
 

 

 University of Groningen

Direct numerical simulation of turbulence on a connection machine CM-5
Verstappen, R.W.C.P.; Veldman, A.E.P.

Published in:
Applied numerical mathematics

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1995

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Verstappen, R. W. C. P., & Veldman, A. E. P. (1995). Direct numerical simulation of turbulence on a
connection machine CM-5. Applied numerical mathematics, 19(1-2), 147-158.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 28-10-2022

https://research.rug.nl/en/publications/9f68089e-9b60-4036-b5f8-729605521dfb


ELSEVIER Applied Numerical Mathematics 19 (1995) 147-158 
MATHEMATICS 

Direct numerical simulation of turbulence 
on a Connection Machine CM-5 

R.W.C.P. Verstappen *, A.E.P. Veldman 
Department of Mathematics, University of Groningen, P.O. Box 800, 9700 AV Groningen, Netherlands 

Received 7 November 1994 

Abstract 

In this paper we report on our first experiences with direct numerical simulation of turbulent flow on a 
16-node Connection Machine CM-5. The CM-5 has been programmed at a global level using data parallel 
Fortran. A two-dimensional direct simulation, where the pressure is solved using a Conjugate Gradient method 
without preconditioning, runs at 23% of the peak. Due to higher communication costs, 3D simulations run at 
13% of the peak. A diagonalwise re-ordered Incomplete Choleski Conjugate Gradient method cannot compete 
with a standard CG-method on the CM-5. 

1. Introduction 

Computer simulation has become a major tool to study turbulent flows. In many technological 
applications, unfortunately, direct numerical simulation (DNS) of turbulent flows--i.e., computing 
numerical solutions of the unsteady 3D Navier-Stokes equations that resolve the evolution of all dy- 
namically significant scales of motion--more than exhausts the presently largest available computing 
resources by requiring machines in the exa(101S)flops range with exabytes of memory. Thus, for 
turbulent engineering flows, acceptable computational effort can only be obtained by modeling the 
turbulent motion of the small scales in the flow. 

Turbulence modeling forms the Achilles' heel of applied computational fluid dynamics: with exist- 
ing turbulence models the simulation accuracy required by industry cannot always be reached. It is 
generally expected that DNS will play a key role in obtaining reasonable accurate turbulence models 
for applied computational fluid dynamics. For an overview of the impact of DNS on turbulence 
modeling and research, see for instance [ 1 ]. 

The enormous appetite for ~ ~ating-point operations and bytes limit DNS to low Reynolds numbers. 
Flows are only weakly turbulent at these Reynolds numbers. Before the turn of the century, massively 

* Corresponding author. E-mail: R.W.C.EVerstappen@math.rug.nl. 

0168-9274/95/$09.50 (~) 1995 Elsevier Science B.V. All rights reserved 
SSDI 0168-9274( 95 )00022-4 



148 

Table 1 

R.W.C.P. Verstappen, A.E.P. Veldman/ Applied Numerical Mathematics 19 (1995) 147-158 

Reynolds number Grid points Memory CPU time 

300 hours 0.3 hour 

104 107-10 ~ 1-10 Gb 1-10 Gflops 1-10 Tflops 
107-108 1015-1017 105-107 Tb 105-107 Tflops - 

parallel machines will offer the Teraflop performance. Nowadays, already, the high end of the CM-5 
line has a peak of 0.13 Teraflop/s. This figure is certainly impressive, but what can we get out of  a 
CM-5? To answer this question, we have investigated how a 16-node CM-5 performs on an existing 
DNS-code, that has been developed for use on vector computers (in particularly CRAY YMP and 
NEC SX-3). Here, we have restricted ourselves to data parallel Fortran. Related questions that we 
will consider read: which parts of  our approach have to be altered to obtain a faster implementation 
on the CM-5; can a 16-node CM-5 be viewed as a production machine, i.e., is the working speed of 
a 16-node CM-5 (peak 2 Gflop/s) comparable to that of one vector processor of NEC's SX-3 (peak 
2.7 Gflop/s),  e.g. 

