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Abstract

This paper is concerned with the semi-parametric estimation of Ultrametric tree-
representations of subjects' paired comparisons of stimuli, and captures subject
heterogeneity using a finite mixture formulation. In many other approaches to the
analysis of subjects decision processes, such finite mixture models have been
gainfully applied. A new likelihood based estimation methodology is presented for
Ultrametric tree structures that accommodates the Ultrametric constraints. This
estimation procedure in addition permits the incorporation of a variety of additional
external restrictions on the tree structure. Correlations among the observed
dissimilarities are allowed for. The performance of the method to identify
Ultrametric trees is investigated on synthetic data and an empirical application to
published data from Schiffman, Reynolds, and Young (1981) is provided. The
ability to deal with specific constraints on the tree-topology is demonstrated.

Key words: Hierarchical Clustering, Semi-parametric Estimation, Finite
Mixtures, UltrametricTrees, Common Features Model, Respondent
Heterogeneity.
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1. Introduction -Tree Models of Dissimilarity

In the past two decades, the psychometric literature has seen much interest
in tree-structure models of stimulus paired comparison processes. Models
that have been proposed include traditional hierarchical clustering methods
(cf. Johnson, 1967), Ultrametric trees (cf. Carroll, 1976), additive trees (cf.
Sattah & Tversky, 1977), multiple trees (cf. Carroll & Pruzansky 1975), and
extended similarity trees (cf. Corter & Tversky 1986), amongst others.
Extensive reviews of these and other developments has been provided by
DeSarbo, Manrai, and Manrai (1993) and Corter (1996). In this paper, we
are concerned with capturing heterogeneity in subjects decision processes
involved in paired comparisons of stimuli. This heterogeneity is represented
by a finite mixture of several Ultrametric tree structures with different
topologies. We present a semi-parametric estimation methodology that
accommodates the Ultrametric constraints in the estimation process. This
estimation procedure allows us, in addition, to optionally incorporate a
variety of external restrictions in the fitted tree structure. We start by briefly
reviewing the extant literature. For a more detailed discussion of previous
work, we refer to DeSarbo, Manrai, and Manrai (1994) and Corter (1996).

Tree models of dissimilarity judgements represent a set of stimuli
as nodes in a connected, undirected graph. The nodes are connected by arcs,
where cycles do not occur. The proximity between the stimuli is represented
in the tree by the distance, or path-length, between the nodes in the graph.
The two dominant types of tree structures heeded in the psychometric
literature are Ultrametric and the additive trees, which are characterised by
the Ultrametric inequality on all triples of stimuli, and, respectively, the
additive inequality defined on all quadruples of stimuli (cf. Corter, 1996).
Whereas Ultrametric trees have a unique root, additive trees do not. In this
manuscript we restrict ourselves to Ultrametric tree representations of
similarity. One way to interpret Ultrametric tree structures is in terms of a
common features model of similarity (Tversky, 1977) in which the feature
sets have a hierarchical structure. Here, the sum of the lengths of the arcs
emanating from the root of the tree and leading to the least common
ancestor node of two particular stimuli is a measure of the features shared
by these two stimuli (Corter & Tversky, 1986).
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1.1 Heterogeneity

In many psychometric models of human decision behaviour, attempts
have been made to account for heterogeneity of the decision process among
subjects. In recent years one relatively popular way of modelling
heterogeneity has been through the use of finite mixture models. For
example, finite mixture formulations have been used in spatial models
describing outcomes of the decision process (cf. DeSarbo, Manrai& Manrai,
1994, Wedel & DeSarbo, 1995), and in (generalized) linear models
describing compensatory decision processes (cf. Wedel & DeSarbo 1994,
Wedel & DeSarbo, 1995, for reviews). However, relatively few studies in
the psychometric and related literatures have dealt with perceptual
heterogeneity in tree-structure models. Rao and Sabavala (1981) suggest
performing a hierarchical clustering of stimuli for each of a number of
classes (defined a-priori or derived post hoc by clustering the subjects).
Their approach has the disadvantages of being based on heuristics,
maximizing two unrelated criteria in the two subsequent steps of the
procedure. Carroll, Clark and DeSarbo (1984) propose a tree model that
posits a common Ultrametric tree topology for each of a number of subjects
or classes of subjects (derived prior to the analysis), and allows the different
classes to have different branch lengths. However, this model is unable to
capture major forms of structural heterogeneity, where different Ultrametric
tree topologies among classes of subjects are involved (see below). Carroll
and Pruzansky (1980) propose multiple tree structures in which observed
dissimilarities are represented by a sum of hierarchical trees that each satisfy
the Ultrametric inequality. In their model multiple trees are added to form
a representation of dissimilarity. Their approach does not explicitly deal with
subject heterogeneity, however. Somewhat surprisingly, perhaps, a mixture
model extension of the multiple trees approach has not yet appeared in the
literature. The purpose of this paper is to fill this gap. The mixture model
identifies Ultrametric trees, class sizes and membership, all simultaneously.
In addition, the tree topology is not restricted to be the same across classes.
As an example, we will demonstrate in our empirical analysis of paired
comparisons of sensory stimuli, that a sample of subjects groups into two
clusters of equal size. Each of the two classes of subjects is well
represented by an Ultrametric tree structure with a specific topology (see
Figure 5 below). Without prior knowledge of class membership, an
aggregate analysis of the entire sample produces an Ultrametric tree that
represents the structure of neither class and produces a poor fit to the data
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(see Figure 4), i.e. the true structure is masked by respondent heterogeneity
and the inability of aggregate level analyses to depict such differences
among classes.

