
 

 

 University of Groningen

On Similarity Invariance of Balancing for Nonlinear Systems
Scherpen, Jacquelien M.A.

Published in:
Preprints of the Nonlinear Control Systems Design Symposium NOLCOS '95

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1995

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Scherpen, J. M. A. (1995). On Similarity Invariance of Balancing for Nonlinear Systems. In Preprints of the
Nonlinear Control Systems Design Symposium NOLCOS '95 (Vol. 2, pp. 783-788). University of
Groningen, Research Institute of Technology and Management.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 28-10-2022

https://research.rug.nl/en/publications/b80052ff-8422-418b-9a39-157534e62f3c


On Similarity Invariance of Balancing for Nonlinear Systems

Jacquelien M.A. Scherpen*

* Department of Electrical Engineering, Delft University of Technology, P.O. Box 5031, 2600 GA Delft, The Nether-
lands. E-mail: J.M.A.Scherpen@et.tudelft.nl

Abstract. A previously obtained balancing method for nonlinear systems is investigated on similarity in variance by
generalization of the observations on the similarity invariance of the linear balanced realization theory. For linear
systems it is well known that the Hankel singular values are similarity invariants. It is shown that under some addi-
tional conditions a similar statement on the similarity invariance holds for nonlinear systems. To be able to do so the
concepts of local zero-state observability and local strong accessibility are considered. The local strong accessibility
is an additional condition, which is needed to consider a nonlinear generalization of the Kalman decomposition. In
the local coordinates that correspond to this decomposition the controllability and observability functions are inves-
tigated.

Key Words. balancing, Hamilton-Jacobi equations, singular value functions, similarity invariance.

1. INTRODUCTION

Balancing for stable linear systems has been intro-
duced by (Moore, 1981), and turned out to be a useful
tool to analyze a linear system, and to apply it to model
reduction. In the balancing method for stable linear
systems the Hankel singular values play an important
role, and have the nice property that they are simi-
larity invariants, i.e., independent of the chosen state
space realization, and thus only dependent of the input-
output behavior of the system. Since its introduction,
the balancing theory for linear systems has been ex-
plored further into several directions, e.g. (Jonckheere
and Silverman, 1983), (Ober and McFarlane, 1989),
(Meyer, 1990), (Mustafa and Glover, 1991). All of
the obtained balancing methods have the same prop-
erty with respect to similarity invariance.

Balancing for stable nonlinear systems has been in-
troduced recently, see (Scherpen, 1993a), (Scherpen,
1993b), (Scherpen, 1994), and deals with the past in-
put and the future output energy functions of the sys-
tem. The singular value functions of the nonlinear sys-
tem are obtained from these energy functions, and they
equal the squared Hankel singular values in case of a
linear system.

In this paper we investigate to what extend the obser-
vations on the similarity invariance for the linear bal-
ancing theory can be generalized to the nonlinear bal-
ancing theory. To bring a stable nonlinear system in
balanced form, we need the system to fulfill condi-
tions on zero-observability and anti-stabilizability. In
the linear case the condition on anti-stabilizability is
equivalent to controllability, which is not true in the
nonlinear case. To deal with this difference we addi-
tionally make assumptions on accessibility of the non-

linear system. Then we use the nonlinear generaliza-
tion of the Kalman decomposition to investigate simi-
larity invariance of the nonlinear balancing theory.

In Section 2 we give a review on balancing for sta-
ble nonlinear systems. Section 3 contains the analysis
of the similarity invariance of this method. Finally, in
Section 4 we give the conclusions.

Throughout this paper we will use a fairly standard no-
tation. We denote by xT x or II x 112 the squared norm of
a vector x ∈ Rn. We say that u : (-00,0) → Rm is in
L2( -00,0) if ∫0-∞ II u(t) ||2 dt < 00. By ∂L/∂x(x) we de-
note the row-vector of partial derivatives of a differen-
tiable function L : Rn→ R. Furthermore we denote by
X(t2) = φ(t2, tl ,XI, u) the solution on time t2 of the sys-
tem ·x = f(x) + g(x)u with initial condition X(t1) =XI

and input u : [t1, t2] → Rm
.

