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Chapter 4

Physical spectra in string

theory

In this chapter we compute cohomology classes of the BRST operator for a number of
string models. Within the formalism of BRST quantization, these cohomology classes
build the spectrum of physical states. As usual, we start with a discussion of the
bosonic string. In section 4.2 we turn to W -string spectra. To illustrate the general
structure of such spectra and some methods of computation, we consider in section 4.3
the BRST analysis of the W4 string in detail. In the last section of this chapter we
review some of the relations that exist between strings based on di�erent world-sheet
gauge symmetries.

4.1 The bosonic string

First we should stress that all considerations in this chapter are concerned with free
strings only. That is, we compute physical spectra of free strings, but no correlation
functions. Let us just briey motivate the term `vertex operator' that is used for
operators which create physical states. First, Weyl transformations can be used to
map any two-dimensional surface representing a string scattering process to a compact
surface with the same number of handles (quantum loops), but on which the external
strings are mapped to points. The quantum numbers of the external string states are
then to be described by local operators of the two-dimensional quantum �eld theory
inserted at these points. These operators, which create the external string states, are
precisely the physical operators or vertex operators to be discussed in this chapter.
String scattering amplitudes then involve the correlation functions of products of vertex
operators in the conformal �eld theory. See for example [104, 90] for discussions of string
scattering.

The physical spectrum of the critical bosonic string has been known since the early days
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of string theory. From the previous chapter, we know that the holomorphic part of the
BRST operator is given by Q =

H
dz
2�i j with

j = c(T + 1
2Tgh) ; Tgh = �2b@c� @bc ; (4.1)

where the matter energy-momentum tensor involves the 26 string coordinates, T =
� 1

2
@X�@X

�. A basis of operators on which we act with the BRST operator to determine
the physical spectrum, is given by

F (b; c; @X)eip�X ; (4.2)

where F is an arbitrary polynomial in the ghost variables and @X� plus their derivatives.
All expressions are assumed to be normal-ordered. We will call an operator (or state)
`physical' if it belongs to the BRST cohomology, irrespective of its ghost number.

The cohomology analysis is most easily done in a level by level computation1, where
one starts from level 0 spanned by the operators F (b; c; @X) of lowest conformal weight.
As has been mentioned in the previous chapter, there are two such operators: c and
c@c, having ghost numbers G = 1 and G = 2, respectively. These are the only ghost
numbers that can occur at level 0. The BRST variations are2

[Q; ceip�X ] = �( 1
2
p2 � 1)c@ceip�X ; (4.3)

[Q; c@ceip�X ] = 0 ;

where we compute [Q;A] using OPEs. From the relation between equal-time commuta-
tors and OPEs described in chapter 2, in particular equations (2.41) and (2.37) (where
in the present case the in�nitesimal transformation parameter � is an anticommuting
constant and we consider transformations generated by the BRST current j(z) instead
of conformal transformations generated by T (z)), we readily see that the BRST com-
mutator is the �rst order pole of the OPE j(z)A(w). Since no G = 0 operators exist at
level 0, the operators ceip�X cannot be BRST exact. Therefore, we conclude that ceip�X

is physical for p2 = 2. These operators create tachyonic states, with M2 = �p2 = �2,

j0; p >� lim
z;�z!0

c(z)eip�X(z;�z)j0 > ; (4.4)

where j0 > is the sl(2)-invariant vacuum. The operators c@ceip�X are trivially BRST
invariant, because no G = 3 level 0 operators exist. However, as is clear from (4.3), they
are only non-exact for p2 = 2. These operators then generate copies of the tachyonic
states (4.4) at the next ghost number. Their role has already been discussed in the
previous chapter as providing states that give nonzero inner product with the standard
states (4.4). We can consider the operators ceip�X and c@ceip�X as corresponding to the
same physical operator in a di�erent picture. The picture changing operator is given
by

Pa = [Q; a�X
�] = a�c@X

� ; (4.5)

1The BRST operator respects the grading by level since it has itself zero conformal dimension and

it does not change momentum p�.
2We use the notation [; ] for both commutators and anticommutators. As usual, when two operators

of odd ghost number are considered, an anticommutator is understood.
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for some polarization vector a�. Since Pa is BRST invariant3, the normal-ordered
product of Pa with a BRST invariant operator is also BRST invariant. We obtain
the G = 2 tachyon operator by taking the normal-ordered product of Pa (assuming
a�p

� 6= 0) with the G = 1 tachyon operator,

c@ceip�X /
I

dz

2�i

Pa(z)ce
ip�X(w)

(z � w)
: (4.6)

At the �rst excited level, where the operators F (b; c; @X) have conformal weight zero,
the lowest ghost number is G = 0, corresponding to the purely exponential operators
eip�X . It is easy to see that BRST invariance requires p� = 0, which is the state-
ment that the unit operator is physical. The corresponding state is the sl(2)-invariant
vacuum. This is a discrete state, it is only physical for a single momentum. The sl(2)-
invariant vacuum together with the picture changing operators4 plus their conjugates
(the conjugate of the identity operator is @2c@cc) create all discrete states of the chiral
sector of the bosonic string [88, 109]. The next ghost number at the �rst excited level,
G = 1, admits as the most general operator

V = (a�c@X
� + x@c)eip�X ; (4.7)

where x is a free parameter. The BRST variation is

[Q; V ] = �( 12p2a� � ixp�)c@c@X
�eip�X � (� i

2a�p
� � x)c@2ceip�X : (4.8)

Therefore, the BRST invariant combination has x = � i
2
a �p, and the polarization vector

must satisfy p2a� = 2ixp�. However, this operator is BRST exact if a� is proportional
to p�. Thus, the physical operators are given by a�c@X

�eip�X with p2 = a � p = 0.
Furthermore we have the equivalence relation a� ' a� + �p� for any constant �.

Let us interpret these results. For an open string, there are no separate left and right-
moving sectors, and the operator given in equation (4.1) is the full BRST operator.
The level 1 physical operators (apart from the discrete ones) correspond to massless
states (p2 = 0) with transverse polarizations (a � p = 0), and an equivalence relation
a� ' a� + �p�. This leaves the 24 positive norm states expected for a massless vector
particle in 26 dimensions.

For the closed string, we recall that there is also an anti-holomorphic sector that we
usually ignore since it is treated in exactly the same way as the holomorphic sector. The
BRST operator is in fact given by the sum of holomorphic and antiholomorphic BRST
operators as in (3.21). The cohomology in the anti-holomorphic sector is isomorphic
to that in the holomorphic sector and the total cohomology is obtained by tensoring

3One might think that Pa is BRST trivial as well. This is not the case though, since we do not

include the non-derivative �elds X� in the BRST complex. However, see [7] for a discussion of an

extended BRST complex which does include X� (i.e. its center of mass operator x� besides the modes

�
�
n). In this extended complex, there is no doubling of operators since the G = 2 copies are BRST

exact. Moreover, the 26 picture changing operators themselves are no longer physical.
4The picture changing operators are actually part of the generic p2 = 0 spectrum. However, they

are singular in the sense that they cannot be reached from generic light-like excitations by Lorentz

transformation. They are also left out in the proof of the no-ghost theorem [109].
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physical states from both sectors. Since the exponential factors of physical operators
are common to both sectors, or in other words the left and right-moving momenta are
assumed to be equal (see equation (2.26)), the levels of excitation in both sectors are
required to be the same by the L0 � �L0 = 0 constraint. This is the only constraint
that connects left and right-moving sectors. For the �rst excited level this yields the
operators

e��c�c@X
� �@X�eip�X : (4.9)

They correspond to massless states, p2 = 0, and the polarization tensor satis�es p�e�� =
p�e�� = 0. The BRST equivalence relation reads e�� ' e�� + p�k� + k0�p� with p � k =
p�k0 = 0. The resulting physical states can be decomposed under the transverse rotation
group SO(24) into a traceless symmetric tensor, antisymmetric tensor and invariant.
These correspond to the graviton, antisymmetric tensor and dilaton, respectively. Note
that the free spectrum of the open string does not contain a massless spin-two particle.
However, if interactions are taken into account, two open strings may join to form a
closed string. Therefore, a theory of open strings contains closed strings as well and
thus also the graviton.

It is interesting to note that for c = 26 all states of the form (2.63) with h = �1
correspond to null states of physical weight one. Together with the null states L�1jh =
0 > they arrange for the decoupling of longitudinal excitations in the spectrum. This is
one example of the interplay between space-time gauge symmetry in string theory and
its underlying conformal �eld theory.

States at excitation levels two or higher are massive. This may be seen from the mass-
shell formula which di�ers from the classical formula (2.32) by the normal-ordering
constant in L0 and �L0,

M2 = �p2 = �2 + 2

1X
n=1

��n � �n = 2(N � 1) ; (4.10)

where �n are the Fourier modes of the string coordinates, and N is the total energy
level of these harmonic oscillators. Reintroducing �0 = 1

2�T
, we �nd that the mass-shell

condition reads M2 = 4
�0
(N � 1) in the case of closed strings, and M2 = 1

�0
(N � 1) in

the case of open strings. The massive physical states �ll out representations of SO(25),
and the maximum spin at level N is N for open strings and 2N for closed strings. Thus
we have the inequalities J � �0M2 + 1 for open strings and J � 1

2�
0M2 + 2 for closed

strings, corresponding to the well-known Regge trajectories.

All physical operators, apart from the identity operator and its conjugate, take the form

S = cV (X; p) = cP (@X�)eip�X : (4.11)

We ignore for the moment their copies at the next ghost number, and also restrict
ourselves, as usual, to the holomorphic sector of the theory. Using the Wick rule (2.77),
one can show that the �rst order pole of the OPE j(z)S(w)5 is given by

[jS]1 = �@ccV +
X
n�1

@ncc[TV ]n+1 : (4.12)

5We use the notation [AB]n for the operator in the nth order pole of A(z)B(w).

