7%
uan.erSItY of f::?’/{,
groningen %

R

University Medical Center Groningen

University of Groningen

An Alternative Algorithm for Computing Watersheds on Shared Memory Parallel Computers
Meijster, A.; Roerdink, J.B.T.M.

Published in:
EPRINTS-BOOK-TITLE

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1995

Link to publication in University of Groningen/lUMCG research database

Citation for published version (APA):

Meijster, A., & Roerdink, J. B. T. M. (1995). An Alternative Algorithm for Computing Watersheds on Shared
Memory Parallel Computers. In EPRINTS-BOOK-TITLE University of Groningen, Johann Bernoulli Institute
for Mathematics and Computer Science.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/lUMCG research database (Pure): http.//www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 28-10-2022

https://research.rug.nl/en/publications/490e8f52-f628-49f2-8971-04106a8c311c

An Alternative Algorithm for Computing
Watersheds on Shared Memory Parallel
Computers

A. Meijster and J.B.T.M. Roerdink
University of Groningen,

Institute for Mathematics and Computing Science
P.O. Box 800, 9700 AV Groningen, The Netherlands
Email: arnold@cs.rug.nl roe@cs.rug.nl
Tel. +31-50-633931, Fax. +31-50-633800

Abstract

In this paper a parallel implementation of a watershed algorithm is proposed.
The algorithm can easily be implemented on shared memory parallel computers.
The watershed transform is generally considered to be inherently sequential since
the discrete watershed of an image is defined using recursion, see [5]. However,
recently a few research groups, see [2, 3, 4], have designed parallel algorithms
for computing watersheds. Most of these parallel algorithms are based on split-
ting the source image in blocks, computing the watersheds of these blocks and
merging the resulting images into the desired result. A disadvantage of this
approach is that a lot of communication is necessary at the boundaries of the
blocks. In this paper we show that it is possible to transform the computation
of the discrete watershed into a sequence of three simple steps which are easier
to execute in parallel than the original algorithm. In the first step the input im-
age is transformed into a graph representation of the image. In the second step
we compute the watershed of this graph and finally we transform the resulting
graph back into the image domain.

1 Introduction

In [5] an algorithmic definition of the watershed of a digital gray scale image is
given. In this section we will give a short summary of this definition.

A digital gray scale image is a function f : D — N, where D C Z? is the
domain of the image (pixel coordinates) and for some p € D the value f(p)
denotes the gray value of this pixel. Gray scale images are looked upon as

topographic reliefs where f(p) denotes the altitude of the surface at location
p. Let G denote the underlying grid, i.e. G is a subset of Z2 x Z2. A path
P of length | between two pixels p and ¢ is an [+ 1-tuple (po,p1, .-, Pi—1,D1)
such that po = p, pr = ¢ and Vi € [0,1) : (p;,pi+1) € G. For a set of pixels
M the predicate conn(M) holds if and only if for every pair of pixels p,q € M
there exists a path between p and g which only passes through pixels of M.
The set M is called connected if conn(M) holds. A connected component is a
nonempty maximal connected set of pixels, i.e. if for a nonempty connected
set M and for each connected set N we have M N N =)V N C M then M
is a connected component. A regional minimum (minimum, for short) of f at
altitude h is a connected component of pixels p with f(p) = h from which it
is impossible to reach a point of lower altitude without having to climb. Now,
suppose that pinholes are pierced in each minimum of the topographic surface
and the surface is slowly immersed into a lake. Water will fill up the valleys
of the surface creating basins. At the pixels where two or more basins would
merge we build a ”dam”. The set of dams obtained at the end of this immersion
process is called the watershed of the image f.

In order to define watersheds mathematically, we need a few definitions.

Definition 1. Let A be a set, and a, b two points in A. The geodesic distance
da(a,b) within A is the infimum of the lengths of all paths from a to bin A. With
a little abuse of notation we write d(a, B) for the geodesic distance between a
point a € A and a set B, with AN B # @), which is the infimum of the lengths
of all paths from a to any point in A N B.

Definition 2. Let A be some finite set of pixels. Let B C A be partitioned in k
connected components B;. The geodesic influence zone of B; within A, denoted
iza(By), is defined as the set

{pe A|Vj € [LK\{} : dalp, By) < da(p, B)}

The set IZ4(B) is defined as the union of the influence zones of the connected
components of B, i.e. IZ4(B) = Ui.“:] iza(B;).

