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Chapter 5

Density pro�les from dissipationless

collapse

1 Introduction

In recent years the study of structure formation in the Universe has entered a new regime
through the inclusion of hydrodynamic processes. But even though much energy and CPU-
time is spent on these dissipative processes, this does not imply that the gravitational,
dissipationless aspects of this problem have been fully understood. Obtaining a good, if not
complete, understanding of purely gravitational collapse is imperative for various reasons.
First, gravity a�ects the formation of all structures, indeed in the most generally accepted
theories of structure formation, it is the single most important agent in starting the collapse
in the �rst place. Second, probably all structures have gone through a phase where gravity
was dominant, even late in their evolution. The hydrodynamic processes then act within a
background shaped by gravity (White & Rees, 1978). Third, some structures are believed
to have been shaped by gravity alone. Most notable among these are elliptical galaxies and
the dark halos that are believed to make up most of the mass of spiral galaxies.

A curious problem is that these two classes of objects appear to have very di�erent
shapes. It has been long appreciated that the R1=4{pro�le, proposed by de Vaucouleurs
(1948), gives a good �t to the surface brightness pro�les of many elliptical galaxies (see
also Schombert, 1986). Sarazin (1988) suggests that the R1=4 pro�le also provides a good
�t to the surface density distribution of galaxies in clusters, which is supported by West et
al. (1987, 1989). The deprojected density pro�le (Young, 1976) corresponding to the R1=4

pro�le is similar to the family of models investigated by Tremaine et al. (1993) and Dehnen
(1993), de�ned by

��(r) =
�

4�

M�R�

R
3��
� (r +R�)1+�

: (5:1)

The well known models by Ja�e (1983) and Hernquist (1990), which were proposed mainly
because they bear such resemblance to the R1=4{pro�le, are obtained for � = 1 and � = 2
respectively. On the other hand, the dark halos around spiral galaxies are usually modeled
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148 Chapter 5 Density profiles

using truncated isothermal spheres (e.g. van Albada et al., 1985):

�(r) =
�0

1 + (r=a)2
: (5:2)

This model is used mainly because it explains the at rotation curves of spiral galaxies,
which naively imply an asymptotic density pro�le � � r�2.

Both models have their particular theoretical explanation. Isothermal systems are
thought to be the outcome of violent relaxation (Lynden-Bell, 1967), but the fact that
violent relaxation is probably never complete has instead been used as an argument to ex-
plain the development of R1=4 pro�les (May & van Albada, 1984; Hjorth & Madsen, 1991).
Indeed, N-body simulations have shown that cold and clumpy initial conditions, thought to
be prerequisites for violent relaxation, evolve into objects with approximately R1=4 surface
density pro�les (van Albada, 1982). More realistic initial conditions, where the initial struc-
ture of the proto-cluster was obtained using cosmologically reasonable uctuation spectra,
also evolve into objects with density pro�les corresponding to the de Vaucouleurs form
(Dubinski & Carlberg, 1991; Katz, 1991). A completely satisfying, analytical explanation
of how violent relaxation leads to objects of this form has so far been lacking and the fact
that these results were almost exclusively obtained from more or less isolated collapses has
cast some doubt on the relevance of these calculations for objects evolving in cosmologically
realistic environments (Zaroubi & Ho�man, 1993).

These problems seem to be absent in an alternative approach, which reproduces power-
law density pro�les such as those needed to explain at rotation curves, using generalizations
of the spherically symmetric top-hat model (Gunn & Gott, 1972). Originally intended to
describe the density pro�les of ellipticals, this semi-analytical approach, when combined
with assumptions about the (power-law) cosmological initial conditions, is able to explain
power-law density pro�les, � � r�, with  dependent on the cosmological parameters
(Fillmore & Goldreich, 1984; Bertschinger, 1985). These predictions are claimed to be cor-
roborated by cosmological N-body simulations, using power-law initial uctuation spectra
(e.g. Quinn et al., 1986; Efstathiou et al., 1988; Crone et al., 1994). This would suggest
that, indeed, violent relaxation is not the prime agent determining the shapes of the �nal
relaxed objects. The main limitation of these cosmological simulations is that the resolution
to which the resulting clusters can be probed is much lower than what can be reached in
isolated collapse simulations. Consequently, the density pro�les are much less well deter-
mined and unknown force softening e�ects may play a much greater role. Furthermore, the
analytical results are based on purely radial infall and relaxation. One must doubt whether
these calculations are still relevant during the violent collapse phases such as are observed
in the N-body simulations.

It is unsatisfying that collapse processes governed by the same agent seem to give rise
to very di�erent outcomes. On the observational side one may claim that the mentioned
objects are simply not shaped by gravitational collapse alone. This is probably true to
some extent, but one must certainly also doubt that we understand purely gravitational
collapse completely. Recently, some results have been obtained, both by observational
and theoretical means, which suggest that a more uni�ed view is possible. Sanders &
Begeman (1994) have modeled galaxy rotation curves using the density pro�le suggested
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Figure 1: Comparison of three models for the density pro�le. The Hernquist and Ja�e pro�les are

de�ned in Eq. 5.4, the truncated isothermal pro�le is de�ned in Eq. 5.2.

by Hernquist (1990) for the dark halo . They obtained excellent �ts for the rotation curves
using this model, and moreover found a relation between the total mass of the halo and the
characteristic scale of the halo model,

M / R2 : (5:3)

This relation is equivalent to a relation found by Fish (1964) for elliptical galaxies and to the
similar relation for Abell clusters as determined by West et al. (1989). Dubinski & Carlberg
(1991) found that the Hernquist model also provides a very good description of the density
pro�le of the CDM halos in their high resolution collapse simulations. Their simulation
was not fully cosmological, but they approximated the e�ects of external structures by
introducing a linearly evolving tidal �eld. In this way they were able to simulate the
collapse of CDM clusters/halos with much higher resolution than would have been possible
using fully cosmological simulations.