1.2 Estimation Algorithms

Early estimation of tree models has involved the use of hierarchical
clustering procedures. However, there are several disadvantages related to
the use of these methods. First, hierarchical clustering methods are mere
heuristics for identifying a single Ultrametric tree structure from paired
comparisons data. Consequently, different algorithms (e.g. single, complete,
average linkage) often lead to different solutions and there is little theory to
choose among them. In addition, several of these procedures are burdened
with problems such as chaining, non-uniqueness, and inversions (Morgan &

Ray, 1995). Alternative procedures have been developed that focus on the
estimation of the tree-structure by minimizing some statistical criterion of
fit. Hartigan (1967) minimizes a least squares function between the observed
dissimilarities and fitted distances by performing local operations on the
tree. Due to its combinatorial nature, however, this type of algorithm is
computational rather intensive and can be applied only to smaller data sets.
Carroll and Pruzansky (1980) were the first to propose a mathematical
programming approach for ultrametric tree estimation, that minimizes a least-
squares criterion. Their procedure adds a penalty, which measures the departure
from the ultrametric inequality, to the least-squares criterion function, and
utilizes a steepest descent gradient search to estimate the ultrametric
distances. DeSoete (1983) uses a computational more efficient penalty function,
employing an exact sequential unconstrained minimization procedure, and the
numerically more stable conjugate gradient nonlinear minimization method to

estimate the tree distances, minimizing a least squares function of fit. These
studies have focussed on deterministically estimating the distances under the
Ultrametric constraints, but the stochastic nature of the respondents decision
process, interdependencies among the dissimilarity judgements, as well as
additional external constraints have not been dealt with.

These traditional methods of deriving Ultrametric trees have assumed
a deterministic model underlying the proximity judgements:

, where I, j index stimuli, n indicates subjects, dijn are the

observed proximity judgements,δijn the Ultrametric tree distance, and eijn an
error term. Here eijn has typically not been assumed to have an explicit
distributional form, but is considered to be an approximation error. Yet, as
in much of the psychologic literature on consumer decision processes,
subjects response process may be considered stochastic, influenced by
unobserved variables such as fatigue or loss of attention. Correlations among
the dissimilarities may arise due to their being provided by the same
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individual, or due to the order in which the stimuli are presented. Using a
least squares function of fit implicitly assumes the dissimilarities
uncorrelated, which may negatively affect the accuracy of the estimated tree
structure.

1.3 Constraints on the Tree Topology

When fitting ultrametric trees to dissimilarity data, external
constraints on the tree topology may be derived from prior theory on the
structure of the stimulus set, for example in terms of known features. They
arise, for example, in market structuring (Allenby 1989), or in spatial
contexts from contiguity constraints (Gordon 1973). Gordon (1980) proposes
amongst others a two algorithms for constrained clustering: a divisive
method that sequentially divides the sample into finer groups, and a dynamic
programming algorithm. Other approaches to constrained classification have
been described by for example Ferligoj and Batagelj (1982) and DeSarbo
and Mahajan (1984). In this paper, we use a sequential quadratic
programming algorithm to estimate the ultrametric distances, while
optionally imposing user specified external restrictions. Different restrictions
may be imposed on the tree topology for different classes, so that subjects
can be classified a posteriori according to potentially rival hypotheses on the
structure of their feature representation of the stimulus set.

Below, we describe the semi-parametric finite mixture model and the
constrained estimation procedure. We demonstrate its performance by
analysing synthetic data, and provide an empirical application to published
data from Schiffman, Reynolds and Young (1981). There, we demonstrate
its ability to deal with correlations among the dissimilarity measures and
class specific constraints on the tree-topology.

2. The Semiparametric Ultrametric Tree Model

Let us first establish the notation. We let n denote subjects, I, j, k
denote stimuli, and s denote classes of subjects. The data: dnij presents the
observed dissimilarity of stimulus I and stimulus j by subject n. We assume
S unobserved classes in proportionsπs. Given class s, we assume the p=I(I-
1)/2 dissimilarities for subject n to follow a multivariate normal distribution:
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(1)

where∆s = ((δijs)) is the expected value ofDn = ((dni)) given class s, and
Σs its (pxp) covariance matrix in class s. In many applications, it is
appropriate to assume a log-normal distribution for the distances. This
constrains the fitted distances to be positive, which is logically consistent.
Such a log-normal distribution may be employed by transforming the
measured dissimilarities by natural logarithms and using the multivariate
normal density in (1) for the log-dissimilarities, ln(dijn). The multivariate
normal density allows one to model the covariance structure of the paired
comparisons within derived classes.