Definition 3. The complement of the set IZ4(B) within A is called the skele-
ton by influence zones of A, SKIZ s(B) = A\IZA(B).

Definition 4. Let f be a gray level function. The set T), = {p € D | f(p) < h}
is called the threshold set of f at level h.

Let hpin and hy,q, respectively be the minimum and maximum gray level of the
digital image. Let minj denote the union of all regional minima at the height h.

Definition 5. Watershed definition Define the following recurrence for h €
[hmin-, hmaz):

Xhmin = Thmin = {p €D ‘ f(p) = hnnn}

Xpy1 = XpUminpg U ([ZTh+1 (Xh)\Th)

The watershed of the image f is the complement of X}, in D:

maz

Wshed(f) = D\ X},

maz

Intuitively, one could interpret X, as the set of pixels p, satisfying f(p) < h,
that lie in some basin.
The recursion above is based upon the following case analysis [5], which is
explained here in some detail in preparation of the parallel algorithm to follow.
For the recursive relation between X, and X1 the threshold set T} is
considered. It is obvious that X, C Xp41 C Thy1. Let Y be a connected
component of Tp, 1. There are three possible relations between Y and Xp:

1. YNX;, = 0. In this case Y is a new minimum at level h+1 and thus (after
piercing a hole in it) the starting set of a new basin. Clearly Y C X 4.

2. Y N Xy, # 0 and is connected. Clearly YV is an extension of the basin X},
and thus Y C X 4;.

3. YN Xy, # 0 and is not connected. In this case Y contains two or more
distinct minima of f. Let Z;,...,Z; be these minima. Then the basin
X}, is expanded by computing the geodesic influence zone of Z; within Y.

Most implementations of algorithms that compute the watershed of a digital
gray scale function are direct translations of this recursive relation. The basic
structure of these algorithms is a main loop in which h ranges from h,;, to
hmaz- In every iteration the basins belonging to the minima are extended with
their influence zones within the set T 1. The fact that X, is needed to compute
Xp41 clearly expresses the sequential nature of this algorithm.

2 Watershed of a Components-graph

Computing influence zones is not necessary if we can guarantee that no plateaus,
clusters of neighbouring pixels that have the same gray-value, occur in the image.
Of course, this is generally not true. Now, suppose that the image f does not
contain plateaus, i.e.

Vp,q € D (p,q) € G = f(p) # f(q)

In this case every ’plateau’ consists of exactly one pixel. We can artificially
satisfy the condition above by transforming the image f into a directed valued
graph f* = (F, E), called the components graph of f. Here F' denotes the set of
vertices of the graph and E C F' x F the set of edges. The vertices of this graph
are maximal connected sets of pixels which have the same gray-values. In the

remainder of this paper these sets are called level components. The set of level
components at level h is defined as

L, ={C CTp\Th—_1 | C is a conn. component}

The set of vertices of the graph f* is the collection of level components of f, i.e.
F = UZZZ:"" Ly. For level components v and w we have (v,w) € E iff. 9p €
v,qg € w: (p,q) € GA f(p) < f(q). By definition every directed path through
this graph increases in altitude. With a little abuse of notation we denote the
gray-value of a level component w by f*(w), which is the value f(p) for some
p € w if w is not a local minimum. If w is a minimum we define f*(w) = Apmin.
Note that changing the gray value of a local minimum into the gray value of the
absolute minimum does not change the catchment basin associated with such
a minimum, but it avoids introducing new minima during the execution of the
watershed algorithm. We denote the number of minima by N, such that we can
index the minima Mj,..,Mpy. Now, we can define the watershed of a components
graph in a similar fashion as in the case of a gray level image.

Definition 6. Watershed of a components graph Define the following
recurrence for h € [yin, Rmaz) and @ € [1..N]

X, . ={M;}

Xjp =X, U
{veF| f*v)=h+1A
(Fw € X : (w,v) € E) A
(Vj #i,we X]:(w,v) ¢ E)}

The watershed of the components graph f* is the complement of the union of
the catchment basins in F':

N
Wshed(f*) = F\ | J X}, .

i=1

Note that this definition closely resembles the definition of the watershed of a
gray level image. In this definition we do not have to consider local minima at
level h + 1 since we changed the gray level of the local minima, into A, .