Finally, in chapter 4 of this thesis, it was shown that, whereas clusters in realistic simu-
lations follow the simple top-hat model (Gott & Gunn, 1972; Chapter 4) until turn-around,
the outcome of the virialization process di�ers from the predictions. In the generalization
of the top-hat model to spherical density perturbations with a general power-law pro�le,
it is often assumed that all radii recollapse to a �xed fraction of their turn-around radius
(Gott & Rees, 1975; Ho�man & Shaham, 1985) and this assumption is con�rmed by the
semi-analytical calculations of Fillmore & Goldreich (1984) and Bertschinger (1985). How-
ever, in chapter 4 it was shown that larger radii collapse by smaller factors than inner ones,
showing that these calculations do not correctly describe the relaxation process of clusters
in cosmological simulations.

In this chapter we will investigate the density pro�les of these simulated clusters in detail.
We will do so by comparing these pro�les to the Hernquist and Ja�e pro�les respectively.
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For completeness, these are de�ned by

Hernquist : �(R) =
MHRH

2�R(R +RH)3

Ja�e : �(R) =
MJRJ

4�R2(R +RJ)2
; (5.4)

and they are drawn, together with the densiy pro�le for a truncated isothermal sphere,
in Fig. 1. For this we need to determine accurate density pro�les, since these models
essentially only di�er in the central regions. For instance how one chooses the center is
of great importance. This will be discussed in the next section. We will �t the resulting
pro�les to the various models using non-linear two-parameter �ts. We will also perform
three-parameter �ts to the models de�ned by (5.1), by adding � as a free parameter. Then
the parameters obtained from the �ts will be correlated and the results will be compared
to observed correlations such as Fish's law. We will then investigate the density pro�les
resulting from isolated collapse simulations. Some of these, obtained from extracting proto-
clusters from the cosmological simulations, were studied already in Chapter 4. Added to
these are collapse simulations of initially spherically symmetric clusters with power-law
density perturbation pro�les, and clumpy collapses, similar to those studied by van Albada
(1982). We will conclude with a summary and discussion.

2 Techniques

2.1 Methods for determining the density pro�les

In Fig. 2 we plot two projections of a typical cluster extracted from one of the cosmologi-
cal N-body simulations that are the main object of study of this chapter. These simulations
were considered earlier in Chapter 4 and will be described below. Here we expose the prob-
lems for estimating radial density pro�les of clusters and for �tting these pro�les to the
models, and we will present techniques to solve these. These problems originate from the
fact that simulated clusters are in general not perfectly spherically symmetric structures.
This deviation from exact spherical symmetry is most obvious through the occurrence of
sub-structure, especially in the outer regions of the cluster, but also through the ellipsoidal
shape of the main body. As argued in chapter 4, such deviations appear to have no signi�-
cant e�ects on those aspects of the dynamical evolution that one expects for an object that
is exactly spherical. These deviations do however cause problems for estimating the radial
density pro�le.

The main problem lies in determining a physically meaningful de�nition of the cluster
center around which to expand the density pro�le. The e�ects of incorrectly choosing the
center can be seen from Fig. 3. There we show, for the cluster from Fig. 2, binned density
pro�les for various choices for the center, namely, the center of mass of the whole cluster,
the median position of the individual cluster particles and the center of mass of respectively
the 10% and 1% of the points with the lowest potential energy. Also shown is the pro�le
around the point which, in projections along two orthogonal directions, has the highest
surface density. For a correct treatment of the innermost radii, this choice is probably
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Figure 3: Density pro�les for the cluster in Fig. 2, determined using various de�nitions of the

center of the cluster: Peak indicates the peak of the surface density distribution. C.o.M. indicates

the center of mass of the whole cluster. Median indicates the median of the coordinates of the

points. 10% and 1% indicate the center chosen as the center of mass of the respective number of

points with the lowest potential energy.

cumulative mass pro�le and quantitative information of the mismatch between the mass
distributions on di�erent scales, indicated by the positions of the respective centers.

In Fig. 4 we show for the cluster in Fig. 2 the walk that the center performs as function
of scale. Also plotted are the various �xed centers used in determining the density pro�les
in Fig. 3. Ideally the last step should bring the center to the highest density peak and
we see that this indeed is the case. In the same �gure we show the spheres corresponding
to the moving centers. This gives a nice illustration of the asymmetry in this cluster and
shows that the center adjustment is not a smooth process but seems to occur in several
steps causing a crowding of the circles at the corresponding radii. In Fig. 5 we show the
cumulative mass pro�les obtained using the moving center result as well as those obtained
from the various �xed centers. The result from the moving center method is almost exactly
equal to the result where the highest density peak is chosen for center. It shows that the
precise positioning of the cluster center is most important for the inner regions.

It is interesting to speculate whether or not a dipole-mode of this kind, if also existent in
dark halos around spiral galaxies, might be observed from the distribution and kinematics
of the stars or HI-gas in those galaxies. There are many instances known where the gas
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Figure 4: Determining the cluster center dependent on the sampling radius.

The upper diagram gives the cluster centers corresponding to the pro�les in Fig. 3.

: C.o.M ; : median ; : 10% ; : 1% ; : peaks. The triangles correspond to

the centers determined by the maximum likelihood method, explained in x 2.2. corre-

sponds to �ts to the Ja�e pro�le, to �ts to the Hernquist pro�le. The dots trace centers

according to the moving center approach as detailed in the text. The two lower frames show

the corresponding spheres at two di�erent scales.
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Figure 5: Same as Fig. 3, but now for mass pro�les.

has a lopsided distribution (Baldwin et al., 1980; Richter & Sancisi, 1994; Rix & Zaritski,
1995) and there are hints that also the kinematic center is dependent on scale. In M101 for
instance, the kinematic center seems to move with increasing radius in the direction of the
asymmetric `lobe' (Kamphuis, private communication).