63



It follows that the condition of BRST invariance requires the operator V (X; p) to be
primary of conformal dimension one with respect to T , as claimed before in equation
(3.33). The complete operator S is then a primary of the total energy-momentum
tensor of vanishing weight. Thus the problem of constructing the complete cohomology
of the bosonic string is the same as the problem of identifying all dimension one primary
operators V (X; p) or their corresponding highest weight states jV >. However, among
these states there are still zero norm states that are BRST exact. All nonzero norm
states can be generated by the so-called spectrum generating algebra of DDF operators
[68]. This algebra is isomorphic to the algebra of transverse oscillators �in. Application
of the DDF operators to the tachyonic ground state results in the DDF states which
have been proven to span the complete spectrum of the bosonic string in the case that
D = 26 and a = 1. More precisely, any physical state j� > can be uniquely decomposed
as

j� >= jf > +jn > ; (4.13)

where jf > is a DDF state and jn > is a null state. A null state is a spurious state6 that
is physical as well. In the language of CFT, a spurious state is a Virasoro descendant and
a physical state is a dimension one primary state. A state which is both a descendant
and primary is null and decouples completely from the theory. In the BRST formalism,
a DDF state jf > corresponds to a certain representative of a cohomology class, whereas
a null state jn > corresponds to a BRST trivial state. From the fact that the DDF
operators only generate excitations in the transverse directions, it follows that the
spectrum contains no negative norm states. This is the no-ghost theorem [52, 102,
188]. For a more complete discussion, see [104]. The no-ghost theorem in the BRST
quantization was established in [85, 88].

4.2 W -strings

The purpose of this and the next section is to describe the general structure of the
physical spectrum of a class of W -strings. This class consists of the WN strings where
the WN algebra is realized by a Miura realization. We mainly restrict ourselves to the
critical case, where the �elds of the Miura realization carry a total central charge ccrit
given by minus the ghosts' contribution

c = ccrit = 2

NX
k=2

(6k2 � 6k + 1) = 2(N � 1)(2N2 + 2N + 1) : (4.14)

The results for WN strings turn out to be somewhat disappointing in the sense that
their spectra appear to be quite similar to that of the ordinary bosonic string. This is a
consequence of a special property of the Miura realizations, as described in subsection
3.3.2. As explained there, the currents of the Miura realization for WN can be re-
expressed in terms of WN�1 currents and one explicit scalar �eld �N�1. Repeating this

6A spurious state is a state of the form jn >= L
�1j1 > +L

�2j2 > for some states j1 > ; j2 > and is

therefore orthogonal to any physical state.
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procedure, we obtain a WN realization in terms of an energy-momentum tensor and
N � 2 scalar �elds f�2; �3; :::�N�1g. It turns out that the physical state conditions
`freeze' the scalar �elds f�2; �3; :::�N�1g, and leave a set of ordinary Virasoro type
string sectors with di�erent intercepts [164, 65, 136]. This is most easily understood in
the nested basis. The BRST charge inherits the nested structure (at least classically)
given in (3.81). Starting the cohomology computation with the highest-spin part QN

N

of the BRST operator and going downwards to Q3
N , we see that this successively �xes

excitations and momenta corresponding to �N�1 ; �N�2 ; :::�2. In the next section we
intend to clarify this in the example of the W4 string.

It is interesting to see what are the central charges of the embedded Wn algebras
(n � N) in the Miura realization of the WN string. The condition for criticality (4.14)
�xes the free parameter of the Miura realization, �0,

c = (N � 1)(1 + 2N(N + 1)(�0)
2) = ccrit ) (�0)

2 =
(2N + 1)2

2N(N + 1)
: (4.15)

This then �xes the background charges of the scalar �elds, and the contribution of �n
to the central charge becomes

c�n = 1 + 3(2N + 1)2
n(n+ 1)

N(N + 1)
; (4.16)

for n = 1; 2; :::N � 1. The total central charge of the �elds f�N�1; cN ; bNg is now

cNN = c�N�1
� 2(6N2 � 6N + 1) =

2(N � 2)

N + 1
= cN�1;N ; (4.17)

which is precisely the central charge of the �rst unitary WN�1 minimal model. We
recall from equation (2.87) that the central charges of unitary WN minimal models are
given by

cN;q = (N � 1)

�
1� N(N + 1)

q(q + 1)

�
; q � N : (4.18)

For N = 3, for example, c33 = 1
2 is the central charge of the Ising model, the �rst

unitary Virasoro minimal model. More generally, the central charge of the �elds
f�n�1; :::�N�1; cn; bn; :::cN ; bNg, which may be considered to correspond to the sub-
sector of the N � n+ 1 highest-spin currents of the WN algebra [20], adds up to

cnN =

N�1X
k=n�1

c�k � 2

NX
k=n

(6k2 � 6k + 1)

= (n� 2)

�
1� n(n� 1)

N(N + 1)

�
= cn�1;N ; (4.19)

which is the central charge of the (N;N + 1) unitary Wn�1 minimal model. So these
central charge counting arguments suggest that a criticalWN string is related to a series
of (N;N +1) Wn minimal models with n = 2; 3; :::N � 1 [136, 20]. This is indeed what
is found also in cohomology computations, as we will now discuss.
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For simplicity, we concentrate on theW3 string. Explicit results forW4 will be discussed
in the next section. For N > 4, the explicit form of the BRST operator is not known.
However, from the results for W3 and W4, the general pattern for critical WN strings
based on Miura realizations seems to be clear. More on WN strings may be found in
the review papers [161, 192, 115].

The c = 100 realization needed for a nilpotent BRST operator is given in (3.75) if we
choose �20 =

49
24 . The freedom to choose the sign for �0 corresponds to the simple OPE

automorphism A! �A. We write A = @� and take the energy-momentum tensor TX
to be realized by D scalar �elds X�,

TX = �1

2
@X�@X

� + a�@
2X� ; (4.20)

with central charge cX = D + 12a�a
� = 1

4 c+
1
2 = 25 12 . It is clear that at least one of

the scalars X� must have a nonzero background charge.

A background charge q in T� = � 1
2
@�@�+ q@2� corresponds to a coupling of � to the

world-sheet curvature scalar,

S0 ! S0 +
q

4�

Z
d2�

p
hR(2)� ; (4.21)

as observed before in the case of the Liouville �eld of the non-critical string. If we
consider a correlation function on the sphere

<
Y
k

Vk(pk) >=

Z
D�e�S0� q

4�

R
d2�

p
hR(2)�

Y
k

Vk(pk) ; (4.22)

where the vertex operators Vk(pk) have exponential parts e
ipk�, the change of variable

�! �+ a yields the Ward identityX
k

pk = �2iq : (4.23)

This follows from the Gauss-Bonnet theorem, 1
4�

R
d2�

p
hR(2) = 2(1 � g) with g the

genus of the Riemann surface that represents the world-sheet. We see then that scalars
with real background charges, such as the scalars in the usual Miura realization, are
supposed to have imaginary momenta. Rescaling such scalars by

p
�1 gives real mo-

menta but changes the sign of the OPE and therefore suggests that they may be thought
of as timelike coordinates7. One introduces so-called screening charges, to be inserted
in correlation functions, to ensure that (4.23) is satis�ed. For the two-scalar W3 Miura
realization (D = 1 in (4.20)), screening currents are given by

S�i = ei��~ei�
~� ; (4.24)

7However, in the case of `frozen' scalar �elds whose allowed momenta are discrete, a space-time

interpretation, if any, is not clear. Perhaps they can be viewed as corresponding to compact directions.

See [162] for a discussion.
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where ~ei, i = 1; 2 are the simple roots of sl(3) and �� are determined from the require-
ment that the currents are spin-one primaries,

�� = ip
2
(�0 �

q
�20 � 2) : (4.25)

We use the basis in which ~� = (X;�). The screening charges commute with the gener-
ators of the W3 algebra. It turns out that the momenta of cohomology classes of the
two-scalar W3 string are all of the form [166]

~p =

2X
i=1

(n+i �+ + n�i ��)~ei ; (4.26)

where n�i are integers and ~p = (pX ; p�). This guarantees (at least for negative integers
n�i ) that with appropriate insertions of screening charges momentum conservation (4.23)
can always be satis�ed.

W3 string ground states are created by

V = c2@c3c3e
i~p�~� : (4.27)

The BRST invariance condition for standard operators (operators with ghost structure
as in (4.27)), is the condition that they are W3 primary with spin-two and spin-three
weights (intercepts) (h;w) = (4; 0). Since this amounts to a quadratic and a cubic
equation in the momenta, there are six physical values (pX ; p�). They form a multiplet
under the following action of the Weyl group W of sl(3),

w � ~p � w(~p� i
p
2�0~�) + i

p
2�0~� ; w 2 W : (4.28)

These are the transformations which leave (h;w) invariant. The six-to-one map from
momenta to weights is an artefact of the Miura transformation [78, 32].

As argued in the previous chapter, the BRST analysis is simpli�ed considerably after an
appropriate canonical transformation. We want the BRST operator in (3.60) and (3.61)
to become a sum of two terms with spin-two and spin-three ghost numbers (G2; G3) =
(1; 0) and (G2; G3) = (0; 1). To accomplish this, it turns out that we have to perform
the quantum canonical transformation generated by G = 4i

3
p
29
@�c3b2� 7i

3
p
58
@c3b2. The

change in the �elds is calculated using (3.80), where in the present case only the �rst
three terms contribute. After another OPE-preserving rescaling of the spin-three ghost
�elds, the BRST operator takes the form Q = Q0 +Q1, with

Q0 =

I
dz

2�i
c2
�
T + Tc3;b3 +

1
2Tc2;b2

�
; (4.29)

Q1 =

I
dz

2�i
c3

�
(@�)3 + 3

p
3�0@

2�@�+ 19
8
@3�+ 9

2
@�b3@c3 +

3
p
3

2
@b3@c3

�
:

As a simple consequence of the graded structure, we note that Q2
0 = Q2

1 = fQ0; Q1g = 0.
This form of the BRST operator was �rst given in [135].
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It can be shown8 that all physical operators with standard ghost structure are of the
form

V = c2@c3c3e
� 1
2
p
2
p�
Y�(X) ; (4.30)

where Y�(X) is primary under TX with weight �. Physical operators (4.30) belong to
one of three sectors, namely

p = 6 ; � = 1 ; p = 7 ; � =
15

16
; p = 8 ; � = 1 : (4.31)

Thus we see that the scalar � is `frozen' in the sense that the momentum in the �

direction is restricted to three discrete values, and no � excitations are physical [162].
Since the total weight of physical operators is zero, the `highest-spin part' @c3c3e

ip� of
(4.30) can only have weight 0 or 1

16
. Note that in the case of the two-scalar W3 string,

the momentum of X is also discrete.

