

 University of Groningen

An Alternative Algorithm for Computing Watersheds on Shared Memory Parallel Computers
Meijster, A.; Roerdink, J.B.T.M.

Published in:
EPRINTS-BOOK-TITLE

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1995

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Meijster, A., & Roerdink, J. B. T. M. (1995). An Alternative Algorithm for Computing Watersheds on Shared
Memory Parallel Computers. In EPRINTS-BOOK-TITLE University of Groningen, Johann Bernoulli Institute
for Mathematics and Computer Science.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 28-10-2022

https://research.rug.nl/en/publications/490e8f52-f628-49f2-8971-04106a8c311c

An Alternative Algorithm for ComputingWatersheds on Shared Memory ParallelComputersA. Meijster and J.B.T.M. RoerdinkUniversity of Groningen,Institute for Mathematics and Computing ScienceP.O. Box 800, 9700 AV Groningen, The NetherlandsEmail: arnold@cs.rug.nl roe@cs.rug.nlTel. +31-50-633931, Fax. +31-50-633800AbstractIn this paper a parallel implementation of a watershed algorithm is proposed.The algorithm can easily be implemented on shared memory parallel computers.The watershed transform is generally considered to be inherently sequential sincethe discrete watershed of an image is de�ned using recursion, see [5]. However,recently a few research groups, see [2, 3, 4], have designed parallel algorithmsfor computing watersheds. Most of these parallel algorithms are based on split-ting the source image in blocks, computing the watersheds of these blocks andmerging the resulting images into the desired result. A disadvantage of thisapproach is that a lot of communication is necessary at the boundaries of theblocks. In this paper we show that it is possible to transform the computationof the discrete watershed into a sequence of three simple steps which are easierto execute in parallel than the original algorithm. In the �rst step the input im-age is transformed into a graph representation of the image. In the second stepwe compute the watershed of this graph and �nally we transform the resultinggraph back into the image domain.1 IntroductionIn [5] an algorithmic de�nition of the watershed of a digital gray scale image isgiven. In this section we will give a short summary of this de�nition.A digital gray scale image is a function f : D �! N, where D � Z2 is thedomain of the image (pixel coordinates) and for some p 2 D the value f(p)denotes the gray value of this pixel. Gray scale images are looked upon as1

topographic reliefs where f(p) denotes the altitude of the surface at locationp. Let G denote the underlying grid, i.e. G is a subset of Z2 � Z2. A pathP of length l between two pixels p and q is an l + 1-tuple (p0; p1; :::; pl�1; pl)such that p0 = p, pl = q and 8i 2 [0; l) : (pi; pi+1) 2 G. For a set of pixelsM the predicate conn(M) holds if and only if for every pair of pixels p; q 2 Mthere exists a path between p and q which only passes through pixels of M .The set M is called connected if conn(M) holds. A connected component is anonempty maximal connected set of pixels, i.e. if for a nonempty connectedset M and for each connected set N we have M \ N = ; _ N � M then Mis a connected component. A regional minimum (minimum, for short) of f ataltitude h is a connected component of pixels p with f(p) = h from which itis impossible to reach a point of lower altitude without having to climb. Now,suppose that pinholes are pierced in each minimum of the topographic surfaceand the surface is slowly immersed into a lake. Water will �ll up the valleysof the surface creating basins. At the pixels where two or more basins wouldmerge we build a "dam". The set of dams obtained at the end of this immersionprocess is called the watershed of the image f .In order to de�ne watersheds mathematically, we need a few de�nitions.De�nition 1. Let A be a set, and a; b two points in A. The geodesic distancedA(a; b) within A is the in�mum of the lengths of all paths from a to b in A. Witha little abuse of notation we write dA(a;B) for the geodesic distance between apoint a 2 A and a set B, with A \ B 6= ;, which is the in�mum of the lengthsof all paths from a to any point in A \ B.De�nition 2. Let A be some �nite set of pixels. Let B � A be partitioned in kconnected components Bi. The geodesic in
uence zone of Bi within A, denotedizA(Bi), is de�ned as the setfp 2 A j 8j 2 [1::k]nfig : dA(p;Bi) < dA(p;Bj)gThe set IZA(B) is de�ned as the union of the in
uence zones of the connectedcomponents of B, i.e. IZA(B) = Ski=1 izA(Bi).De�nition 3. The complement of the set IZA(B) within A is called the skele-ton by in
uence zones of A, SKIZA(B) = AnIZA(B).De�nition 4. Let f be a gray level function. The set Th = fp 2 D j f(p) � hgis called the threshold set of f at level h.Let hmin and hmax respectively be the minimum and maximum gray level of thedigital image. Let minh denote the union of all regional minima at the height h.De�nition 5. Watershed de�nition De�ne the following recurrence for h 2[hmin; hmax):Xhmin = Thmin = fp 2 D j f(p) = hming2