2. REVIEW ON BALANCING FOR STABLE
NONLINEAR SYSTEMS

Balancing for stable nonlinear systems is dealt with
in (Scherpen, 1993a). As in the linear case, this is a
method based on the input energy that is necessary to
reach a state and the output energy that is generated by
this state. We will give a brief review on this subject.

Consider a smooth, i.e., Coo, nonlinear system of the
form

·x = f(x) +g(x)u
y = h(x)

(1)

where u = (UI, ... ,um) ∈ Rm
, y = (YI, .. ·,Yp) ∈ RP

and X = (XI, ... ,xn) are local coordinates for a smooth
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state space manifold denoted by M. Throughout we as-
sume that the system has an equilibrium. Without loss
of generality we take this equilibrium in 0, i.e. f(0) =
o and we also take h(0) = 0.

Definition 1 The controllability and observability
function of a nonlinear system are defined as

(2)

and

1 ⌠∞
Lo(x0) = /2 ⌡o ||y(t)1I2dt, (3)

x(0)=x0, u(t)≡0, O≤t<oo,

respecti vely.

The value of the controllability function at x0 is the
minimum amount of control energy required to reach
the state x0 and the value of the observability function
at x0 is the amount of output energy generated by x0.
We throughout assume Lc and Lo are finite. Also, for
the rest of this paper we assume Lc and Lo are smooth
functions of x.

Theorem 1 (Scherpen, 1993a) If f(x) is asymptoti-
cally stable on a neighborhood W of 0, then for all
x ∈ W, Lo(x) is the unique smooth solution of the fol-
lowing Lyapunov type of equation:

(4)

Lo(0) = 0. Furthermore for all x ∈ W, Lc(x) is the
unique smooth solution of the fOllowing Hamilton-
Jacobi equation:

Lc(0) = 0 (5)

satisfying -(f(x)+ g(x)gT (x) ∂∂TLxc(x)) is asymptoti-
cally stable on W. 0

Remark 1 (Scherpen, 1993a) Lc and Lo are non-
negative. 0

Remark 2 If we assume that f(x) is asymptotically
stable and that (4) has a smooth solution, it follows
that Lo, as in (3), exists, i.e. is finite. Furthermore, if
we assume that (5) has a smooth solution L and that
-(f(x) + g(x)g(x)T ∂TL/∂x(x))is asymptotically stable, it
follows that Lc, as in (2), exist, i.e. is finite. 0

Theorem 2 (Scherpen, 1993a) Assume f is asymptot-

ically stable on W and (5) has a smooth solution Ic on
W. Then Ic(x0) > 0 for x0 ∈ W, x0 ≠ 0, if and only
if -(f(x)+g(x)gT (x)∂T~Lc/∂x(x))is asymptotically stable
onW. 0

For the following definitions see e.g. (Hill and Moy-
lan, 1976), (van der Schaft, 1992), (Nijmeijer and
van der Schaft, 1990).

Definition 2 The system (1) is reachable from x0 if for
any x ∈ M there exists a ¯t ≥ 0 and input u such that
x = φ(¯t,0,x0,U).
The system is locally strongly accessible from x0 if for
any neighborhood V of x0 the set RV (x0, T) (the reach-
able set from x0 at time T > 0, following the trajec-
tories which remain in the neighborhood V of x0 for
t ≤ T) contains a non-empty open set for any T > 0
sufficiently smail.
The system (1) is zero-state observable if any trajec-
tory where u(t) ≡ 0,y(t) ≡ 0 impliesx(t) ≡ 0, i.e., for
all x ∈ M, h(φ(t,0,x,0)) = 0,t ≥ O ⇒φ(t,0,x,0) =
0,t ≥ 0.
The system (1) is locally zero-state observable at 0, if
there exists a neighborhood W of 0 such that for all x ∈
W, h(φ(t, 0,x, 0)) = 0, for all t ≥ 0  ⇒φ(t, 0,x, 0) = 0
for all t ≥ 0. 0

For local zero-state observability we can give a con-
dition in terms of Lie derivatives. This is closely re-
lated to the condition for local observability in terms
of the observability codistribution, e.g. (Nijmeijer and
van der Schaft, 1990). Furthermore, we give a condi-
tion in terms of Lie brackets for local strong accessibil-
ity, which is well known, e.g. (Nijmeijer and van der
Schaft, 1990).

