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ABSTRACT

We analyse on-line learning of a linearly separable rule with a simple percep-
tron. Example inputs are taken from two overlapping clusters of data and the
rule is defined through a teacher vector which is in general not aligned with the
connection line of the cluster centers. We find that the Hebb algorithm cannot
learn the rule perfectly in general. Moreover the dependence of the generaliza-
tion error on the number of examples is nonmonotonic for certain choices of the
model parameters. Perceptron and AdaTron training, however, approach per-
fect generalization with increasing size of the training set, and the asymptotic
behavior is the same as for unstructured input data.

1. Introduction

In this work we study the problem of incorporating nontrivial input distributions
within the framework of supervised learning in layered neural networks!™*. Structure
in input space is expected to enhance the generalization ability whenever the rule
output is consistent with the structure to a large extent. On the other hand, no
improvement should arise when the classification to be learned is based on features
completely different from the ones relevant to the clustering in input space.

We consider a simple classification task, in which points & € IRY are assigned to
two categories according to the state of a single output unit {; = £1. The dichotomy
corresponds to placing a hyperplane through the origin to separate the two classes,
and it is implemented through a single layer perceptron. Such a linearly separable
target rule is defined by a vector B € IRY with B* = N, which is perpendicular to
the separating hyperplane. B can be interpreted as the weight vector of a teacher
perceptron with output £, = sign (B - € ). The student network is also a single layer
perceptron, with couplings J € IRV chosen through the learning process.

A structure is imposed on the input space through the choice of a specific vec-
tor C € {+1,—1}" and a separation p along this direction so that the inputs are
distributed according to the discrete equivalent of two Gaussian clouds centered at



+pC/v/'N. The inputs are generated according to the following distribution®
1
P [ 0) = 2[4 o/ VIO(E = aC) + (L= p VIO + 0 0] L (1)

where the dummy variable o* determines the cluster & * belongs to. We assume
P(o") = % [6(c* — 1)+ 6(c" +1)]. According to the central limit theorem the resul-
ting distribution of overlaps C-£€#/v/N is a superposition of two Gaussians with
mean values +p and unit width. In any arbitrary direction perpendicular to C the
data appears structureless, as the corresponding distribution of overlaps is a single
Gaussian with zero mean and unit variance. Note that the results reported here would
also apply to a continuous version of distribution (2).

The object of our analysis is to investigate the generalization ability of the student
as a function of the alignment n = (B - C)/N between the teacher B and the vector
C, and the separation p between the centers of the input clusters.

By definition, the rule considered here is learnable for a student perceptron. The
situation is different in a similar model recently studied by Meir®, where the target
outputs are defined by the labels o# of the overlapping clusters (2).

2. The Formalism

Supervised learning is usually formulated as the extraction of information from a
fixed set of examples through a learning process guided by the minimization of the
training error. Here we will investigate on-line learning, where only the latest in a
sequence of examples determines the change of the student weights in an iterative
scheme.

On-line learning has recently been studied in a statistical mechanics framework
in the context of perceptron learning”~!°. This previous work considered only isotro-
pic, unstructured input distributions. We will show in the following that the effect
of introducing the more realistic clustered input distribution (2) leads to nontrivial
effects including drastic changes of the generalization behavior.

The generic on-line perceptron scheme studied here is based on the following rule
for the change of the student vector under the presentation of example pu:

It = 0 4 f(hY, €€ L IVN. (2)

Specific learning algorithms are defined through the choice of weight function f. This
function can only depend on quantities which are available to the student, such as the
teacher output &%, the student’s current norm Q* = (J*)?/N, and its overlap with
the uth example 2 = J* - €*/y/N. Note that no normalization is imposed on J.
Eq. (2) can be interpreted as the evolution of the student weights in 'discrete time’
(. Tt is straightforward to derive recursion relations for the overlaps R* = J* - B/N,

D# = J*. C/N, and Q" respectively.



The randomness of the input enters only through the overlaps b, by, = B-€*//N
and hY, = C . €*/v/N. If the inputs are drawn from distribution (2), the joint
density of these quantities can be written as (omitting the indices ) P(hy, hp, he) =
1/2%,-41 P(hy,hp,he | o). For large N these conditional densities become three-
dimensional Gaussians with mean values (hy). = pDo, (hg) = pno, (he). = po and
correlations (hyhg). = R+ pan, (hjhc). = D(l +p*), (hhc). = n(1 + p?), (R3) . =
Q+ D% (h%) . =1+p*p% and (h%) =1+ p® Here (...) denotes an average over
the conditional probability P(hy, hg, he | o).

Thus the average over the sequence of uncorrelated training examples can be
performed at every time step. In the limit N — oo the order parameters are assu-
med to be selfaveraging with respect to the randomness of the inputs. Furthermore
we interpret o = u/N as a 'continuous time’ and obtain the first order differential
equations

dR dD dQ
e

——={fhet), - = (fhob), = (2/hst + I2). (3)

The averages (...) over the full distribution P(h;, hp, he) are to be performed for a
specific choice of the weight function f. The resulting system can be solved, at least

numerically, yvielding R = R/\/Q and D = D/\/@Q and thus the generalization error
€, = (O(—hshp)) as a function of a.

