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A decision theoretic framework for profit
maximization in direct marketing

Lars Muus Hiek van der Scheer Tom Wansbeek∗

September 1996

Abstract

One of the most important issues facing a firm involved in direct marketing
is the selection of addresses from a mailing list. When the parameters of the
model describing consumers’ reaction to a mailing are known, addresses for
a future mailing can be selected in a profit-maximizing way. Usually, these
parameters are unknown and have to be estimated. These estimates are used
to rank the potential addressees and to select the best targets.

Several methods for this selection process have been proposed in the recent
literature. All of these methods consider the estimation and selection step
separately. Since estimation uncertainty is neglected, these methods lead to
a suboptimal decision rule and hence not to optimal profits. We derive an
optimal Bayes decision rule that follows from the firm’s profit function and
which explicitly takes estimation uncertainty into account. We show that the
integral resulting from the Bayes decision rule can be either approximated
through a normal posterior, or numerically evaluated by a Laplace approxi-
mation or by Markov chain Monte Carlo integration. An empirical example
shows that higher profits result indeed.

∗ Muus: Department of Economics, Universitetsparken, 8000 Aarhus C, University of Aarhus, Den-
mark; Van der Scheer and Wansbeek: Department of Economics, University of Groningen, P.O. Box
800, 9700 AV Groningen, The Netherlands.
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1. Introduction

Consider a firm engaged in direct marketing, which has to decide which households
within a large population to send a mailing. In order to decide which households to
solicit it is of crucial importance for the firm to assess how the household’s response
probability depends on its characteristics (demographic variables, attitudes, etc.)
known to the firm. If the effect of the characteristics on the response probability are
known, potential addressees can be ranked and the most promising targets can be
selected.

Of course, these effects are unknown and have to be estimated. Typically, a firm
specifies and estimates a response model based on a test mailing to obtain some
knowledge on the effects of the characteristics on the response probability. For
this purpose a number of techniques have been directed, including the traditional
probit analysis and various nonparametric methods, e.g. Magidson (1988), Banslaben
(1992), Bult (1993), and Bult and Wansbeek (1995). The estimates obtained are then
used to formulate a decision rule to select households from a mailing list.

This separation of parameter estimation and formulation of decision rules does not,
in general, lead to optimal profits since a suboptimal decision rule is specified (Klein
et al. 1978). The reason for this is that estimation usually takes place by consid-
ering (asymptotic) squared-error loss, which puts equal weight at over- and under-
estimating the parameters. However, while a squared-error loss function may be
useful when summarizing properties of the response function, it completely ignores
the economic objectives of the marketing firm. Rather, the inferential process should
be embedded in the firm’s decision making framework, taking explicitly into account
the firm’s objective of maximizing expected profit. Put differently, the decision maker
should take the estimation risk into account when formulating a decision rule regard-
ing which households to solicit. The loss resulting structure is, in general, asymmetric
in contrast to the traditional squared-error loss structure. Consequently, the traditional
methods thus yield suboptimal decision rules.

The purpose of this paper is to formulate a strict decision theoretic framework for
a marketing firm engaged in direct marketing. In particular, we derive an optimal
Bayes rule deciding when to send a mailing to a household with a given set of
characteristics. This formal approach has a number of advantages. First of all, a
rigorous decision theoretic framework clarifies the essential ingredients entering the
marketing firm’s decision problem. By deriving the optimal Bayes rule based on
an expected profit loss function, the present framework yields admissible decision
rules with respect to the marketing firm’s economic objective. Furthermore, the
estimation uncertainty resulting from the firm’s assessment of the characteristics of
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the population of potential targets is explicitly taken into account as an integral part
of the optimal decision procedure. Thus, the decision theoretic procedure provides
a more firm theoretical foundation for optimal decision making on part of the firm.
Equally important, the present framework provides decision rules yielding higher
profits to the firm.

