyl2 + lzl 2) 

h(x, y, z) = he(x, O, O) y + hz(x, O, O) z + O(ly12 + Iz12) 

it follows that lim,_.o(D,). X exists as a normal linear, reversible vector 
field N(X) on N(V,.~,), given by 

N(,Y)(x, y, z) = f(x ,  O, O) a/ax + (gy(x, o, o) y + gz(x, o, o) z) a/oy 

+ (hy(x, O, O) y + hz(x, O, O) z) a/~z 

In the integrable case, this normal linear form again is integrable, 
i.e., x-independent, in which case we speak of a Floquet form. Let us study 
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these forms further. In the fiber direction this involves the (infinitesimally) 
reversible Floquet matrix 

g,(O, o) g (o, 
hj,(0, 0) hz(0, 0)J (6) 

From the reversibility condition (2) and the normalization of Lemma 1, we 
here obtain that both gy(0, 0) = 0 and he(0, 0) = 0. 

The perturbation problem then is transferred to the normal bundle 
N(V) = Ur N(V~,~,) as follows. Any perturbation of the integrable family X, 
for small e > 0, by (De), is transformed into a perturbation of the corre- 
sponding Floquet form N(X). Persistence concerning the union V= 
U~,~, V~,~, of tori then translates to that of the zero section of N(IF). Finally, 
an extra scaling y =  )7, z=e.r allows us to replace (6) by 

0 
(00 h~(0, 0)) (7) 

where, again by (2), the matrix hz(O,O)~gl(2p, R) is (infinitesimally) 
reversible. From now on we denote the set of all such reversible matrices 
by gl-R(2p, R). 

2.3. Nondegeneracy and Diophantine Conditions 

To summarize the above preliminaries, our perturbation problem 
technically lives on N(Vto~). Here, as the unperturbed system, a reversible 
family of Floquet forms 

N( Xlo~)( x, y, z, v, #) = flo~(0, O, v, IZ ) O/Ox + hlor O, v, p) zO/Oz 

is considered, where the interest is with the persistence of the zero section 
y = 0, z = 0. (As before we keep writing y instead of Y~or omitting all bars 
on the coordinates.) 

We now need to introduce a generalization of the nondegeneracy 
concept met before, concerning the maximal rank of the frequency map. To 
this end we define maps co: Ploo x P --, R n and I2: P~o~ x P ~ gI( 2p, R) by 

o~(v, lz) =flo~(O, O, V, lZ) and g2(v,p) =h~o~.z(O, O, v, lz) (8) 

The generalization involves the eigenvalues of the matrices I2(v,g); 
compare Broer et al. ( 1990 ), Huitema (1988), and Moser (1967). As we saw 
before, 12(v, p) is reversible, i.e., 12(v, lZ)~ gl_r(2p, R). This is easily seen to 
imply that if 2 is an eigenvalue of g2, then so is -2 .  



200 Breer and Huitema 

For (Vo, g0)~ P~or x P, we assume that t2(Vo, Po) has only simple eigen- 
values. Notice that by continuity, this property is persistent for small varia- 
tion of the parameters. Moreover, by the evenness of the dimension 
det f2(v,/~) #0 ,  for all (v,p) near (Vo,Po). Let us consider the spectrum of 
such matrices f2(v,p). This consists of the eigenvalues +J~,  ---Ja ..... +J2v,; 
"JI-/~l' "31-/~2 ..... "~'/~N2; "k~ "{-g2-----if12, " ' ' '  q'OClC3"t-iflN3, depending on 
(v,p), where p=N~ + N z + 2 N 3  and where all Jj, ej, ~j, and fls are taken 
positive. (The simplicity also implies mutual distinctness.) 

We then consider the map spec: P~o~ x P ~ R p, defined by 

spec: (v,/~) ~ (eL,, 8n~, ~n,, Pn,)(v,/~) (9) 

where 1 <~ny<<,N J for j =  1, 2, and 3. 
The invariant torus V~.t, o is said to be nondegenerate if the product  

map co x spec: P~or x P - ,  R"x  R p, at (Vo,Po) has a surjective derivative. In 
the next section we shall meet a more conceptual approach to  this 
property, using versality of the unfolding g2(v, p); compare Arnold (1971), 
Broer et al. (1990), Huitema (1988), and Sevryuk (1992). 

