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Abstract

The purpose of this study is to investigate the effect of time-aggregation in discrete and
continuous-time hazard models. A Monte Carlo study is conducted in which data are
generated according to underlying continuous and discrete-time processes, which data
are aggregated into daily, weekly and monthly intervals. Under each of these conditions
400 datasets are generated, that vary in the parameters of the baseline hazard. These
datasets are analyzed with flexible continuous-time and discrete-time proportional
hazard models. The estimates of the structural parameter and of the baseline hazard, as
well as the baseline hazard predicted by those estimates, seem robust to the form of the
distribution of the data generation process when the time-aggregation window is small.
Both estimates of continuous-time models and of discrete-time models suffer from
time-aggregation, but the estimates of the discrete-time model are more sensitive to
aggregation.
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1. Introduction

Hazard models have become widespread in their use for the analysis of duration-
time data in many scientific disciplines, including biology and medicine (e.g., Cox,
1972; Kalbfleisch and Prentice, 1980),  sociology (e.g., Petersen, 1995, Vermunt
1996), marketing research (e.g., Vilcassim and Jain, 1991; Wedel et al., 1995), and
economics (e.g., Kiefer, 1988; Lancaster, 1990). These models overcome the
problems of  accounting for censored observations of duration and time-varying
explanatory variables, that arise in applying standard regression type models to
duration data. The basic concept in hazard models is the probability of the occurence
of an event during a certain time interval, say t to t+)t, given that it has not occurred
before t, specified as:

, (1)

with X(t) the structural variables, a set of covariates at time t. (The extension of the
formulation to multiple states is straightforward but will not be provided to keep
notation simple.) Parametric methods for duration data typically involve assumptions
about the distribution of durations, which enables estimation by maximum likelihood.
Two distinct classes of hazard models arise according to whether a discrete or a
continuous distribution of the durations is assumed.

The discrete-time hazard is equal to the conditional probability of an event in
equation (1), specified directly for given values of )t: 

, (2)

where y equals the number of events that has occurred during the interval [ t,t+)t].
The discrete-time formulation was initiated by Prentice and Gloecker (1978), and has
been extended by Laird and Olivier (1981), Efron (1988), Meyer (1990), Kiefer
(1990) and Lindsey (1995). It has the advantage that it leads to simple model formu-
lations, which enable one to accommodate censoring, covariates that vary within
spells, and multiple events in a straightforward manner. Both the logistic binomial
and log-poisson regression models have been used to model discrete durations. The
latter have the advantages of allowing for more than one event occurring in the unit
discrete time interval (eg., Lindsey 1995).

In the continuous-time approach, the hazard is specified by letting )t approach
zero in (1), to yield the hazard-rate:

. (3)

The density function of durations is: 
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(4)
The continuous-time approach appears to be among the most commonly used
approaches in the economic literature (eg., Lancaster, 1979, 1990; Kiefer, 1988;
Gritz, 1993). An important special case, is presented by the proportional hazard
models (Cox, 1972), for which:

, (5)

where 8 (t) denotes the baseline hazard. Because the estimates of the structural0

parameters are sensitive to the specification of the baseline hazard (Trussell and
Richards, 1985), Flinn and Heckman (1983) proposed a flexible Box-Cox
formulation of the baseline hazard. It includes many of the frequently used
distribution functions as special cases, and is formulated as:

(6)

Kiefer (1990) and Lindsey (1995) used similar formulations to represent the baseline
hazard in discrete-time proportional hazard models, in which it can be considered a
smoothing approximation to a step-functional baseline. Other flexible approaches to
formulate discrete hazard models are so-called semi-parametric approaches, in which
each discrete time interval is represented by a parameter in the baseline hazard (eg.,
Laird and Oliver, 1981; Kiefer, 1990), and the related Cox partial likelihood
approach for continuous time models (Cox, 1975). Whereas these flexible
approaches are available to represent the hazard-rate in both continuous and discrete-
time hazard models, the choice between these two remains an important issue.