Integration of the estimation and decision step has been studied thoroughly in statistics
(e.g., Berger 1985, DeGroot 1970). This formal decision theoretic framework has been
applied in a number of economic decision making situations, including portfolio
selection (cf. Bawa, Brown and Klein 1979), real estate assessment (Varian 1975),
and agricultural economics (e.g., Lence and Hayes 1994). For further economic
applications see Cyert and DeGroot (1987). To the best of our knowledge, only one
paper on optimal decision making under uncertainty has been applied to marketing
questions (Blattberg and George 1992). These authors consider a firm whose goal
it is to maximize profits by determining the optimal price. They conclude that the
firm is better off by charging a higher price than the price resulting from traditional
methods, which are based on the estimated price sensitivity parameter. However, in
contrast with our approach, they consider a loss function that results from a rather
ad-hoc specified model, with only one unknown parameter.

The paper is organized as follows. In the next Section we formulate the decision theo-
retic framework and derive the optimal Bayes decision rule. We show that the decision
rule crucially depends on the estimation uncertainty facing the firm. The estimation
uncertainty can be incorporated through a posterior density. In Section 3 we derive
a closed form expression for the integral resulting from the optimal decision rule by
approximating the posterior by the asymptotically normal density of the maximum
likelihood (probit) estimator. In Section 4 we discuss the Laplace approximation and
Markov chain Monte Carlo integration, which can be used to calculate the integral
of interest. In Section 5 we discuss an empirical example, using data provided by a
charity firm. Applying the formal decision framework appears to generate the higher
profits indeed. We conclude in Section 6.

2. The decision theoretic framework

Consider a direct marketing firm that has the option of mailing or not mailing to
potential targets. In case a mail is sent to a given household the profit to the firm, π ,
is given by

π = r R − c,
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where r is the revenue from a positive reply, c is the mailing cost, and R is a random
variable given by

R =
{

1 if the household responds
0 if the household does not respond.

Clearly, c < r if the firm has to obtain positive profits at all. We assume that the
response is driven by a probit model. Hence, the response probability of a household
is

P(R = 1 | x, β) = 8(x ′β),

where 8(·) is the standard normal integral, x is a k × 1 vector of regressors and β

is a k × 1 vector of regression coefficients (β ∈ B ⊆ IRk). In case a mail is sent, the
expected profit given x and β is

E(π | x, β) = rE(R | x, β) − c = r8(x ′β) − c. (1)

With an unknown β the firm has to make a decision whether to send a mail (d = 1)
or not (d = 0) to a given household. The loss function considered in the following is
given by

L(d, β | x) =
{

r8(x ′β) − c if d = 1
0 if d = 0.

(2)

Notice, that the above loss function is naturally induced by the firm’s economic
profit maximization objective. In this sense, the present decision theoretic framework
naturally encompasses the phenomena of estimation uncertainty, without introducing
rather ad hoc statistical criteria.

Inference on the parameter vector β is obtained through a test mailing, resulting in
the sample

Sn ≡ {(x1, R1), ...., (xn, Rn)}.

The posterior density, using Bayes’ rule, is given by

f (β | Sn, θ) = L(β | Sn) f (β | θ)

f (Sn | θ)
, (3)

where L(β | Sn) is the likelihood function corresponding to the sample,
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L(β | Sn) =
n∏

i=1

8(x ′
iβ)Ri (1 − 8(x ′

iβ))1−Ri ,

and f (β | θ) denotes the prior density, θ ∈ 2 ⊆ IRp is a p × 1 vector of hyperpa-
rameters. Finally, f (Sn | θ) denotes the predictive density given by,

f (Sn | θ) =
∫

L(β | Sn) f (β | θ)dβ. (4)

The posterior risk corresponding to the loss function (2) is then given by

R(d | x) ≡ E(L(d, β | x) | Sn)

=
{

r
∫

8(x ′β) f (β | Sn, θ)dβ − c if d = 1
0 if d = 0.

(5)

The Bayes decision rule corresponding to the posterior risk (5) is the decision variable
d maximizingR(d | x). It is easily seen that this decision rule is given by

d = 1 if and only if
∫

8(x ′β) f (β | Sn, θ)dβ ≥ c

r
. (6)

Notice that this decision rule explicitly takes into account the estimation uncertainty
inherent when the firm does not know the parameter vector β. The Bayes optimal
mailing region, denoting the households to whom a mail should be sent, is hence
given by

MB ≡
{

x ∈ IRk |
∫

8(x ′β) f (β | Sn, θ)dβ ≥ c

r

}
.