Apart from this dipole mode, there are higher order distortions to the shape of the
cluster which might inuence the detailed shape of the density pro�le. The most important
of these is the signi�cant ellipsoidal quadrupole mode in most of the clusters. To determine
the e�ect of this on the density pro�le, we show in Fig. 6 the density pro�le of the cluster in
Fig. 2 as determined using ellipsoidal shells. The axial ratios and orientation of these shells
were determined for one particular value, a, of the major axis. Starting with a sphere of
radius a, we iteratively calculate the moment of inertia tensor of the particles inside it, and
from this tensor determine the orientation and axial ratios of the corresponding ellipsoid.
We then determine all the points inside this ellipsoid and iterate this process until the
parameters do not change anymore. The density pro�le is then determined on concentric
ellipsoidal shells with these axial ratios and orientation. In Fig. 6 this pro�le is plotted
not versus the size of its semi-major axis a, but versus the quantity rell � (abc)1=3, where
b and c are the sizes of the other two axes. This is the radius of the sphere that has the
same volume as the ellipsoid with the given parameters. With this variable the ellipsoidal
density pro�le agrees almost exactly with the radial density pro�le. We have therefore in
this chapter concentrated exclusively on density pro�les calculated using spherical shells.
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Figure 6: Density pro�les for cluster in Fig. 2. The dashed line gives the density pro�le on

ellipsoidal shells, with axial ratios determined by the method detailed in the text. The density is

plotted versus the quantity (abc)1=3, where a, b and c are the three semi-axes of the ellipsoid. The

solid line is for spherical shells.

2.2 Fitting techniques

After determining the density pro�les, we want to compare these to the class of models
de�ned by (5.1), which has been proposed as a useful alternative to the R1=4{model pro�le.
The present analysis �rst concentrates on �tting the Hernquist and Ja�e models to the
pro�les (Hernquist, 1990; Ja�e, 1983). These models contain two parameters, the total
mass Mc and a characteristic radius Rc, which determines the scale at which the model
crosses from a � / r��3 to a � / r�4 behaviour, where � = 1; 2 for the Ja�e and Hernquist
models respectively. The choice which �tting method to use contains a number of subtleties,
which will again be discussed with the cluster in Fig. 2 as example.

The standard �tting methods use �2-minimization, where

�2 �
NX
i=1

wi(�model(ri; f�ng)� �obs(ri))
2 (5:5)

where the �n are the parameters and wi are the weights which are generally taken to be
��2(ri). Minimization of this function with respect to its parameters gives by construction
the minimum-variance solution (e.g. Eadie et al., 1971). However, instead of �tting to
the density pro�le itself, one might also �t the model to the cumulative mass pro�le, or
for instance to the rotational velocity pro�le vrot as de�ned above. This last option would
most closely agree with the determination of the density pro�les of dark halos around
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spiral galaxies (van Albada et al., 1985; Sanders & Begeman, 1994). In general the �tted
parameters will be di�erent for these di�erent choices; in many cases, even just �tting the
model to log(�) instead of to the � itself will already give di�erent results. The cause of
this can be understood from the maximum likelihood derivation of the �2{method. The
standard assumption is that when the real model is given by �ex(rijMc; Rc), the probability
that one measures �obs(ri)��i is normally distributed

P (�obs) =
1p
2��2

i

exp

�
�(�obs;i � �ex;i)

2

2�2
i

�
(5:6)

For N observations a log-likelihood function is de�ned by

 (frig) � �2 log
"

NY
i=1

P (rijMc; Rc)

#

=
NX
i=1

(�obs;i � �ex;i)
2

�2
i

+ const (5.7)

which is to be minimized with respect to the parameters Mc and Rc. Clearly, when (5.6)
gives the correct probability distribution for the value of �obs, the distribution resulting
from a non-trivial transformation F(�) will in general not be Gaussian, and while the least
squares method will still give the minimum variance solution it will in general be biased.

Since we do not know the correct distribution we have �tted the models both to log(�)

and to the cumulative mass pro�le, Mcum(R) � 4�
R R
0
r2�(r)dr. The pro�les were deter-

mined both with the highest density peak as center and with the moving center method.
The consistency of the di�erent methods should give some indication of the bias involved
in the �tting procedures.

Using the least-squares method we also must specify the weights for the individual
data points. After �xing the center and the size of the bins there are no observational

uncertainties left. For the simulations studied here, the data points may be viewed as
a sampling of the true density �eld, and one expects noise to be introduced by this. In
particular, one expects small bins to show greater scatter than larger bins, and we would
like to give less weight to their contribution. We have therefore assumed Poisson weights,
i.e. we have used the counts in the logarithmic bins as weight: wi = Ni.

In general, working with unbinned data is preferable to using binned data, since in
the process of binning one only uses part of the information available. We have therefore
developed yet another method for �tting the models to the cluster data. This method is
similar to that developed by Sarazin (1980) for �tting models to the angular distribution
of galaxies in clusters on the sky, but di�ers from it in certain important aspects. Both
Sarazin's and our methods use the positions of all the individual galaxies in the clusters to
�t the position of the center together with the other model parameters, via a maximum-
likelihood technique. For a certain choice of center, xc, and model parameters, in our case
Mc and Rc, Sarazin de�nes the likelihood function

LSar �
NY
i1

�mod(jxi � xcj jMc; Rc) ; (5:8)
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where �mod is the model. This function is to be maximized with respect to all the pa-
rameters, including xc. As Sarazin notes, increasing Mc will always increase LSar and he
therefore �xes the total mass. For this reason we have chosen a di�erent form for the like-
lihood function, that will allow us to vary the mass in the �tting procedure as well. Our
choice is based on the cumulative mass pro�le instead of on the radial density pro�le. There
is no simple, natural form for the corresponding probability distribution and we therefore
make the ansatz that the probability that one �nds M points within a sphere of radius R
around the center has a normal form. The likelihood function is then de�ned by