Note that in the previous work on ultrametric tree estimation, the
dissimilarities have been assumed independent, so that least squares
estimation can be employed. However, dissimilarities may be correlated
because they are provided by the same individual, or correlated due to order
effects. We denote the p(p-1)/2 correlation matrix of the judgements of pairs
(i,j) and (k,l) in class s byΡs = ((ρij,kl,s)). Since the number of parameters in
the unrestricted covariance matrix that needs to be estimated is very large
in the full model, a more parsimonious representation of the covariance
matrix is called for. For example, if all the variances of the pairs for a
particular class are assumed equal,σijs

2=σs
2 , the covariance matrix can be

written as: Σs = σs
2 Ρs . For example, possible parametrizations of the

correlation matrix arise by considering the order in which the judgements are
provided:

1. Diagonal correlation matrix:ρij,kl,s = 0 for all (i,j) = (k,l); such a
correlation matrix arises when the dissimilarity judgements obey a
random walk process with constant variance.

2. Equicorrelation matrix:ρij,kl,s = ρs, for all pairs (i,j) and (k,l); such a
correlation matrix arises when all dissimilarities provided by the
same subject are equally correlated, irrespective of the serial position
of the pairs.

3. Serial correlation matrix:ρij,kl,s = ρs
|q|, with q the difference in serial

positions of pairs (i,j) and (k,l); such a correlation structure arises
when the dissimilarity judgements display an AR(1) process.

For each class s, it is assumed that each triple of expected distances
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satisfies the ultrametric inequality:
(2)

The set of constraints in (2) imposes the ultrametric inequality for each class
s separately, thus allowing the tree topology to differ by class. In addition,
the estimation methodology detailed below allows one to impose a variety
of external constraints on the ultrametric tree solutions for each of the
classes. Specifically, sets of stimuli can be constrained to be in the same
branch of the ultrametric tree. For example, if two stimuli, I and j, are
constrained to be joined at the lowest node of the tree in class s,
then . In general, let a subset of stimuli, pairs of

which being denoted by I and j, be joined in one branch of the tree in class
s, (I, j) ∈ Cs, then:

(3)

Each such a restriction partitions the full tree for the I stimuli in that class,
into two subtrees, of say I1 and I2 stimuli (I1 + I2 = I). More than one
restriction of the type (3) may be imposed for each class, and different
restrictions may imposed on the trees in different classes, including those
discussed in Gordon (1980) and Ferligoj and Batageli (1982).

2.1 Estimation

The likelihood:
(4)

is maximized under the ultrametric constraints on the fitted distances
provided by (2) using an E-M algorithm (Dempster, Laird & Rubin, 1977),
implementing the Sequential Quadratic Programming (SQP) method (cf.
Jamshidian & Bentler, 1993) in the M-step to enforce the active constraints.
Here,∆=(∆s), Σ=(Σs), andD=(Dn) .The algorithm maximizes the likelihood
in a series of E-M major iterations, and minor SQP iterations within each M-
step. The SQP method operates as follows. If we collect all parameters at
minor iteration t inθt, thenθt+1 = θt + λκ, with λ a step-length parameter,
andκ a direction vector. The restrictions on the parameters, both ultrametric
(2) and external (3), are formulated as R(θ) ≥ 0. The directionκ is found by
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minimizing:
(5)

subject to:
, (6)

where H(θ) is the Hessian and g(θ) is the gradient of the likelihood, and r(θ)
is the Jacobean of R(θ) with respect toθ. We approximate these derivatives
numerically using forward differences. The E-M algorithm is started using
unconstrained estimation in the M-step. After convergence, the ultrametric
constraints in (2) are approximated for each class by the triple reduction
method, which involves a repeated sequential averaging of the largest two
pairs of each triple (Roux, 1987). The additional restrictions in (3) are
similarly enforced by repeated averaging1.Then, from the starting values
thus obtained, the E-M cycle is repeated applying the SQP constrained
estimation in the M-step, using the Broyden, Fletcher, Goldfarb and Shanno
(Scales, 1985) Quasi Newton method. We use the SQP algorithm
implemented in GAUSS (Aptech, 1995).The E-step of the E-M algorithm

involves taking the expectation of the complete log-likelihood with respect to
the unobserved class membership indicators, which amounts to replacing these
indicators with their expected values. These expected values equal the
posterior probabilities, πns, that subject n belongs to class s calculated at
the current parameter estimatesby means of Bayes’ Theorem:

(7)
These πns provide a probabilistic allocation of the objects to the classes. For
further details on the E-M algorithm we refer to Dempster, Laird, and Rubin

(1977). Since the EM algorithm may converge to local optima, the algorithm
needs to be started from several random starts of the posterior probabilities
to minimize the probability of convergence to local optima, or some rational
start, derived for example from a K-means clustering of the observed
distances, may be employed.

1 We have found the sequential averaging procedure to approximately satisfy the
constraints to greatly enhance the performance of the SQP algorithm in the M-step. This
arises because the averaging procedure brings the initial estimates in regions where the
derivatives of the ultrametric constraints can be calculated.
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2.2 Model selection and number of parameters

Since the number of classes is unknown, information type criteria,
such as AIC and CAIC, can be used as heuristics to determine the number
of classes (Bozdogan, 1987). These information theoretic measures impose
a penalty on (minus two times) the likelihood, amounting to respectively M
and M(ln(N)+1), with M the number of parameters estimated and N=np the
number of observations. We investigate the separation of the classes using
an entropy measure (cf. Wedel & DeSarbo, 1994). Without external
constraints, the effective number of parameters estimated M=S(I-1)+2*S-1
for a model with a diagonal covariance matrix, since there are I-1 parameters
for the full ultrametric tree in each class, plus S variances and S-1 priors to
be estimated. For example, for the equicorrelation model S correlations are
added to the number of parameters estimated. Each external constraint for
a particular class in (3) partitions the class level tree of I stimuli in two
subtrees of I1 and I2 stimuli and therefore reduces the number of tree-
distance parameters estimated in that class from (I-1) to (I1 -1+I2-1). Since
constrained and full models are nested, likelihood ratio tests may be
employed to test the constraints. In the next section we investigate the
performance of the algorithm to recover true ultrametric distances, as well
as the performance of the AIC and CAIC statistics to identify the true
number of classes.