The structure of the mailing region may, in general, be quite complicated.

It is often recommended to base the firm’s mailing decision on the point estimates
obtained from the test mailing. These point estimates are typically derived by implic-
itly assuming a squared-error loss function, resulting from the use of standard esti-
mation procedures. As this squared-error loss does not reflect the actual loss suffered
by the firm, using the point estimate motivated by squared-error loss will be inappro-
priate. If the firm neglects the estimation uncertainty it would specify a decision rule
based on a point estimate of β, say β̂, e.g. the probit estimator based on Sn . The point
estimate then is used as if it is the true parameter value (e.g., Bult and Wansbeek
1995). The resulting decision rule, which we call the naive decision rule, is thus given
by
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d = 1 if and only if 8(x ′β̂) ≥ c

r
. (7)

This rule evidently ignores the estimation uncertainty surrounding β̂. Indeed, by a
second order Taylor series expansion of 8(x ′β), we obtain

8(x ′β) ≈ 8(x ′β̂) + (β − β̂)′xφ(x ′β̂) − 1

2
x ′β̂φ(x ′β̂)x ′(β − β̂)(β − β̂)′x,

using the fact that the derivative of φ(t) is −tφ(t), where φ(·) is the standard normal
density. Hence, an approximate Bayes decision rule is given by,

8(x ′β̂) − 1

2
x ′β̂φ(x ′β̂)x ′ Mx ≥ c

r
(8)

where M ≡ E(β̂ − β)(β̂ − β)′ denotes the mean square error matrix of the estimator
β̂. The major difference between the (approximate) Bayes rule (8) and the naive
rule (7) is that estimation uncertainty is explicitly taken into account in the former.
Evidently, if the estimation uncertainty is small, i.e. M is small, the approximate
Bayes rule (8) is adequately approximated by the naive decision rule (7). Notice that
the mailing region for the naive rule is the half space given by

MN ≡
{

x ∈ IRk | 8(x ′β̂) ≥ c

r

}
The result of applying the naive decision rule is thus to approximate the mailing
regionMN by the halfspaceMN. As will be demonstrated below this approximation
may be rather crude, resulting in a suboptimal level of profits.

In order to implement the optimal decision rule (6), we need to evaluate the expectation
of 8(x ′β) over the posterior density of β. If the posterior admits a closed form solution
and is of a rather simple analytical form, this expectation can be solved analytically.
Otherwise, numerical methods need to be implemented in order to assess the decision
rule (6). In Section 4 we explore various numerical strategies for evaluating the
decision rule. However, it is instructive to consider the case where the posterior
density is normal in which case we can fully characterize the mailing region.
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3. The case of a normal posterior

If the posterior density is normal with mean µ and covariance matrix �, we can
obtain a closed form expression for (6), namely1

∫
8(x ′β) f (β | Sn, θ) dβ

= Eβ

(
8(x ′β)

)
where β ∼ N(µ,�)

= Eb

(
8(x ′�1/2b + x ′µ)

)
where b = �−1/2(β − µ) ∼ N(0, Ik)

= EbEz I{−∞,x′�1/2b+x′µ}(z) with z ∼ N(0, 1), independent of b

= EbEz I{−∞,x′µ}(z − x ′�1/2b)

= P(z − x ′�1/2b < x ′µ)

= 8

(
x ′µ

(1 + x ′�x)1/2

)
. (9)

Hence, the mailing region is given by

MB =
{

x ∈ IRk | 8

(
x ′µ

(1 + x ′�x)1/2

)
≥ c

r

}
= {

x ∈ IRk | x ′µ ≥ γ (1 + x ′�x)1/2
}
. (10)

where

γ ≡ 8−1
(c

r

)
.

Since in any practical situation c � r , we assume γ < 0 whenever the sign of γ is
relevant. Notice that, when �1 > �2, 1 + x ′�1x > 1 + x ′�2x . Thus, since γ < 0,
greater uncertainty as to β implies that the mailing region expands.

Expression (9) enables us to show explicitly that the Bayes decision rule generates
higher expected profits than the naive decision rule. The expected profit (cf. (1)), in
case mail is sent, is

q(x) ≡ Eβ(E(π | x, β))

= r8

(
x ′µ

(1 + x ′�x)1/2

)
− c.