In many cases, the choice of a discrete or a continuous distribution of durations
is an empirical issue, but sometimes (economic) theory may provide guidance.
Discrete time intervals occur naturally in some situations due to the discrete nature of
human behavior (for example occurence of unemployment, presidential elections and
purchase behavior). If the underlying process evolves in discrete time, the discrete
time hazard models seem preferable. However, even if the underlying process is truly
continuous, the measurements of that process may not be, because data are collected
in discrete time intervals. Often, it is only known whether an event occurred within a
certain discrete time window, such as an hour, a day, a week, or a month. In
estimating continuous-time models for such data, events are usually assigned to the
ends of the windows. This approach may give rise to biased estimates, a problem
referred to as time-aggregation bias (or interval censoring). The time aggregation
problem has not yet received much attention in the economics literature, although its
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importance has been recognized (Kiefer, 1988; Heitjan 1989). Time-aggregation has
two major effects. First, it reduces the number of observed spells and thereby
reduces sample size, and second it introduces measurement errors that are negatively
correlated with the durations (see Bergström and Edin, 1992).

A few studies have investigated the problem of time-aggregation  for
continuous-time models. Petersen (1991) derived the size of the bias for a constant
hazard-rate model, that does not include covariates or censoring. He concluded that
(1) given the discrete time-unit of measurement, the higher the hazard-rate (shorter
durations) the higher the bias due to aggregation; and that (2) for a constant hazard-
rate, the wider the time window (the more time units it involves) the higher the bias
in the estimated hazard-rate. These results were extended by Peterson and Koput
(1992) to a model with a constant hazard-rate and one covariate, and to a constant
hazard model accounting for right censoring. They also showed, using synthetic data,
that the bias in the estimates of a covariate in a continuous time hazard model is
reduced when the events are not assigned to the ends of the window, but to the mid-
point of the window. A limitation of these studies is that in order to yield analytically
tractable results, the models investigated were rather simple (i.e. a constant hazard-
rate). It is not known to what extent these results carry over to more complicated
models.

Two studies have addressed the effects of time aggregation empirically.
Narendranathan and Stewart (1990) compare the estimates from a continuous-time
Weibull model with a semi-parametric grouped hazard model, and discuss the
problems of daily versus weekly data of unemployment. Bergström and Edin (1992)
compare semi-parametric models (Cox partial likelihood, Cox, 1975) to simple
(Weibull) and more complicated (generalized gamma) parametric models, for daily,
weekly, monthly and quarterly unemployment data. The conclusions are that the
estimates of the structural parameters are relatively robust to the distributional
assumptions. However, different distributional assumptions produced different
estimates of the time dependence of the baseline hazard. Time-aggregation was found
to seriously affect the estimates of the parametric models, especially at higher levels
of aggregation. The study is however based on the analysis of one single (and
nonrepresentative) sample, in which the true underlying process remains unknown. 

Time-aggregation is not the only cause of measurement errors in duration data.
Other problems, that typically are due to recall bias in retrospective surveys, are
under-reporting (Mathiowetz and Duncan, 1988), and heaping (Torelli and Trivellato,
1993). These issues, as well as unobserved heterogeneity (eg., Kiefer, 1988) and
semi-parametric models formulated in continuous or discrete time (Kiefer, 1988) are
not considered in this study. The purpose is to further investigate the robustness of
parametric discrete and continuous-time hazard models under various assumptions of
the true underlying process and under different levels of time-aggregation. This will
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be done in a Monte Carlo experiment in which the true parameters of the data
generating process are known.

2. The design of the study

2.1. Data generation
In the Monte Carlo study, the robustness of continuous and discrete time hazard

models in various conditions of time aggregation is investigated. Synthetic data are
simulated for 100 subjects within a period of 420 days. For both true discrete and
continuous-time processes 400 replications are generated. A proportional hazard
specification is used with one (time-invariant) regressor, with the structural
parameter $=1 across all replications. The regressor X is drawn from U(ln0.5, ln
1.5), so that it does not de- or increase the baseline hazard with more than half its
size. The regressors are subjectspecific and are fixed for all 400 replications. The
baseline hazard is formulated using the first three terms of the Box-Cox specification
in equation (6) above:

, (7)

where < 60, <  = 1, *  = ( + ( , *   = (  and *  = ( . The formulation (7) nests a1 2 0 0 2 1 1 2 2

number of distributions of duration, such as the exponential ( (  = 0, ( = 0), the1 2 

Weibull ((  = 0), and the Gompertz (( = 0). 2 1 

In order to investigate the robustness of the hazard models under a wide range of
different forms of the hazard, the parameters of the baseline hazard are varied across
replications: (  is drawn from U(-12, -4), (  from U(-0.5, 0.5), and (  from U(0,0 1 2