Let F be a connected neighborhood of (Vo, Po) in P~o~ x P, such that 
for each (v, p) ~ F the eigenvalues of f2(v, p)  are simple. Then for (v,/~) e F, 
let co~(v,p) ..... co~r,(v,p) be the positive imaginary parts of the eigenvalues 
of f2(v, p), where we refrain from counting double. So, in the above terms, 
the coN consist of the ej and flj, and r = N2 + N3. These numbers are called 
the normal frequencies of the torus V,,~,. Thus we obtain a frequency map 

~ ' .  F_.~ ~n X ~r,  (i/,/./) b..k (CO(V,/./) ' coN(/./, V)) (io) 

with coN= (CON,..., coN). In the nondegenerate case, by taking F sufficiently 
small, we can ensure 5 r to be a submersion. 

We recall that the dynamics in V,.j, is quasi-periodic if the (internal) fre- 
quencies co~(v,p),..., con(v, p)  are diophantine (in fact rational independence 
would suffice for this). Presently, however, diophantine conditions o f  type 
(4) are not sufficient, but we need to include the normal frequencies con 
into these. To be precise, we fix r > n - 1 and consider ), > 0 as a parameter. 
Then we require that 

I<co, k> +(coN, 1>1 ~>r lkl-"  (11) 

for all kEZn \{0}  and all I~Z" with III ~<2. Here we use the same notation 
as in (4). By (R" x R')~ we denote the set of all (co, co N) ~ R ~ x R" satisfying 
(11). Also, we consider the pullback 

C,--:-~((R~ • R%) (12) 



Quasi-periodic Tori in Reversible Systems 201 

to Plo~ x P. As before, F v is a "Cantor set," i.e., a closed, nowhere dense 
subset of F of positive measure. Indeed, it is easy to see that for bounded 
sets in F\Fv ,  the measure is of order ~, as y ~ 0, 

2.4. The Stability Result 

We are now ready to formulate the main result of this paper. 

Main Theorem. Let X be a real analytic integrable, reversible family 
o f  vector fields on M, parametrized over P. Also, let V and V, ,  for  It ~ P be 
as before. For ( yo , I tO)~RmXp  assume that X has an invariant n-torus 
V,o c~ { y = Yo}, at which it is both normalized and nondegenerate. Moreover, 
assume that the matrix ~2(yo, Ito) has only simple eigenvalues. 

Then for ~, > 0 sufficiently small, there exists a neighborhood F o f  
(Yo, Ito) in Rr~x P and a neighborhood ~ o f  N(Xlo~) in the real analytic 
topology on the reversible families o f  vector fields on N(Vlor such that the 
following holds. For all ~ ~ :g" there exists a map ~b: N(Vior ~ iV( VI,,~ ) such 
that 

1. The restriction o f  �9 to (v, It)~ F is an equivariant C~ - 
morphism onto its image, C~176 the identity map. Moreover, 

preserves the projection to Plor x P and to the zero section 
o f  Vxoc. Also, �9 is real analytic in x and affine in the variables 
y andz. 

2. A further restriction o f  r to (v, It)~ F r takes the zero section o f  
N(Vlo~) to an ~-invariant manifoM ~'xo~, inducing a conjugacy 
N(~):  N(Viol) ~ N(~1or between N( X) and N( X:). 

A proof of the Main Theorem will be given in the next section, by 
reducing it to .that of Broer et al. (1990) and Huitema (1988, Theorem 8.1). 
From this theorem we can deduce a stability result on M x P1or x P, using 
the scaling operator D,, for e > 0 and small. From here we can project back 
to M x P, so obtaining an answer to the original perturbation problem. 
This will now be summarized. 

Corollary. Let X and T be as in the Main Theorem. Then for  all real 
analytic reversible families ~, sufficiently near X in the real analytic topology, 
the following holds. There exists an .~-invariant "Cantor set" ~ c M x  P, 
which is a Coo-near-identity-image of  l: c~ { (y, It) ~ ['~} and hence a union o f  
n-tori. Inside the tori this diffeomorphism induces a real analytic conjugacy 
between X and ~. Moreover, the diffeomorphism is equivariant and preserves 
the (reversible) normal linear behavior. 
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2.5. Concluding Remarks 

We recall the remarks, made in Section I, regarding structural 
stability, in particular quasi-periodic stability: The perturbed family ~" has 
an invariant "Cantor set," being a union of quasi-periodic toil, on which 
it is conjugate to the restriction 3(I Vc~{(y,g)eFr}. In particular, the 
property of having such an invariant set of positive measure in the product 
M x P is open in the real analytic topology. This despite the infinite 
codimension of integrable families. 