We recall from equation (4.17) that the �elds (�; b3; c3) together have central charge
c33 = 1

2
, the central charge of the �rst (non-trivial) unitary Virasoro minimal model,

the Ising model. The appearance of an Ising model structure is now becoming clear
by noticing that operators of weight 0 (corresponding to the identity operator) and 1

16
also appear in the Ising model. The third primary operator of the Ising model has
conformal weight h = 1

2 and appears in the W3 cohomology as a non-standard operator
(an operator with non-standard ghost structure), see below. The �elds X� constitute an
e�ective space-time sector, and we see that the standard ghost structure operators give
rise to e�ective space-time sectors with intercepts 1 and 15

16
. The sector with intercept 1

is almost the same as the standard bosonic string spectrum. The di�erence is that here
we have cX = 25 12 instead of 26. Note that Y�(X) can be any h = � primary. In the
ordinary critical string, physical states are built from excitations in D � 2 transverse
directions. In the e�ective space-time sectors of the W3 string, however, fewer states
decouple, and excitations inD�1 directions are physical. Unitarity requires the e�ective
space-time intercepts to be of the form � = 1 � hp;q(m = 3), where the conformal
weights hp;q of unitary representations (in this case of the Ising model) are given in
(2.65). For an explanation, see references [191, 192].

Besides states of standard ghost structure, one can also consider states of non-standard
ghost structure. Among them are states that correspond to the h = 1

2 operator of the
Ising model. The simplest such operator is the level 1 operator

c2c3e
� 1
2
p
2
p�
Y�(X) ; (4.32)

with p = 4 and � = 1
2 . Operators of non-standard ghost structure are usually associated

with vanishing null states of the W3 algebra. In this context, let us note that precisely
the W3 modules with momenta (weights) as in (4.26) are degenerate, i.e. contain null
vectors.

The operators in (4.30) and (4.32) by no means exhaust the BRST cohomology. The
physical spectrum turns out to contain an in�nite number of operators with di�erent

8See the review papers [161, 192] and references therein.
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(�; b3; c3)-dependence for all three e�ective space-time sectors. The (�; b3; c3)-dependent
parts of physical operators can be found quite easily from the cohomology of the Q1

operator in (4.29) alone. The Q1 cohomology is the �rst term in a spectral sequence
that can be associated with the double complex de�ned by all �elds and the di�erential
Q = Q0 + Q1. The Q1 cohomology has been shown to provide a new realization of
the Ising model [116]. Singular vectors are divided out in the sense that they are Q1

exact. The in�nite number of copies of each primary are all connected by screening
operators. However, from the W3 string point of view there is no reason to identify
them. The Q1 cohomology acting on the Fock space generated by the �elds (�; b3; c3)
plus the identi�cations using screening operators would seem to play a role similar to
the Felder reduction that provides irreducible Virasoro minimal model realizations from
Fock space representations.

Note that all physical operators described up to now have the factorized form

c2U(�; b3; c3)V�(X) ; (4.33)

where U(�; b3; c3) are Ising model operators and V (X) are primaries with weights dual
to those of U . The operators (4.33) create continuous momentum states of the W3

string. `Continuous momentum' here refers to the momenta p� of X
� in the multi-scalar

case (D > 1). In addition to continuous momentum states, the physical spectrum also
contains discrete states which are physical only for p� = 0 or p� = �2ia�. For p� = 0
the corresponding operators take the form [161]

V = c2U1(�; b3; c3) + U2(�; b3; c3) ; (4.34)

where U2 is a h = 0 primary in the Q1 cohomology. The identity operator is the special
case with U1 = 0 and U2 = 1. Note that whereas the operators (4.33) have standard
spin-two ghost structure, the operators corresponding to discrete states do not have
this property. In [140], two invertible discrete physical operators were found. These
are guaranteed to give BRST non-trivial physical states when normal-ordered with any
physical operator. They have been used to compute the complete spectrum of the W3

string for the two-scalar as well as for the multi-scalar case [140].

A generic feature of the cohomology is that ghost numberG physical states have partners
at ghost number 2 � G. This corresponds to Hermitian conjugation under which the
BRST operator is invariant. Conjugation pairs the G and 2�G sectors in the ghosts'
Fock space and changes the momenta (p�; p�) of scalar �elds to (�p� � 2ia�;�p� +
2i
p
3�0). Furthermore, all states described thus far are so-called prime states. Acting

with picture changing operators on prime states gives additional states at the next few
ghost numbers [165]. For the bosonic string we have seen that the picture changing
operator accounts for the doubling of the states. For the two-scalar W3 string, two
independent picture changing operators aX = [Q;X ] and a� = [Q;�] generate, starting
from a prime state jP >, quartets of physical states fjP >; aX jP >; a�jP >; aXa�jP >g
at ghost numbers fG;G+ 1; G+ 1; G+ 2g.
The appearance of Ising model operators in the spectrum suggests that the critical
W3 string is related to the non-critical Virasoro string with the Ising model as its
matter sector. Indeed, the Q1 cohomology represents the Ising model whose operators
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are then dressed by the `Liouville' scalar X (in the two-scalar case) to operators of
vanishing total conformal dimension in the Q cohomology. Moreover, in both the non-
critical string spectrum [133] and the critical W3 spectrum [140], the ghost numbers of
cohomology classes range from �1 to +1. It is also known [70] that W3 constraints
appear as Dyson-Schwinger equations in the two-matrix model corresponding to the
Ising model coupled to 2d-gravity. In the same way, critical WN strings are believed
to be intimately related to the (N;N + 1) unitary Virasoro minimal model coupled to
2d-gravity. For N !1 one would then expect some connection between c = 1 matter
coupled to 2d-gravity (often referred to as the two-dimensional string) and the critical
W1 string. It is indeed known that the two-dimensional string has a W1 symmetry
structure [8, 128, 194].

The critical WN string based on the Miura realization is not only related to the non-
critical Virasoro string with (N;N + 1) minimal matter, but also to a series of non-
criticalWn strings for all 3 < n < N , as argued before by counting central charges. The
Qn+1
N cohomology (cf. equation (3.81)) is conjectured to realize the unitary (N;N +1)

Wn minimal model and is coupled to Wn gravity through the transition to the total
cohomology. For W4 we give details below.

What we have been calling the criticalWN string is in fact more like the analogue of pure
gravity and it is perhaps better to call it pure WN gravity. Indeed, the WN symmetry
of the sl(N) Toda action expected to describe quantum WN gravity in a conformal
gauge is realized by the (N � 1)-scalar Miura realization. Pure gravity is described
by the Liouville scalar with a background charge such that cL = 26. Its cohomology
classes are known to extend through all ghost numbers [133]. Similarly, the critical W3

string described above also has cohomology classes at all ghost numbers. As mentioned
before, direct W -extensions of the 26-dimensional critical bosonic string do not seem to
exist since scalar �eld realizations of WN algebras always involve background charges.

4.2.1 Non-critical W -strings

Non-criticalWN strings describeWN matter coupled toWN gravity and provide gener-
alizations of the critical WN string which corresponds to the special case of WN gravity
coupled to trivial (c = 0) matter. Results on the spectrum of non-critical WN strings
have been given in [30, 31, 46, 18, 47, 48].

The matter sector is usually taken to be a WN minimal model. The (p; q) WN minimal
models have central charges

cp;q = (N � 1)

�
1�N(N + 1)

(p� q)2

pq

�
; (4.35)

for positive integers p and q. The unitary models have q = p + 1 > N + 1 and their
central charges were given before in (2.87). The central charge of theWN gravity (Toda)
theory is then given by cp;�q , since

cp;q + cp;�q = ccrit : (4.36)
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The BRST charge for the non-critical W3 string in its canonical form was given in
equation (3.66). To compute the physical spectrum we need a realization of the matter
and Liouville currents. For the Liouville sector it is natural to take the usual two-scalar
Miura realization of the W3 algebra. To facilitate computation of the cohomology, the
matter minimal model is usually also represented by the two-scalar Miura realization of
the appropriate central charge. However, one has to perform a further reduction in order
to obtain a minimal model. This should be similar to the Felder BRST reduction of the
Coulomb gas realizations for Virasoro minimal models. However, Fock space resolutions
of irreducible modules for minimal models are very complex in the case of W -algebras.
(In the case of W3 such resolutions were constructed in [89, 44].) Nevertheless, a
complete classi�cation of physical states for a W [g] minimal model coupled to W [g]
gravity has been conjectured in [46]. For g = sl(N) this corresponds to WN minimal
matter coupled to WN gravity.

The BRST analysis for the non-critical W3 string can again be simpli�ed using the
rede�nition that leads, at the classical level, to a nested subalgebra structure. In [18]
the non-critical W3 string is investigated using the rede�ned BRST operator of [21],
which is the sum of two nilpotent operators Q0 and Q1. The minimal model structure
of the cohomology is then elucidated. In particular, it is shown in [18] that the Q1

cohomology is closely related to a (p; q) Virasoro minimal model if one chooses for the
matter sector a (p; q) W3 minimal model. This generalizes the connections to minimal
models of critical WN strings. One might also wonder what happens if one takes a
(non-unitary) (p; q) = (2; 3) W3 model as matter sector with central charge �2. This
might lead to the trivial c = 0 Virasoro minimal model in the Q1 cohomology. In fact,
this particular W3 non-critical string model is used in [23] and we come back to it in
section 4.4.

