

 University of Groningen

Computation of watersheds based on parallel graph algorithms
Meijster, A.; Roerdink, J.B.T.M.

Published in:
MATHEMATICAL MORPHOLOGY AND ITS APPLICATIONS TO IMAGE AND SIGNAL PROCESSING

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1996

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Meijster, A., & Roerdink, J. B. T. M. (1996). Computation of watersheds based on parallel graph algorithms.
In P. Maragos, RW. Schafer, & MA. Butt (Eds.), MATHEMATICAL MORPHOLOGY AND ITS
APPLICATIONS TO IMAGE AND SIGNAL PROCESSING (pp. 305-312). (COMPUTATIONAL IMAGING
AND VISION). University of Groningen, Johann Bernoulli Institute for Mathematics and Computer Science.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 11-12-2022

https://research.rug.nl/en/publications/699ca342-6b7c-464d-bd2d-6a6a28659085

COMPUTATION OF WATERSHEDS BASED ON PARALLELGRAPH ALGORITHMS �A. MEIJSTER and J.B.T.M. ROERDINKUniversity of Groningen,Institute for Mathematics and Computing ScienceP.O. Box 800, 9700 AV Groningen, The NetherlandsEmail: arnold@cs.rug.nl roe@cs.rug.nlTel. +31-50-3633931, Fax. +31-50-3633800Abstract. In this paper the implementation of a parallel watershed algorithm is described. Thealgorithm has been implemented on a Cray J932, which is a shared memory architecture with 32processors. The watershed transform has generally been considered to be inherently sequential,but recently a few research groups, see [5, 9, 10], have designed parallel algorithms for computingwatersheds. Most of these parallel algorithms are based on splitting the source image in blocks,computing the watersheds of these blocks and merging the resulting images into the desired result.A disadvantage of this approach is that a lot of communication is necessary at the boundaries ofthe blocks. It is possible to formulate the computation of the watershed transform as a shortestpath searching problem that is commonly found in algorithmic graph theory. In this paper we use aparallel adapted version of Dijkstra's algorithm for computing shortest paths in undirected graphs.Key words: watersheds, segmentation, shortest path algorithms, shared memory, parallelism1. IntroductionMeyer gives in [7] a de�nition of the watershed of a digital gray scale image in termsof shortest paths. In this section we will give a short summary of this de�nition.A digital gray scale image is a function f : D �! IN, where D � ZZ2 is the domainof the image and f(p) denotes the gray value of the pixel p 2 D. Let E denote theunderlying grid, i.e. E is a subset of ZZ2 � ZZ2. A path P of length l between twopixels p and q is an (l + 1)-tuple (p0; p1; :::; pl�1; pl) such that p0 = p, pl = q and8i 2 [0; l) : (pi; pi+1) 2 E. The length of a path P is denoted by l(P). For a pixelp 2 D the set of neighboring pixels of p is de�ned as NE(p) = fq 2 D j (p; q) 2 Eg.The lower slope, which is the maximal slope linking a pixel p to any of its neigh-bors of lower altitude, is de�ned asLS(p) = MAXq2fpg[NE (p)(f(p) � f(q))The cost for walking from one position p to a neighboring position q is de�ned ascost(p; q) = 8<: LS(p) if f(p) > f(q)LS(q) if f(p) < f(q)LS(p)+LS(q)2 if f(p) = f(q)� In: Mathematical Morphology and its Applications to Image and Signal Processing, P. Mara-gos, R.W. Shafer, M.A. Butt (eds.), Kluwer, 1996, pp. 305-312. Postscript version obtainable athttp://www.cs.rug.nl/~roe/