We note, however, that, although the conjugacy between X and ~" is 
equivariant, it does not necessarily preserve the projection to the parameter 
space P. 

Remarks. 

(i) A direct adaptation of these results exists in the forced oscillator 
case quoted in Section 1. Here we have that co~'= a, while the 
n-vector co remains fixed. In fact, this problem has the param- 
eter(s) # = (s, a) and we consider the frequency map ~':  (e, a) ~ a, 
defined on some bounded, say, rectangular set F. Condition (11 ) 
defines a Cantor set on the a-axis and F r then is the product of 
an e-interval with this Cantor set. We consider the Floquet form 

o~/Ox+(g a o)ZO/az 

with invariant n-tori V~,, given by z = 0. The perturbation (e/a) F 
only slightly distorts this family of n-tori, as well as the Cantor 
set. In fact, the conjugacy qB acts as the identity in the x-direction 
and is analytic in e. 

(ii) In the case p = 0 the phase space reduces to M = T n x R". As we 
saw in Section 1, this means that the involution G simply is 
(x, y)~--.~(-x, y), while the integrable family X has the form 
X(x, y,#)=fly, ~)a/ax. Since there are no normal frequencies, 
nondegeneracy of X involves only f ,  which then must have 
maximal rank. In the case p = 0, m t> n, the projection to P can 
be preserved by the conjugacies, provided that for fixed p the 
map y ~--~f(y,/~) already has maximal rank. In that case, for each 
fixed/t, there exists an invariant set as described above (i.e., a 
union of quasi-periodic tori of positive measure), which is con- 
mined in M. 

The present approach needs a lot of parameters: Nondegeneraey can 
hold true only in the presence of at least n + p parameters. However, there 
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exist variations of the above results where the conditions are relaxed 
somewhat. For a discussion see Broer etal. (1990) and Huitema (1988, 
Section 7). 

One simplification "gets rid" of all hyperbolic eigenvalues reducing to 
an equivariant center manifold. In that case the corresponding parameters 
can be dropped. Then the regularity of the conjugacy generically decreases 
to t'mite differentiability. Compare Broer et al. (1990), Huitema (1988), and 
P6schel (1988). Also, the normal linear behavior will only be partially 
preserved while conjugating. 

A further reduction passes from conjugacies to equivalences, only con- 
sidering ratios of frequencies. This "gets rid" of one further parameter. The 
case where m, n, and p are arbitrary with N2 = 0, and where n parameters 
are present, has been considered by Bibikov (1991). 

As said in Section2.1, the results of Sevryuk (1991a, b) concern 
individual systems instead of families. In the cases where the nondegeneracy 
already can be fulfilled with help of the parameter v ~ P~or alone, we get 
results on individual systems particularizing as before. In that case our 
results are related to Sevryuk (1991a, b), where it is necessary that m >i n. 
Our approach, however, needs the stronger assumption that m I> n + p, 
which, according to the earlier remark about reduction to a center manifold, 
can be relaxed to m t> n + N2 - 1. 

The results of Parasyuk (1982) for the case p--0,  m ~<n, also concern 
individual systems. The corresponding approach is based on a special 
technique of diophantine approximations on submanifolds of R n and will 
not be discussed here. 

At this point a recent development in classical KAM-theory should be 
mentioned, e.g., see Xiu etal. (1994). Here small divisor methods are 
presented for nearly integrable Hamiltonian systems with degeneracy, the 
weaker nondegeneracy conditions translating into a smaller number of 
required parameters. These methods also may be useful in the present 
setting, probably leading to an unfolding theory with fewer parameters. In 
future research we will come back to this. 