1 We are indebted to Ton Steerneman for bringing the result to our attention, and for providing this
derivation.
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For all x inMB there holds, by definition, that q(x) > 0. SinceM ⊆MB it follows
that the expected profit is lower for the naive decision rule.

We consider these mailing region in somewhat more detail. The boundary of the
mailing regionMB is given by

{x ∈ IRk | x ′µ = γ (1 + x ′�x)1/2} (11)

We assume that � > 0. By squaring and rewriting the argument of (11) we obtain

x ′(µµ′ − γ 2�)x = γ 2, (12)

which can be written as

x ′�1/2(�−1/2µµ′�−1/2 − γ 2 Ik)�
1/2x = γ 2. (13)

Let

A1 ≡ �−1/2µµ′�−1/2

µ′�−1µ

A2 ≡ Ik − A1

λ ≡ µ′�−1µ − γ 2;

A1 and A2 are idempotent matrices of rank 1 and k − 1, respectively, A1 A2 = 0, and
A1 + A2 = Ik . Hence, we can write (13) as

x ′�1/2
(
λA1 − γ 2 A2

)
�1/2x = γ 2.

Let A1 = z1z ′
1 and A2 = Z2Z ′

2, so (z1, Z2) is orthonormal. Then

G ≡ λA1 − γ 2 A2

= λz1z ′
1 − γ 2Z2Z ′

2

= (z1, Z2)

(
λ 0
0 −γ 2 Ik−1

)(
z ′

1

Z ′
2

)
Hence, the eigenvalues of G are −γ 2 with multiplicity k − 1, and λ with multiplicity
one. The sign of λ depends on �. Informally speaking, for small values of �, λ > 0,
and for large values, λ < 0. In the first case G has one positive and k − 1 negative
eigenvalues. Due to ‘Sylvester’s law of inertia’ (e.g. Lancaster and Tismenetsky
1985, p. 188), the same holds for µµ′ − γ 2�. Hence, the matrix is indefinite and the
boundary is a hyperboloid in the x-space. When the uncertainty as to β is so large that
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Figure 3.1: The naive and Bayes optimal mailing region compared. The area to the
north-east of the straight line isMN, and the ellipsoids boundMB for various values
of σ 2.

λ < 0, all eigenvalues of G are negative and (12) does not have a solution. Hence, all
households should be included in the mailing campaign.

We illustrate the mailing region it for k = 2, µ′ = (1, 1), γ = −1, and

� =
(

σ 2 σ12

σ12 σ 2

)
.

Then, from (10), the mailing region is

MB = {x1, x2 | x1 + x2 ≥ −
√

1 + σ 2(x1 + x2) + 2σ12x1x2},

which reduces to the halfspace x1 + x2 ≥ −1 if σ 2 = σ12 = 0. The matrix in (12)
becomes

µµ′ − γ 2�
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=
(

1 − σ 2 1 − σ12

1 − σ12 1 − σ 2

)
= 1

2

(
1 −1
1 1

)(
2 − σ 2 − σ12 0

0 −(σ 2 − σ12)

)(
1 1

−1 1

)
. (14)

Hence, the matrix µµ′ − γ 2� has one negative eigenvalue, −(σ 2 − σ12), and one
eigenvalue that is positive if σ 2 + σ12 < 2. Using (14), (12) can be rewritten as

(2 − σ 2 − σ12)(x1 + x2)
2 − (σ 2 − σ12)(x1 − x2)

2 = 2,

which is a hyperbola in IR2. Its asymptotes are found by putting the left-hand side
equal to zero. On letting

ϕ ≡
√

2 − σ 2 − σ12

σ 2 − σ12
,

these asymptotes are found to be

ϕ(x1 + x2) = ±(x1 − x2),

or

x2

x1
= 1 − ϕ

1 + ϕ
and

x2

x1
= 1 + ϕ

1 − ϕ
.