2 A. MEIJSTER AND J.B.T.M. ROERDINKWe denote the set of all paths from p to q by p ; q. The topographical distancebetween two pixels p and q along a path P = (p0; :::; pl(P)) is de�ned asTPf (p; q) = l(P)�1Xi=0 cost(pi; pi+1)The topographical distance between points p and q is de�ned as the minimum of thetopographical distances along all paths between p and q:Tf (p; q) = MINP2p;q TPf (p; q)The topographical distance between a point p 2 D and a set A � D is de�ned as:Tf (p;A) = MINa2A Tf (p; a)Note that Tf (p; q) = 0 if p and q are interior pixels of the same plateau. Now weconstruct a function f� by replacing the values of f in all the local minima of fby 0, i.e. f�(p) = 0 if p lies in a regional minimum, f�(p) = f(p) otherwise. Let(mi)i2I be the collection of minima of the function f�. Note that these minima aresets, since a minimum can be a plateau instead of one single pixel. The catchmentbasin of a minimummi, denoted CB(mi), is de�ned as the set of points p 2 D thatare topographically closer to mi than to any other minimummj :CB(mi) = fp 2 D j 8j 2 Infig : Tf� (p;mi) < Tf� (p;mj)gThe watershed of a function f is the set of points of its domain which do-not belongto any catchment basin: Wsh(f) = D \ ([i2ICB(mi))c2. Dijkstra's algorithmIn the previous section the de�nition of the watershed of a digital image is given.However, although this de�nition is mathematically sound, it is not immediatelyclear how to compute the watershed of a digital image, since the de�nition quanti�esover all topographical paths between each pixel p 2 D and all the minimami.In graph theory shortest path searching problems have been studied extensively.In the rest of this section we will review the problem of computing the lengths of theshortest paths in a given graph from a source node s to all the other nodes in thisgraph. We assume we have an undirected graph G = (V;E), and a weight functionw : E ! IN, that assigns a length to each edge of the graph. The goal is to �nd foreach v 2 V the length of the shortest path from the source node s to v.A well known algorithm for solving this problem1 was found by E.W. Dijkstrain 1959 (see [1]). The algorithm is based on the fact that if P = (p0; p1; ::; pn), with1 Actually, the general problem is to �nd the shortest path, instead of its length, but we areonly interested in the length of this path.

COMPUTATION OF WATERSHEDS BASED ON PARALLEL GRAPH ALGORITHMS 3procedure Dijkstra (G=(V,E); s 2 V ; w : E ! IN; var d : V ! IN);var u : V ;begin forall v 2 V do d[v] :=1;d[s] := 0;while V 6= ; dobegin u := GetMinDist(V); (� �nd u 2 V with smallest d-value �)V := V nfug;forall v 2 V with (u; v) 2 E doif d[u] +w[u; v] < d[v]then d[v] := d[u] + w[u; v]endend; Fig. 1. Dijkstra's algorithm for an undirected graph G = (V;E)(pi; pi+1) 2 E, is the shortest path from a node p0 to another node pn, then theshortest path from p0 to pi, with 0 � i � n, is given by (p0; :::; pi). This trivialobservation leads to a very elegant algorithm for solving the shortest path problem.The basic idea is to initialize for each node v 2 V nfsg the distance between v and sto in�nity, while the distance between s and itself is set to zero. After initialization, awavefront starting in s is propagated through the graph along the edges of the graph.During the propagation we keep track of the distance the wavefront has traveled sofar. When a node is reached by the wavefront and the distance traveled is smallerthan the current value stored in this node, the value of this node is updated. Thispropagation process stops when all nodes of the graph have been reached by thewavefront. The pseudo-code of this algorithm is given in Fig. 1.From the code of the algorithm it is clear that, assuming that the time complexityof the function GetMinDist is O(1), the time complexity of the entire algorithm isO(jE j), since each edge of the graph is traversed only twice2. Since E � V �V , thetime complexity can also be written as O(jV j2).3. Computation of the Watershed based on Dijkstra's algorithmIf we compute the function cost of a digital gray scale image f , and use it as theweight function associated with the edges of the grid E, then Dijkstra's algorithmcan be used to compute the topographical distance between each pixel and a localminimum mi. In the rest of this paper all distances are topographical distancesunless explicitly stated otherwise. Dijkstra's algorithm appears to be a very timeconsuming operation, since the number of nodes of the graph is the number of pixelsin the image. However, because the graph is a digital image there are only 4, 6 or8 edges leaving each node, in the cases of 4, 6, or 8-connectivity, respectively. ThusjE j= k2 � jV j, where k denotes the connectivity we use. So, the time complexity of2 In a directed graph each edge is traversed only once.