3. Synthetic data analysis

In order to demonstrate the performance of the algorithm, we
generated synthetic data with different numbers of classes and stimuli. A
different set of distances, satisfying the ultrametric inequality was generated
for each of the -two or four- classes in the data. These were taken from
subsets of the stimuli in the Table 5.3 in DeSarbo, Manrai, and Manrai
(1993). The first data set was generated for S=2, n=20 and I=5 stimuli,
labelled A through E. To each class, 10 subjects were assigned. For Class
1 random error drawn from N(0, 0.1) was added to these true distances, for
Class 2 the error was drawn from N(0, 0.5). The number of ultrametric
constraints is 10 for each class. The second data set was generated with I=8
stimuli, labelled A through H, and S=2 classes, 10 subjects per class.
Random normal error drawn from N(0,0.1) and N(0,0.5) was added to these
distances in Classes 1 and 2 respectively. The number of constraints is 56
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per class. The third synthetic data set pertained to I=5 stimuli, and S=4
classes. Random error drawn from respectively N(0,0.1), N(0,0.2), N(0,0.3)
and N(0,0.4) was added to the distances in Classes 1 through 4. The number
of constraints is 10 for each class. The fourth synthetic data set analysed is
identical to data set 1 (S=2, I=5), except that the errors were drawn from
N(0,1) and N(0,2, respectively. The above mixture of trees was brought to
each of these four data sets from S=1 to S=5, with a diagonal covariance
matrix, and without external constraints. Each analysis was repeated several
times in order to detect possible local optima of the log-likelihood.

Table 1 provides the number of parameters estimated, the log-
likelihood, AIC and CAIC statistics for the S=1 to S=5 solutions for these
four data sets. The table shows that the AIC indicates the correct number of
classes in all cases except for data set 4, CAIC indicates the correct number
of classes for all four data sets. CAIC appears to be somewhat more
conservative, and to be preferable to identify the appropriate number of
classes (Bozdogan, 1987). Local optima were more often encountered when
the number of classes specified in the analysis was larger than the true
number of classes.

[INSERT TABLE 1 HERE]
Tables 2 to 5 provide the true and estimated distances, and the

estimated standard errors per class for each of the four data sets. In addition,
the Table shows the R2 between true and estimated distances, and the Root-
Mean-Squared-Error (RMSE) as a percentage of the mean of the true
distances. The algorithm appears to perform well in recovering the
parameters of the model in these synthetic data examples, as can be seen
from the true and estimated distances in Tables 2 to 5. The EM algorithm
converged within 7 iterations for all analyses. The Entropy of the posteriors
equalled 1.0000 for all four analyses, indicating perfect separation of the
classes: all subjects were assigned to their true class with posterior
probability 1.0000. When the results in Table 5 are compared to those in
Table 2 it may be seen that parameter recovery deteriorates somewhat as the
random error in the distances increases. Comparing Tables 2 and 3 one
observes that the performance of the algorithm does not seem to be affected
by larger numbers of distances to be estimated and larger numbers of
constraints imposed. The correlations of true and estimated distances are
very close to one for all three applications, and the RMSE's are below 10%
of the mean of the distances. The algorithm converged to the same solution
from several random starts for the true number of classes, indicating that
there were no problems of local optima. Figures 1 to 3 shows the class level
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trees resulting for the analyses for data sets 1 to 3 (the results for data set
4 are not shown since they are the same as those for data set 1).

[INSERT TABLES 2 TO 5 AND FIGURES 1 TO 3 HERE]

3. Application to Sensory Perception of Colas

We apply the mixture ultrametric tree model to data provided by
Schiffman, Reynolds, and Young (1981, pp. 33-34). In their sensory
experiment, ten different brands of cola were used: 1. Diet Pepsi (DP), 2.
RC Cola (RCC), 3. Yukon (Y), 4. Dr. Pepper (DP), 5. Shasta (S), 6. Coca
Cola (CC), 7. Diet Dr. Pepper (DPP), 8. Tab (T), 9. Pepsi-Cola (PC), 10.
Diet Rite (DR). The colas were bought in glass containers from retail outlets.
These colas were presented in 5-ounce plastic cups to 10 subjects
(nonsmokers, aged 18-21 years), at room temperature, having been opened
two hours before to remove carbon dioxide. Subjects were not allowed to
swallow the colas and rinsed their mouths with distilled water between
tastes. They were blind-folded during the experiment, and brand names were
not provided to them. 45 Pairwise judgements were made with an interval
of 5 minutes between pairs, the order of the pairs was randomized to balance
cross-adaptation effects. The similarity judgements were provided on a
graphical anchored line-scale, and transcribed on a scale from 0-100
representing same -towards 0, and different -towards 100. For a more
detailed description of the experiment we refer to Schifmann, Reynolds, and
Young (1981).