The expansion of catchment basins with their influence zones is now replaced
by merging components at level h + 1, that can be reached from exactly one
catchment basin, to the corresponding basin. If a component can be reached
from two different catchment basins then the node is defined to be a watershed
node.

3 Parallel Computation of the watershed of a
components graph

The definition of the watershed of a components graph given in the previous
section suggests a simple algorithm for computing the watershed of a compo-
nents graph. The idea is to compute the catchment basins (C'M;);cf1..n7 by
computing all possible paths that start in the minima M;. The sets CM; can
easily be computed using standard breadth first graph algorithms. After com-
puting these basins the algorithm determines which components are contained
in two or more basins. These nodes are the watershed components. The nodes
that are contained in exactly one basin are non-watershed nodes.

The time required to compute the catchment basin of one minimum is pro-
portional with the number of nodes in the components graph. Let us say that
C' is the number of components in the graph, i.e. C' =| F'|. Computing all the
basins one after another has complexity of the order C' x N. Since, for typical
gray scale images, C' and N are very large, the computation of the watershed in
this way is very expensive. An alternative is to start computing all the catch-
ment basins of the minima in parallel such that we can stop expanding a basin
in a particular direction as soon as we have discovered that in that direction
two or more basins have come together.

N e
R

(a) (b) (©)

Figure 1: (a) original image f. (b) labeled level components. (c) components
graph f*. (d) watershed of f*

Suppose we have a shared memory system with IV processors. Each procesor
i is assigned the task to label the components belonging to catchment basin
X,’; with the value 7, unless this component is discovered to be a watershed
component in which case it is labeled with the value N + 1. We introduce an
array wsh[1..C] which is indexed by components. This array can be accessed
and modified by each processor. In this array the labeling of the components
is stored. Initially, all components are labeled with the (invalid) label 0. In
the parallel algorithm each processor i changes the value of the corresponding

Figure 2: (left) thick watershed of f; (right) skeleton of thick watershed of f

initially: N is the number of minima;
(Vv € F : wshlv] = 0)

do parallel for i € [1..N]
begin wsh[M;] := i;
s = {M;};
while s # () do
begin choose v € s;
s = s\{v};
n := Neighbours(v);
(xn={weF|(v,w) € E} %)
forall w € n do
begin P(w);
if wshjw] = 0 then
begin wshlw] := wsh[v];
V(w);
s:=sU{w}
end else
if wsh[w] # wsh[v] then
begin wshjw] := N + 1;
V(w);
s:=sU{w}
end else V(w)
end
end

end; pigyre 3: Parallel watershed algorithm on a components graph.

minimum M; into the label 4. Since a minimum can never be reached from any
other component in the graph, we do not have to worry that this value ever gets
changed by any other processor.

During the expansion process, each processor expands its corresponding
catchment basin iteratively. In each iteration the neighbours of the compo-
nents that were added in the previous iteration are computed. The label of
each neighbour is inspected inside a critical section. A critical section is a part
of the program that can be executed by exactly one processor at the same time.
This is necessary in order to avoid that values get overwritten when two or
more processors try to change the value of a variable. A standard technique for
solving this problem is to use semaphores, see [1]. A (binary) semaphore can be
regarded as a special kind of boolean variable that can be changed by exactly
one processor at the same time, using the operations P and V. A part of a
program that is surrounded by a P and a V operation on the same semaphore
is called a critical section. Semaphores are initalized with the value true. If s
is a semaphore, with s = true, then P(s) changes the value of s into false and
control is returned to the calling process immediately. If s = false then each
process that calls P(s) is blocked until s becomes true again and one of the
processes can enter the critical section and set the value of s to false again.
A process that has passed a P-operation, and thus has blocked all other pro-
cessors on the corresponding semaphore, can unblock the semaphore with the
operation V (s) which sets the value of s to true. For a complete description of
semaphores the reader is referred to [1].