4 A. MEIJSTER AND J.B.T.M. ROERDINKprocedure SeqWshed (E : D �D; cost : E ! IN; var d : D ! (I [fWshg)� IN));var u : D;begin forall v 2 D do d[v] := (0;1);forall i 2 I doforall v 2 mi do d[v] := (i; 0);while D 6= ; dobegin u := GetMinDist(D);D := Dnfug;forall v 2 D with (u; v) 2 E doif snd(d[u]) + cost[u; v] < snd(d[v])then d[v] := (fst(d[u]); snd(d[u]) + cost[u; v]);else if snd(d[u]) + cost[u; v] = snd(d[v])then d[v] := (Wsh ; snd(d[v]));endend; Fig. 2. Sequential Watershed AlgorithmDijkstra's algorithm for this speci�c case is not quadratic in the number of pixels,but linear.For the computation of the watershed of f we need to know the distance of eachpixel p 2 D to each minimum (mi)i2I , so we could apply the algorithm j I j times,to compute the distances between each pixel p and each minimum in the image.However, we will modify the function d in Dijkstra's algorithm as follows. We storefor each p 2 D in the �rst coordinate of d[v] the index of the nearest minimum, andin the second coordinate the distance to this minimum. The resulting algorithm isgiven in Fig. 2. A wavefront is initiated in each minimum of the image. Each waveis labeled with the index of the minimum it started in. If wavefront i reaches a nodep after it has propagated over a distance l, and l is less then the value of the secondcoordinate of d[p], the value l is placed in the second coordinate of d[p], while the�rst coordinate is set to i. If a node p is reached by another wavefront that haspropagated over the same distance, the �rst coordinate of p is set to the arti�cialvalue Wsh, designating that p is a watershed pixel.If, for the time being, we assume that GetMinDist has time complexity O(1),the sequential watershed has time complexity O(jE j), which is the same as timecomplexity O(jD j). Thus, if we are able to implement the function GetMinDistsuch that it runs in constant time, we can compute the watershed of an image in anamount of time which is linear in the number of pixels of the image.4. Implementation of GetMinDist using queuesIn this section we will show that it it possible to implement the function GetMinDistsuch that it has time complexityO(1). The function should return the pixel p, whichhas not been reached by the wavefront yet, with the shortest distance to any of the

COMPUTATION OF WATERSHEDS BASED ON PARALLEL GRAPH ALGORITHMS 5
Distance

current distanceDistance

+ 0

1

2

3

4

5

8

7

6
nil

nil

nil

nil

nil

nil

nil

nil

nil

nil

Legend:

pointer to

queue-element

pointer to last

queue position

empty queueFig. 3. A sample queue data structureminima.This can be realized with a priority queue of �fo-queues. It is implemented as asimple circular array. With each �fo-queue a distance is associated. This distance isthe distance that a wavefront still has to travel before it will reach the pixels in thisqueue. The distances associated with the �fo-queues are used as the priority valuesin the priority queue { a smaller distance means a higher priority. In the �fo-queuewith distance d associated with it, we store the pixels that will be reached by somewavefront after it travels a distance d further than where it is now. The order inwhich pixels of di�erent plateaus are stored in these queues is irrelevant. The queuesare �fo-queues, such that pixels which are located in the interior of a plateau, areordered in this queue according to another distance function d�, which measures howfar pixels are away from the boundary of the plateau. For this function d� one maytake any of the standard metrics for binary images, such as the city-block distancein the case of 4-connectivity. In this way the algorithm automatically computes askeleton by inuence zones of such a plateau, if the plateau is reached by two ormore waves at the same time. The priority queue is initialized with a �fo-queue (atindex 0) containing all pixels that are located in the regional minima of the image.It is clear that, using this data structure, GetMinDist runs in O(1) time, since itsimply returns (and removes) the pixel at the front of the �fo-queue which is the�rst queue in the priority queue (queue with index 0 in �g. 3). This queue, and thatpixel, are directly accessible. Insertion in the queues can also be done in O(1) time,if we keep track of the last position in each �fo-queue, as well as the �rst position.5. Parallelization of the Sequential Watershed AlgorithmIt is easy to compute the lower slope and the cost function of an image in parallel,since the computation of the function value of a pixel is completely independent ofthe computation of this value for some other pixel. On the Cray J932, a sharedmemory computer, the speedup for computing these routines is almost linear with