In the following section we will describe the main characteristics of the Connection Machine CM-5 
shortly. In Section 3, the computational requirements for DNS of turbulent flows are outlined and 
an example--DNS of turbulent flow in a driven cavity--is given. The computational procedure is 
outlined in Section 4. Its parallelization is discussed in Section 5. Conclusions will be drawn in 
Section 6. 

2. The Connection Machine CM-5 

The Connection Machine CM-5 as installed at the University of Groningen is a 16 processor node 
system with a peak performance of approximately 2 Gflop/s. Each processing node is a 128 Mflop/s 
computational unit composed of a SPARC micro-processor, 4 vector units, 32 Mbytes of memory and 
a network interface. The structure of data network is a so-called fat tree. The data network guarantees 
10 Mbyte/s to each processing node, no matter where in the system the data is being sent. 

The CM-5 can be programmed both on a global level (using data parallel Fortran or data parallel 
C) and on a local level (in a message-passing programming style). We restrict ourselves to the global 
level of programming and use CM-Fortran, which is practically identical to the language Fortran 90. 
Large parts of the CM-Fortran code have been generated from an existing Fortran 77 program by 
using CMax, which is a tool that automatically converts Fortran 77 programs to CM-Fortran. 

3. Direct numerical simulation: future and present 

As already stated in the introduction, high performance computing is a prerequisite for direct 
numerical simulation of turbulence. Table 1 gives an overview of the requirements, in terms of 
processing power and memory size, for DNS of flows in an early stage of turbulence (Reynolds' 
number Re = 104), and for DNS of fully developed turbulent flows (see also [ 1 ] or [2] ). 

Nine orders of magnitude have to be bridged to perform a DNS of a fully developed turbulent 
flow. Assuming that both computer hardware and computational algorithms will continue to progress 



R.W.C.P. Verstappen, A.E.P. Veldman / Applied Numerical Mathematics 19 (1995) 147-158 149 

Fig. 1. Snapshot of the vorticity in a 3D driven cavity at Re = 10,000. The orientation of the cavity is such that the 
upperplane is driven from the left/back to the right/front. 

at the rate that they have got ahead during the past 30 years--both have become 30 times faster per 
decade--i t  will take (at least) three decades to bridge the lacking nine orders of magnitude. For this 
estimate to come true, computers need to become 303 times as fast and need to have 303 times more 
memory within the next 30 years; the numerical algorithms of 2024 need to be 303 times faster than 
the present ones, need to run efficiently at the fastest 2024-machines, and need to use 303 times less 
memory than todays algorithms do require. The latter is not often mentioned. Yet, today already, the 
available number of Mbytes does restrict the size of direct simulations. One way to overcome this, is 
by using domain-swapping techniques. 

Presently, direct numerical simulations of  turbulent flows are restricted to (relatively) low Reynolds 
numbers. About Re -- 10,000 is the highest attainable Reynolds number for a DNS. As an example, 
Fig. 1 shows an instantaneous vorticity field in a 3D cubical lid-driven cavity at Re -- 10,000, as 
obtained by DNS. The results of this simulation agree well with the available experimental data. That 
is, the DNS reproduces the experimentally observed Taylor-G6rtler-like vortices, and numerically and 
experimentally obtained mean velocities, root-mean-square velocities and power spectra do agree well. 
The DNS provides much more detailed information about this turbulent flow than the experiments 
do, and can be utilized to validate turbulence models for recirculating flow. For more details see [3]. 



150 R.W.C.P. Verstappen, A.E.P. Veldman/ Applied Numerical Mathematics 19 (1995) 147-158 

4. The computational procedure 

To make this paper self contained, the method that has been used to simulate transition and 
turbulence in a driven cavity is described concisely in this section. For a more detailed discussion 
of the computational procedure the reader is referred to [3]. The incompressible Navier-Stokes 
equations are discretized using a finite-volume method, where the velocities and pressures are defined 
on a staggered grid (cf. [4] ). The pressure term and the incompressibility constraint are integrated 
implicitly in time; the convective and diffusive terms are treated explicitly. The computation of one 
time step can be divided into three substeps. 