Definition 3 Consider the nonlinear system (1). The
strong accessibility algebra Cois the smallest subalge-
bra of V∞ (M) (the Lie algebra of vector fields on M)
that contains g1 , .. " gm and satisfies [f, X] ∈ Cofor all
X ∈Co.
The strong accessibility distribution Co is the distribu-
tion generated by Co, i.e., Co(x) = span {X(x) |X vector
field in Co}.
Consider the nonlinear system (1). The
zero-observation space 00 of (1) is the linear space of
functions on M containing hI, ... ,hp and all repeated
Lie derivativesLkfhj, j ∈ 1, ... ,p, k = 1,2, .. _
The zero-observability codistribution dOo is given by
dOo(q) = span {dH(q)| H ∈ Oo}, where q ∈ M. 0

Theorem 3 Consider the system (1). If dim C(x0) = n,
then de system is locally strongly accessible from 0.
If dim d 00 (0) = n, then the system is locally zero-state
observable at 0.

Proof:The proof is well-known/follows well-known
arguments as may be found in (Nijmeijer and van der
Schaft, 1990). ∎
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The following theorem is closely related to some re-
sults in (Hill and Moylan, 1976) and (van der Schaft,
1992). For the proof, see (Scherpen, 1993a).

Theorem 4 Assume f(x) is asymptotically stable on a
neighborhood W of O. If the system (I) is zero-state
observableon W, then Lo(x0) > 0, ∀x0 ∈ W,x0 =1= 0.0

Now we consider nonlinear systems of the form (I)
with controllability and observability function Lc re-
spectively La as in Definition I, and with the following
additional assumptions:

1. f(x) is asymptotically stable on some neighbor-
hood Y ofO

2. Lc(x) and Lo(x) are smooth and finite functions of
xonY 

3. the system is zero-state observable on Y 
fiLe ∂2La

4. ∂X2 (0) > 0 and ∂x2 (0) > 0

Lemma 1 (Scherpen,1993a)Thereexistsacoordinate
transformation x = φ(¯x), φ(O) = 0, such that Lc(x) in
the new coordinates x = φ-1(x) is of the following
form:

I
Lc(φ(¯x)) = -¯xT¯x

2
(6)

Furthermore we can write La (x) in the new coordinates
x = φ-1 (x) in the following form:

(7)

with M(¯x) a n x n symmetric matrix with entries which
are smooth functions of ¯x. 0

Comparing with the linear situation we see that we are
close to an input-normal form if we can bringM(¯x) into
a diagonal form, while we keep the form of the control-
lability function as above. To be able to do so, we need
the following lemma.

Lemma 2 (Kato, 1982),(Scherpen, 1993a) If there ex-
ists a neighborhood V of 0 where the number of distinct
eigenvalues of M(¯x) is constant for x ∈ V, then on V the
eigenvalues Ai (¯x), i = I, ... ,n, are smooth functions of
¯x,as well as the associated normalized eigenvectors. 0

Theorem 5 (Scherpen, 1993a) Consider system (I)
and assume there exists a neighborhood V of 0 where
the number of distinct eigenvalues of M(¯x) is constant
for x ∈ V. Then there exists a neighborhood U of
zero and a coordinate transformationx = ψ(z), ψ(O) =
0, such that Lc(x) in the new coordinates z ∈ W :=
ψ-1 (U) is of the following form:

~ I T
Lc(z) :=Lc(ψ(z)) = /2z z (8)

while in the new coordinates ~Lo(z) := La (ψ(z)) is of
the form

(9)

where 't 1 (z) ≥ ... ≥ 'tn (z) are smooth functions of z,
called the singular value functions. 0

Remark 3 For a linear system the singular value func-
tions 'ti, i = I, .. ,n are constant and are equal to the
squared Hankel singular values. 0