L(xc;Mc; Rc) =
NY
i=1

1p
2��2(Ri)

exp
�
�(Mcum(Ri)�Mmodel(Ri))

2=2�2(Ri)
�

(5:9)

where Ri = jxi�xcj. Maximizing this function is equivalent to minimizing the log-likelihood
function

 � �2 log(L)

=
NX
i=1

�
(i�mp �Mmodel(Ri))

2

�2(Ri)
+ log(2��2(Ri))

�
(5.10)

where mp is the mass per particle and the points are ordered such that the individual Ri

are increasing with i. For the results presented below we have assumed the Poisson form
for the variance �2(Ri) � mpMmodel(Ri). Using the algorithm AMOEBA from Press et
al. (1989) we minimize this function for the Ja�e and Hernquist models. For the cluster
in Fig. 2 the centers that are found using this method are plotted as the open and �lled
triangles in Fig. 4. The center as determined from the �t to the Ja�e model is closer to the
highest density peak than the one obtained from the Hernquist �t. This is probably due
to the fact that the Ja�e pro�le is steeper in the inner regions, �J / r�2 and the method
will search for the steepest density drop which will be associated with the local density
maximum. The Hernquist model is atter in the inner regions, � / r�1, and may actually
�t better with the center somewhat displaced from the density maximum, as happens to
be the case for this cluster.

3 Results I: cosmological N-body simulations

3.1 Results from the cosmological simulations

Our investigations have concentrated on the study of two large cosmological N-body simula-
tions that were provided by Simon White. These have been described elsewhere (Chapter 4;
see also White, 1993), and here we will review the most important aspects. Both simula-
tions contain 106 particles that were distributed uniformly throughout the simulation cube,
but for density perturbations which followed a Gaussian random �eld with a power-law
power spectrum, P (k) / kn, with n = �1; 0. These were evolved in time with a particle-
particle particle-mesh (PPPM) algorithm, where the PM-part used a grid of 2563 cells and
the PP-part had a force-softening parameter, �, of size � = L=2500, with L the size of the
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Figure 7: Density pro�les for massive clusters in n={1 (upper frames) and n=0 (lower frames)

simulations, normalized using parameters from �ts to Hernquist (left) and Ja�e (right) model.
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Figure 8: Density pro�les from Fig. 7 averaged over all clusters, dotted lines give uncertainty in the

average. The upper dashed lines give Hernquist model (left) and Ja�e model (right). Bar-codes

show the correspondingly renormalized values of the force-softening radius. Also plotted are the

tangential and radial velocity dispersions, respectively open squares and �lled dots. The lower

dashed lines give the model predictions for an isotropic velocity distribution.
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simulation cube (for details of the algorithm see Hockney & Eastwood, 1981; Efstathiou
et al. 1985). The clusters under consideration here were extracted from the last output
time of the simulations using a standard friends-of-friends (fof) algorithm (e.g. Efstathiou
et al. 1985). With a linking length that was 10% of the mean inter-particle spacing, we
determined the centers-of-mass of the most massive clusters. Around these centers we de-
termined the spheres within which the overdensity with respect to the whole simulated
volume was �c = 50, and we took all the points contained in these spheres to form the
�nal clusters. Note that this is a lower value for the overdensity than the �c = 200 used in
Chapter 4, and the clusters will consequently be somewhat larger. We used all the clusters
which had an `fof-core' containing at least 1000 particles, which yielded 60 clusters for the
n={1 simulation and 111 clusters for the n = 0 simulation. To these we added about
25 clusters, whose fof-cores contained between 200 and 1000 particles, and were roughly
uniformly chosen from this range.

For these clusters we determined density and mass pro�les around the position of the
highest density peak, and mass pro�les using the moving center method. We �tted Hern-
quist and Ja�e models to these pro�les using a standard non-linear least-squares routine.
The results from the density pro�le �ts are shown in Fig. 7. In this �gure we show all the
individual density pro�les after normalizing them using the �tted parameters. In Fig. 8 the
individual pro�les are averaged and compared to the models. Clearly, the Hernquist pro�le
gives an excellent �t to the average cluster pro�le over the whole range of radii and for both
the n={1 and n=0 simulations, although it may be somewhat low in the central parts. The
Ja�e pro�le is equally well able to �t the model in the outer parts, but is too steep in the
inner parts. The `bar-codes' in Fig. 8 show the distribution of renormalized force-softening
radii. The main discrepancy between the models and the mean pro�les appears at radii
smaller than the softening radius. Crone et al. (1994) correct their density pro�les for this
force softening. They use an argument based on an adiabatic invariant of the particle orbits
under the change of zero to �nite softening. This should steepen the pro�les and the Ja�e
model might then actually provide the better �t. On the other hand, in the inner parts
discreteness e�ects will probably destroy the correspondence of the simulation to dark ha-
los or clusters in the Universe anyway, and we have therefore chosen to present the results
without this correction.

Fig. 8 also shows the average velocity dispersion pro�les, both for the radial and the
tangential components. The lines drawn through these points give the isotropic solutions for
a spherical model cluster, as derived for instance in Tremaine et al. (1993). Although the
velocity dispersion is not isotropic for all radii, the model curves �t the results reasonably
well, with again a discrepancy in the inner regions for the Ja�e model.