First, an intermediate velocity ~ is computed by integrating the convective and diffusive terms of 
the momentum equations over one time step At 

3U n U n - I  
- - ,  (1) 

2 2 

~t=un+At(--(~l'~h)~t+-~eAhUn ) . (2) 

Here, u n denotes the (given) discrete velocity at time t = ndt. The spatial discretizations of the 
convective and diffusive term are represented by (~. Vh)~ and A hun~Re respectively. The discretization 
of the convective term depends on both u n and u "-~ since a second-order Adams-Bashforth method 
is used to integrate the convective term in time. 

Next, the pressure p'+J at time level t = (n + 1 )At is computed from the Poisson equation 

--divhXYhp n+j = -d ivh t~ /A  t. (3 )  

And, finally, the divergence-free velocity u ~+~ is obtained by adding the pressure term to the inter- 
mediate velocity 5, 

U n+l = ~ -- AtXThp n+l. (4) 

Eqs. ( 1 ) - ( 4 )  hold in the interior of the spatial domain. At the boundaries, Dirichlet conditions for 
the velocity are valid. 

5. Parallelization of the computational procedure 

Solving the Poisson equation (3) takes most of the computing time (no matter how it is done). 
Hence, this part of the computational procedure should be implemented as efficient as possible. In 
Section 5.2, we will consider Conjugate Gradient methods for solving the discrete Poisson equation 
for the pressure. Before, in Section 5.1, we will consider the parallelization of the substeps (1),  (2) 
and (4) of the time-marching procedure. 

5.1. 7~me integration of the convection-diffusion equation 

The computation of the substeps ( 1 ), (2) and (4) of the explicit time-marching procedure can be 
done in parallel by letting each processor treat its own subdomain. In the sequel, we will focus on the 



R.W.C.P. Verstappen, A.E.P. Veldman / Applied Numerical Mathematics 19 (1995) 147-158 

T t T 

151  

T 

. © 

T 

I v l 

u o 

T T 

T T 
Fig. 2. The location of the discretized velocity (u,v) and pressure p on the staggered grid (in two spatial dimensions). 

data parallel execution of (2); the parallelization of (4) goes along the same lines; the parallelization 
of ( 1 ) is trivial. We kick off by discussing various ways to compute (2) data parallel. Next, we will 
analyze the fastest way by comparing the times for communication and computation. 

We have started by simply converting our existing Fortran 77 code into a CM-Fortran code, using 
the automatic Fortran 77 to CM-Fortran converter called CMax (a CM-5 software tool). The thus 
obtained data parallel Fortran code performed rather disappointingly: its megaflop rate lies within the 
range of a $10,000 workstation. The reason for this is that the staggered location of the components 
of the velocity and the pressure is not recognized by the software. All do-loops are simply replaced 
by FOP, ALL statements. This CM-Fortran construct is much slower than other constructs that can do 
the same job, a WHERE statement, or a MERGE statement, e.g. Before discussing these faster constructs, 
we will consider the data structure in detail. 

The flow domain is divided into finite volumes. The discrete pressure is defined at the centre 
of each volume; the discrete velocity components are defined at the cell faces, namely such that 
the velocity component perpendicular to a cell face is defined at the middle of that cell face. The 
staggering of the grid is sketched in Fig. 2. 

The computation of velocity components at the boundaries differs from those at internal grid points. 
The velocities at the boundaries are prescribed by time-independent Dirichlet conditions, i.e., need 
not to be updated during the time integration. Velocities at internal grid points are to be updated 
according to (2).  This can be realized by a WHERE statement of the following form 

WHERE ( ' ' n o t  a t  t h e  boundary") ~ l = U n + A l ( - - ( ~ l ' V h ) t l - l t - l A h u n  ) . 