The form of the controllability and observability func-
tion in (8) and (9) is not yet entirely balanced. For
that we need another additional coordinate transforma-
tion. We take as smooth transformation ¯zi= ηi(Zi) :=
'ti(O, .. ,0,Zi, 0, ..0)¼Zi, i = I, .. ,nand hence ¯z = η(z):=
(lη1(z1) ... ηn(Zn)) on ¯z ∈ ¯W:= η(W). Define
Lc(¯z):= ~Lc(η-1(¯z)) and Lo(¯z):= ~Lo(η-1(¯z)). Then
(8) and (9) become respectively:

(10)

A I TLa (¯z)= /2¯z G(¯z)¯z where G(¯z) = (II)

and where σi(¯zi) = 'ti(O, .. ,0,ηi-1(¯Zi),0, .. ,O)½ for
i = 1, .. ,n. It follows that Lc(O, .. ,0,¯zi,0, .. ,0) =
½¯zi2σi(¯zi)-1 and Lo(O, .. ,0,¯zi,0, .. ,0) = ½¯zi2σi(¯zi) for
i = I, .. ,n. We call a nonlinear system balanced if it
has a controllability and observability function of the
form of respectively (10) and (II). This means that we
can balance system (I) by a coordinate transformation
of the form x = χ(¯z) :=ψ(η-1 (¯z)) for ¯z ∈ ¯W, where ψ
is given in Theorem 5.

3. SIMILARITY INVARIANTS

For linear systems it is well known that the Hankel
singular values are similarity invariants, i.e., the Han-
kel singular values are independent of the chosen state
space realization and only depend on the input-output
behavior of the system. In fact, they are the singu-
lar values of the Hankel operator of the system, e.g.
(Glover, 1984). Ifwe consider a linear state space sys-
tem that is not minimal, and we study its controllabil-
ity Gramian Wand observability Gramian M, then the
non-zero eigenvalues of MW equal the squared Hankel
singular values of its input-output map, and the number
of zero eigenvalues of MW equals the difference of the
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state space dimension of the non-minimal system and
the state space dimension of a minimal representation
of it.

Furthennore, for linear systems a balanced representa-
tion is almost unique in the following sense. Assume
that there are k distinct Hankel singular values, and that
the singular value σi has multiplicity ji, i = I, ... ,n.
The balanced realization is unique up to linear trans-
formations of the form

(12)

where the blocks hi= I, ... ,k, are ji x  ji orthogonal
matrices, i.e., TiTTi = I, e.g. (Glover, 1984).

In this section we want to extend these observations
to the nonlinear case. We consider the nonlinear sys-
tem (I) and we assume that it is locally asymptoti-
cally stable. However, we do not assume local zero-
state observability, and hence the observability func-
tion is not necessarily positive definite. Furthermore,
we do not assume that -(f(x) +g(x)g(x)T ∂TLc/∂x (x)) is
locally asymptotically stable, and thus the controllabil-
ity function need not be finite for all x. (Recall that the
controllability and observability function, Lc and Lo,

respectively, are defined as in Definition I.)

We use Frobenius' Theorem, see e.g. (Nijmeijer and
van der Schaft, 1990), to construct the zero-state ob-
servable 'part' of the system.

Theorem 6 Assume that dOD has constant dimension
k. By Frobenius' Theorem we may find local co-
ordinates (Xl ∂x2) = (XI, ... ,Xk, Xk+1, ... ,xn) such that
kerd00 = {/∂x2}' Write correspondingly f = (f1 J2)T
and g = (g1 ,g2)T. In these coordinates the system (I)
takes the fonn

·xl = f1(x1)+g1(xI,x2)u (13)

. ( I Ix2 = f2 X ,x2) +g2(x ,x2)u (14)

y = h(xI
) (15)

Proof The codistribution dOD is invariant for the
dynamics ·x = f(x), since LfdOO C dOD. Then
ker dOD = {∂/∂x2} is an invariant distribution for X =
f(x). Since ker dOD C ker dh, (I) takes the form (13),
(14) and (15) (see Proposition 3.42 in (Nijmeijer and
vall der Schaft, 1990)). ∎