Another interesting class of non-critical WN strings is obtained if the matter theory is
realized by N � 1 free scalar �elds. For N = 2 this corresponds to the D = 2 string
whose physical states have been calculated in [134]. Interesting algebraic structures
have been found in the D = 2 string, as described, for example, in [194]. For N = 3,
the D = 4 W3 string has been extensively studied in [47]. In this work the algebraic
structure of the cohomology is emphasized.

4.3 An example: the W4 string

This section closely follows [40]. In order to study the physical spectrum of the W4

string, we need the BRST operator for the W4 algebra. It was given in [113, 200], but a
more convenient form of the BRST operator was found in [20]. Let us summarize how
it was constructed.

The energy-momentum tensor in the three scalar Miura realization is

TM = � 1
2
@~� � @~��

p
2�0~� � @2~� ; (4.37)

where ~� = (�1; �2; �3) and ~� is the Weyl vector of sl(4). We use the representation
~� = 1

2
(
p
2;
p
6;
p
12), and denote by qi =

p
2�0�i, i = 1; 2; 3, the background charges of
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the scalar �elds. The central charge is

cM = 3 + 24(�0)
2�2 = 3 + 120(�0)

2 : (4.38)

As described in the previous chapter, in the classical limit it is possible to rede�ne the
generators such that the algebra is brought to a special form with a nested subalgebra
structure [20]. The energy-momentum tensor is not a�ected by the rede�nition. The
BRST charge associated to the resulting classical algebra inherits the same nested struc-
ture. Quantization by parametrising all possible quantum corrections and demanding
nilpotency leads to a BRST operator which still has this nested structure, and there-
fore, as we will see, is convenient for studying the spectrum. It should also be possible
to relate the operators in the original and rede�ned basis by a (quantum) canonical
transformation, as in the case of the W3 string. Explicitly, the BRST current is

j2 = c4f(@�3)4 + 4q3@
2�3(@�3)

2 + 41
5 (@

2�3)
2 + 124

15 @
3�3@�3

+ 46
135

q3@
4�3g � 8(@�3)

2c4@c4b4 +
16
9
q3@

2�3c4@c4b4 (4.39)

+ 32
9 q3@�3c4@

2c4b4 +
4
5c4@

3c4b4 � 16
3 c4@c4@

2b4 ;

j1 = c3f(@�2)3 + 3
4
@�2(@�3)

2 + 5
p
2

8
(@�3)

3 + 3q2@�2@
2�2

+ 3
2q3@�2@

2�3 +
9
2q2@�3@

2�3 +
93
40@

3�2 +
69
p
2

10 @3�3g
� 9

2
@�2c3@c3b3 +

3
2
q2c3@

2c3b3 � 243
64
c3@c3b4 (4.40)

� 9
2@�2c3c4@b4 � 6@�2c3@c4b4 +

9
2q2c4@

2c3b4

+ 3
2
q2c3@

2c4b4 � 9
p
2

2
@�3c4@c3b4 � 3

p
2@�3c3@c4b4 + j2 ;

j = c2(TM + Tc3;b3 + Tc4;b4 +
1
2
Tc2;b2) + j1 : (4.41)

Here (ck; bk) is the conjugate ghost pair of the spin-k symmetry with conformal dimen-
sion (1 � k; k) with respect to the corresponding energy-momentum tensor Tck;bk =
�kbk@ck+(1�k)@bkck. The total W4 BRST operator is Q =

H
dz
2�i

j(z) and as the way
of representing it in equations (4.39-4.41) suggests, it involves two other nilpotent BRST
charges: Q2 =

H
dz
2�i

j2(z) is a BRST operator corresponding to a spin-four symmetry,

and Q1 =
H

dz
2�i

j1(z) is a BRST operator corresponding to a symmetry generated by
spin-three and spin-four currents. We have

(Q2)
2 = (Q1)

2 = (Q)2 = 0 ; (QV ir)
2 = fQV ir ; Q1g = 0 ; (4.42)

where we de�ned QV ir = Q � Q1. Note that QV ir is just the usual Virasoro BRST
operator when we consider the spin-(3,4) ghost systems to belong to the matter part.
The spin-four part Q2 was obtained before in [139]. We should also mention that
momenta and ghost numbers of physical operators are not a�ected by the rede�nition
leading to (4.39-4.41). However, the explicit expressions for physical operators are
expected to be much simpler in the new basis, as in the W3 string case [135].

The BRST operator (4.41) is nilpotent provided the total central charge of matter plus
ghosts vanishes. This requires TM to have central charge cM = 246 implying (�0)

2 = 81
40
.

Then we obtain what we call a critical W4 string. For a non-critical string one would
expect another sector with W4 symmetry. Unfortunately, however, the rede�nition
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described above can only be applied to one of both sectors [20] which means that the
description of the non-critical W4 string would be much more involved.

Screening operators play an important role in the physical state analysis. The standard
W4 screening currents [78] are

S�i = ei��~ei�
~� ; (4.43)

where ~ei are the sl(4) simple roots, and �� are given in (4.25). The screening chargesH
dz
2�iS

�
i commute with theW4 generators in the Miura realization, and they will appear

in modi�ed form in the discussion of the Q-cohomology. Besides, there will be more
screening operators that simplify the classi�cation of physical states. In general, for
a physical operator O of zero conformal weight, one can �nd an associated screening
current SO via the descent equation

[Q;SO(z)] = @O(z) ; (4.44)

where Q is the BRST charge under consideration. The corresponding screening chargeH
dz
2�i

SO(z) will then commute with Q.

Picture changing operators are de�ned by

Pi(z) = [Q;�i(z)] : (4.45)

In the usual BRST complex these are physical h = 0 primaries. Applying a picture
changing operator to a physical state, i.e. taking the normal-ordered product, either
gives zero or another physical state.

As in (4.26), the momenta of physical states are multiples of the momenta of the screen-
ing currents (4.43):

~p =

3X
i=1

(n+i �+ + n�i ��)~ei : (4.46)

All physical operators described below indeed have momenta on this lattice. It is then
convenient to rewrite the momenta as

pi =
iqi

27
~pi ; (4.47)

because (4.46) now implies that

~p1 2 3Z ; ~p2 2 Z ; ~p3 2 2Z : (4.48)

Note that the momenta pi are imaginary. In the following we will usually refer to ~pi as
the momentum.

We now proceed to determine the cohomology of Q in steps, starting with the Q2

cohomology which imposes the spin-four constraint.
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4.3.1 The Q2 cohomology

Since the BRST current j2 only depends on a single scalar �eld �3 and the spin-four
ghost variables (c4; b4), we only need to consider operators built from these �elds. These
�elds together have central charge 4

5 , the central charge of the (p; p
0) = (4; 5)W3 unitary

minimal model.

The Q2 physical states at some low energy levels are given implicitly in a discussion of
the W2;4 string in [139, 138]. The extra Virasoro constraint of the W2;4 algebra does
little more than dress the primary Q2 physical operators to operators of total spin zero.
In [141], the complete cohomology of the critical W2;4 string is given. Ignoring the
Virasoro constraint, i.e. ignoring the `Liouville dressings', this cohomology seems to be
equivalent to the W3 primary part of the Q2 cohomology obtained below, apart from
some descendants which couple to the Virasoro �elds in the W2;4 cohomology.

The ghost vacuum is given by acting on the sl(2)-invariant vacuum with @2c4@c4c4.
In the following, we will always write down operators that are supposed to act on the
sl(2)-invariant vacuum. First consider operators of the form

V 0
0 = @2c4@c4c4e

ip3�3 : (4.49)

The lower index denotes the level. The upper index refers to the ghost number G of
the state created by this operator. Thus the sl(2)-invariant vacuum is assigned ghost
number �3 for the moment. Level 1 states at lowest ghost number (G = �1) are created
by

V �11 = @c4c4e
ip3�3 : (4.50)

The physical states of lowest ghost number at a particular level are easy to �nd. Since
they can't be Q2 exact, one only has to impose the vanishing of their Q2 variation. We
restrict ourselves to operators on levels 0 and 1, since this will turn out to be enough
to understand the full structure of the Q2 cohomology. Imposing the physical state
conditions on (4.49) and (4.50), we obtain the results listed in table 1.

V 0
0 ~p3 h w

24 0 0

30 0 0

26 1=15 1

28 1=15 �1

V �11 ~p3 h w

16 1=15 �1
18 2=5 0

20 2=3 �26

Table 1. Level 0 and 1 physical states in the Q2 cohomology.

Momenta are denoted by ~p3, see (4.47). The last two columns

give the weights h and w with respect to the spin-two and three

generators of the c = 4
5
W3 algebra.

Note that the physical values of p3 agree with equations (4.46-4.48) (we only consider
the third component of (4.46)). The last two columns give the weights of the physical
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states with respect to the generators of a W3 algebra. It turns out that the physical
states in the Q2 cohomology can be organized in representations of the c = 4

5 W3

algebra whose generators (T;W ) are physical operators at levels 8 and 9 with zero
momentum. The Virasoro generator T is the energy-momentum tensor built from the
�elds (�3; c4; b4), and the spin-three generator is given by [138]

W =
q

2
13
f 5
3
(@�3)

3 + 5q3@
2�3@�3 +

25
4
@3�3 + 20@�3b4@c4

+12@�3@b4c4 + 12@2�3b4c4 + 5q3@b4@c4 + 3q3@
2b4c4g : (4.51)

They generate the c = 4
5
W3 algebra with standard normalization, up to an extra

primary spin-four operator, which turns out to be a multiple of the Q2 exact operator
V = fQ2; b4g. It was noticed by the authors of [138] that after bosonizing the spin-
four ghost pair, this realization of the W3 algebra coincides with a special two-scalar
realization found in [22]. As a side-remark, we note that this c = 4

5
realization is

unique in the sense that it has one real and one imaginary background charge, the
latter belonging to the `ghost scalar'.