6 A. MEIJSTER AND J.B.T.M. ROERDINKthe number of processors.The detection of minima is not entirely trivial, since local minima can be hugeplateaus, and as a result we cannot decide whether a pixel is located in a regionalminimum by just inspecting its value and those of its neighbors. To solve this prob-lem, we use the algorithm for detecting local minima as given in [9]3. The speedupof this algorithm is approximately linear in the number of processors, although theinuence of concurrent references to the same memory locations starts to play amajor role if we use many processors4 .The computation of the watershed on the graph can also easily be parallelized.Given a shared memory computer with as many processors as there are minima,each processor computes the catchment basin belonging to a single minimum. Eachprocessor has a private version of the queue data structures. The algorithm executedby a single processor is almost the same as the sequential code. The only di�erence isthat the priority queue is initialized di�erently. Instead of placing all minima pixelsin the queue only the minima pixels corresponding to the processor's minimum areplaced in the queue.In practice we do not have as many processors as the number of minima. If thisnumber is M and the number of processors is P we assign to each processor the taskto compute the catchment basins of dM=P e minima. Of course the number M is ingeneral not divisible by P , so one processor will be assigned a slightly smaller task,which may result in a slight load imbalance. Since we use shared memory, concurrentreferences to the same memory locations are to be expected. Since this can resultin unpredictable behavior we have to synchronize these memory references usingcritical sections. Critical sections are sections of the program that can be executedby only one processor at the same time. These critical sections are implementedusing binary semaphores (see [2]).6. Performance ResultsIn general it is impossible to predict the exact speed-up of the parallel algorithm,since it is unknown a priori how many minima there are, and we do not know the sizeof the corresponding catchment basins. If the number of minima is smaller than thenumber of processors, we should not expect to gain speed by using more processorssince each extra processor will be idle. In practice however, most images containmany more minima than the number of processors. Load imbalance as a resultof di�erent sizes of the catchment basins is a much more serious cause of decreasein speedup. In theory it is even possible that an image has catchment basins ofonly a few pixels, while some other catchment basin contains most of the pixels.In this case, the runtime performance of the parallel algorithm will be close to, oreven worse than, the sequential algorithm running on a single processor, since thetask to compute the large catchment basin is (almost) as expensive as computingthe watershed of the entire image. However, if all the catchment basins are ofapproximately the same size, then the load balancing should be relatively even.We tested the algorithm on a series of 6 images of 512�512 pixels. While running3 In [9] a MIMD algorithm is given, but it can easily be adapted for a shared memory system.4 For most images, we usually see a decrease in performance if we use more than 16 cpu's.

COMPUTATION OF WATERSHEDS BASED ON PARALLEL GRAPH ALGORITHMS 7
Fig. 4. (a) blobs (b) chess board (c) harmonic waves (d) peppers (e) gold particles (f) aircraftTABLE ITimings and speedups for the 6 test imagesimage #minima T1 S2 S4 S8 S16blobs 4 88 1.7 2.5 3.0 3.0chess 67 101 1.6 2.3 3.6 4.0waves 20 115 1.7 2.4 3.6 8.5peppers 44426 111 1.7 2.1 3.0 5.0gold 359 115 1.7 2.5 3.7 10.4aircraft 19053 114 1.6 2.1 2.9 4.8these tests we soon discovered that we do not gain signi�cant speedup if we use morethan 16 processors, since the tasks which are assigned to one processor are too smallif we use more than 16 processors. For larger images it might very well be pro�tableto use more processors. For our test images we have decided to use not more than 16processors. The results are given in table I. The column T1 is the time (in seconds)for the computation of 100 watersheds on a single processor. In the column Sp thespeedup is given if we use p processors.We see that the speedup in the case of the blobs image remains the same if wekeep adding more processors. The image contains only 4 regional minima, and thuseach extra processor will remain idle. The poor speedup in the case of the chess