Figure 3.1 illustrates the boundary for σ12 = 0, and σ 2 = 0, .5, 1.5, and 1.95,
respectively. If σ 2 = 0 we have a straight line. This bounds the mailing region of the
naive method or. The mailing region increases as σ 2 increases; the arrows indicate
the direction of the increase. When σ 2 ≥ 2, the mailing region is simply IR2. The
distance between the straight line corresponding with σ 2 = 0 and the hyperbola is
larger when the x-value is larger. This reflects the fact that the uncertainty as to x ′β
increases by the (absolute) value of x .

4. Numerical evaluation of the optimal Bayes rule

Numerical implementation of the optimal Bayes decision rule (6) requires the evalu-
ation, for each value of x , of the integral

Q(x) ≡
∫

8(x ′β) f (β | Sn, θ) dβ (15)
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=
∫

8(x ′β)L(β | Sn) f (β | θ) dβ∫
L(β | Sn) f (β | θ) dβ

, (16)

using (3) and (4) in the last step. We will now explore various methods for evaluating
this integral. Henceforth, we denote the probit estimate of β, based on Sn , by β̂, and
covariance matrix by �̂ (e.g. the inverse of the Fisher information matrix evaluated
in β̂).

Normal posterior approximation

It is well known that the posterior density converges under suitable regularity con-
ditions to a normal distribution, with mean β̂ and covariance matrix �̂, when the
sample size is sufficiently large (Jeffreys 1967, p. 193, Heyde and Johnstone 1979).
Obviously, the approximation may be rather crude, since it is solely based on the
asymptotic equivalence of the Bayes and maximum likelihood estimator. Thus, this
approximation completely ignores the prior distribution f (β | θ). However, as we
showed in in Section 3, this property appears to be very valuable since it enables us
to obtain a closed form expression for (15), which is given in (9) by substitution of
β̂ for µ and �̂ for �. Moreover, Zellner and Rossi (1984) showed that, for moderate
sample sizes (n = 100), the normal posterior approximation works well for the logit
model.

Laplace approximation

A more refined asymptotic approximation is the Laplace approximation proposed by
Tierney and Kadane (1986) (see also Kass et al. 1988, and Tierney et al. 1989). The
Laplace approximation of (16) is given by

Q̂(x) = 91(β̂1)|H1(β̂1)|−1/2

90(β̂0)|H0(β̂0)|−1/2

where β̂0 and β̂1 are the maximizers of 90(·) and 91(·), respectively, and

90(β) ≡ L(β | Sn) f (β | θ)

91(β) ≡ 8(x ′β)L(β | Sn) f (β | θ),

and

H0(β) ≡ −∂2 ln 90(β)

∂β∂β ′
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H1(β) ≡ −∂2 ln 91(β)

∂β∂β ′ .

By means of the Laplace approximation, the integral Q(x) is thus evaluated without
any need for numerical integration. Instead the Laplace approximation requires max-
imization, in order to determine β̂0 and β̂1, and differentiation, in order to find H0(·)
and H1(·). For β̂0 and β̂1 we use the values obtained by a single Newton-Raphson
step from β̂ when maximizing ln 90(β) and ln 91(β), which does not affect the rate
at which the approximation error vanishes. As demonstrated by Tierney and Kadane
(1986), Kass et al. (1988), and Tierney et al. (1989), the general error of the approxi-
mation vanishes at rate n−2. As these authors demonstrate, this approximation is often
very accurate.

We apply this approximation for an informative prior and an uninformative prior. As
to the former we choose for f (β | θ) the normal density with mean β̂ and covariance
matrix �̂. Since, ∂ ln f (β | θ)/∂β = −�̂−1(β − β̂), we have β̂0 = β̂, and in the
Appendix we show that

β̂1 = β̂ + ξ(β̂)H0(β̂)−1x, (17)

where ξ(·) is a scalar function defined in (18).

For the uninformative prior we use Jeffreys’ prior (e.g. Berger 1985, pp. 82-89, and
Zellner 1971, pp. 41-53), given by

f (β | θ) =
∣∣∣∣−E

(
∂2 ln L(β | Sn)

∂β∂β ′

)∣∣∣∣1/2

.

Notice that no hyperparameters are involved here. Within the context of binary
response models this prior has been examined by, among others, Ibrahim and Laud
(1991), and Poirier (1994). These authors support the use of Jeffreys’ prior as an unin-
formative prior but notice that it can be quite cumbersome to work with analytically
as well as numerically.