The physical states in table 1 are all primary with respect to the W3 algebra, with L0

and W0 eigenvalues h and w, respectively. For convenience, the weights w have been
rescaled as in [138]. The Virasoro weights are given in terms of p3 as

h = 1
2
(p3)

2 � iq3p3 + l � 6 ; (4.52)

where l is the level. The spin-three weight is a cubic polynomial in p3 and depends on
the detailed structure of the operator.

Let us now compare the Q2 spectrum with the spectrum of primaries in a c = 4
5
W3

minimal model. The spectrum of conformal weights in a generic (p; p0) W3 minimal
model is given by (see e.g. [49])

h(r1; r2; s1; s2) = � (p� p0)2

pp0
(4.53)

+
1

3pp0
f

2X
i�j=1

(p0(ri + 1)� p(si + 1))(p0(rj + 1)� p(sj + 1))g ;

where the non-negative integers ri; si run over the range

0 � r1 + r2 � p� 3 ; 0 � s1 + s2 � p0 � 3 : (4.54)

Note that the level 0 states in table 1 correspond to the `diagonal' entries of the (p; p0) =
(4; 5) Kac table (4.53), since h(0; 0; 0; 0) = 0 and h(0; 1; 0; 1) = h(1; 0; 1; 0) = 1

15
. The

weights 2
5 and 2

3 of the level 1 states are also in the set (4.53). Moreover, at levels 0
and 1 together, all conformal weights of the (4; 5) W3 minimal model occur. It is also
interesting to note that the maximum possible conformal dimension of an operator at
a particular level, hmax =

1
2
q23 + l� 6 (see (4.52)), forbids the appearance of h = 2

5
and

h = 2
3
operators on level 0.
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The spin-three weights w corresponding to the Virasoro weights h(r1; r2; s1; s2) in a
(p; p0) W3 minimal model are given by [49]

w(r1; r2; s1; s2) = C(p; p0)(p0(r1 � r2)� p(s1 � s2)) (4.55)

�(p0(2r1 + r2 + 3)� p(2s1 + s2 + 3))(p0(r1 + 2r2 + 3)� p(s1 + 2s2 + 3)) ;

where C(p; p0) depends on the normalization of the spin-three current. The w-values in
table 1 are indeed in agreement with the minimal model values (4.55). Under the Z2
transformation (r1; r2; s1; s2)! (r2; r1; s2; s1) h is invariant, while w changes sign. We
observe that the level 0 states occur in such Z2 pairs.

From table 1 it is clear that a physical state with (h;w) = ( 2
3
;+26) is missing at levels

0 and 1. However, we only discussed states of lowest ghost number. In particular, any
state of ghost number G has a conjugate state at ghost number 1 � G at the same
level, and it turns out that the ( 23 ;+26) state occurs at level 1, G = 2. It is in fact the
conjugate of the ( 2

3
;�26) state. More generally, the Z2 symmetry mentioned above is

part of the conjugation of a physical operator. This completes the identi�cation of all
minimal model primaries in the Q2 cohomology, at levels 0 and 1.

For the purpose of �nding physical states at higher levels and di�erent ghost numbers
we introduce the following screening operators,

S = b4e
ip3�3 ; with ~p3 = �6 ; (4.56)

R = @c4c4e
ip3�3 ; ~p3 = 30 ; (4.57)

�R = @c4c4e
ip3�3 ; ~p3 = 24 : (4.58)

They are spin-one primaries whose charges commute with Q2. It is not di�cult to
see that R and �R are the screening currents associated to the level 0, h = 0 physical
operators (see table 1) via the descent equation (4.44). With these screening charges it
is possible to obtain new physical states by acting on the level 0 and 1 states described
above. The OPEs of T and W with the screening currents are total derivatives (in the
case of R and �R this is true up to Q2 exact terms), which means that W3 primaries are
mapped to W3 primaries of the same (h;w) under the action of the screening charges.

We follow [86], where a similar discussion for the W3 string can be found. For the
action of n screening charges on a physical state of momentum p to be well-de�ned, the
following expression must be an integer,

Pn � n� 1 +

nX
i<j=1

psipsj + p

nX
i=1

psi ; (4.59)

with screening momenta psi . Using this, one can show that, for example, the action
of S on V 0

0 [~p3 = 30] is well-de�ned. However, this action9 is trivial in the sense that
it gives zero, and to obtain a new physical state we have to make use of the picture

9By the action of a screening operator S on a physical operator V we mean the commutatorH
dz
2�i

S(z)V (w), whereas the action of a picture changing operator P is the normal-ordered product
H

dz
2�i

P (z)V (w)

z�w
, with an integration contour around w.
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changing operator P3(z) = [Q2; �3(z)]. Taking the normal-ordered product of P3 with
V 0
0 [~p3 = 30] and then acting with S gives the physical state V 0

0 [~p3 = 24]. Generalizing
this, we can write down in�nite series of operators by analogy with theW3 case [86, 116].
If we de�ne V (0; 0) = V 0

0 [~p3 = 30], the series with (h;w) = (0; 0) may be written as

�V (0; n) = SP3V (0; n) ; V (0; n) = (S)4P3 �V (0; n� 1) : (4.60)

The other series are

V�( 1
15 ; 0) � V 0

0 [~p3 = 28] ; (4.61)

�V�( 1
15
; n) = (S)2P3V�( 1

15
; n) ; V�( 1

15
; n) = (S)3P3 �V�( 1

15
; n� 1) ;

V+(
1
15
; 0) � V 0

0 [~p3 = 26] ; (4.62)

�V+(
1
15 ; n) = (S)3P3V+(

1
15 ; n) ; V+(

1
15 ; n) = (S)2P3 �V+(

1
15 ; n� 1) ;

V ( 2
5
; 0) � V �11 [~p3 = 18] ; (4.63)

�V ( 2
5
; n) = (S)2P3V (

2
5
; n) ; V ( 2

5
; n) = (S)3P3 �V (

2
5
; n� 1) ;

V�( 23 ; 0) � V �11 [~p3 = 20] ; (4.64)

�V�( 23 ; n) = SP3V�( 23 ; n) ; V�( 23 ; n) = (S)4P3 �V�( 23 ; n� 1) ;

V+(
2
3 ; 0) � V 1

1 [~p3 = 34] ; (4.65)

�V+(
2
3
; n) = (S)4P3V+(

2
3
; n) ; V+(

2
3
; n) = SP3 �V+(

2
3
; n� 1) :

The notation, not to be confused with the previous notation V G
l with level and ghost

number indices, is V�(h; n), where h is the spin and � indicates the sign of the spin-
three weight w (see table 1). Although the actions of the screening operator S in general
do not seem to have inverses, one can act on any operator in (4.60-4.65) with R, thus
extending the series to negative n,

V�(h; n� 1) = RP3V�(h; n) ;
�V�(h; n� 1) = RP3 �V�(h; n) : (4.66)

We observe that the operator V (0; 1) is the identity, and �V (0; 1) is another h = 0
operator at the same ghost number G = �3 relative to the tachyonic operators (4.49).
To summarize, we list all these operators with their momentum, ghost number and level
in table 2.

We did not prove that all these operators are BRST non-trivial (they are certainly
BRST closed). The operators in table 2 are supposed to be the prime operators [165]
from which new physical operators are obtained by normal-ordering with the picture
changing operator P3. Thus all operators in the Q2 cohomology come in doublets.
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operator ~p3 G level

V (0; n) 30� 30n �3n 1
2 (3n(5n� 1))

�V (0; n) 24� 30n �3n 1
2 (3n(5n+ 1))

V�( 1
15
; n) 28� 30n �3n 1

2
(n(15n� 1))

�V�( 1
15
; n) 16� 30n �1� 3n 1

2
(15n2 + 11n+ 2)

V+(
1
15
; n) 26� 30n �3n 1

2
(n(15n+ 1))

�V+(
1
15
; n) 8� 30n �2� 3n 1

2
(15n2 + 19n+ 6)

V ( 25 ; n) 18� 30n �1� 3n 1
2 (15n

2 + 9n+ 2)

�V ( 25 ; n) 6� 30n �2� 3n 1
2 (15n

2 + 21n+ 8)

V�( 23 ; n) 20� 30n �1� 3n 1
2
(15n2 + 7n+ 2)

�V�( 23 ; n) 14� 30n �1� 3n 1
2
(15n2 + 13n+ 4)

V+(
2
3
; n) 34� 30n 1� 3n 1

2
(15n2 � 7n+ 2)

�V+(
2
3
; n) 10� 30n �2� 3n 1

2
(15n2 + 17n+ 6)

Table 2. Operators in the Q2 cohomology.

From equations (4.60-4.65) one observes that the action of �ve S screening charges
(together with two picture changes) is special. It lowers ~p3 by 30 and G by 3. Indeed,
a screening operator exists which does the same in one go (together with one picture
change), namely

Sx = @3b4@
2b4@b4b4e

ip3�3 ; with ~p3 = �30 : (4.67)

This screening operator is also used in [141]. It has a well-de�ned action on all physical
operators. The physical operator x associated with Sx through the descent equation
turns out to be (up to an irrelevant constant factor)

x(z) =

I
dw

2�i
Sx(w)P3(z) ; (4.68)

which we identify as V (0; 2) in (4.60). We will not give x explicitly; it is a complicated
expression consisting of 50 terms. We may recover Sx from x via

Sx(w) = (b4)�1(w)x(w) �
I

dz

2�i
(z � w)2b4(z)x(w) : (4.69)

The operator x has a physical inverse x�1, such that the normal-ordered product of x
with x�1 is a nonvanishing multiple of the identity. This inverse is precisely the physical
level 0 operator V 0

0 [~p3 = 30]. We may write it as

x�1 =
I

dw

2�i
R(w)P3(z) : (4.70)
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Thus we have identi�ed three members of the family (4.60): V (0; 0) = x�1, V (0; 1) = 1

and V (0; 2) = x. We also see that RP3 acts as the inverse of SxP3.