0.1), where (  is adjusted upward or downward in steps of 0.5 to ensure a reasonable0

number of events. To prevent defective hazards, (  is restricted to the positive1

domain. For the continuous-time model the durations are generated by drawing
random numbers u~U(0, 1) and applying the inverse cumulative distribution function
F (u) (since the cdf. is not a closed form expression, a binary search algorithm was-1

applied to solve the inverse transformation). For the discrete-time model events are
generated by drawing from a Poisson distribution with expectation 8[t | X], specified
according to (5) and (7), where t is set equal to the midpoint of the intervals. We
assume that the true underlying hazard occurs in time periods of one day. The last
spell not containing an event is treated as right-censored. In order to simulate time-
aggregation, the continuous time data are aggregated into spells consisting of 420
days, 60 weeks and 14 months, where each month is considered to consist of 30
days. Similarly, the discrete time data are aggregated into weeks and months. 

The datasets thus generated are each analyzed with both a continuous-time and a
discrete-time proportional hazard model, with the hazard specified as in equations (5)
and (7). We use the same form of the baseline hazard for continuous and discrete-
time models since the purpose of the study is to compare parametric formulations of
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the hazard in discrete and continuous time. In both the discrete and continuous-time
model the correction suggested by Peterson (1991), of assigning the events to the
mid-point of the discrete time windows, is applied. The models are estimated by the
method of maximum likelihood, the likelihood being maximized by the quasi-newton
method of Broyden, Fletcher, Goldfarb and Shanno, as implemented in the GAUSS
(Aptech, 1995) system. Since both the discrete and continuous-time hazard models
have log-linear specifications, the likelihood is a concave function in the parameters
(Lancaster, 1990) and convergence to a global maximum is guaranteed.

2.2. Dependent measures
The following dependent measures are used to assess the robustness of the

models (we use k=1, ..., 400 to indicate replications):
1. The mean parameter estimates across all replications;
2. The squared error of the estimates of the baseline parameters in replication k :

, l = 0, 1, 2 ;

3. The squared error of the estimate of the structural parameter:

;

4. The 2.5th, 50th and 97.5th percentiles of the empirical distribution of the
relative error in the baseline hazard, calculated across the replications, for a grid
of points j = 1, ..., J in the [0,120] duration domain:

; 

5. The sample log-likelihood: ;

6. A likelihood-ratio (LR) test for the difference in the actual and estimated
parameters for each of the replications:

;

7. Whether or not the null-hypothesis that the estimates equal the true values is
rejected (p < 0.05) on the basis of the LR-test, r  = 0/1.(k)

In order to investigate the performance of the hazard models under the above
conditions, we analyze the squared-errors of the four parameters, the LR statistic and
whether or not the null-hypothesis is rejected, with regression analyses. The mean
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parameter estimates and log-likelihoods are reported for descriptive purposes and the
error in the baseline is depicted graphically. Each analysis is based upon 4800
observations. For the squared errors and the LR test statistic a gamma-regression
with a log-link is used, for the rejection of the null-hypothesis a binomial logit
regression. The explanatory variables are A. the data generating process
(continuous/discrete), B. the hazard model specification (continuous/discrete), C. the
level of aggregation (daily/weekly/monthly), and D. The mean length of the durations
in the data, and the first and second order interactions between these variables. The
mean duration is included as a factor in our analyses, because previous work by
Petersen and Koput (1992) has revealed it to affect time aggregation problems. For
each of the dependent variables deviance ratio-tests are reported. Deviance ratio’s are
the ratio’s of the scaled deviance-contributions of the respective terms and the
residual deviance of the full model including all terms. The deviance is minus twice
the log-likelihood ratio between the fitted model and a full model that explains all the
variation in the data (McCullagh and Nelder, 1989). In order to reduce capitalization
on chance, effects are considered significant at p < 0.01.

3. Results

Table 1 provides the deviance ratio test results of the regressions of the five
dependent measures. It shows, that the model specification, the level of aggregation
and the interaction between these two variables significantly affect all six measures.
The second order interaction of data, model and aggregation level effects all
measures, except SE($ ) and SE(( ). Note that the effect of level of aggregation is by2

far the largest among all measures and that the effect of the data generating process is
relatively small compared to the other main effects. The remaining effects show a
mixed pattern. Because of the interactive effects the means of the dependent
measures are reported for all combinations of model specification, data distribution
and level of aggregation in Tables 3 and 4 below.