Due to the unknown e�ects of the �nite softening radius of the force calculation, no
compelling case can be made for either of these two models as providing the best description
of the `data'. We have therefore also performed three-parameter �ts to the density pro�les
using the more general class of �-models (Tremaine et al., 1993) as de�ned in Eq. 5.1.
In Fig. 9 we show the distribution of the �tted values for � for all the clusters in the two
simulations. The values of � are comparable for the two simulations and lie roughly between
1 and 2, the values for the Ja�e and Hernquist models. The average values of � for the two
simulations are similar: < � >� 1:6. There is no trend of � with mass, but there is a trend
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of � versus R�, such that high values of � imply low values of R�. R� measures the radius
at which the logarithmic slope of the pro�le reaches the value (�� 7)=2 and is thus clearly
coupled to �. This shows that the scale parameter R� itself is not well suited to use for a
measure of the characteristic scale of the cluster. Below we will show that a combination
of R� and � does provide a good characterization of the size of the clusters.

In Fig. 10 we compare the parameters obtained from the di�erent pro�le de�nitions
and �tting methods to each other. It shows that in general the methods agree quite well
although there are exceptions for individual clusters. The clusters which show the greatest

Figure 9: Correlations of parameters from three-parameter �ts. M� and R� vs �. Left for clusters

from n={1 simulation, right for n=0.
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Figure 10: Comparison of �tted parameters for di�erent methods for de�ning the density pro�les.

Plotted are parameters from �ts using moving-center method versus density pro�les around highest

density peak (upper panels), and maximum-likelihood �ts versus the highest density peak (lower

panels). Indicated in the panels are the parameters which are compared. Again, the left panels

show the results for the n={1 simulation, right for n=0.

discrepancies, generally also show signi�cant deviations from spherical symmetry, both in
the core and in the outer regions.

Another interesting relation is the one between the centers found by the moving center
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Figure 11: Comparison of the centers found with two di�erent algorithms.

method at the smallest radius and the centers found by the maximum likelihood method.
As Fig. 11 shows, the maximum likelihood �t to the Ja�e model �nds the highest density
peak with greater accuracy than the �t to the Hernquist model. But as Fig. 10 shows, the
model parameters that are found, generally agree very well also for the Hernquist �ts.

3.2 R /M
�

In Fig. 12 we show the model parameters obtained from the �ts to the highest peak density
pro�les. Clearly the two parameters are strongly correlated. A �t to a power law relation,
Rc /M�

c gives

n = �1 : RH /M0:49�0:04
H

Rj /M0:66�0:06
J (5.11)

n = 0 : RH /M0:57�0:04
H

RJ /M0:77�0:06
J (5.12)

One notes that the relations depend on the model that is used for �tting. The relations
for the Hernquist �ts agree very nicely with similar relations obtained by Fish (1964) and
Kaastra & van Bueren (1981) for elliptical galaxies, West et al. (1989) for clusters of
galaxies and Sanders & Begeman (1994) for dark halos. West et al. give a prediction for
the expected relation for clusters from power-law power spectra, P (k) / kn:

Rc /M�
c ; � =

5 + n

9 + n
(5:13)

which gives � = 0:5; 0:56 for n = �1; 0 respectively. This prediction agrees perfectly with
the relations for the Hernquist models. West et al. do not give a derivation of this relation
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Figure 12: Correlations of parameters from two-parameter �ts, for Hernquist and Ja�e model.

The lines correspond to the �ts in eqs. (5.11) and (5.12)

and it is di�erent from that more often used in the literature (Chapter 4)

Rc /M�
c ; � =

5 + n

6
(5:14)

This relation is closer to the �ts to the Ja�e model, but disagrees with the Hernquist results.

The relations found by Fish and Kaastra & van Bueren were determined for quantities
directly obtained from the data, i.e. without �tting models. In Fig. 13 we show similar
results for the present simulations. There we show the speci�c total and kinetic energies
versus the total mass. The potential energy is obtained from the isolated clusters with a
particle-particle algorithm (e.g. Hockney & Eastwood, 1981). For the mass we simply take
the total number of particles in the cluster multiplied by the individual particle's mass.
Clearly these quantities are only rough approximations to the exact values; the e�ects
on the energy from exterior structures is not taken into account, while the mass may be
overestimated due to the inclusion of all particles within a density contour � = 50, while
a more natural choice might be 200. Nevertheless, all these model-independent quantities
show strong correlations, which are closer to the results from the Hernquist �ts than to
those from the Ja�e �ts.

In Fig. 14 the correlation between the quantities M� and R�, obtained from the three-
parameter �ts to the �-models, are shown. This correlation has signi�cantly greater scatter
than the ones obtained with � �xed. However, when we plot the half-mass radius R1=2 �
R�=(2

1=� � 1) instead of R�, the correlation is tighter again and, moreover, is very similar
to the relations found before for the �t to the peak-density pro�les. The reduction of the
scatter is caused by the clear correlation between the value of � and the corresponding scale
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Figure 13: Characteristic total energy and kinetic energy versus the total mass of the clusters in the

cosmological simulations. These quantities are determined directly from the clusters, independent

of model �ts. The parameters �i give the slopes of the �tted lines: �1 is obtained from �tting the

model E=M /M�1 , �2 is obtained from �tting the model M / (E=M)1=�2 .

factor R�. This nicely illustrates a point made by Kormendy (1982) about the use of extra
free parameters in �ts. His main point is that when the main characteristics of an observed
pro�le are already well described by a functional form with say two parameters, adding a
third will in general not just serve to describe the remaining characteristics; it will more
generally mix with one or both of the original parameters and so spoil the interpretation
of these in terms of the physically relevant structural characteristics. In the case at hand,
R� not only determines the scale, but also the form of the pro�le and the same so for �. It
is only a combination of the two that gives information on the spatial size of the clusters.