3.1 Results of the mixture of ultrametric trees model

Our purpose in this particular application is to investigate the
existence of perceptual heterogeneity among subjects, using the proposed
mixture of ultrametric trees model. We tested for S=1, 2, or 3 classes. We
first estimate the independence model with a diagonal correlation matrix and
investigate several alternative models later on. Table 6 shows the log-
likelihood, and AIC and CAIC statistics for the S=1 to S=3 models. As can
be seen from that Table, both AIC and CAIC are minimum for S=2. Figure
5 therefore presents the estimated ultrametric trees for the S=2 independence
model. For comparison, the S=1 solution is presented in Figure 4. The S=1
ultrametric tree structure for the ten cola brands in Figure 4 presents a
somewhat mixed picture. One branch of the tree contains three diet colas,
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which have relatively low path-length distances (the distance to their least
common ancestor node): Diet Pepsi, Diet Rite and Tab. Under the feature
matching model the path-length from the root of the tree to the least
common ancestor node of these tree diet cola's is a measure of the
importance of the features shared by these stimuli (cf. Corter, 1996).
However, the interpretation of the common ancestor node of these three
colas as diet/non-diet feature is hampered by the fact that the fourth diet cola
in the stimulus set, Diet Dr Pepper is joined to the regular Dr Pepper, albeit
with a relatively high path length distance. The common ancestor node of
these two brands should be interpreted as a brand taste feature: Dr
Pepper/other, which can be interpreted as the characteristic cherry-type
flavour of Dr. Pepper colas (Schiffman, Reynolds & Young, 1981). In a
similar way, the subtree in the middle of the ultrametric tree in Figure 4
shows a set of nodes that can be interpreted as representing brand-specific
features, distinguishing the five remaining nondiet brands.

In the S=2 solution in Figure 5 the hierarchical structure differs
substantially among the two classes. First, Class 1 clearly perceives taste
differences between diet and non-diet Cola's. Diet Pepsi and Diet Rite have
a very low path length distance, indicating very similar tastes. These two
brands form one subtree, together with Diet Dr. Pepper and the diet version
of Coca Cola, at the time of the study, Tab. The common ancestor node of
these four brands can therefore be interpreted as diet/nondiet taste feature.
The path length from the root to the common ancestor node indicates that
this is the most important feature determining similarity judgements of the
subjects in this class. Further, observe that Diet Dr. Pepper shares the least
number of features with the other brands in this subtree. The corresponding
node can be interpreted as cherry/non-cherry flavour. In the non-diet subtree
various colas are joined at different path-lengths, but here too Dr Pepper
seems to stand out (together with RC cola). The second Class appears to
separate brands in several subtrees: Dr. Pepper and Diet Dr Pepper,
respectively Coca Cola and its diet version Tab, are joined at relatively low
path length distances, indicating a large number of common features
amongst them. This class of subjects seems to primarily taste differences
among brands. Note that particularly the Dr. Pepper brands stand out, the
length of the path from the root to the node indicating that the cherry/non
cherry flavour feature is the most important distinguishing characteristic for
subjects in this class. However, the exception to this grouping of brands is
that Diet Pepsi and Regular Pepsi are joined in a subtree with several other
brands. Nevertheless, we conclude that the specific brand tastes are the
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dominant features determining similarity judgements in this class. Comparing
the S=2 results with the S=1 of Figure 4, it is obvious that the heterogeneity
in the sample masks the ultrametric tree structure at the aggregate level
and causes the mixed structure in the S=1 solution, rendering it less
interpretable. In order to further investigate the fit of the S=2 unrestricted
independence mixture of trees, an analysis of the residuals was conducted
that showed that 96.4% of the standardised residuals was in between -2 and
2, and all residuals were below 2.37 in absolute value. The curtosis of the
residuals is 3.05 (se=0.23), and the skewness is -1.30 (se=0.12). Thus, the
residuals appear to be somewhat skewed to the left and to have a somewhat
higher curtosis as compared to the normal distribution, but there were no
indications of outliers2 .

The two classes in Figure 5 are very well separated and the posterior
probabilities equal zero or one up to five decimals, the entropy criterion
E=1.0000. Class 1 consists of subjects 1, 4, 5, 6 and 9, and Class 2 of the
other five subjects. Interestingly, all of the subjects in Class 1 have the
ability to taste a bitter tasting compound called PTC, while the subjects in
Class 2 (2, 3, 7, 8, and 10) do not have that ability (Schiffman, Reynolds &
Young, 1981). This physiological characteristic discriminates perfectly
between the two classes, and apparently subjects ability to taste PTC
determines the extent to which they use diet/ non-diet, or specific brand
tastes as the dominant feature to determine similarities.