8 A. MEIJSTER AND J.B.T.M. ROERDINKboard image is caused by the fact that it contains a widespread regional minimum {the boundaries of the squares. This minimum reaches over the entire image, causinga big load imbalance. The peppers image and the aircraft image contain manyregional minima, most of them are noise resulting in many very small tasks causinga lot of overhead. The waves image and the gold image contain a reasonable numberof uniformly distributed regional minima, resulting in a fairly good speedup.7. Conclusions and further researchComputing watersheds in parallel is di�cult. The original watershed algorithm pro-posed by Vincent and Soille (see [11]) is very hard to parallelize since this de�nitionis an inherently sequential recursion. The de�nition given by Meyer (see [7]) used inthis paper, o�ers some possibilities to compute watersheds in parallel using Dijkstra'sshortest path algorithm.Since we do not know a priori the size of a catchment basin associated with eachminimum, load imbalance may occur. This will be the subject of study for futureimplementations. One solution is to reduce the number of minima using standardtechniques to reduce over-segmentation. In practice we see that a lot of computingtime is wasted on noise minima.Another possible solution for the load imbalance is a better allocation of minimato the processors. If we allocate minima which are close to each other to the sameprocessor wavefronts will get pruned earlier.References1. E.W. Dijkstra. A Note on Two Problems in Connexion with Graphs, In Numerische Math-ematik 1, pp.269-271, 19592. E.W. Dijkstra. Co-operating Sequential Processes. In F. Genuys (ed.), Programming Lan-guages, Academic Press, London, 1968, pp.43-1123. S. Beucher and F. Meyer. The morphological approach to segmentation: The watershedtransformation. In E.R. Dougherty, editor, Mathematical Morphology in Image Processing.Marcel Dekker, New York, 1993. Chapter 12, pp. 433{481.4. J.A. McHugh. Algorithmic Graph Theory, Prentice-Hall, 1990.5. A. Meijster and J.B.T.M. Roerdink. A Proposal for the Implementation of a Parallel Wa-tershed Algorithm. In Proceedings Computer Analysis of Images and Patterns (CAIP'95),Springer Verlag, 1995, pp. 790-795.6. F. Meyer and S. Beucher. Morphological segmentation. Journal of Visual Communicationsand Image Representation, 1(1):21{45, 1990.7. F. Meyer. Integrals, gradients and watershed lines. In J. Serra and P. Salembier (Eds.), Proc.Workshop onMathematical Morphology and its Applications to Signal Processing, Barcelona,1993, pp. 70{75.8. F. Meyer. Minimum spanning forests for morphological segmentation. In Mathematical Mor-phology and its Applications to Image Processing, J. Serra, P. Soille (eds.), Kluwer, 1994, pp.77-84.9. A.N. Moga, T. Viero, B.P. Dobrin, M. Gabbouj. Implementation of a distributed watershedalgorithm. In J. Serra and P. Soille (Eds.), Mathematical Morphology and Its Applications toImage Processing, Kluwer, 1994, pp. 281-288.10. A.N. Moga, T. Viero, M. Gabbouj. Parallel Watershed Algorithm Based on Sequential Scan-ning. In I. Pitas (Ed.), 1995 IEEE Workshop on Nonlinear Signal and Image Processing,June 20-22, Neos Marmaras, Halkidiki, Greece, pp. 991-994.

COMPUTATION OF WATERSHEDS BASED ON PARALLEL GRAPH ALGORITHMS 911. L. Vincent and P. Soille, Watersheds in Digital Spaces: An E�cient Algorithm Based onImmersion Simulations. IEEE Transactions on Pattern Analysis and Machine Intelligence,13, no. 6, pp 583-598, June 1991.