3.3 Rotation curves

For comparing the clusters in the simulations to the dark halos around spiral galaxies, it is
useful to plot �ducial rotation curves, which are de�ned by

vrot(R) �
r
GM(R)

R
: (5:15)

In Fig. 15 we have plotted this quantity for all clusters individually, normalizing the size of
the simulation cube of the last output frame to unity. From plots like these various authors



166 Chapter 5 Density profiles

Figure 14: Correlation of R� and corresponding R50% with M�. Due to correlation of � with R�

(see Fig. 9), correlation of R50% with mass is tighter. Fitting R50% / M
�
� gives � = 0:54 � 0:02

(n={1) and � = 0:65� 0:02 (n=0).

have concluded that the scaling models are correct in predicting rotation curves that are
declining more steeply with increasing power-law exponent n (e.g. Efstathiou et al., 1988;
Warren et al., 1992). We here propose a di�erent explanation for this observation that
for �xed radius, the slope of the rotation curve is steeper in the n = 0 simulation than
in the n={1 simulation. From the normalized plots in Fig. 12 we see that in the n={1
simulation, objects in general have a greater characteristic radius than objects of the same
mass in the n = 0 simulation. Since clusters in both simulations have density pro�les that
are excellently �tted by the Hernquist model, their rotation curves should be similar apart
from di�erent normalizations. A smaller characteristic radius implies, for the same mass,
a steeper pro�le at the same radius, even when the overall shape of the curves is the same.
This observation can therefore not be considered to justify the infall models. One needs to
carefully examine the density pro�les themselves and these are clearly not power-laws.

These conclusions are corroborated by the results presented in the lower panels of Fig. 15.
In that �gure the average rotation curves are shown for the clusters in the two simulations.
The averaging was performed using the half-mass radius and the mass of the clusters as
they were extracted from the simulations, without any model �tting. The �gure shows
that within the uncertainties the rotation curves are the same for the two simulations,
corroborating the conclusions drawn above.

Nevertheless one would expect the initial conditions to show up somewhere, be it in the
amplitude of the relation R / M� or in the value of the exponent. Our observations are
limited to two simulations and clearly it would be very useful to repeat the above analysis
for a greater range of initial conditions.
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Figure 15: Upper panels show the rotation curves for the clusters from the simulations, derived

from the density pro�les. Rotation velocity de�ned by Vrot = (M(R)=R)1=2. Scales normalized

such that scale of simulation volume is a=1 at �nal time. In the lower panels these rotation curves

are normalized by half-mass radius and corresponding velocity and then averaged.

4 Results II: isolated collapse simulations

In this section we present the results of a number of isolated collapse simulations that were
performed to check the structural properties of clusters evolved from a greater range of
initial conditions. Our main aim was again to determine the density pro�le of the resulting
objects and compare these to the Hernquist and Ja�e models, and also to the more general
class of `�-models' de�ned above. Depending on the nature of the initial model, we used two
di�erent simulation algorithms. In those cases where one expects substructure to develop
and relax on timescales short compared to the evolution of the cluster as a whole, we
used a version of Hernquist's TREE-code. This code allows one to follow the evolution of
clustering with a high spatial resolution over the whole simulation volume. In cases where
the predominant evolution was infall onto a central condensation, we used a code originally
developed by van Albada (1982), where the potential is expanded in spherical harmonics
on a radial grid with highest resolution in the inner parts (SPEXP code). The advantage of
this over the TREE code is its speed, the SPEXP algorithm being linearly dependent on the
number of particles. Due to the spatial dependence of the force resolution the SPEXP-code
is not well suited for following the evolution of small scale structure outside of the inner
regions.

We studied four types of initial conditions. The �rst two classes of models were discussed
already in Chapter 4. These models are constructed out of the initial conditions of the
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Figure 16: Density pro�les for isolated collapse simulations using the TREE-code of clusters

extracted from n={1 cosmological simulation. Curves give best �ts to Hernquist model (solid

line), Ja�e model (dashed line) and �-model (dotted line). The value for � is indicated, as are the

characteristic radii obtained from the two-parameter �ts.

n={1 cosmological simulations. For some of the clusters of the �nal output time of that
simulation, we extracted the corresponding points at the initial time. Around the center of
mass of these points a sphere was drawn with a radius of order the maximum distance of
the cluster points to the center. The points enclosed by this sphere constituted the �nal,
enlarged cluster, which we then evolved in isolation using the TREE code. From these
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Figure 17: Density pro�les for isolated collapse simulations using the SPEXP-code (see text), for

spherically symmetrized versions of same clusters as in Fig. 16.

models, a second set of spherically symmetric protoclusters was constructed by angularly
randomizing the positions of the points of these cluster around the center of mass, leaving
the initial radius and radial velocity of the points constant. This class of models was evolved
using the SPEXP code. In Chapter 4 these clusters were used to compare the evolution in
isolation with that in the fully cosmological environment. In Figs. 16 and 17 we show the
resulting density pro�les, determined from the highest density peak of the clusters, together
with the best �tting model pro�les, both from the Hernquist and Ja�e two-parameter �ts,
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Figure 18: Half-mass radii and total masses from three-parameter �ts for the three versions of the

clusters in Fig. 16 and 17.

and the �-model three-parameter �ts. Clearly, the models �t the end products of these
isolated collapses as well as they did for the average clusters in the fully cosmological
simulation. The parameters from the three parameter �ts for the three di�erent versions of
the clusters are compared in Fig. 18. There does not seem to be a systematic e�ect on the
�tted parameters, while the ordering in mass and radius between the clusters is preserved.

The second class of models should closely correspond to the idealized models that are
investigated in the semi-analytical self-similar infall models, supposed to describe the col-
lapse of clusters from power-law initial perturbation spectra (Fillmore & Goldreich, 1984;
Bertschinger, 1985; Zaroubi & Ho�man, 1993). This correspondence should be perfect for
our third class of isolated models. This class consists of spherical clusters that have an
exactly power-law radial density perturbation :

�(r) = ��
�
1 + (r=r0)

�
�
: (5:16)

Their initial expansion velocity was a pure Hubble ow, v(r) = Hr;H2 = 8�G��=3, to which
was added a velocity perturbation in the linearly growing mode corresponding to the density
perturbation interior to the radius. We used three choices for the power-law exponent,
 = 0:5; 1; 1:5, corresponding to power-spectrum exponents, n = �2;�1; 0 respectively.