Monte Carlo integration

The recent development of Markov chain Monte Carlo (MCMC) procedures has
revolutionized the practice of Bayesian inference. See, for example, Tierney (1994),
and Gilks et al. (1995) for expositions of basic Markov chain Monte Carlo procedures.
These algorithms are easy to implement and have the advantage that they do not
require evaluation of the normalizing constant of the posterior density, given by
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(4). As a candidate density it is natural to select the asymptotic approximation,
q(β) ∼ N(β̂, �̂). The density of interest, the so-called target density, is given by

h(β) ≡ L(β | Sn) f (β | θ).

The independence sampler (Tierney 1994), a special case of the Hastings-Metropolis
algorithm, is used to generate random variates βj , j = 1, . . . , J , from the (unnormal-
ized) density h(β) through the following algorithm, where β0 is arbitrarily selected:

1. draw a candidate point, β∗
j , from q(·)

2. draw uj from the uniform density on (0, 1)

3. if uj ≤ α(βj−1, β
∗
j ), then βj = β∗

j , else βj = βj−1.

Here

α(βj−1, β
∗
j ) ≡

{
min

(
h(β∗

j )q(βj−1)

h(βj−1)q(β∗
j )
, 1

)
if h(βj−1)q(β∗

j ) > 0

1 else.

The generated βj’s, j = 1, . . . , J are used to evaluate the integral by

Q̂(x) = 1

J

J∑
j=1

8(x ′βj).

We use this algorithm instead of more advanced MCMC procedures, like the Gibbs
sampler (e.g. Albert and Chib 1993), since we have a candidate density that is a
good approximation of the target distribution (Roberts 1995). Again, we apply this
algorithm for the (informative) normal prior and for the (uninformative) Jeffreys’
prior.

5. Application

We illustrate our approach with an application based on data from a charitable
foundation in the Netherlands. This foundation heavily rests on direct mailing. Every
year it sends mailings to almost 1.2 million households in the Netherlands. The
dependent variable is the response/nonresponse in 1991. The explanatory variables
are the amount of money (in NLG) donated in 1990 (A90) and 1989 (A89), the
interaction between these two (INT), the date of entry on the mailing list (ENTRY),
the family size (FS), own opinion on charitable behavior in general (CHAR; four
categories: donates never, donates sometimes, donates regularly, and donates always).
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The data set consists of 40 000 observation. All the households on the list donated at
least once to the foundation since entry on the mailing list.

In order to have a sufficiently large validation sample we used 1 000 observations
for estimation. The response rate in the estimation sample is 31.8%. This rather
high response rate is not surprising since charitable foundations have in general high
response rates (Statistical Fact Book 1994-1995), and the mailing list consists of
households that responded to this particular foundation before. The average amount
of donation in the estimation sample is NLG 14.56, the cost of a mailing is NLG
3.50. We use the average amount of donation for household selection and to determine
the profit implications. Table 5.1 gives the probit estimates and the average of the
coefficients based on the independence sampler with the normal and Jeffreys’ prior,
respectively. The donation in 1990 and 1989 are, as expected, positively related with
the response probability. The negative sign of the interaction term can be interpreted as
a correction for overestimation of the response probability if a households responded
in 1990 and 1989. The other three coefficients do not significantly differ from zero.
As expected, the average value of the coefficients for the independence sampler are
similar to the probit estimates. The standard deviations, however, of the normal prior
are much smaller.

The basic difficulty in MCMC procedures is the decision when the generated sequence
of parameters has converged to a sample of the target distribution. Many diagnostic
tools to address this convergence problem have been suggested in the recent literature
(see Cowles and Carlin 1996 for an extensive overview). Following the recommenda-
tions of these authors, we generated six parallel sequences of parameters with starting
points systematically chosen from a large number of drawings from a distribution that
is overdispersed with respect to the target distribution. We inspected the sequences
of each parameter by displaying them in a common graph and in separate graphs. We
used the Gelman-Rubin statistics (Gelman and Rubin 1992) to quantitatively analyze
the sequences. The results of these diagnostics are satisfying, indicating an almost
immediate convergence of the sample.