In [140], analogous invertible operators enabled the computation of the complete co-
homology of the critical W3 string by the observation that normal-ordered products
of arbitrary powers of x or x�1 with a physical operator give new non-trivial physical
operators. The situation here is somewhat di�erent in that the operators in the Q2

cohomology do not all have vanishing total conformal weight, due to the lack of a Vi-
rasoro constraint. As this is an essential argument used in [140], we have no complete
proof here that the operators of table 2 plus their W3 descendants and picture changed
versions generate the full Q2 cohomology.

Equation (4.69) seems to give the general procedure to obtain the screening current
associated to a h = 0 physical operator in the Q2 cohomology. For SO � (b4)�1O, with
O an arbitrary h = 0 physical operator, one has

[Q2; SO(w)] = V�1(w)O(w) =
I

dz

2�i
(z � w)2V (z)O(w) ; (4.71)

where, as before, V is the spin-four current fQ2; b4g, and the RHS is indeed a (multiple
of) @O in the cases examined.

4.3.2 The Q1 cohomology

We now take the next nilpotent BRST operator, Q1, and study its cohomology. It
is the part of the total W4 BRST current (4.41) which does not involve the Virasoro
sector. It imposes only a spin-three and a spin-four constraint. The Fock space must
now be extended to include also the scalar �2 and the spin-three ghosts. Together, the
�elds (�2; �3; c3; b3; c4; b4) have central charge c =

7
10

which is the central charge of the
(p; p0) = (4; 5) unitary Virasoro minimal model.

Operators in the Q1 cohomology can be computed from operators in the Q2 cohomology
in a systematic way using a spectral sequence argument (for a review, see e.g [45]).
Taking the spin-three ghost number G3 as an extra grading on the complex of scalar
plus ghost Fock spaces, one can decompose Q1 in three parts with G3 = 0; 1 and 2:

Q1 = d0 + d1 + d2 ; (4.72)

where the G3 = 0 part, d0, is Q2. There is only one term in Q1 with G3 = 2, namely
d2 = � 243

64
c3@c3b4. This term prevents the complex from being a double complex. The

remaining terms have G3 = 1 and form d1. The �rst term of the spectral sequence
(Er; �r)

1
r=0 associated to this gradation, is the Q2 cohomology

E1 = H(Q2;F(�2; �3; c3; b3; c4; b4))
= F(�2; c3; b3)
H(Q2;F(�3; c4; b4)) ; (4.73)

where the second equality follows from the fact that Q2 acts trivially on any of the �elds
(�2; c3; b3). So we can start with a Q2 physical operator and extend it (if possible) to
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a Q1 physical operator by computing the next terms in the spectral sequence. The
successive terms that are added to the original Q2 physical operator have increasing
spin-three ghost number G3 (but of course the same total ghost number). At low
levels the spectral sequence will collapse after a few terms due to the small range of
ghost numbers available there, but at higher levels the procedure becomes increasingly
laborious.

Having said this, we found it just as convenient to compute operators in the Q1 coho-
mology by imposing the complete Q1 physical condition at once. We used the Mathe-
matica package OPEdefs [185] for computing OPEs. Still, it is useful to observe from
the above-mentioned arguments that the Q1 physical operators are extensions of Q2

physical operators, so that only the �2 momentum and the spin-three ghost structure
remain to be determined from the Q1 physical condition.

The level 0 operators are now of the form

W 0
0 = @c3c3@

2c4@c4c4e
ip2�2+ip3�3 : (4.74)

The notation is the same as in (4.49) except that we use W for operators in the Q1

cohomology. Level 1 operators that create states with the lowest ghost number G = �1
can now be linear combinations of two terms of di�erent ghost structure:

W�1
1 = (x1c3@

2c4@c4c4 + x2@c3c3@c4c4)e
ip2�2+ip3�3 : (4.75)

Table 3 lists the momenta for which the level 0 and level 1 operators are physical.

W 0
0 ~p3 ~p2 h

24 24 0

27 3/80

30 0

26 22 0

28 1/10

31 3/80

28 23 3/80

26 1/10

32 0

30 24 0

27 3/80

30 0

W�1
1 ~p3 ~p2 h

16 23 3/80

26 1/10

32 0

18 18 1/10

27 7/16

36 1/10

20 19 7/16

22 3/5

40 0

24 12 1/10

15 7/16

26 16 3/5

28 11 3/80

30 12 1/10

15 7/16

Table 3. Level 0 and 1 operators in the Q1 cohomology.
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All cohomology classes are one-dimensional. The level 1 operators with ~p3-values 16; 18
and 20 have x1 = 0 in (4.75) while the other level 1 operators have a nonzero ratio x1

x2
.

The last column in table 3 shows the total conformal weight of the physical operators
with respect to the c = 7

10
energy-momentum tensor, which is itself a physical operator

at level 11. Thus the physical states are organized into c = 7
10 Virasoro representations.

Unitarity then requires that all primary physical operators have conformal dimensions
of the corresponding Kac table. This appears to be the case. In particular, the level 0
physical operators correspond to the diagonal entries of the Kac table. The multiplicities
of operators of �xed weight can be understood from Weyl group transformations [136]
(cf. (4.28)). The presence of non-diagonal operators at level 0 is impossible because of
the maximum conformal weight

hmax(l) =
1
2
(q22 + q23) + l � 9 = 9

80
+ l : (4.76)

At level 1, primary operators corresponding to the �rst o�-diagonal in the Kac table,
with h = 7

16
and h = 3

5
, are allowed by (4.76), and they are indeed in the Q1 cohomology

as can be seen from table 3. Also observe that there is no physical operator at levels 0
and 1 corresponding to the outermost entry in the Kac table, h = 3

2
. From (4.76) it is

clear that such an operator can exist only at levels l � 2. So it is natural to look for this
missing operator at level 2. At this level, the ghost number can take values �2 � G � 4.
To see if there is a h = 3

2
physical state, it su�ces to consider onlyG � 0, since forG � 1

the spectrum consists of conjugates of G � 1 states with the same conformal weight.
The lowest ghost number operator at level 2 has the form W�2

2 = c3@c4c4e
ip2�2+ip3�3

and is physical for two values of the momenta (p2; p3) giving rise to two h = 3
80

operators.
For G = �1 there is no h = 3

2 cohomology either. However, for G = 0 there is a one-
dimensional h = 3

2
cohomology class, with momentum (~p2; ~p3) = (34; 20). It may be

represented by @3c3@c3c3@c4c4e
ip2�2+ip3�3 which is primary up to Q1 exact terms. Also,

there is a cohomology class with the conjugate momentum10 (and thus also h = 3
2 ),

(~p2; ~p3) = (20; 34). One can understand the appearance of states at G = 0 in pairs with
conjugate momenta as follows. First note that states in the Q1 cohomology occur in
quartets with ghost numbers (G;G + 1; G+ 1; G + 2), where the state at lowest ghost
number is called the prime state [165], and the other states are obtained by applying the
picture changing operators to this prime state (remember that we have two independent
picture changing operators in the Q1 cohomology description). Besides, any state at
ghost number G has a conjugate state at ghost number 2 � G with the conjugate
momentum. Combining these observations, we see that prime states at G = 0 occur in
pairs with conjugate momenta.

We have now identi�ed all operators of the c = 7
10

minimal model in the Q1 cohomology
at levels 0,1 and 2. The next objective is to show that all physical operators (at least the
ones found so far) of the same conformal weight are related to each other through the
action of screening operators and picture changes. Therefore, let us introduce a number
of useful screening charges, which are now required to commute with Q1. First of all,
the operator S in equation (4.56) is still a screening current in the Q1 cohomology, as is

10We recall that the momentum conjugate to ~p is �~p+2i~q, where ~q is the background charge vector.

In the tilded variables it means that 54 � ~pi is conjugate to ~pi.
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Sx. The Q2 screening operators R and �R commute with Q1 only after adding an extra
term,

R = (@c4c4 +
15
88q2c3c4)e

ip3�3 ; ~p3 = 30 ; (4.77)

�R = (@c4c4 +
15
56
q2c3c4)e

ip3�3 ; ~p3 = 24 : (4.78)

New screening currents are given by (the notation will become clear in the next sub-
section)

T�3 = (1� 256
729

q2b3c4)e
i~p�~� ; ~~p � (~p2; ~p3) = (�8; 8) ; (4.79)

T+
3 = (1� 32

729
q2b3c4)e

i~p�~� ; ~~p = (�10; 10) : (4.80)

Screening currents with positive ~p2-values are

R0 = c3e
ip2�2 ; ~p2 = 30 ; (4.81)

�R0 = c3e
ip2�2 ; ~p2 = 24 : (4.82)

Of course, many more screening currents at higher or lower ghost numbers exist, but
we expect that they can be represented by composite actions of the given ones, together
with P2 and/or P3 picture changes.

The h = 0 physical operators are obtained through the action of the associated screening
currents on a picture changed version of the identity operator, so they can all be viewed
as di�erent screened versions of the identity. Also, operators of table 3 with the same
conformal weight can be connected to each other more directly by the action of certain
combinations of the screening charges given above. It is more important, however, to
�nd operators which can normal-order with any physical operator and thereby create
new physical operators. The operator x that was found in the previous section is easily
extended to the Q1 cohomology, since the associated screening current Sx is still given
by (4.67). Again, it can also be expressed as

x(z) =

I
dw

2�i
Sx(w)P3(z) ; (4.83)

where now P3 = [Q1; �3] contains some additional terms compared with the P3 operator
in the Q2 discussion. Its inverse now is the level 3 physical operator

x�1 = (@2c4@c4c4 +
45
56@�2c3@c4c4 � 45

p
2

56 @�3c3@c4c4 � 5
56q2c3@

2c4c4

+ 5
28
q2@c3@c4c4 +

3645
19712

@c3c3c4)e
ip3�3 ; (4.84)

with ~p3 = 30. This is the operator corresponding to the screening current (4.77) via
the descent equation, and it also equals the commutator of R with P3. Conversely, we
get back R as (b3)�1x�1.