The condition "not at the boundary" differs for the three components of the velocity, due to the 
staggering of the grid. Thus, three masks are to be constructed: for each component of the velocity 
one. These masks are independent of time, i.e., need to be computed only once, provided that there 



152 R.W.C.P. Verstappen, A.E.P. Veldman/ Applied Numerical Mathematics 19 (1995) 147-158 

is enough space available to store them during the whole time integration. Instead of using a WHERE 
statement, the update of the components of the velocity can be computed using array sections, 
or alternatively, the update can be done unconditionally, followed by a reparation of the violated 
boundary conditions. All these three solutions are significantly faster than CMax's solution, i.e., than 
a FORALL statement. 

We have compared all above mentioned solutions and found that the unconditional update followed 
by a reparation of the conditions at the boundaries is the fastest and uses the fewest memory. It is 
approximately twice as fast as the solution using a WHERE statement, and it is more than an order of 
magnitude faster than the FORALL solution. 

We have implemented the fastest solution. Hereto, another consequence of the staggering of the grid 
has to be considered. Namely that the three arrays--say u, v and w--containing the three components 
of the discrete velocity and the array p of discrete pressures are not conformable, i.e., their dimensions 
differ. Indeed, take nx volumes in the first spatial direction (the velocity component in this direction 
is denoted by u),  ny volumes in second direction (velocity component v) and nz volumes in the 
third direction (w). Then, the dimensions of the arrays u, v, w and p become 

u(O:nx, i :ny, 1 :nz), v(l :nx,O:ny, 1 :nz), 

w(1 :nx, 1 :ny,O:nz), p(l :nx, l:ny, i :nz). 

Adding two nonconformable arrays, for instance u and v, makes no sense in CM-Fortran (nor 
in Fortran 90). This also holds for other operations. Therefore, all four arrays u, v, w and p are 
redefined such that they become conformable. That is, all dimensions are taken equal to nx*ny*nz. 
The "missing" elements, which correspond to prescribed velocities at the boundaries, are stored 
separately. Then, all updates can be performed unconditionally, i.e., for i = l , . . .  ,nx, j--1 . . . . .  ny 
and k=l  . . . . .  nz, and the thus violated boundary conditions can be repaired afterwards. It may be 
noted that this solution is rather laborious for the programmer, since it involves a change of the data 
structure. 

To estimate the ratio between the time needed for communications and time taken by the com- 
putations, we will count the number of shifts and floating-point operations needed to integrate the 
convective-diffusive pan of the Navier-Stokes equations over one time step. 

Shifting is an intrinsic operation of CM-Fortran (and also of Fortran 90). In fact there are two types 
of shift, called CSHIFT and EOSHIFT. The "C" in CSHIFT stands for circular; "E0" means end-off. The 
EOSHIFT allows one to incorporate Dirichlet boundary conditions; the CSHIFT assumes periodicity in 
the direction of the shift. For instance, let a(1 :nx,  1 :ny) and b ( i  :n.x, 1 :ny) be two-dimensional, 
conformable arrays, then the statement 

b = CSHIFT(a, DIM=2, SHIFT=I) 

causes the elements of b to become equal to 

b(i,j) = a(i,j+i) 

for i=l ..... nx and j=l .... ,ny-i and 

b(i,ny) = a(i,l) 



R.W.C.P. Verstappen, A.E.P. VeMman/ Applied Numerical Mathematics 19 (1995) 147-158 153 

Uij+l 

Vij Vi+lj 

I i 
I 

' I 

Ui-lj , : U O  , tli+lj 

~ij~ Vi+lj-1 

Uij-l 

Fig. 3. Array elements of u and v needed to update u i j .  