3.2 Alternative model tests

In order to further investigate the feature matching tree structures of
the two classes, and to illustrate the use of external constraints, we impose
additional restrictions upon the ultrametric distances in each of the classes,
to test the above hypothesis of a diet/nondiet first versus a brand first
structure in the two segments. In particular, for Class 1 we constrain the

2 In order to investigate whether a log-normal distribution provides a better fit to these
data, the same S=2 model was estimated to the data after taking the natural logarithm of the
observed distances (and adding one to prevent taking the log of zero). Skewness and curtosis
were 3.15 and -1.29, respectively, while 1.6% of the residuals was below -3, none were above
3. The minium residual value was -4.201. Clearly, the log-normal distribution does not
provide a better fit to these data.
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non-diet colas and diet colas to be in distinct subtrees by restricting the
distances from each of the diet cola's (brands 1, 7, 8, and 10) to a particular
non-diet cola (brands 2, 3, 4, 5, 6, 9) to be equal. For Class 2 we constrain
the Pepsi cola's (1 and 9), the Coca cola's (6 and 8) and the Dr Pepper cola's
(4 and 7) to be in distinct subtrees, by constraining the distances from the
two brands in each of these pairs to all other brands to be equal (see
equation 3). Note that most of the constraints were already satisfied in the
unrestricted solution, except for the restriction that forces the Pepsi cola's in
the same branch of the tree in Class 2. Therefore, in this constrained model
there are 9 free parameters in Class 1, and in Class 2 there are 8 free
parameters, bringing the total number of parameters in the restricted model
to 21. For the restricted model, the LR test statistic relative to the
unrestricted model above is 4.8837 with 1 df. This test is significant (AIC
and CAIC also favour the unrestricted model, see Table 6). Figure 6
presents the restricted ultrametric trees in the two classes. It shows that the
ultrametric tree for Class 1 is the same as that for the unrestricted solution
presented in Figure 5, but that the ultrametric tree in Class 2 is changed
relative to the unrestricted solution, because of the constraint that Pepsi and
Diet Pepsi should be in the same subtree. In particular, Diet Pepsi, and
Pepsi, respectively Diet Rite and Shasta are joined in two subtrees, and the
model thus forces one common feature for the brands in these subtrees.
Apparently, this is an oversimplification of the feature structure that subjects
in this class use to determine similarity between colas.

Next, we investigate whether a model that allows for correlations
among the dissimilarities provides a better fit. Since the order in which the
dissimilarities were obtained is unknown for these published data, the AR(1)
model presented in Section 2 above cannot be specified, but the
equicorrelation model presents a parsimonious and plausible alternative for
the covariance structure among the dissimilarity judgements. The
equicorrelation model states that dissimilarity judgements provided by the
same individual, given class s, exhibit a constant correlation ofρs, while
being uncorrelated among subjects. Such a model is similar in spirit to
hierarchical models where the variances of measurements are assumed to
differ within and between subjects. The LR test for the S=2 equicorrelation
model against the S=2 independence model has a Chi-squared value of
7.270, with 2 df. (P=0.013), indicating that the equicorrelation model fits
somewhat better than the independence model (in addition AIC is lower for
the equicorrelation model and CAIC is slightly lower). The estimated
correlations in the equicorrelation model were 0.025 for Class 1 and 0.089
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for Class 2, the estimated standard errors wereσ1=22.983 andσ2=21.654
respectively. Both estimated correlations are quite low. Nevertheless, there
seems to be some indication of a correlation between the dissimilarities
provided by the same individual as indicated by the likelihood ratio test. The
fact that the correlations are low can probably be attributed to the design of
the experiment, in which orders were randomized and subjects rinsed their
mouths with distilled water after each judgement. The estimated ultrametric
distances of the S=2 equicorrelation model are very close to those of the
independence model (the differences are in the decimals), and yield the same
ultrametric trees as presented for the independence model in Figure 5. The
correlations of observed and estimated distances are 0.827 for Class 1, and
0.903 for Class 2. Figure 6 provides a scatterplot of observed and estimated
distances. The posterior probabilities are unchanged, and the residual
analysis yields very similar results to that of the independence model
presented above. We conclude that the unrestricted S=2 equicorrelation
model is a reasonable approximation to the data. Table 7 presents the
estimated distances of this model and the averages of the observed distances
in each of the two classes.

4. Conclusions

The analyses of synthetic and empirical data aptly demonstrate the
performance of our proposed procedure to estimate the mixture of trees. The
E-M algorithm converged to its final solution in a rather small number of
steps (below 20 in most cases). The estimation algorithm, in the applications
presented, seemed not to suffer from local optima, at least when the number
of classes estimated equalled the true number of classes. The fast
convergence of the E-M algorithm and the fact that there were no serious
problems of local optima are probably caused by the fact that there is a large
number of paired comparison observations for each subject in such
applications, thus providing much information on the posterior update in
each E-step. The likelihood information dominates the prior information in
the Bayesian posterior calculations, due to which local optima are probably
less likely to occur and the algorithm converges quickly. We have found that
approximately enforcing the constraints on the initial estimates by repeated
averaging is essential for good performance of the SQP method in the M-
step, especially when such a large number of constraints is enforced as in
ultrametric tree models.
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The results revealed by our restricted mixture of ultrametric trees
methodology in its application to the Schiffman, Reynolds and Young (1981)
data are interesting and encouraging. Classes with a different hierarchical
structure of common features, evidenced by different tree-topologies, were
identified. The two ultrametric trees arose from the difference in the relative
importance of diet/non-diet versus brand-specific taste-features. The test for
the restricted model enforcing such brand-first versus diet/non-diet first
topologies on the trees for the two classes showed that this one brand (Pepsi)
may be an exception, and has been able to differentiate its diet version with
a specific taste feature. In addition, membership to the diet/non-diet first
class is entirely attributable to the ability of subjects to taste the bitter
chemical compound PTC. We note that although the number of subjects in
the application was rather small, the total number of observations is large,
due to the large number of paired comparisons.