In Fig. 19 we show the �nal density pro�les for six of theses clusters, two for each choice
of . These clusters had a uniform component of mass M = 0:05, in the same units as
the cosmological simulations, and the density perturbation within the maximum radius was
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Figure 19: Density pro�les for spherical collapse simulations with power-law density perturbation

pro�les. Power-law exponent  is indicated, as well as best �t for � from three-parameter �ts

to �-models. Arrows indicated by H(ernquist) and J(a�e) give characteristic scaling radii from

two-parameter �ts to corresponding models. Lines give best �ts for these models as in Fig. 16.

�(rmax) = 0:05. The density pro�les are very well �tted by the Hernquist pro�le and clearly
less so by the Ja�e pro�le, which in this case is signi�cant since the resolution is much
higher than the characteristic scales of the clusters. In Fig. 20 we plot the characteristic
radii versus . There is a clear anti-correlation between the value of  and the value of
R50%, which implies that R50% increases with decreasing n, just as was suggested in the
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Figure 20: Half-mass radii for the clusters in �r. 19, determined from �ts to Ja�e, Hernquist and

�-models, as function of power-law exponent  of initial density perturbation pro�le.

previous section.

The �nal set of models is similar to the clumpy models investigated by van Albada
(1982). Spherical, uniform groups of points were uniformly distributed over a spherical
region. Both the points within each group and the groups as a whole were given random
velocities that were a fraction of the virial velocity of the whole cluster. The clusters were
not expanding. For certain choices of the parameters, these models were shown by van
Albada to lead to �nal surface density pro�les that were very well �tted by a de Vaucouleurs
pro�le (van Albada, 1982). The radial density pro�les of the clusters simulated here are
shown in Fig. 21. The di�erent clusters correspond to various choices for the radius of
the sub-clusters, the random velocities of the sub-clusters and of the particles within each
sub-cluster. The correspondence with the model pro�les is not very good for these clusters.
In all cases the inner regions are too at for both the Ja�e and the Hernquist models, while
the outer regions are too steep. The �-model �ts are badly constrained and give unphysical
values, � > 3. The formation of a at, core-like region, which was also observed by van
Albada in his models, may be due to the constraint that the course-grained phase space
density can not increase to values higher than the initial maximum �ne-grained phase space
density (e.g. Carlberg, 1986). As Carlberg et al. (1986) show, in such cases dissipation
may help to achieve higher core densities.
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Figure 21: Density pro�les from clumpy collapse simulations using the SPEXP-code. Lines cor-

respond to model �ts as in Fig. 16.

5 Summary and discussion

In this chapter, the question has been addressed of what may be the outcome of purely
gravitational collapse processes. We have done so by analyzing the radial density pro�les
of clusters that were formed in dissipationless collapse simulations. Our main aim was to
try to resolve the apparent discrepancy between the two main pictures of the approach to
equilibrium, namely violent relaxation (Lynden-Bell, 1967) and secondary infall (Fillmore &
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Goldreich, 1984; Bertschinger, 1985). These processes give rise to di�erent types of objects,
both of which have apparently been observed and reproduced in N-body simulations.

Observations show that rotation curves of spiral galaxies are at out to large radii, while
the surface density pro�les of elliptical galaxies are well described by a de Vaucouleurs,
R1=4pro�le. The �rst observation is explained by assuming that the density pro�le of
the underlying dark halo asymptotically behaves as � � R�2, while the de Vaucouleurs
pro�le is well reproduced by the so-called Hernquist pro�le, which behaves asymptotically
as � � R�4. Dark halos are usually equipped with at cores, � � constant forR small, while
the Hernquist model diverges for R�1; R ! 0. According to Sanders & Begeman (1994),
this last characteristic of the Hernquist pro�le actually would make it an ideal model also
for the dark halos of spiral galaxies, since this behaviour might reproduce the successes and
implied correlations from MOND �ts to observed rotation curves (Begeman et al., 1991).
Indeed, Sanders & Begeman (1994) were able to �t several rotation curves very well using
essentially one parameter Hernquist models, where the total mass and characteristic radii
were coupled as RH / M

1=2
H . If dark halos actually have a Hernquist pro�le and if the

mass and radius are related as above, this might explain the success of the MOND �ts,
without requiring new gravitational physics, and, moreover, would provide an explanation
for the Tully-Fisher relation. If indeed dark-halos can be described by the same models as
elliptical galaxies, this would strengthen the belief that these objects have originated from
similar collapse processes.

On the theoretical side, both forms of the density pro�le in dark halos have been ex-
plained using dissipationless collapse processes. Power-law halos result from semi-analytical
self-similar infall calculations where � � r�2 is achieved for the correct choice of initial con-
ditions (Fillmore & Goldreich, 1984; Bertschinger, 1985; Zaroubi & Ho�man, 1993). These
results have found support in various cosmological N-body simulations, in which it was
found that rotation curves are atter for (power-law) initial conditions, P (k) / kn, with
lower values for n (e.g. Efstathiou et al., 1988; Warren et al., 1992; Crone et al., 1994). On
the other hand, collapse simulations from clumpy initial conditions, have reproduced the de
Vaucouleurs pro�le of elliptical galaxies (van Albada, 1982), while high resolution collapse
simulations from CDM initial conditions with an approximate inclusion of the external u-
niverse produced clusters whose density pro�les were described by the Hernquist model to
high precision (Dubinski & Carlberg, 1991).