Xh+1 = Xh [minh+1 [(IZTh+1(Xh)nTh)The watershed of the image f is the complement of Xhmax in D:Wshed(f) = DnXhmaxIntuitively, one could interpret Xh as the set of pixels p, satisfying f(p) � h,that lie in some basin.The recursion above is based upon the following case analysis [5], which isexplained here in some detail in preparation of the parallel algorithm to follow.For the recursive relation between Xh and Xh+1 the threshold set Th+1 isconsidered. It is obvious that Xh � Xh+1 � Th+1. Let Y be a connectedcomponent of Th+1. There are three possible relations between Y and Xh:1. Y \Xh = ;. In this case Y is a new minimum at level h+1 and thus (afterpiercing a hole in it) the starting set of a new basin. Clearly Y � Xh+1.2. Y \Xh 6= ; and is connected. Clearly Y is an extension of the basin Xh,and thus Y � Xh+1.3. Y \ Xh 6= ; and is not connected. In this case Y contains two or moredistinct minima of f . Let Z1; : : : ; Zk be these minima. Then the basinXh is expanded by computing the geodesic in
uence zone of Zi within Y .Most implementations of algorithms that compute the watershed of a digitalgray scale function are direct translations of this recursive relation. The basicstructure of these algorithms is a main loop in which h ranges from hmin tohmax. In every iteration the basins belonging to the minima are extended withtheir in
uence zones within the set Th+1. The fact that Xh is needed to computeXh+1 clearly expresses the sequential nature of this algorithm.2 Watershed of a Components-graphComputing in
uence zones is not necessary if we can guarantee that no plateaus,clusters of neighbouring pixels that have the same gray-value, occur in the image.Of course, this is generally not true. Now, suppose that the image f does notcontain plateaus, i.e. 8p; q 2 D : (p; q) 2 G) f(p) 6= f(q)In this case every 'plateau' consists of exactly one pixel. We can arti�ciallysatisfy the condition above by transforming the image f into a directed valuedgraph f� = (F;E), called the components graph of f . Here F denotes the set ofvertices of the graph and E � F �F the set of edges. The vertices of this graphare maximal connected sets of pixels which have the same gray-values. In the3

remainder of this paper these sets are called level components. The set of levelcomponents at level h is de�ned asLh = fC � ThnTh�1 j C is a conn. componentgThe set of vertices of the graph f� is the collection of level components of f , i.e.F = Shmaxh=hmin Lh. For level components v and w we have (v; w) 2 E i�. 9p 2v; q 2 w : (p; q) 2 G ^ f(p) < f(q). By de�nition every directed path throughthis graph increases in altitude. With a little abuse of notation we denote thegray-value of a level component w by f�(w), which is the value f(p) for somep 2 w if w is not a local minimum. If w is a minimum we de�ne f�(w) = hmin.Note that changing the gray value of a local minimum into the gray value of theabsolute minimum does not change the catchment basin associated with sucha minimum, but it avoids introducing new minima during the execution of thewatershed algorithm. We denote the number of minima by N , such that we canindex the minimaM1,..,MN . Now, we can de�ne the watershed of a componentsgraph in a similar fashion as in the case of a gray level image.De�nition 6. Watershed of a components graph De�ne the followingrecurrence for h 2 [hmin; hmax) and i 2 [1::N]X ihmin = fMigX ih+1 = X ih [fv 2 F j f�(v) = h+ 1 ^(9w 2 X ih : (w; v) 2 E) ^(8j 6= i; w 2 Xjh : (w; v) =2 E)gThe watershed of the components graph f� is the complement of the union ofthe catchment basins in F :Wshed(f�) = Fn N[i=1X ihmaxNote that this de�nition closely resembles the de�nition of the watershed of agray level image. In this de�nition we do not have to consider local minima atlevel h+ 1 since we changed the gray level of the local minima into hmin.The expansion of catchment basins with their in
uence zones is now replacedby merging components at level h + 1, that can be reached from exactly onecatchment basin, to the corresponding basin. If a component can be reachedfrom two di�erent catchment basins then the node is de�ned to be a watershednode.
4