Table 5.2 shows the profit implications for the various approaches to determine
the posterior risk function and the naive approach for the validation sample. As a
benchmark we also give the situation in which the foundation sends all the households
a mailing. Of these 39 000 households, 13 274 responded, generating a net profit of
NLG 56 784. If the foundation would have used the naive selection approach they
would have selected 87.03% (33 946) of the households, with a net profit of NLG
59 345. Using the Bayes decision rule, the foundation would have selected more
households, as expected. This ranges from 34 018 of the Laplace approximation
with the normal prior to 34 271 of the independence sampler with Jeffreys’ prior.
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Table 5.1: Probit estimates and results of the independence sampler

Probit Estimates1 Independence Sampler2

Normal prior Jeffreys’ prior
Constant -0.3938 -0.3964 -0.3948

(0.4511) (0.3120) (0.4539)
A90 0.0052 0.0053 0.0051

(0.0014) (0.0010) (0.0014)
A89 0.0074 0.0074 0.0072

(0.0030) (0.0021) (0.0030)
INT -0.0056 -0.0057 -0.0053

(0.0029) (0.0019) (0.0027)
ENTRY -0.0063 -0.0063 -0.0063

(0.0048) (0.0033) (0.0048)
FS -0.1526 -0.1503 -0.1513

(0.1408) (0.1003) (0.1397)
CHAR 0.0683 0.0680 0.0685

(0.0537) (0.0371) (0.0530)
1 Asymptotic standard errors in parentheses
2 Standard deviation, based on J = 10 000, in parentheses

Except for the Laplace approximation with the normal prior, the additional selected
households generate sufficient response to increase the net profits, reinforcing the
importance of the Bayes decision rule. Net profits increase with 4.5% if the naive
selection is used instead of selecting all the households. This percentage increases
to 5.3% if we apply the normal posterior approximation, and to 5.4% when using
the independence sampler with Jeffreys’ prior. Given that the foundation’s database
contains 1.2 million targets, these increases turn out to be quite substantial. Notice
that the figures of the Laplace approximation and independence sampler with the
normal prior are much closer to those of the naive approach than those with Jeffreys’
prior. This makes intuitive sense since informative priors put more weight to values
of β near β̂. In the case of the posterior density degenerating at β̂, i.e. perfect prior
information on β, the decision rule is equivalent to the naive rule.
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Table 5.2: Target selection and profit implications

Number selected Response Actual profit (NLG)
No Selection 39 000 13 274 56 784
Naive approach 33 946 12 236 59 345
Normal posterior 34 240 12 337 59 787
Laplace approximation:
Normal prior 34 018 12 250 59 297
Jeffreys’ prior 34 256 12 341 59 789

Independence sampler:
Normal prior 34 153 12 310 59 698
Jeffreys’ prior 34 271 12 347 59 824

6. Discussion and conclusion

In order to select addresses from a list for a direct mailing campaign, a firm can
build a response model and use the (consistently) estimated parameters for selection.
The decision rule for selection is often defined on the basis of the estimated param-
eters taken as the true parameters. This paper shows that this leads to suboptimal
results. The reason for this is that the estimation uncertainty resulting from the firm’s
assessment of the characteristics of the potential targets is not taken into account. Put
differently, both steps of a target selection process, estimation and selection, should
be considered simultaneously. We formulated a rigorous theoretic framework, based
on the firm’s profit maximizing behavior, to derive an optimal Bayes decision rule.
We demonstrated theoretically as well as empirically that this approach generates
higher profits.