for i - - 1 , . . .  ,nx. The integration of the discretized convective-diffusive terms of the Navier-Stokes 
equations requires nearest-neighbor shifts only. Fig. 3 shows the elements that are involved in the 
update of  an element u u. A similar figure can be drawn in three spatial dimensions, and for the 
other components of the velocity vector. The second-order central discretization of the diffusive part 
of the two-dimensional Navier-Stokes equation results into the well-known five-point molecule. Its 
evaluation requires four shifts (by plus and minus one in the first direction, and by plus and minus one 
in the second direction). On a stretched grid, all five elements of the stencil have to be multiplied by 

Table 2 

2D Convection Diffusion Cony. + diff. 

shifts 7 4 1 l 
flops 28 9 38 

ratio 0.25 0.44 0.29 

Table 3 

3D Convection Diffusion Cony. + diff. 

shifts 12 6 18 
flops 44 13 58 

ratio 0.27 0.46 0.31 



154 R.W.C.P. Verstappen, A.E.P. Veldman / Applied Numerical Mathematics 19 (1995) 147-158 

different constants and have to be summed together. This costs nine floating-point operations. Thus, 
in two spatial dimensions, the ratio between shifts and floating-point operations for the diffusive part 
is approximately equal to 0.44. This ratio can also be determined for the evaluation of the convective 
term of the Navier-Stokes equation. The results are summarized in Tables 2 and 3 for two and three 
spatial dimensions, respectively. N.b. In these two tables, the number of shifts and flops is counted 
per equation. Note that there are two momentum equations, for both components of the velocity one, 
in 2D and three in 3D. 

As can be seen from the two tables, the ratio between (nearest-neighbor) shifts and floating-point 
operations, i.e., the ratio between communication and computation, for one evaluation of a second- 
order finite-volume discretization of a convection-diffusion equation is approximately 0.3 in both two 
and three spatial dimensions. 

From this ratio, the communication costs can be estimated. To obtain an estimation of the com- 
munication costs, we will count the number of data elements that have to be moved from a local 
memory to another for one shift first. Here, we consider the operation CSHIFT(u,DIM=I, SHIFT=-1) 
on a target machine with p local memories. The array u has N entries. It can either be a two- or a 
three-dimensional array. In two dimensions it is defined as u(1 :N2,1:N2), where N 2 = N; in 3D we 
take u(1 :N 3, I:N3,1:N3), with N~ = N. To ease the counting, we assume that the 2D array u can be 
divided into p subarrays of size (Nx/pl/2) 2, and that all elements of one subarray are stored in one 
local memory. Likewise, we assume that the 3D array u consists of p subarrays of size (N3/p~/3) 3, 
and that the elements of one subarray are located in one local memory. Then, the absolute number 
of data motions is equal to (N2/pJ/2)*p in 2D and (N3/pi/3)2*p in 3D. The relative number of data 
motions are (p/N) i/2 and (p/N) I/3 respectively. 

Each node of a 16-node CM-5 has 4 vector units, and each vector unit has its own local memory. 
Thus, in total, there are 64 local memories. The 16 nodes can communicate at a speed of 10 
Mb/s. Two local memories within one node communicate at 20 Mb/s. Hence, the average speed of 
communication is 0 . 2 5 . 1 0 + 0 . 7 5 . 2 0  = 17.5 Mb/s. We take 106 data elements of 8 bytes each. Then, 
the total number of bytes to be moved for the evaluation of one convection-diffusion equation in two 
spatial dimensions can be estimated by 8.103 • 11 • 8 = 704000. This data motion takes approximately 
0.04 seconds (at a speed of 17.5 Mb/s) .  We have measured the actual time that the shifts take, and 
found that the actual time equals the estimation: both come to 0.04 seconds per equation. 

As remarked before, the ratio between shifts and flops is approximately equal to 0.3. Now, let 
us assume that the flops are for free, i.e., that they can be overlapped with the communications. 
Then, 38 • 106 floating-point operations would take 0.04 seconds, and the time integration of the 2D 
convection-diffusion equation would run at 950 Mflop/s (46% of peak). This thought experiment 
shows that the communication slows down the performance. It goes without saying that the actual 
Mflop rate has been measured: the time integration of the convection-diffusion equation on 10002 
grid runs at approximately 15% of the peak. Thus, the ratio between the communication time and 
computation time equals 1 to 2. 