3. PROOF 

3.1. Introduction 

Our proof of the Main Theorem very closely follows that of Broer 
etal. (1990) and Huitema (1988, Theorem 8.1), but many ideas are given 
by Moser (1966, 1967). Let ,us describe what is going on. First, in order to 
avoid heavy notation, we assume that the family X =  X(x, y, z,/~) already 
is localized in the sense of Section 2.1. This means that we are considering 
one invariant n-torus V~,=Tnx {y=0}  x {z=0}, for each p e P .  
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As said before, we consider a perturbation �9 of the integrable normal 
linear vector field 

N(a3(x,  y, z, ~t) = co(/~) O/Ox + O(U) zO/Oz 

Using a proper identification of the normal bundle N(V) with a neighbor- 
hood of V in M x P  and, for simplicity, writing X instead of N(X), the 
perturbation ~ gets the form 

~= X + fO/Ox + gO/Oy + hO/Oz (13) 

with f g, and h small in the real analytic topology. We now have to 
produce a transformation ~: (~, q, ~, r )  ~-~ (x, y, z,/~), satisfying the non- 
linear conjugacy equation 

r  q, r ~c) = x(r ,1, r ~) + o(I,71, Ill) 0/O~ 

+ o(I,#1, Ir 0/0,1 + o(I,#1, I(I z) 0/0( (14) 

Here 4t*= (~ -1 ) , .  Notice that 4) serves to reduce the perturbation terms 
in (13) to the small O-terms in the right-hand side of (14). In the solution 
of Eq. (14) we shall make use of the diophantine conditions (11 ) that define 
the "Cantor set" Fy c P; see Section 2.3. The map qi is constructed as an 
infinite product 

r = ~oo  ~ ,  . . . .  (15) 

corresponding to a Newtonian iteration process. Here the following holds. 
The 7tj are defined as analytic maps on neighborhoods of Vc~ {/~ ~Fy}, 
that shrink in an appropriate way with j. These maps and neighborhoods 
have to be described carefully, in order to ensure the convergence of the 
product to a Whitney-differentiable map. Moreover, each ~j is determined 
from a linearized version of Eq. (14), where the perturbation terms [again 
see (13) ] are reduced "rapidly" with increasing index j. 

In the Lie algebra setting of Broer etal. (1990) and Huitema (1988, 
Section 8) (also see Moser, 1966, 1967), all gtj, and also r are taken from 
the Lie group, corresponding to the Lie algebra at hand. In fact, in each 
iteration step ~j is generated from this Lie algebra. 

Presently this procedure has to be slightly changed, since the reversible 
vector fields with G . ( Y ) = - Y  [see (1)] do not form a Lie algebra, 
although they do form a linear subspace. The equivariant vector fields, 
defined by G,(Y)= Y, however, do form a Lie algebra. This algebra 
generates the group of equivariant maps, i.e., maps r commuting with G. 
As said in Section 1, if Y is a reversible vector field and 4) an equivariant 
transformation, then also 4),(Y) is reversible. 
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The main difference with Broer etal. (1990) and Huitema (1988, 
Section 8) is that we will carry out the iteration within the general algebra 
of vector fields, without explicitly keeping track of G. It then will turn out 
that, by the reversibility of the vector fields under iteration, the transfor- 
mations ~Pj automatically are equivariant. First, this implies that such a 
Newtonian iteration process is possible in the world of reversible systems. 
Second, and moreover, it implies that the convergence proof in Broer et al. 
(1990) and Huitema (1988, Section 8b) also applies for this case, which 
provides us with a full proof of the Main Theorem. 

3.2. Preliminaries 

First we need some properties related to the classes of vector fields at 
hand. We list them in a lemma, which is easily proven, mainly using the 
homogeneity of the involution. 

To this end, for any vector field Y=FO/ax+ Ga/ay +Ha/az, we 
consider the linearization 

Yr,(x, y, z) = F(x, O, O) O/Ox 

+ (G(x, O, O) + Gy(x, O, O) y + G=(x, O, O) z) alay 

+(H(x,O,O)+Hy(x,O,O)y+Hz(x,O,O)z)O/Oz (16) 

denoting the space of all such, real analytic linearizations by ~ .  Also, we 
consider its Fourier truncations Yd, d>~ 0, defined by 

Ya(x, y, z) = ~. Yk(Y, Z) e i<x'k> (17) 
Ikl ~ d 

In particular, we shall need the truncations Ylin.a of Yu,, the space of which 
will be denoted by Aad. 

We recall the notation gl_R(2p, R) for the reversible matrices. Also, we 
introduce gl~(2p, R) for the equivariant matrices, i.e., the matrices that 
commute with R. Note that glR(2p, R) is a Lie algebra. By GLR(2p, R)= 
GL(2p, R) c~glR(2p, R) we denote the corresponding Lie group. 