An important aspect of our approach is the evaluation of the integral resulting from
the Bayes decision rule. We used a normal posterior, Laplace approximation, and
Monte Carlo integration to evaluate the Bayes rule numerically. Although the normal
posterior approach may be rather crude it has the advantage that a closed form
expression can be derived, and, moreover, it performs quite well in the empirical
illustration. As a consequence of the former, we do not need the computational
intensive methods. Moreover, we obtain a transparent expression for the expected
profit, which explicitly shows the effect of estimation risk. It has to be realized,
however, that the empirical results indicate that the decision rule is affected by the
chosen prior density. Since the normal posterior approximation ignores the prior
density, it has to be used with caution when prior information is available.
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This paper has some limitations. First, we considered only the question of select-
ing households for one direct mailing campaign. That is, we did not consider the
long-term impact of the selection process. Second, we solely considered the binary
response choice to the mailing and not the amount of money donated. Third, we
made the implicit assumption that the parameters are constant across households.
This assumption may be unrealistic in practice. It runs, for example, counter to
the idea of trying to customize promotions through direct marketing. A company
could deal with this kind of heterogeneity by using, for example, latent class analysis
(DeSarbo and Ramaswamy 1994, Wedel et al. 1993). We want to stress, however, that
these assumptions are commonly made in direct marketing research. Furthermore,
our method results from a general decision theoretic framework that can be extended,
in principle, to situations that do suffer from these limitations, in a straightforward
manner.
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Appendix: On the Laplace approximation

We first prove (17), then we give the derivatives of Jeffreys’ prior. Let

g0(β) ≡ ∂ ln 90(β)

∂β
= ∂ ln L(β | Sn)

∂β
− �̂−1(β − β̂)

g1(β) ≡ ∂ ln 91(β)

∂β
= φ

8
x + g0(β) = ζ x + g0(β),

where φ ≡ φ(x ′β), 8 ≡ 8(x ′β), and ζ ≡ φ

8
is the inverse of Mills’ ratio. Notice

that g0(β̂) = 0. Further,

H0(β) ≡ −∂2 ln L(β | Sn)

∂β∂β ′ + �̂−1

H1(β) ≡ φ(φ + x ′β8)

82
xx ′ + H0(β) = ζ(ζ + x ′β)xx ′ + H0(β).

Then β̂1 follows from the Newton-Raphson step

β̂1 = β̂ + H1(β̂)−1g1(β̂)

= β̂ +
(
ζ̂ (ζ̂ + x ′β̂)xx ′ + H0(β̂)

)−1

g1(β̂)

= β̂ + 1

1 + ζ̂ (ζ̂ + x ′β̂)x ′ H0(β̂)−1x
H0(β̂)−1g1(β̂)

= β̂ + ξ(β̂)H0(β̂)−1x,

where ζ̂ denotes ζ evaluated in β̂, and

ξ(β) ≡ ζ

1 + ζ(ζ + x ′β)x ′ H0(β)−1x
. (18)
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We will now derive the first and second derivative of Jeffreys’ prior, given by

f (β | θ) =
∣∣∣∣−E

(
∂2 ln L(β | Sn)

∂β∂β ′

)∣∣∣∣1/2

= |A|1/2

where

A ≡
n∑

i=1

φ2
i

Di
xi x

′
i,

with φi ≡ φ(x ′
iβ) and Di ≡ 8i(1−8i), where 8i ≡ 8(x ′

iβ). Using some well known
properties of matrix differentiation (e.g. Balestra 1976), we obtain the logarithmic
first derivative

∂ ln |A|1/2

∂β
= 1

2

(
(vecA−1)′ ⊗ Ik

)
vec

(
∂ A

∂β

)
.

Let

M ≡ vecIk ⊗ Ik,

then we can write, using the product rule for matrices, the second derivative as

∂2 ln |A|1/2

∂β∂β ′ =
1

2

[(
(vecA−1)′ ⊗ Ik

) (
Ik ⊗ ∂2 A

∂β∂β ′

)
− M ′

(
Ik ⊗

(
(A−1 ⊗ Ik)

∂ A

∂β
A−1 ∂ A

∂β ′

))]
M.

Finally, to complete the derivatives we need an expression for ∂ A/∂β and ∂2 A/∂β∂β ′,
which are given by

∂ A

∂β
= −

n∑
i=1

(
2x ′

iβφ2
i

Di
+ φ3

i (1 − 28i)

D2
i

)
xi x

′
i ⊗ xi

∂2 A

∂β∂β ′ =
n∑

i=1

(
2φ2

i (2(x ′
iβ)2 − 1)

Di
+ 5x ′

iβφ3
i (1 − 28i) + 2φ4

i

D2
i

+2φ4
i (1 − 28i)

2

D3
i

)
xi x

′
i ⊗ xi x

′
i,

which enables us to calculate the derivatives of Jeffreys’ prior.
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