In three spatial dimensions using a 1003 grid, we have measured a time of 0.6 seconds for the 
shifts required to evaluate three convection-diffusion equations. This limits the speed to 300 Mflop/s 
(15% of peak), where the maximum can only be reached if the flops are fully overlapped with the 
communications. The latter is not the case: the actual speed is approximately 7% of the peak, i.e., 
the communication time equals the time of the computations. 

We conclude this section, by summarizing the main results in Table 4. 



R. W.C.P. Verstappen, A.E.P. Veldman / Applied Numerical Mathematics 19 (1995) 147-158 155 

Table 4 

Speed Computation : communication 

Mflops % peak 

2D 300 15% 2:1 
3D 150 7% 1:1 

Table 5 

CRAY YMP (one processor) 
333 Mflop/s peak 

NEC SX-3 (one processor) 
2750 Mflop/s peak 

Mflop/s % peak Mflop/s % peak 

CG 260 78% 1100 40% 
ICCG 175 54% 700 25% 

5.2. How to solve the Poisson equation in parallel? 

Solving the pressure from the Poisson equation (3) is by far the most costly part of the time- 
stepping procedure. In other words, the performance of an incompressible Navier-Stokes solver is 
dominated by the performance of the solution technique for the Poisson equation. Consequently, our 
main task reads: solve the Poisson equation (3) as fast as possible. 

In [ 3 ], an Incomplete Choleski Conjugate Gradient method has been used to solve 1003 unknown 
discrete pressures per time step. The initial guess for the ICCG iteration is obtained by extrapolating 
the pressure from three previous time levels. The ICCG method requires 390 floating-point operations 
per unknown discrete pressure. 

The preconditioner in [ 3 ] is constructed from an incomplete Choleski decomposition without fill-in. 
This decomposition is modified according to Gustafson [5]. The preconditioner is time independent 
and is computed only once, namely before the time-stepping starts. Consequently, the time needed to 
construct the preconditioner is insignificant. By using Eisenstat's implementation, the preconditioned 
system can be solved iteratively for practically the same cost as the unpreconditioned system [6]. 

In two spatial dimensions the preconditioned Poisson system requires 22 floating-point operations 
per grid point and iteration; the unpreconditioned CG-iteration requires 19. Thus, in terms of floating- 
point operations per iteration the preconditioner comes almost for free. Yet, in terms of CPU time per 
iteration the preconditioned CG iteration is more expensive than the unpreconditioned CG iteration. 
This is due to the fact that the floating-point operations of the ICCG are done at a lower speed. Table 
5 illustrates this for two vector computers, that can be viewed as production machines for direct 
numerical simulations. 

The use of the preconditioner reduces the number of iterations needed to converge. The net gain of 
the use of the preconditioner is about a factor of three. Here, we have counted for the reduction of the 
number of iterations, the reduction of computational speed, and the slight increase of floating-point 
operations per iteration. 

So far for solving the Poisson equation on vector computers. We now turn to the CM-5. The 
computation of the right-hand side of the Poisson equation (3) can be done in parallel using the 
same constructs as used for (1), (2) and (4). The parallelization of the Poisson solver itself is more 
difficult. Here, we restrict ourselves to two spatial dimensions and consider the discretization given 
by the standard five-point molecule on a uniform grid. 



156 R. W.C.P. Verstappen, A.E.P. Veldman / Applied Numerical Mathematics 19 ( 1995 ) 147-158 

To start we consider the unpreconditioned Conjugate Gradient method. The data parallel code for 
this method reads: 

p = initial guess, r = initial residual, s = O, beta = 0 

the = SUM(r,r) 

WHILE ( rho .GT. tolerance ) DO 

s = r + beta*s 

q = -CSHIFT(s, DIM=l, SHIFT=-1) -CSHIFT(s, DIM=I, SHIFT=I) 

-CSHIFT(s, DIM=2, SHIFT=-1) -CSHIFT(s, DIM=2, SHIFT=l) + 4*s 

alpha = rho/SUM(s*q) 

p = p + alpha*s 

r = r - alpha*q 

rhon = SUM(r,r) 

beta = rhon/rho 

rho = rhon 

END WHILE 

Here, p, r ,  S and q are arrays (all have the same size as p has), and a lpha ,  be ta ,  rho  and rhon  
are scalars. All variables are defined as double precision. 