/.emma 2. 

1. I f  Y is a reversible, viz., an equivariant vector field, then so are both 
Yr~ and all Fourier truncations Yd, respectively. 

2. For any o9 ~ R n, the normal linear system o~a/ax + f2za/az is a 
reversible vector field i f  and only i f  f2 E gl_R(2p, [~). 

3. The group GLR(2p, R) is algebraic. 

86S,q/l-15 



206 Broer and Huitema 

The first item of the lemma permits us to introduce -YL~ and .W o for 
the reversible and the equivariant vector fields in s as well as s a and 
.Zo, a for the corresponding Fourier truncations. The last statement implies 
that the orbits of the adjoint action of GLR(2p, R), are smooth sub- 
manifolds. 

We introduce some further ingredients. To begin with we need the 
following direct sum spittings: 

gl~(2p, R) = g/_~(2p, R) ~ glR(2p, R) 

La = La_o~ ~ ~ 
(18) 

and similar for -Yd..We now turn to the normal linear unfolding 
X(x, y, z, 12) = og(g) a/Ox + 0(12) za/Oz, recalling that we unfold around the 
value 12o. Since this form is reversible, so are the matrices O(12) by the 
previous lemma. From now on the parameter 12 often is indicated as a 
superscript. 

In the proof we have to consider the adjoint action ad X v, det'med by 
the Lie bracket Yv--, [X a, Y]. Observe that by the normal linearity of X ~', 
the adjoint action ad JP', by (co-)restriction, induces well-defined linear 
maps ~ ~ s and s a--* -Wa. The natural counterpart of this action at the 
level of matrices is that of ad O j', acting on gl_R(2p, R). 

Lemma 3. Under the hypotheses of the Main Theorem, for all 12 e F, 

1. ad O ~'/s semisimple; 

2. ad O ~' interchanges the properties "reversible" and "equivariant," 
i.e., ad O~(gl_R(2p, R)) = glR(2p, R) and ad O~(glR(2p, R)) c 
gl_R(2p, R); 

3. the adjoint action of GLR(2p, R) on glR(2p, R) respects the first 
direct sum splitting of (18). 

Proof. The first statement follows from the fact that O a has only 
simple eigenvalues. The second and third items run like this: Suppose that 
101= --AR, then [O,A] R = O A R - A O R =  - O R A  + APd2= R f 2 A -  
RAO = R[O, A], etc. [] 

Remark. The kernel ker ad F~ '~ also is called the centralizer, denoted 
by C(O~'~ and by the first Statement of the lemma we have another direct 
sum splitting, 

gl(2p, R) = C(O~'~ ~ im ad O m (19) 
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We now explore the nondegeneracy of X 7' at the toms V~, 0 in terms of 
transversality of the matrix unfolding O ~, where we consider the adjoint 
action of GLR(2p, R) on gl_R(2p, g~). Compare Broer et al. (1990), Huitema 
(1988, Section 8a), and Sevryuk (1992). To this purpose we first defme 
C_R(O ~'~ := C(0 ~'~ n gl_R(2p, R) as a linear space. 

Lemma 4. Under the hypothesis that 0 u~ has only simple eigenvalues, 

1. The torus Vuo is nondegenerate if  and only if  It ~ co(It) has a surjec- 
tive derivative and if  the unfolding O(it) is transversal to the orbit 
o f  O,  ~ 

2. C_R(O ~~ is minitransversal to this orbit and has a linear 
isomorphic parametrization by R r, which yields a universal unfold- 
ing of 0 l'~ 

Proof. The first statement follows from the considerations in Section 2.3, 
in particular, of the map spec. It directly follows that the codimension of 
O u~ equals p. "Also, by (19)  w e  have 

gl_R(2 p, • )=  C_R(12 ~'~ ~ a d  O~'(glR(2p, R)) [] (20) 

Ifi our context of finding conjugacies we now may simplify our 
unfolding as follows. We take It = (co, 2), writing 

X~~ y, z) = o~a/0x + t2(2) za/Oz (21) 

where 2 e R p ~--, O(2)e  C_R(O ~'~ is the linear centralizer unfolding of the 
above lemma. Here we unfold around 40#0 ,  where 0 (2o )= :  0o.  In this 
way, the parameter space becomes P = R n x R p, as an open subset. 