Our approach to deal with heterogeneity in ultrametric tree
representations of subjects decision process seems to provide valuable
insights into the formation of similarity judgements by subjects, and
differences among them. In addition, the possibility to impose constraints on
the tree topology allows one to test various hypotheses about that topology,
and allows subjects to be assigned to a class of which the hypothesized tree
structure has the highest posterior probability of having generated their
paired comparison evaluations. In the application to the Schiffman, Reynolds
and Young (1981) data, the posterior probabilities for the mixtures of
ultrametric trees with and without external constraints were identical, but this
obviously need not be the case in all applications..
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Table 1. Fit Statistics for the S=1 to S=5 models for the synthetic data

S=1 S=2 S=3 S=4 S=5

Dataset 1 (I=5,S=2)

No. Parameters 5 11 17 23 29

log-l -561.4278 12.8623 12.8623 12.8625 12.8623

AIC 1127.8557 -14.7247* -8.7247 -2.7252 3.2754

CAIC 1153.3472 41.5568* 78.3467 115.13607 151.9266

Dataset 2 (I=8,S=2)

No. Parameters 8 17 26 35 44

Log-l -1814.0094 39.8791 39.8791 39.8791 39.8791

AIC 3636.0189 -62.7582* -53.7582 -44.7582 -35.7582

CAIC 3685.6423 42.8168* 107.7682 172.7196 237.6711

Dataset 3 (I=5,S=4)

No. Parameters 5 11 17 23 29

Log-l -1257.3560 -933.6958 -654.2448 40.9144 40.9144

AIC 2519.7120 1878.3917 1325.4895 -58.8288* -52.8288

CAIC 2549.6694 1944.2977 1427.3444 78.9749* 120.9236

Dataset 4 (I=5,S=2)

No. Parameters 5 11 17 23 29

Log-l -579.4465 -361.5404 -349.7865 -349.7930 -352.8856

AIC 1163.8930 734.0808 716.5731* 722.5860 734.7712

CAIC 1190.3846 792.3622* 806.6445 844.4473 888.4224

* Denotes the minimum value of the statistic for that dataset.

19



Table 2. True (lower) and estimated (upper) distances for the I=5, S=2
model

Class 1 A B C D E

A - 23.462 23.462 23.462 22.371
B 23.48 - 20.808 20.808 23.462
C 23.48 20.79 - 1.595 23.462
D 23.48 20.79 1.56 - 23.462
E 22.37 23.48 23.48 23.48 -

Class 2 A B C D E

A - 23.488 20.967 12.971 16.772
B 23.48 - 23.488 23.488 23.488
C 20.79 23.48 - 20.967 20.967
D 12.99 23.48 20.79 - 16.772
E 16.74 23.48 20.79 16.74 -

r2=0.9999;σ1=0.115,σ2 =0.448 RMSE=0.3464%
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Table 3. True (Lower) and Estimated (Upper) Distances for the I=8, S=2 Model
Class 1 A B C D E F G H

A - 23.469 23.469 23.469 22.431 23.469 23.46923.469

B 23.48 - 20.808 20.808 23.469 18.034 20.80820.808

C 23.48 20.79 - 1.536 23.469 20.808 13.02916.748

D 23.48 20.79 1.56 - 23.469 20.808 13.029 16.748

E 22.37 23.48 23.48 23.48 - 23.469 23.469 23.469

F 23.38 18.07 20.79 20.79 23.48 - 20.808 20.808

G 23.48 20.79 12.99 12.99 23.48 20.79 - 16.748

H 23.48 20.79 16.74 16.74 23.48 20.79 16.74 -

Class 2 A B C D E F G H

A - 16.726 20.739 23.504 16.726 16.726 20.73923.504

B 16.74 - 20.739 23.504 12.975 12.975 20.73923.504

C 20.79 20.79 - 23.504 20.739 20.739 18.19023.504

D 23.48 23.48 23.48 - 23.504 23.504 23.50422.461

E 16.74 12.99 20.79 23.48 - 1.580 20.739 23.504

F 16.74 12.99 20.79 23.48 1.56 - 20.739 23.504

G 20.79 20.79 18.07 23.48 20.79 20.79 - 23.504

H 23.48 23.48 23.38 22.37 23.48 23.48 23.48 -
r2=1.0000;σ1 = 0.106;σ2 =0.481; RMSE=0.1952%
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Table 4. True (Lower) and Estimated (Upper) Distances for the I=5. S=4 Model

Class 1 A B C D E

A - 23.466 23.466 23.466 22.437
B 23.48 - 20.815 20.815 23.466
C 23.48 20.79 - 1.584 23.466
D 23.48 20.79 1.56 - 23.466
E 22.37 23.48 23.48 23.48 -