This code runs at about 25% of the peak of the CM-5. Its performance can be improved by a few 
percents by replacing the statement with the CSHIFT's by a call to a routine from the CMSSL library. 
With this Poisson solver the overall speed of the 2D DNS code lies a little over 500 Mflop/s on a 
16-node CM-5. 

The CG-algorithm has two synchronization points, namely the two innerproducts in the compu- 
tation of a l p h a  and be ta .  There are various approaches reported to reduce the costs of  these two 
innerproducts. In [7], for instance, it is proposed to postpone the update of p one iteration. Then, 
this update can be overlapped with the computation of a lpha ,  and thus the iteration has one synchro- 
nization point less. The resulting method has the same numerical stability as the standard CG. We 
have implemented the CG-method with postponed update of p on the CM-5, and found that it is not 
faster than the standard implementation: the data parallel compiler does not recognize the possibility 
to overlap one innerproduct with an array update. 

The shift to flop ratios for the CG-algorithm are 0.21 and 0.26 in two and three dimensions 
respectively. It is often remarked that the load plus store to flop ratio of CG is not very good. A 
closer look at the code generated by the data parallel CM-Fortran compiler shows that this ratio is 
not at all that bad: it is equal to 1.0 in 2D and equal to 0.9 in 3D. 

As already remarked, the speed of convergence of the CG iteration can be improved by introducing 
an appropriate preconditioner. Here, an incomplete Choleski factorization is used as a preconditioner. 
This preconditioner introduces a recursion in both directions over the grid. A typical recursive relation 
is of the form: 

x(i,j) = r(i,j) - a(i,j)*x(i-l,j) - b(i,j)*x(i,j-l). 

See also Fig. 4. 
The element x ( i ,  j ) depends on its previously computed neighbors in i and j direction. However, 

the elements x ( i ,  j ) on a diagonal i+j  = d = constant depend only on values of x corresponding to 
a previous diagonal, and thus, in a diagonalwise ordering, the unknowns can be computed in parallel. 



R. W.C.P. Verstappen, A.E.P. Veldman / Applied Numerical Mathematics 19 (1995) 147-158 157 

0 0 0 

Xi_lj x.. 1j 

o o xij_ 1 o 

Fig. 4. The data flow introduced by the incomplete Choleski preconditioner. 

This observation is explored on vector computers: the vectors correspond to diagonals of the grid. See 
e.g. [8]. On a parallel computer with local memory each processor can compute a part of a diagonal, 
if the unknowns are ordered, explicitly, in a diagonalwise manner. Suppose that x is a square array of 
N 2 elements. To store the elements of x diagonalwise we define an array xd of N*2N elements. The 
first diagonal (corresponding to d=l )  of x is stored in the first column of xd, the second diagonal of 
x (d=2) is stored in the second column of xd, and so on. 

When all arrays are stored in this manner, the data parallel code for the recursive relation reads 

xd(;1) = rd(;i) 
DO d = 2, 2*N 
xd(;d) = rd(;d) -ad( ;d)* xd( ;d-l)- bd(;d) 
*CSHIFT (xd( ; d-l), SHIFT=-1) ) 

ENDDO 

Here, all diagonals are stored in a 2D array. A slightly faster code can be obtained by storing each 
diagonal in a 1D array. 