Remarks.  

(i) For the linear centralizer unfolding one, moreover, has 
C_~(O(2))--C_R(Oo),  for all 2 in a neighborhood of 2o. This 
yields the direct sum splitting 

gl_R(2p, R) = C_R(Oo) @ ad O(2)(glR(2p, R)) (22) 

for all 2 in a neighborhood of 2o. This implies that the family 
O(4) is a universal unfolding for each of its members. 

(ii) With the above  "definition" of nondegeneracy, it can be of 
interest to abandon the hypothesis that O0 has only simple eigen- 
values, and study problems where eigenvalues bifurcate. For 
some examples, e.g., see Braaksma et al. (1990). 
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By Lemma 2, the reversibility of the matrices ~2(2) implies reversibility 
of the vector fields X ~'x. Next we turn to the map ad X ~. 

Lemma 5. Under the conditions of  the Main Theorem, for IZ r F~, 

1. ad X~: ~ --, L#/s semisimple; 

2. N~'~keradXT'nA"_o if  and only i f  N # has the equivariant (or 
integrable) form N~(x, y, z) = cl(lz) O/Ox + C2(/z) zO/Oz with 
C2(/z ) ~ ker ad s ~ :a C_R(~2o); 

3. ad X 7~ interchanges the properties "reversible" and "equivariant." 

Proof. Let us specify Y E ~  by Y~(x,y ,z)  =u(X, lZ)O/ax+ 
v( X, y, z, IZ ) a/Oy + w( x, y, z, p) O/Oz; see (16). Then 

adX(Y)=uxCOa/ax+(vxCO+vzg2z)a/ay+(wxO~+wz~2z-f2w)a/az (23) 

A straightforward computation in terms of Fourier coefficients (e.g., see 
Moser, 1967; Broer et al., 1990; Huitema, 1988, Section 8b) now provides 
a basis of eigenvectors. Here we need the nonresonance conditions that 
follow from (11). In particular, we fred the kernel by solving the equation 
ad X(Y) = 0. Indeed, for/z ~ Fy one gets the x-independent form 

u( x, I~ ) = Uo~ ) 

v(x, y, z, p) = Vo(p) + Vl(/-/) y + V2(/2 ) 7, 

w(x, y, z, #)  ffi Wo(#) + wt(#) y + w2(#) z 

where 

~Wo ffi O, v2~ = O, s ffi O, ~w2 - w213 = 0 

We recall that by the simplicity of its eigenvalues it follows that det ~ ~ 0 
and hence that wo = 0, v 2 - - 0 ,  and w~ = 0. By the reversibility of Yit  further 
follows that Vo= 0 and v~ = 0. So we take cl = Uo and C2 = w2. 

The final statement of the lemma is an easy consequence of the rever- 
sibility of X. Indeed, one has G,EX, Y] = - I X ,  G,( Y)], which directly 
implies the assertion. Also, compare Lemma 3. [] 

3.3. The Iteration Step 

This section deals with the determination of the maps ~gj (see above); 
in particular, see the product, (15). To this end write Ol ffi ~o ~ ~Fl o --" ~'j _ t, 
and ~ - - ~ j  (A~), noting that ~o =Id and therefore -~o ffi ~. Also, notice 
that ~ j+ l  =r176 ~Fj. The j t h  iteration step now concerns the relation 
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Let xg, yg, zg, cog, and 2g be the component functions Of the inverse 
#j- l ,  then, in coordinates, we have to specify 

~ :  (xg+ ,, Yi+~, zj+, ,  coj+ ~, 2g+ ~) ~ (xg, yg, zj, coj, 2g) 

in terms of the vector field ~). From now on j/> 0 is fixed. In order to avoid 
clumsy notation, for the duration of this one iteration step, we drop the 
index j, writing (x, y, z, co, 2) and (~, ~/, (, or, v) instead of (xj,..., 2j) and 
(xg+ 1 ..... 2j+ l), respectively. 