Class 2 A B C D E

A - 20.747 20.747 23.463 18.122
B 20.79 - 1.530 23.463 20.747
C 20.79 1.56 - 23.463 20.747
D 23.48 23.48 23.48 - 23.463
E 18.07 20.79 20.79 23.48 -

Class 3 A B C D E

A - 1.604 23.426 20.808 12.952
B 1.56 - 23.426 20.808 12.952
C 23.48 23.48 - 23.426 23.426
D 20.79 20.79 23.48 - 20.808
E 22.99 12.99 23.48 20.79 -

Class 4 A B C D E

A - 23.508 20.762 12.980 16.788
B 23.48 - 23.508 23.508 23.508
C 20.79 23.48 - 20.762 20.762
D 12.99 23.48 20.79 - 16.772
E 16.74 23.48 20.79 16.74 -

r2=0.9650;σ1=0.104;σ2 =0.206;σ3 =0.276;σ4 =0.386;RMSE=7.9405%.

22



Table 5.True (Lower) and Estimated (Upper) Distances for the I=5. S=2 Model (high error)

Class 1 A B C D E

A - 23.283 23.283 23.283 22.154
B 23.48 - 20.328 20.328 23.283
C 23.48 20.79 - 2.178 23.283
D 23.48 20.79 1.56 - 23.283
E 22.37 23.48 23.48 23.48 -

Class 2 A B C D E

A - 22.902 21.534 13.769 15.563
B 23.48 - 22.902 22.902 22.902
C 20.79 23.48 - 21.534 21.534
D 12.99 23.48 20.79 - 15.563
E 16.74 23.48 20.79 16.74 -

r2=0.9938;σ1=0.951;σ2=2.289; RMSE=2.9859%

23



Table 6. Fit statistics for several mixture tree models for the Schiffman et al (1981) cola
data

Model df log-l AIC CAIC

S=1. Unrestricted. Independence 10 -2098.8203 4207.6406 4268.7331

S=2. Unrestricted. Independence 21 -2035.7535 4092.5070* 4220.8012*

S=3. Unrestricted. Independence 32 -2034.2425 5000.4850 4295.9810

S=2. Restricted. Independence 20 -2040.6372 4101.2744 4223.4594

S=2. Unrestricted.
Equicorrelation

23 -2028.4840 4079.9679# 4220.4801#

* denotes minimum value across S=1. 2. 3; # denotes minimum value across all models
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Table 7. Observed (Lower) and Estimated (Upper) Distances for the Schiffman (1981)
data
Class 1 DP 2 3 4 5 6 7 8 9 10

DP - 76.096 76.096 76.1 76.096 76.096 41.466 30.344 76.09613.790

2 39.40 - 48.775 34.51 48.775 48.775 76.096 76.096 48.77576.096

3 85.8 39.6 - 48.78 44.498 44.498 76.096 76.096 44.49876.096

4 84.4 24.6 70.0 - 48.775 48.775 76.096 76.096 48.77576.096

5 79.4 30.8 42.2 46.8 - 27.268 76.096 76.096 22.20676.096

6 67.2 33.4 26.0 91.6 28.2 - 76.096 76.096 27.268 76.096

7 30.8 85.6 65.2 79.4 67.6 88.0 - 41.466 76.096 41.466

8 62.6 89.6 72.2 83.8 77.0 66.8 39.2 - 76.096 30.344

9 75.0 22.6 51.8 44.4 22.2 23.4 66.2 85.0 - 76.096

10 13.0 79.0 81.6 84.4 81.0 66.2 41.6 20.0 85.6 -

Class 2 DR RCC Y DRP S CC DDP T PC DR

DR - 46.660 63.949 84.479 46.660 55.650 84.479 55.650 46.66046.660

RCC 30.2 - 63.949 84.479 28.325 55.650 84.479 55.650 28.32539.461

Y 72.6 69.2 - 84.479 63.949 63.949 84.479 63.949 63.94963.949

DRP 87.6 87.4 71.0 - 84.479 84.479 20.795 84.479 84.47984.479

S 73.2 30.2 60.2 85.8 - 55.650 84.479 55.650 22.99639.461

CC 59.4 48.0 49.6 88.4 42.6 - 84.479 41.395 55.65055.650

DDP 85.0 86.4 90.2 20.8 84.4 66.2 - 84.479 84.47984.479

T 60.6 71.8 71.0 93.4 58.0 41.4 93.0 - 55.65055.650

PC 56.2 24.6 87.0 88.0 23.0 46.8 87.4 57.6 - 39.461

DR 39.0 42.8 58.4 94.4 45.2 69.6 77.0 47.2 33.0 -
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Figure 1.Recovered Trees for S=2. I=5 Synthetic data analysis.
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Figure 2. Recovered Trees for S=2. I=8 Synthetic Data Analysis.

Class 1

Class 2

27



Figure 3. Recovered Trees for S=4 I=5 Synthetic Data Analysis.
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Class 2

Figure 4. Ultrametric
tree (S=1. independence)
Schiffman et al (1981) cola data

29



Figure 5. Ultrametric trees ( S=2. independence) Schiffman et al (1981) cola
data.
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Figure 6. Class 1

Constrained
ultrametric
trees (S=2.
independen
ce)
Schiffman
et al (1981)
cola data.
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Figure 7.
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(Y-axis)
versus
Estimated
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