We will consider initial conditions R(0)

D(0) = 0, and Q(0) = 1, corresponding

to a normalized random initial student J°.

3. Three on—line algorithms

3.1. Hebbian Learning

The constant weight function f = 1 corresponds to the simple Hebb rule, which
can be interpreted as an off-line training process constructing the weights J¥ = J° +
P f“ffj/\/ﬁ from a set of examples. Assuming an isotropic input distribution,
Vallet!! showed that a Hebbian student can learn a linearly separable rule perfectly,

-1/2 as a — o0.

with a generalization error decreasing like ¢,(a) o «
The averages in eq.(5) can be performed analytically for f = 1 and the differential

equations can be integrated to obtain

R(a) = [@6_%77202 + ppert ("—\/g)] a,  D(a)= [n@e—%nw + perf ("—\/g)] a,

. 2 129~
14 perf (%)D(O&) +1/—e 2" Rla) | + 1. (4)
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Fig. 1.  The learning curves for = 0.2 and p = 2. Solid line: Hebbian learning, dotted line:
perceptron learning, and dashed line: on—line AdaTron. The inset shows the nonmonotinicity of the
Hebbian learning curve.

Both normalized overlaps R = fx’/\/@ and D = D/\/@ increase monotonically with
« for any non-negative values of p and 5. Figure 1 shows the corresponding learning
curve for n = 0.2 and p = 2.

We observe that in general the rule is not learnt perfectly in the limit o — oo.
Asymptotically, the Hebb student becomes a linear combination of the teacher B and

the vector C:
J(a — o0) x 26_772”2/2B + perf uia C. (5)
V V2

Perfect generalization is only achieved for p = 0 and arbitrary 5 (unstructured data),
for n = 0 and arbitrary p (learning in the subspace orthogonal to C), and for n = 1
(B aligned with C). In all other cases Hebbian learning fails to learn the linearly
separable rule. We have found that for certain choices of 7, p the function ¢,(«) is
nonmonotonic, indicating the existence of an optimal number of examples, for which
the generalization error is minimal, see Fig. 1.

The residual error ¢,(a — o) is plotted vs. 5 for different values of p in Figure 2.
This failure to learn the linearly separable rule is due to the fact that Hebbian learning
assigns the same weight to all examples, whether correctly or incorrectly classified.
More successful algorithms take into account whether the student disagrees with the
teacher on the current example.

3.2. Perceptron learning

In the standard perceptron algorithm an example contributes to the student vector
only when the teacher and the current student hypothesis provide different outputs:
flhy, &) = O(—=hy€,). This algorithm was studied in Ref. 9 for the case of unstruc-

tured inputs and the asymptotic decay of the generalization error was found to be

—-1/3

€, X v as o — 0o, which is much slower than for Hebbian learning.
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Fig. 2. Hebbian Learning: the residual error ¢,(ev — o0) vs. 5 for three different values of the
separation p.

For the structured input distribution considered here, we have obtained differential
equations which can be solved only numerically for general «, details will be published
elsewhere. Figure 1 shows the learning curve for n = 0.2 and p = 2.

The normalized overlap with the teacher always approaches the asymptotic value
R = R/\/Q = 1; thus learning is always perfect in the limit & — oo. This is in
contrast to simple Hebbian learning. We find that

1 /9 1/3
€ = —(—6_772”2) a'? as a — . (6)

The decay is the same as for unstructured data®, apart from an (7, p)-dependent
prefactor. This observation is in agreement with Baum’s prediction!?, that the gene-

—-1/3

ralization error should decrease like €, x « or faster for a perceptron algorithm

applied to nonmalicious input distributions.

3.3. AdaTron learning

Here we consider training with a weight function  f(hy,&,) = —h;E,0(=hy&,).
The differential equations resulting from performing the averages in Eq. (5) are to be
solved numerically. Figure 1 displays the corresponding learning curve for n = 0.2
and p = 2. Learning is asymptotically perfect; the generalization error becomes
independent of  and p, identical with the result for unstructured data? :

3

:% as o — o0. (7)

€y
This 1/« decay is also found for off-line procedures considered in Ref. 13. The asym-
ptotic behavior is obtained analytically by making the ansatz n — D = S(arccos p)?
for large a. For 1/v/3 < pv/T =52 < 1 we find # < 0, indicating that D approaches



n from above. This implies a nonmonotonic dependence of the order parameter on
a, since D(0) = 0. However, this rather weak effect does not lead to a nonmonotonic

ey().
4. Summary and outlook

We have investigated the effects of a nontrivial input distribution on the learning
of a linearly separable rule by use of several on-line algorithms.

In particular we have found that the Hebb rule may fail to learn the linearly se-
parable task completely. Moreover, the learning curve is nonmonotonic for certain
choices of the model parameters, with a global minimum of the generalization er-
ror at an optimal number of examples. We will study this interesting example for
overtraining in greater detail in a forthcoming publication.

For the perceptron and the on—line AdaTron algorithm the rule is learnt perfectly
with the same asymptotic behavior as for unstructured data. It would be interesting
to investigate the influence of more general types of input distributions on the learning
curves.

It should also be possible to extend our studies to multiclass classification of data

taken from a mixture of several Gaussian clusters %1%,
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