The diagonal re-ordering has several drawbacks. Owing to the variations of the lengths of the 
diagonals, some processors perform superfluous computations. Moreover, the 64 vector units of the 
16-node CM-5 always have to be working on chunks of 8 elements. Hence, if N---512 then all 64 
vector units can work on vectors of length 8. For much smaller N one cannot expect a high Mflop 
rate for the computation of the diagonals, since many of the vector units cannot do anything useful 
then. 

The most serious drawback of the above approach is formed by the communication costs. The data 
flow for a diagonal update is sketched in Fig. 5. 

To update the elements of the diagonal stored in the dth column of xd, a CSHIFT of the previous 
diagonal d-1 has to be performed. The number of data elements to be moved for this shift is 
extremely low. In an optimal implementation, only 15 elements are to be send from a processing 
node to its nearest neighbor to perform this shift. Consequently, the latency, i.e., the time for setting 
up the communication, dominates the communication time. In practice, the communication costs are 
excessively high: the CSHIFT in the D0-1oop that computes xd ( ; d) takes almost all the time. This D0- 
loop causes the preconditioned CG method to run at only 1% of the peak of the CM-5. Consequently, 
this preconditioned CG method cannot compete with the unpreconditioned CG method. It may be 



158 R.W.C.P. Verstappen, A.E.P. Veldman/ Applied Numerical Mathematics 19 (1995) 147-158 

//  
d- d 

Fig. 5. The data flow introduced by the incomplete Choleski preconditioner, when the unknowns are diagonalwise re-ordered. 

remarked that the long time required by the CSHIFT is partly due to a nonoptimal implementation 
of this operation. Yet, even if the CSHIFT would be implemented optimally fast, the estimated time 
(based on the hardware of the CM-5) for communication is too large for the diagonally re-ordered 
ICCG method to be competitive to the unpreconditioned one. Therefore, new preconditioners that are 
both numerically efficient and run at about 20% of peak on the CM-5 are to be developed. 

6. Concluding remarks 

• The data parallel programming style works well. 
• Communication costs are higher for simulations in three spatial dimensions than in 2D. 
• Our DNS code runs on a 16-node Connection Machine CM-5 at 23% (in 2D) and 13 % (in 

3D) of the peak when the pressure is solved using the Conjugate Gradient method without 
preconditioning. 

• An incomplete Choleski decomposition is not an efficient preconditioner on the CM-5. Precon- 
ditioners that are both numerically efficient and run at about 20% of peak are to be developed. 

References 

[1] W.C. Reynolds, The potential and limitations of direct and large eddy simulations, in: J.L. Lumley, ed., Whither 
Turbulence? Turbulence at the Crossroads (Springer, Berlin, 1990) 313-343. 

[2] V.L. Peterson, J. Kim, T. Hoist, G.S. Deiwert, D.M. Cooper, A.B. Watson and ER. Bailey, Supercomputer requirements 
for selected disciplines important to aerospace, J. IEEE 77 (1989) 1038. 

[3] R.W.C.P. Verstappen and A.E.P. Veldman, Direct numerical simulation of a 3D turbulent flow in a driven cavity, in: 
Wagner et al., eds., Computational Fluid Dynamics '94 (Wiley, Chichester, 1994) 558-565. 

[4] F.H. Harlow and J.E. Welsh, Numerical calculation of time-dependent viscous incompressible flow with free surface, 
Phys. Fluids 8 (1965) 2182-2189. 

[5] I. Gustafson, A class of first-order factorization methods, BIT 18 (1978) 142-156. 
[6] S. Eisenstat, Efficient implementation of a class of preconditioned Conjugate Gradient methods, SIAM J. Sci. Statist. 

Comput. 2 ( 1981 ) I-4. 
[7] J.W. Demmel, M.T. Heath and H.A. Van der Vorst, Parallel numerical linear algebra, Acta Numerica 2 (1993) 

111-199. 
[8l J.J. Dongarra, I.S. Duff, D.C. Sorensen and H.A. Van der Vorst, Linear System Solving on Vector and Shared Memory 

Computers (SIAM, Philadelphia, PA, 1991). 