In this paper we have shown that indeed the Hernquist and to a lesser extent also the
Ja�e models, provide an accurate description of the radial density pro�les of clusters that
were evolved from a range of scale-free initial conditions. This means that the scale-free
nature of the initial conditions is broken during the gravitational evolution of the individual
clusters. At the same time it was shown that the basic model parameters, namely the mass
and the characteristic scale, are strongly correlated:

Rc = A(n)M�(n)
c : (5:17)

Here we propose that, instead of working on the individual cluster level, as is assumed
in the infall models for cluster formation, the initial conditions determine the quantitative
properties of this scaling relation. In this picture, the non-power-law shape of the individual
cluster pro�les is determined by collective, violent, relaxation processes, in which the initial
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conditions are remembered only in so far as they determine the form of the above scaling
relation. As the arti�cial cold and clumpy collapses show, the functional form of the �nal
density pro�le may at least to some level be determined by the initial conditions as well,
but for the range of more realistic initial conditions investigated in this work and in the
work of other authors, it seems that the �-models in general, and the Hernquist model in
particular, form a more or less universal class of model pro�les to which the clusters evolve
in their �nal relaxation stages.

One consequence of this is that the atness of rotation curves of spiral galaxies is not
necessarily a consequence of the initial conditions. In the past, rotation curves were de-
rived for clusters in cosmological simulations, which appeared atter for lower values of the
exponent n in the power-spectrum P (k) / kn (e.g. Efstathiou et al., 1988). Simple analyt-
ical arguments predict at rotation curves for n={2, which happens to be the logarithmic
slope of the Cold Dark Matter (CDM) spectrum at galaxy scales. These same arguments
do however predict power-law density pro�les, which are not observed in the simulations
investigated here.

As shown by Sanders & Begeman (1994), dark halos with a Hernquist density pro�le can
explain the rotation curves around spiral galaxies. To compare their results to the present
ones we need to assign physical sizes to the simulated clusters. Since the simulations
are essentially scale free, there is no unique way in which such an identi�cation may be
obtained (see Barnes & Efstathiou, 1987, for a discussion of several methods). Here we are
interested in comparing the correlation between mass to a radius to the observed relation.
We will therefore assume that the �nal output corresponds to the present time. We will
�rst assume that a cluster of 10000 points corresponds to a mass of 1012M�; the total
mass in the simulations was therefore 1014M�. Writing the Hubble parameter at present
as H0 = 100h km/s, we obtain for the density in the present Universe �c = 3H2

0=8�G =
2:78 � 1011h2(M�=Mpc3). We may now calculate the size of the simulating box, which is
L = 7:1h�2=3 Mpc. From Fig. 12 we see that a mass of 1012M� in the n={1 simulation
corresponds to a radius of roughly R0 = 0:0055 � 7:1h�2=3 � 39h�2=3kpc. For the n=0
simulation the radius is R0 = 27kpc. The results obtained by Sanders & Begeman (1994)
indicate that a mass of 1012M� corresponds to a radius of R0 = 123kpc. They took a value of
H0 = 75km=s=Mpc for the Hubble constant, which then gives R0 = 47kpc and R0 = 33kpc
for n={1 and n=0 respectively. These values fall short of the observed values, but one
might expect such a result. The CDM spectrum has a logarithmic slope corresponding to
an n={2 power-law spectrum at galaxy scales. For n={2 we expect the characteristic radius
to be still larger, which may resolve this mismatch.

There is a worse problem with this normalization however. The implied correlation
length, the radius at which the two-point correlation function reaches unity, would be
r0 � 0:5Mpc (for n={1), an order of magnitude smaller than is observed in the Universe
(see Chapter 1). One may normalize the simulations such that these values agree, but it
turns out that the implied characteristic radii are then even smaller than with the previous
normalization.

Some interesting questions still await an answer. First, the shape of the dark halos
around spiral galaxies is still badly constrained. The present work indicates that halos are
essentially �nite. This may be an artifact of the limited range of initial conditions that
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has been probed. On galactic scales, the power spectrum is expected to have a power-law
exponent n � �2 in the context of the CDM model. It may well be that halos would overlap
before reaching the asymptotic � � r�4 behaviour. In such cases both violent relaxation
and secondary infall may only o�er a limited description of the true formation process.
Also, some claims have been made that dwarf galaxies do not conform to a picture with
singular dark halos (Moore, 1994; Flores & Primack, 1993).

Second, in the present work we claim that the self-similar infall calculations do not
correctly describe the evolution of overdensities after turn-around. Apparently the extra
degrees of freedom in the actual three-dimensional collapse process are not adequately
described by the purely radial infall approximation. Instead, violent relaxation seems to be
at work at some level in cosmological environments just as earlier it was shown to act in
isolated collapses from clumpy initial conditions (van Albada, 1982). It would clearly be
desirable to obtain an analytical treatment of this relaxation process and thus understand
how the R1=4{pro�les are generated on a more fundamental level than N-body simulations
may ever provide. Some attempts have been made in that direction, but none have been
totally convincing (Bertin & Stiavelli, 1984; May & van Albada, 1984; Stiavelli & Bertin,
1987; Hjorth & Madsen, 1991, 1993).

Third, it is interesting to investigate the importance of these results for galaxy formation
theories. There it is usually assumed that galaxies form within an isothermal dark halo. It
is very likely that the actual shape of the halo, together with the various correlation of its
properties, will inuence the properties of the �nal galaxy. The observed scaling between
mass and radius can easily be translated into a Tully-Fisher relation, except for the fact
that the scatter in halo properties already seems larger than the observed scatter (see also
Eisenstein & Loeb 1995). Understanding this relation would of course be very desirable as
well. To assess this problem one must clearly also know how these properties depend on
the initial conditions. Especially interesting would be to see whether these scaling relations
hold when the initial conditions are not scale-free, such as is the case for the cold dark
matter model.
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