3 Parallel Computation of the watershed of acomponents graphThe de�nition of the watershed of a components graph given in the previoussection suggests a simple algorithm for computing the watershed of a compo-nents graph. The idea is to compute the catchment basins (CMi)i2[1::N] bycomputing all possible paths that start in the minima Mi. The sets CMi caneasily be computed using standard breadth �rst graph algorithms. After com-puting these basins the algorithm determines which components are containedin two or more basins. These nodes are the watershed components. The nodesthat are contained in exactly one basin are non-watershed nodes.The time required to compute the catchment basin of one minimum is pro-portional with the number of nodes in the components graph. Let us say thatC is the number of components in the graph, i.e. C =j F j. Computing all thebasins one after another has complexity of the order C �N . Since, for typicalgray scale images, C and N are very large, the computation of the watershed inthis way is very expensive. An alternative is to start computing all the catch-ment basins of the minima in parallel such that we can stop expanding a basinin a particular direction as soon as we have discovered that in that directiontwo or more basins have come together.
h = 40

h = 30

h = 20

h = 10

L1

L2

L3

L4

L5

L6

L0

(b)(a)

L0

L1

L2

L6
L5

L3

L 4

40

30

10

30

40

30

20

(c)Figure 1: (a) original image f . (b) labeled level components. (c) componentsgraph f�. (d) watershed of f�Suppose we have a shared memory system with N processors. Each procesori is assigned the task to label the components belonging to catchment basinX ih with the value i, unless this component is discovered to be a watershedcomponent in which case it is labeled with the value N + 1. We introduce anarray wsh[1::C] which is indexed by components. This array can be accessedand modi�ed by each processor. In this array the labeling of the componentsis stored. Initially, all components are labeled with the (invalid) label 0. Inthe parallel algorithm each processor i changes the value of the corresponding5

Figure 2: (left) thick watershed of f ; (right) skeleton of thick watershed of finitially: N is the number of minima;(8v 2 F : wsh[v] = 0)do parallel for i 2 [1::N]begin wsh[Mi] := i;s := fMig;while s 6= ; dobegin choose v 2 s;s := snfvg;n := Neighbours(v);(� n = fw 2 F j (v; w) 2 Eg �)forall w 2 n dobegin P (w);if wsh[w] = 0 thenbegin wsh[w] := wsh[v];V (w);s := s [fwgend elseif wsh[w] 6= wsh[v] thenbegin wsh[w] := N + 1;V (w);s := s [fwgend else V (w)endendend; Figure 3: Parallel watershed algorithm on a components graph.6

minimum Mi into the label i. Since a minimum can never be reached from anyother component in the graph, we do not have to worry that this value ever getschanged by any other processor.During the expansion process, each processor expands its correspondingcatchment basin iteratively. In each iteration the neighbours of the compo-nents that were added in the previous iteration are computed. The label ofeach neighbour is inspected inside a critical section. A critical section is a partof the program that can be executed by exactly one processor at the same time.This is necessary in order to avoid that values get overwritten when two ormore processors try to change the value of a variable. A standard technique forsolving this problem is to use semaphores, see [1]. A (binary) semaphore can beregarded as a special kind of boolean variable that can be changed by exactlyone processor at the same time, using the operations P and V . A part of aprogram that is surrounded by a P and a V operation on the same semaphoreis called a critical section. Semaphores are initalized with the value true. If sis a semaphore, with s = true, then P (s) changes the value of s into false andcontrol is returned to the calling process immediately. If s = false then eachprocess that calls P (s) is blocked until s becomes true again and one of theprocesses can enter the critical section and set the value of s to false again.A process that has passed a P -operation, and thus has blocked all other pro-cessors on the corresponding semaphore, can unblock the semaphore with theoperation V (s) which sets the value of s to true. For a complete description ofsemaphores the reader is referred to [1].If a neighbouring component w has not been labeled with a valid label yet,i.e. wsh[w] = 0, then w is labeled with the label of the component from whichit has been reached, and thus w is merged with the basin. If w was alreadyassigned a label that di�ers from the label of the component from which it wasreached then the node is contained in some other basin, and thus it can bereached from at least two di�erent minima. In this case w is labeled with thelabel N + 1 which means that w is a watershed component. If another processreaches this watershed component it can stop tracking all the paths via thiscomponent because it knows that all components that are reached along thesepaths have already been labeled by some other process, or they will be labeledduring the execution of the rest of the algorithm. Because of this fact eachcomponent of the graph is labeled at most twice, and each node that has beenlabeled twice will not be visited again during the execution of the algorithm.At each visit a component is assigned a label. This means that this algorithmexecutes in time that is linear in the number of nodes in the graph, which ismuch better than time complexity C �N in the sequential case.In general, the number of minima in the graph will exceed the number ofavailable processors. This problem can be solved by creating virtual processorsby running more than one process on a single processor. This kind of pseudo-parallelism does not a�ect the execution of the algorithm.7