Now we also consider the part of the state space system

where

(16)

is asymptotically stable. In the linear case this part is
equal to the controllable part of the system, since then
the asymptotic stability of (16) is equivalent with con-
trollability of the system. (Recall that f is assumed to
be asymptotically stable.) For nonlinear systems this
is not always the case, but in order to be able to con-
struct a decomposition as in the nonlinear generaliza-
tion of the Kalman decomposition (e.g., Theorem 3.51
in (Nijmeijer and van der Schaft, 1990)), we make an
additional assumption. That is, we assume that simi-
larly to the linear case the part of the system where (16)
is asymptotically stable equals the strongly accessible
part of the system (Definition 2).

Theorem 7 Assume that the distributions Co, kerdOo
and Co + kerd00 all have constant dimension and
that Co + ker d00 is involutive. Then we can find
local coordinates X = (xI,x2,x3,x4) such that Co =
span{∂/∂x1 ' ∂/∂x2 } and ker  d 00 = span {∂/∂x2 ' ∂/∂x4}. The sys-
tem takes the form

m

·xl = f1(xl ,x3) + Σ gj1(xl ,x2,x3 .x4)Uj
j=1

(17)

m
. 2 1 1 4 2 I 1 4x2 = f (X ,x2,x2,x)+ Σgj(x ,x2,x3,x )uj (18)

j=1

·x3 = f3(x3)  (19)

·x4 = f4(x3 ,x4) (20)

y = h(xI,x3) (21)

Proof:We may apply an extension of Frobenius' The-
orem. Then as in Theorem 6 the form follows. ∎

Let ni be the dimension of .xl, i = 1,2,3,4, and let Y
be a neighborhood of 0 such that the decomposition as
above can be done for X ∈ Y. Then clearly  (17), (19)
and (21) form the zero-state observable partyofthe sys-
tem, while (17) and (18) is the strongl y accessible part
of the system. To assure that for (17), (19) and (21) the
observability function exists, we assume that in these
local coordinates the following equation

(22)

Lo(o) = 0, has a smooth solution for (xl, O,x3, 0) ∈ Y.
Furthermore, note that

is asymptotically stable and by the fonn of (19), and
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(20) it is impossible that -(f(x) +g(x)g(x)T ∂TLc/∂x(x»)
is asymptotically stable on Y. To assure that for (17)
and (18) the controllability function exists, we assume
that in these local coordinates the following equation

(23)

with ^Lc(O) = 0, has a smooth solution for
(xl ,x2,0,0) ∈ Y, such that

(24)

is asymptotically stable for (X1,x2, 0, 0) ∈ Y.

Theorem 8 If the assumptions above are fulfilled, then
Lo(xl ,x2,x3 ,x4) > 0 whenever (xl,.0, x3 ,.0) ∈ Y,
and (xl,x3) ≠ (0,0), and Lo(0,x2,0,x4) = 0 for all
(0,x2,0,x4) ∈ Y.
Furthermore, Lc(xl ,x2,x3 ,.0) is
infinite whenever (Xl ,x2,x3 ,x4) ∈ Y, (x3 ,.0) ≠ (0,0),
and 0 < Lc(xl ,x2,0,0) < 00, for all (Xl ,x2,0,0) ∈ Y,
(Xl ,x2) ≠ (0,0).

Proof:It is clear that h(O,x2(τ), o,.0(τ)) = 0 for all τ ≥
0, and by the form of (17) and (19) we obtain that

for u ≡ 0, and for all (0,x2,0,x4) ∈ Y. Again, by the
form of (17), (19), (21) we have

for u ≡ 0, where Lo is the observability function of
(17), (19), (21). We assumed that (22) has a smooth
solution and thus, La = Lo exists and is smooth and

by Theorem 4 Lo(xl ,x2,x3 ,.0) = Lo(xl ,x3) > 0 for
(Xl ,x3) ≠ (0,0).
The controllability function Lc is