As announced before, the map ~ = ~g is infinitesimally generated from 
a vector field, to be denoted ~. Also, a shift in the parameters will be 
included. To be precise, we further specify the unknown ~E  .s by 

~(~, ~, ~, or, v) = 0(~,  or~ v) 0/0~ + P(~, ~, ~, or, v) 0/0~ + ff'(~, ~, ~, or, v) 0/0~ 

with 

~(~,,,/, (, or, v) = Vo(~, or, v) + ~,(~,  or, v) '1 + v2(~, or, v) 
(24) 

~(d~, ,z, ~, or, v) = r,t."o(~, or, v) + ~ ( ~ ,  or, ~) ,z + ~.~(~, or, v) ( 

Next unknown parameter shifts are specified to have the form 

or~"*co(or, v)=or + Al(or, v), v~--~ A(or, v) =v  + A2(or, v) (25) 

Then if X ' = ~  has the form (13), we first introduce the vector field 

Lr ~/, ~) = ( ~ ' -  X)~,a (~, F/, (, or, v) (26) 

In the Newton procedure L ~ s d replaces the perturbation terms of (13). 
The order of truncation d is determined in the proof of Broer et al. (1990) 
and Huitema (1988, Theorem8.1), but the present considerations are 
independent of this choice. Second, regarding (25), we introduce a vector 
field N E ~o c s a by 

N~'~(~, r/, ~) = Al(or, v) 8/O~+t2(A2(or, v)) GO~O( (27) 

The linearized version of the conjugacy equation (14) now becomes 

ad X(~rO=N + Z (28) 

which has to be solved in ~ and N. This is the so-called homological equa- 
tion. The parameters (or, v) vary over a neighborhood of F r, where the 
diophanfine conditions (11) hold only for Ikl ~<d. The homological equa- 
tion is solved by comparing coefficients of the (trigonometric) polynomials; 
see the proof of Lemma 5. 
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Observe that both L and N are reversible; cf. Lemma 2. The general 
idea is to determine Nr  ker ad X such that N +  L e im ad X. This means 
that N follows from integrability conditions. By Lemma 5 it follows that 
(27) is the typical form of a reversible element of ker ad X. A straight- 
forward computation shows that 

N"v(~, t/, () = - ( I f ( . ,  0, 0, a, v)] 0/0~+ [hr 0, 0, o-, v)] c_~a0) (0/0() 

(29) 

where [.  ] denotes the ~-average over T" and where the subscript C_R(~2o) 
refers to the corresponding part in the direct sum splitting of gl_R(2p, R); 
see (22). 

This leaves us with the remaining Fourier coefficients, i.e., with the 
solution of ~Pr L~ac La from Eq. (28), which now involves only a straight- 
forward computation; compare (23) (e.g., see Broer et aL, 1990; Huitema, 
1988, Section 8b). The following lemma concludes these considerations, 
establishing the claim, as stated in Section 3.1, that the proof of Broer et aL, 
1990; Huitema, 1988, Theorem 8.1) also applies here. 

Lemma 6. Under the conditions of  the Main Theorem, suppose that 
the diophantine conditions (11) are fulfilled for all Ikl <<.d. Then Eq. (28), 
with N as in (29), has a unique solution ~ im ad Xc~ -Yo.a. 

Proof. By Broer et al. (1990) and Huitema (1988, Section 8b) it follows 
that (28) has a unique solution ~P~im ad Xc~-Ya. Since the (co-)restriction 
of ad X to its image im ad ,Yc~ ~u is invertible, the reversibility of the fight- 
hand side, N +  L, by Lemma 5.3 implies that ~ is G-equivariant. [] 

3.4. The Maximal Case 

In the maximal case, i.e., where p -- 0, now almost no work is needed. 
See Huitema (1988, Section 9b). 

From remark (ii), following the corollary (cf. Section 2.5), we recall 
that here G(x, y)ffi ( -x ,  y). The present analogue of the Floquet form (21) 
is the n-parameter family 

X~ y) = oJO/Ox 

As said earlier, the proof of Broer etal. (1990) and Huitema (1988, 
Theorem 8.1) also applies here. Equation (28), in coordinates, gets even a 
simpler form, as does the direct sum splitting of ~d)- This implies that the 
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typical form of a reversible element N e ker ad X is Nr ~7) - A l(a, v) 0/8~; 
compare (27). Also, we give the present analogue of (29), which reads 

N~(~, ,1) = - I f ( . ,  0, a)] a/a~ 

Another  thing is that, instead o f  (11), we here need only the simpler 
diophantine conditions (4). The heart  of  the argument ,  however, remains 
the same, namely, that,  iterating in the space s d, for N + L reversible, the 
solution ~P is automatical ly equivariant.  
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