4 Computation of the watershed of a gray scaleimageThe computation of the watershed of a grayscale image according the algorithm given in [5] is much more complex than thealgorithm given in the previous section. This is a result of the fact that it isimpossible to determine whether a pixel is a watershed pixel using the gray valueof its neighbouring pixels, since a pixel can be part of a (very large) plateau.This fact makes it hard to compute the watershed of a gray scale image at thepixel level. We propose that the computation of the watershed of a gray scaleimage is performed in three consecutive steps. In the �rst step the level sets ofthe image are computed and the components graph is built. Computing levelsets is a fast and simple operation, which can be parallelized but it usually isnot worth the burden of doing this.In the second step of the algorithm we compute the watershed of the com-ponents graph that we computed in the �rst step. This can be done using thealgorithm given in the previous section. Finally the image is transformed backinto the image domain. This step can be performed sequentially or in parallel.Both algorithms are evident. The result of transforming level nodes of the graphback into sets of pixels is that we end up with thick watershed plateaus, whichis usually undesirable. In that case we can decide to use some skeletonizationalgorithm to obtain thin watersheds. Note that this is perfectly acceptable,since we can choose the watershed lines within a plateau arbitrarily.5 ConclusionsIn this paper we have shown that it is possible to compute the watershed trans-form of a gray scale image in parallel by splitting the computation in threeconsecutive stages. In theory all these stages can be implemented in parallel,but in practice it is only worth the bureden to implement the second stage inparallel.In the �rst stage of the algorithm the input image is transformed into a directedcomponents graph. In the second stage of the algorithm the watershed of thisgraph is computed by a breadth �rst colouring algorithm. The decision whichcolour to assign to a certain node can be made by examining the colours assignedto its neighbouring nodes. This locality property makes it possible to performthis stage in parallel, in contrast with the classical watershed algorithm. Inthe �nal stage of the algorithm the
ooded graph is transformed back into theimage domain. Pixels belonging to watershed nodes of the graph are colouredwhite, while pixels belonging to non-watershed nodes are coloured black. Theresulting watersheds are "thick". "Thin" watersheds can be obtained by per-forming some skeletonization algorithm on the output image. The choice whichskeletonization algorithm to use is arbitrary.8

References[1] E.W. Dijkstra. Co-operating Sequential Processes. In F. Genuys (ed.),Programming Languages, Academic Press, London, 1968, pp.43-112[2] A. Meijster and J.B.T.M. Roerdink. A Proposal for the Implementationof a Parallel Watershed Algorithm. In Proceedings of CAIP'95, SpringerVerlag, 1995.[3] A.N. Moga, T. Viero, B.P. Dobrin, M. Gabbouj. Implementation of a dis-tributed watershed algorithm. In J. Serra and P. Soille (Eds.), Mathemat-ical Morphology and Its Applications to Image Processing, Kluwer, 1994,pp. 281-288.[4] A.N. Moga, T. Viero, M. Gabbouj. Parallel Watershed Algorithm Basedon Sequential Scanning. In I. Pitas (Ed.), 1995 IEEE Workshop on Non-linear Signal and Image Processing, June 20-22, Neos Marmaras, Halkidiki,Greece, pp. 991-994.[5] L. Vincent and P. Soille, Watersheds in Digital Spaces: An EÆcient Al-gorithm Based on Immersion Simulations. IEEE Transactions on PatternAnalysis and Machine Intelligence, 13, no. 6, pp 583-598, june 1991.

9