If a neighbouring component w has not been labeled with a valid label yet,
i.e. wshjw] = 0, then w is labeled with the label of the component from which
it has been reached, and thus w is merged with the basin. If w was already
assigned a label that differs from the label of the component from which it was
reached then the node is contained in some other basin, and thus it can be
reached from at least two different minima. In this case w is labeled with the
label N + 1 which means that w is a watershed component. If another process
reaches this watershed component it can stop tracking all the paths via this
component because it knows that all components that are reached along these
paths have already been labeled by some other process, or they will be labeled
during the execution of the rest of the algorithm. Because of this fact each
component of the graph is labeled at most twice, and each node that has been
labeled twice will not be visited again during the execution of the algorithm.
At each visit a component is assigned a label. This means that this algorithm
executes in time that is linear in the number of nodes in the graph, which is
much better than time complexity C' x N in the sequential case.

In general, the number of minima in the graph will exceed the number of
available processors. This problem can be solved by creating virtual processors
by running more than one process on a single processor. This kind of pseudo-
parallelism does not affect the execution of the algorithm.

4 Computation of the watershed of a gray scale
image

The computation of the watershed of a gray

scale image according the algorithm given in [5] is much more complex than the
algorithm given in the previous section. This is a result of the fact that it is
impossible to determine whether a pixel is a watershed pixel using the gray value
of its neighbouring pixels, since a pixel can be part of a (very large) plateau.
This fact makes it hard to compute the watershed of a gray scale image at the
pixel level. We propose that the computation of the watershed of a gray scale
image is performed in three consecutive steps. In the first step the level sets of
the image are computed and the components graph is built. Computing level
sets is a fast and simple operation, which can be parallelized but it usually is
not worth the burden of doing this.

In the second step of the algorithm we compute the watershed of the com-
ponents graph that we computed in the first step. This can be done using the
algorithm given in the previous section. Finally the image is transformed back
into the image domain. This step can be performed sequentially or in parallel.
Both algorithms are evident. The result of transforming level nodes of the graph
back into sets of pixels is that we end up with thick watershed plateaus, which
is usually undesirable. In that case we can decide to use some skeletonization
algorithm to obtain thin watersheds. Note that this is perfectly acceptable,
since we can choose the watershed lines within a plateau arbitrarily.

5 Conclusions

In this paper we have shown that it is possible to compute the watershed trans-
form of a gray scale image in parallel by splitting the computation in three
consecutive stages. In theory all these stages can be implemented in parallel,
but in practice it is only worth the bureden to implement the second stage in
parallel.

In the first stage of the algorithm the input image is transformed into a directed
components graph. In the second stage of the algorithm the watershed of this
graph is computed by a breadth first colouring algorithm. The decision which
colour to assign to a certain node can be made by examining the colours assigned
to its neighbouring nodes. This locality property makes it possible to perform
this stage in parallel, in contrast with the classical watershed algorithm. In
the final stage of the algorithm the flooded graph is transformed back into the
image domain. Pixels belonging to watershed nodes of the graph are coloured
white, while pixels belonging to non-watershed nodes are coloured black. The
resulting watersheds are ”thick”. ”Thin” watersheds can be obtained by per-
forming some skeletonization algorithm on the output image. The choice which
skeletonization algorithm to use is arbitrary.

References

[1]

2]

E.W. Dijkstra. Co-operating Sequential Processes. In F. Genuys (ed.)
Programming Languages, Academic Press, London, 1968, pp.43-112

3

A. Meijster and J.B.T.M. Roerdink. A Proposal for the Implementation
of a Parallel Watershed Algorithm. In Proceedings of CAIP’95, Springer
Verlag, 1995.

A.N. Moga, T. Viero, B.P. Dobrin, M. Gabbouj. Implementation of a dis-
tributed watershed algorithm. In J. Serra and P. Soille (Eds.), Mathemat-
ical Morphology and Its Applications to Image Processing, Kluwer, 1994,
pp. 281-288.

A.N. Moga, T. Viero, M. Gabbouj. Parallel Watershed Algorithm Based
on Sequential Scanning. In I. Pitas (Ed.), 1995 IEEE Workshop on Non-
linear Signal and Image Processing, June 20-22, Neos Marmaras, Halkidiki,
Greece, pp. 991-994.

L. Vincent and P. Soille, Watersheds in Digital Spaces: An Efficient Al-
gorithm Based on Immersion Simulations. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 13, no. 6, pp 583-598, june 1991.