There should also be similar operators y and y�1 with nonzero �2 momentum. We
expect y to be a level 37 physical operator with momentum (~p2; ~p3) = (�40;�20).
Such an operator can normal-order with any physical operator. This can be easily
checked using (4.59), and by noting that ~p2 + ~p3 is a multiple of 3 for all physical
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operators (this also follows from (4.46)). We did not try to construct the operator y.
However, y�1 should be the level 1 physical operator with (~p2; ~p3) = (40; 20) of table 3.

The overall picture of the Q1 cohomology is then the following. Physical operators
come in minimal model modules of the c = 7

10
Virasoro algebra realized in terms of the

scalar �elds (�2; �3) and the ghost �elds (c3; b3; c4; b4). There seems to be an in�nite
number of representatives of each minimal model primary (but only a �nite number
at �xed ghost number). We expect that all primaries belonging to the Q1 cohomology
can be written as normal-ordered products of powers of the operators x; y and their
inverses acting on a set of physical operators at some low-lying levels. Since the ghost
numbers and momenta of the operators x; y; x�1; y�1 are known, we can predict the
ghost numbers, level numbers, and momenta of Q1 cohomology classes as in table 2 for
the Q2 cohomology.

4.3.3 The complete cohomology

We now consider the cohomology of Q = Q1 + QV ir on the full Fock space generated
by the three scalar �elds and the three conjugate ghost pairs. Because of the Virasoro
constraint, the Q cohomology contains only h = 0 primaries. This is di�erent from the
Q2 and Q1 cohomologies which also contain descendants of minimal model primaries.

Since Q1 and QV ir anticommute, see (4.42), they de�ne a double complex. Note that
Q1 does not involve the �elds (�1; c2; b2), and since Q1 physical operators have already
been computed, we take a spectral sequence where the �rst term is the Q1 cohomology.
This spectral sequence provides a systematic procedure to obtain operators in the Q
cohomology by adding to Q1 physical operators terms with higher spin-two ghost num-
ber G2 (but the same total ghost number). Physical operators in the total cohomology
are then given by

O =

1X
i=k

Oi ; (4.85)

where the �rst term in the sum, Ok with G2 = k, is an operator in the Q1 cohomology,
and the higher G2 terms are de�ned by [Q1;Oi+1] = �[QV ir;Oi]. At small values of
the level, the sum in (4.85) will only have a few terms (e.g. only one term at level 0
and G = 0).

The `tachyon operators' (level 0, G = 0) take the form

X0
0 = c2@c3c3@

2c4@c4c4e
ip1�1+ip2�2+ip3�3 : (4.86)

They are physical for 24 values of the momenta which form a multiplet of the sl(4)
Weyl group [136]. For the explicit values of the physical momenta, we refer to [40].
The 24 physical operators X0

0 correspond to the 12 Q1 operators W 0
0 `dressed up'

with the c2 ghost and the �1 part of the exponential, to operators of vanishing total
conformal dimension (thus giving two possible p1-values for eachQ1 operator). The level
0 operators of the W4 string were already constructed by Das, Dhar and Rama [65] in
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1992. The W4 BRST operator was not known at that time, and their computation was
based on an assumption about the existence of the `cosmological constant operator'.

At level 1 and lowest ghost number G = �1, we can form the operators

X�1
1 = (x1@c3c3@

2c4@c4c4 + x2c2c3@
2c4@c4c4 + x3c2@c3c3@c4c4)e

i~p�~� : (4.87)

All momenta at which such operators become physical have been listed in [40]. The
set of physical level 1 operators can be divided in continuous and discrete momentum
operators. The continuous momentum operators correspond to Q1 operatorsW

�1
1 that

have been dressed to operators of the total cohomology. They have x1 = 0, thus their
spin-two ghost structure is standard. The discrete momentum operators have nonzero
x1; x2 and x3, thus their spin-two ghost structure is non-standard. The latter operators
have p1 = 0. This is all in agreement with (or rather analogous to) the observations
made for the W3 string in equations (4.33) and (4.34).

Next we compute some screening charges, which commute with Q. First, we note that all
Q1 screening currents are Q screening currents as well. So Sx is still a screening current,
and its associated physical operator is still given by the relation (4.83), where now
P3 = [Q;�3] contains two additional terms relative to [Q1; �3]. The physical operator
x�1 can be found using the spectral sequence argument described at the beginning of
this subsection. We �nd that it is given by (4.84) with the following modi�cation:

x�1 ! x�1 � ( 1528c2@c4c4 +
225
2464q2c2c3c4)e

ip3�3 ; ~p3 = 30 : (4.88)

In the Q cohomology, this is a level 4 operator. Similar physical operators y; y�1; z; z�1

are also expected to exist, where y is supposed to have momentum (0;�40;�20) and z
should have nonzero �1 momentum in order to connect states with di�erent p1-values.

We �nd four new screening currents involving b2 and �1,

T�2 = (1 + 2
3
q2b2c3)e

i~p�~� ; ~~p � (~p1; ~p2; ~p3) = (�12; 12; 0) ;
T+
2 = (1 + 5

6
q2b2c3)e

i~p�~� ; ~~p = (�15; 15; 0) ;
T�1 = eip1�1 ; ~p1 = 24 ;

T+
1 = eip1�1 ; ~p1 = 30 : (4.89)

The operators T�i , i = 1; 2; 3, (recall the Q1 screening currents in (4.79) and (4.80)) have
exactly the same momenta as the standard screening currents S�i given in (4.43). In fact,
T�1 = S�1 . The other screening currents have been modi�ed by a ghost contribution.
This is a consequence of the rede�nition that we carried out to obtain the W4 BRST
charge (4.41), since in this rede�nition the scalar �elds and ghosts are mixed to some
extent [136, 20]. In [65] it was noted that the tachyonic physical operators are precisely
the composites that can be formed out of the screening currents S�i .

Now that we have included the Virasoro constraint, it is trivial to obtain screening
currents associated to physical operators, since the descent equation (4.44) is solved by
SO(w) =

H
dz
2�i b2(z)O(w).
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In [46] a classi�cation of physical states for a W [g] minimal model coupled to W [g]
gravity is given. These results have already been seen to agree with those of [140] in
the case of the two-scalar W3 string (or pure W3 gravity), see [46, 18].

If we take g = sl(4) and the trivial (c = 0) W4 minimal model, we are able to compare
with our results. Non-trivial cohomology classes exist, according to [46], at the following
values of the momentum11:

~p = w�1(���~�� �+~�) + i
p
2�0~� ; (4.90)

where ~� and the parameters �0; �� are as before (see (4.25)), and w is an element of

the sl(4) Weyl group W while � can be an element of the[sl(4) a�ne Weyl group cW.
The ghost number at which the state with momentum (4.90) occurs is given by �lw(�),
where lw(�) is the twisted length of �,

lw(�) = lim
N!1

(l(t�Nw��)� l(t�Nw�)) ; (4.91)

and l is the ordinary length of an a�ne Weyl group element. In order to compute the
twisted length, one should decompose the translation t�Nw� into the simple a�ne Weyl
reections f�0; �1; �2; �3g and then look for the cancellations that take place between
t�Nw� and �. For � 2 W , (4.91) reduces to lw(�) = l(w�1�)� l(w�1). The action of �0
on � should be taken here as �0� = ���+ 5�, where � is the highest root of sl(4). For
completeness we give the decompositions of the translations associated with the simple
roots:

te1 = �2�3�0�3�2�1 ;

te2 = �3�1�0�1�3�2 ; (4.92)

te3 = �2�1�0�1�2�3 :

For � = 1, (4.90) yields all level 0 physical states corresponding to X0
0 , when w runs

over the 24 elements of W . Whereas the Weyl group action in (4.90) does not change
the level, the a�ne Weyl group action does. If we let � run over the simple Weyl
reections f�1; �2; �3g and w over all elements in W , we obtain all momenta and ghost
numbers of the level 1 prime physical states of which the ones with G = �1 agree with
our �ndings for the operators X�1

1 . Thus we �nd complete agreement with the results
of [46] at levels 0 and 1.

The a�ne Weyl elements can be decomposed into ordinary Weyl transformations and
translations in the co-root lattice, � = t�w. The translations associated with the simple
roots (4.92) correspond to the following changes in the momenta,

�1
~~p = (120; 0; 0) ;

�2
~~p = (�60; 60; 0) ;

�3
~~p = (0;�40; 40) : (4.93)

11It can be checked that they are compatible with the selection rule (4.46).
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Physical operators with such momenta are supposed to be invertible and they can be
used to classify the complete cohomology in terms of a set of low level physical operators.
Recall that the operator x with momentum ~~p = (0; 0;�30) can also be used for this
purpose. Using x and the operators corresponding to the simple root translations, one
�nds that an alternative basis of x-like operators has momenta (0; 0;�30) ; (0;�40;�20)
and (�60;�20;�10).
As before, we only considered prime operators. Seven other sectors of operators can be
obtained by acting with the picture changing operators P1; P2 and P3.

The energy-momentum tensor for �1 can be replaced by an arbitrary e�ective energy-
momentum tensor Teff with the same central charge. Some three-scalar states will then
generalize to continuous momentum multi-scalar states, some will generalize to discrete
momentum multi-scalar states and some may not be generalized at all to multi-scalar
states. An e�ective space-time exponential may be replaced by any e�ective space-time
operator with the same OPE under Teff to obtain other physical operators. See [140]
for a discussion of this multi-scalar generalization in the case of W3.

It is expected [20] that theWN BRST charge can be decomposed in a way similar to the
W4 BRST charge. This is certainly true at the classical level. The studies ofW3 andW4

strings make the following picture of minimal models in the WN string very plausible.
Imposing the spin-N constraint results in an (N;N +1) unitary WN�1 minimal model.
In the next step, where the spin-(N � 1) constraint is added, the operators are dressed
to operators of the (N;N + 1) WN�2 minimal model. This goes on in the same way,
resulting in an (N;N +1) Virasoro minimal model in the Q1 cohomology, and the total
cohomology is obtained from the double complex with BRST chargesQ1 and QV ir. This
agrees with the counting of central charges as discussed earlier. A similar discussion for
non-critical WN strings may be found in [18].