Since

is asymptotically stable, it follows immediately that
Lc(xl ,x2,x3 ,.0) = 00 for all (xl ,x2,x3 ,.0) ∈ Y, with
(x3 ,.0) ≠ (0,0). By (23), the asymptotic stability of
(24), and Theorem I it follows that Lc(x1 ,x2,0,0) =
v 1 ..2 I 2Lc(X ,x2) < 00 for all (x ,x2,0,0) ∈ Y. Furthermore,
by Theorem 2 it follows that Lc(x1,x2, 0, 0) > 0 for all
(xl,x2 ,0,0) ∈ Y, (Xl ,x2) ≠ (0,0). ∎

If we additionally assume that

it becomes clear from this theorem that Lo (xl, 0,0,0)
and Lc(xl ,0,0,0) may be transformed to the form of
Theorem 5, if the condition of Lemma 2 is fulfilled.
In fact there exists a local xl coordinate transformation
Xl = ψ(z), ψ(O) = 0, (ψ-I(XI),O,O,O) ∈ Y, such that

Lc(ψ(z),O,O,O) = ½zTz

and

Thus this part of the system may be balanced on
a neighborhood of 0, with singular value functions
τl (z) ≥ ... ≥ τnl (z).

Furthermore, if we also consider x2, then there exist lo-
cal coordinates (Z1,z2) = φ-I(XI ,x2) such that

Now we may apply Lemma I and Lemma 2 to the
observability function. Write Lo(φ(ZI ,z2), 0,0) in the
form of Lemma I, i.e.,

If the condition of Lemma 2 is fulfilled, we may di-
agonalize M(ZI,Z2). Then we will find as functions
on the diagonal ¯τ1(ZI,z2) ≥ ... ≥ ¯τn1+n2(ZI,z2), where
¯τi(ZI,O)= τi(Z), i = I, ... ,n1, and τ¯j(O,x2) = 0, j =
n1+ I, ... ,n1+n2. This is in accordance with the lin-
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ear case, where the unobservable part gives zero 'Han-
kel singular values'. Note that it is not possible to
transform the whole system to the form of Theorem 5,
since Lc(O,o,x3,x4) is infinite. This is still in accor-
dance with the linear theory, since here we are deal-
ing with the 'inverse of the controllability Gramian'.
Hence the part of the system that is not strongly acces-
sible yields an 'inverse of the controllability Gramian'
that is infinite, and thus a 'controllability Gramian' that
is zero.

In order to study the uniqueness of balanced represen-
tations of nonlinear systems, let us consider two bal-
anced representations of one nonlinear system, satisfy-
ing all conditions of Section 2. Clearly, both represen-
tations are linked via a coordinate transformation. Let
k be the number of distinct singular value functions,
and let ji be the number of times the ith singular value
function appears. Then it follows directly that both
systems have the same balanced form, except for a co-
ordinate transformation of a similar form as in the lin-
ear case (transformationsof the form (12)). The singu-
lar value functions belonging to these forms are related
by the same coordinate transformation. In the nonlin-
ear case the transformations are of the form

(25)

where the blocks Ti(¯x), i = I, ... ,k, are ji x  ji orthogo-
nal matrices, i.e., Ti(¯x)T Ti(¯x) = I, with entries that are
smooth functions of ¯x. This easily follows from the
form of the controllability function (8) and observabil-
ity function (9) in Theorem 5.

4. CONCLUSIONS

We investigated the similarity invariance of the nonlin-
ear balancing method. The analysis in this paper leads
to the conclusion that under some assumptions the sin-
gular value functions are, as in the linear case, 'similar-
ity invariants', Le., independent of the state space rep-
resentation (minimal or not). From this conclusion it
follows that it is natural to consider the zero-state ob-
servable and strongly accessible part, i.e., the 'mini-
mal' part of the system for analyzing the controllabil-
ity and observability functions. Furthermore, the sin-
gular value functions of the zero-state observable and
strongly accessible part are invariant except for a co-
ordinate transformation of the form (25). Thus, the
singular value functions as functions of the state may
change by such a (quite restricted) coordinate transfor-
mation, but it leaves the the singular value functions as
functions of the time t invariant.
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