Some results on higher-spin strings based on W2;N algebras have been obtained in
[139, 138, 141, 142]. A complication noted by the authors of these papers is that
for N � 5, the central charge of the spin-N sector, corresponding to a WN�1 minimal
model, becomes greater or equal to one, as can be seen in equation (4.17). Consequently,
the number of e�ective space-time sectors which couple to the spin-N �elds is no longer
�nite. This complication is not expected to occur for the WN string, since there is a
sequence of Wk minimal models, the last one being the (N;N + 1) Virasoro minimal
model which of course has c < 1 so that there is only a �nite number of e�ective
space-time intercepts.

4.4 Relations between strings based on di�erent gauge

symmetries

In the previous sections we discussed some relations between (non-critical) WN strings
for di�erent N . It was argued that in the cohomology of the (p; q) non-critical WN

string all (p; q) non-criticalWn strings with 2 � n < N naturally appear. This is not to
say that they all are equivalent. In fact, the minimal model operators appearing in the
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spectra of WN strings are repeated at an in�nite number of di�erent ghost numbers.
In principle, this degeneracy could be lifted by using certain screening operators with
nonzero ghost number to identify all the copies of a particular minimal model operator.
However, it is not natural to do so. See [18] for a discussion.

In this section we briey describe further relations between string theories based on
di�erent world-sheet gauge symmetries. In [29] it was shown that the bosonic string
may be viewed as a special background for the N = 1 superstring, and that the N = 1
superstring may be viewed as a special background for the N = 2 superstring.

Let us review some of the arguments for the N = 0 � N = 1 case. Starting from a
critical bosonic string with a cbos = 26 energy-momentum tensor Tbos, one obtains a
realization of the N = 1 superconformal algebra by introducing fermionic (i.e. anticom-
muting) �elds (b1; c1) of spin (3=2;�1=2) and de�ning [29]

T = Tbos � 3
2
b1@c1 � 1

2
@b1c1 +

1
2
@2(c1@c1) ;

G = b1 + c1 (Tbos + @c1b1) +
5
2@

2c1 : (4.94)

The �elds (b1; c1) can be viewed as twisted versions of spin-two ghost �elds (b; c). Then
the second term in G has the structure of the BRST current of the bosonic string. Note
that this particular realization of the N = 1 superconformal algebra acts nonlinearly
due to the �rst term in G.

The currents T and G generate the N = 1 superconformal algebra with critical central
charge c = 15. Thus the system fTbos; (b1; c1)g can serve as a background for the N = 1
fermionic string. To impose the constraints T and G, one needs to introduce the usual
anticommuting ghosts (b; c) and the commuting ghosts (�; ), respectively. It is then
shown in [29] that correlation functions of the fermionic string in this speci�c back-
ground reduce to corresponding bosonic string correlation functions essentially because
the path integral over the (�; ) �elds cancels that over the (b1; c1) �elds.

The arguments of [29] use the assumption that all physical operators of the bosonic
string with energy-momentum tensor Tbos are of the standard form. However, the
equivalence of the class of N = 1 strings based on the realizations (4.94) to the bosonic
string based on Tbos holds also in the case where other operators of non-standard ghost
structure are present, as in non-critical string theories. This follows from the work
of Ishikawa and Kato [121] in which a similarity transformation is used to prove that
the cohomology of the N = 1 BRST operator is isomorphic to the cohomology of the
bosonic string BRST operator. Indeed, for a certain generating function R [121],

eRQN=1e
�R = Qbos +Qtop ; (4.95)

where

Qtop =

I
dz

2�i
(� 1

2
b1) ; (4.96)

and Qbos is the standard bosonic string BRST operator with energy-momentum tensor
Tbos. The cohomology of QN=1 is simply the direct product of the cohomology of Qbos

and Qtop. From the form of Qtop and the fact that (b1; c1) and (�; ) are conjugate pairs,
it immediately follows that the cohomology of Qtop consists of only the ground state in
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the f(b1; c1); (�; )g system. Decoupling of all excitations in these �elds is due to the
quartet mechanism of Kugo and Ojima. Moreover, (4.95) is a similarity transformation
and therefore preserves the form of all OPEs. As a result, any correlation function in
the N = 1 theory reduces to the corresponding one in the N = 0 theory12.

Further embeddings of strings into string models with larger world-sheet gauge sym-
metry have since been found. The embedding described above has been generalized
to a hierarchy of superstrings [14] where N -extended superstrings may be viewed as a
special class of (N + 1)-extended superstrings. In [28], the embeddings are generalized
to non-critical superstrings and in [132] a hierarchy of w-strings13 is obtained.

A very interesting idea behind all these embeddings is that there might exist a universal
string theory which includes all the others by special choices of vacua. This universal
string theory would then be the most symmetrical one, and less symmetric string the-
ories arise by spontaneous symmetry breaking, i.e. by the choice of a certain vacuum.
However, all realizations used in the embeddings are of a very special kind. In par-
ticular, the symmetries of the more symmetrical string theory are always nonlinearly
realized, as in (4.94).

It is known that nonlinear realizations14 for some symmetry algebra G may be induced
from realizations of some smaller algebra H . In the case that G is a �nite dimensional
group and H a subgroup, the BRST charge for the nonlinear realization of G is related
via a similarity transformation to the BRST charge of H [131, 146, 81]. Thus it seems
that the existence of hierarchies of string theories with di�erent world-sheet symmetries
is purely a consequence of the fact that the algebras are nonlinearly realized. In other
words, one can start from the bosonic string and add �elds such that a nonlinear
realization of some larger symmetry is obtained. Gauging the extra symmetry in e�ect
eliminates the new degrees of freedom and therefore gives back the original theory.
This mechanism of enlarging the symmetry is rather trivial and makes the signi�cance
of string embeddings unclear. See also the discussion in [155].

In the case of WN strings we also described similarity transformations like (4.95). In
particular, for the W3 string a similarity transformation (or canonical transformation,
it preserves OPEs) turns the BRST operator into a sum of two nilpotent terms Q =
Q0+Q1, as described above equation (4.29). There are some di�erences, however. One
is that the W3 symmetry is realized nonlinearly in another sense, namely higher than
quadratically. Indeed, we know that Q1 does not correspond to a topological sector of
the theory, rather its cohomology is a realization of the Ising model. Another di�erence
is that the critical value cV ir = 26 does not lead, through the Miura realization, to
the critical value cW3

= 100 but rather to cW3
= 102. The latter di�erence can be

eliminated if we consider a non-critical W3 string with a cL = �2 Liouville sector and
therefore a cM = 102 matter sector [23]. Then this matter sector can be realized by
the usual 26 free scalar �elds of the bosonic string plus an additional scalar �eld. For

12However, there may be problems for a complete identi�cation on higher genus surfaces where

(super)moduli play a role.
13The w-strings considered in [132] are based on linear versions of the WN algebras.
14In this section we mean by `nonlinear' that there are transformations with terms of zeroth order

in the �elds. For example, G in (4.94) acts nonlinearly in this sense on c1.
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example, the matter energy-momentum tensor is given by

TM = � 1
2@X�@X

� � 1
2@�@�+

5
2@

2� : (4.97)

After performing our usual rede�nition in the matter sector, the BRST current can be
cast into the form j = j0 + j1 with

j0 = c2
�
TM + TL + Tc3;b3 +

1
2Tc2;b2

�
;

j1 = c3F (TL;WL;�; c3; b3) : (4.98)

The explicit expression for F is given in [21, 23]; it is not important here. From the
form of the BRST operator Q = Q0 + Q1 we can already see that this non-critical
W3 string contains the complete critical bosonic string spectrum in its cohomology.
Indeed, we can rewrite Q = QV ir + QR, where QV ir is the standard BRST operator
of the bosonic string. Since QR does not depend on X� and b2, any bosonic string
physical state of the form c2V (X

�) is automatically Q invariant. However, the results
of [18] that show how the Q1 cohomology in the case that the Liouville sector is a
(p; q) minimal model reduces to the (p; q) Virasoro minimal model, cannot be directly
applied here since there does not seem to be aW3 minimal model at cL = �2. Although
c = �2 corresponds to (p; q) = (3; 2) in the formula for minimal model central charges,
a corresponding Kac table of minimal model primaries does not exist. One could still
restrict the Liouville sector to its identity operator only15, just to see to what model it
leads in theQ1 cohomology. It does not lead to the (3; 2) (c = 0) trivial minimal Virasoro
model. Instead, the Q1 cohomology involves operators of dimensions fn; 18 + n; 58 + ng
for non-negative integers n. Applying naively the fusion rules of BPZ, it can be seen
that dimension 0; 1

8
; 5
8
primaries are part of a closed fusion algebra. However, only the

dimension 0 operators yield the bosonic string spectrum in the complete cohomology.
It is clear that the relation described here between a special W3 string realization and
the bosonic string is by no means an equivalence. For more details we refer to [23].

Other attempts of embedding the bosonic string in aW -string, apart from the hierarchy
of linearized wN strings [132], have been described in [27, 13, 137, 143]. In [13], the
critical bosonic string is realized as a particular background of a string based on the
linearized W3 algebra W

lin
3 [130]. The nonlinear W3 algebra obtained from this critical

W lin
3 algebra by a rede�nition has central charge 102, the same value as in the matter

sector of the non-critical W3 string discussed above. Related work in [137] shows that
both the cM = 100 critical and cM = 102 non-critical BRST operators can be altered
without losing nilpotence by adding an extra term to the Q1 operator. They then
become equivalent up to a similarity transformation. Moreover, with this extra term,
which corresponds to a nonlinearly (in the sense of 0th order in the �elds) realized W3

symmetry, they also become equivalent to the bosonic string BRST operator plus a
topological part. The latter part decouples a quartet of �elds leaving precisely the crit-
ical bosonic string. The W3 realizations used in [137] are obtained using the linearized
approach of [130]. They involve a bosonic bc system and are, therefore, di�erent from
the usual Miura realizations.

15However, this is not a modular invariant restriction.
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