The mean duration appears to affect all dependent measures significantly, except
for the squared error in the structural parameter. The interactive effect of duration
and level of aggregation affects all six dependent measures significantly, and the
second order interaction between mean duration, model and aggregation level affects
all dependent measures, except for the probability of rejecting the null hypothesis.
The other interaction effects of mean duration show a mixed pattern. The estimates
of the regression coefficients of mean duration and aggregation level according to
model type are presented in Table 5.

[Insert Table 1 here]
Table 2 provides the mean parameter estimates for the analyses of the synthetic

data (the averages of the true parameter values across replications are also depicted),
Table 3 shows the root-mean squared errors (RMSE’s) of the parameter estimates,
obtained by averaging the SE’s across replications and taking the square-root. Table
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4 shows the log-likelihoods and related statistics. Figs. 1 to 4 show the percentiles of
the relative error in the baseline hazard.

[Insert Tables 2, 3 and 4 here]

3.1. Results when the underlying process is correctly specified
Table 2 and 3 show that the bias and RMSE in the parameter estimates of the

baseline hazard of both the continuous-time models and the discrete-time models are
low when the models are correctly specified. In the continuous-time models the
estimate of (  is upward biased on average, but its bias in the discrete-time models1

appears to be (slightly) negative. As expected, the regression parameter is very close
to the true value on average for both model specifications. The LR test (Table 4)
supports these findings. Across all 400 replications the null-hypothesis that the
estimates are equal to the true values are close to the nominal percentage of 5%. 

Table 3 also shows that the RMSE of the parameter estimates of the continuous-
time models hardly increases when the continuous data are aggregated into days.
Figure 1 shows the relative bias in the baseline hazard: the median is close to zero
across the range of durations depicted. For durations up to, say, ten days, the interval
which contains 95% of the estimated hazards is relatively wide. This is caused by the
growing importance of the term ( ln(t) and of its estimation uncertainty when t1

approaches zero. Moreover, due to the parametric form of the baseline, there may be
relatively more hazards near zero in this range, which explodes the relative errors. 
The LR statistic and the rejection percentage also show that the estimates are not
much further from their true values than those obtained from the ungrouped data.
The log-likelihood is quite close to that of the ungrouped data.

[Insert Figure 1 here]
For weekly data, the bias in the estimates of the baseline parameters of the

continuous-time models increases, the RMSE’s increase by 10, 14 and 40%,
respectively. Fig. 1 however shows that the relative bias in the baseline hazard itself
hardly increases: the median of the estimation error in the hazard is close to zero
across the entire duration range, with exception of the very short durations for which
it is somewhat smaller than zero. This effect is caused by the measurement errors,
introduced by the aggregation, being negatively correlated with duration (very short
durations being excluded from the data), which leads to an underestimation of the
hazard for short durations. The RMSE of the regression parameter for weekly data
(Table 3) does not increase relative to the original data. However, the average value
of the LR test-statistic increases and the null-hypothesis that the estimates are equal
to the true values is rejected rises to 12% of the cases. Note that due to the
aggregation the log-likelihood ratio of the model with the “true” parameters is no
longer distributed as Chi-square, so that the assumptions for the LR test to be valid
no longer hold. Table 4 shows that the log-likelihood is lower than that for daily
data, which we attribute to the measurement error induced by time aggregation.

 For monthly data the error in the parameters of the baseline hazard of the
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continuous-time model is large: the RMSE’s are 3.2, 4.04 and 7.4 times those of the
ungrouped data. Corresponding to the results for daily and weekly data, (  and (  are0 1

negatively biased on average, and (  positively. Due to the underrepresentation of2

short spells in the data, the median error in the baseline hazard is negative at
durations in the lower range (Fig. 1), and more so than for weekly data. For higher
durations, the 95% coverage interval increases substantially relative to weekly data.
This is caused by the fact that the number of observations for the monthly data
decreases, resulting in larger estimation errors. The effect is enlarged since the
different functional forms that were simulated for the hazard may invoke different
directions of the bias. This effect becomes stronger as the aggregation level
increases.The estimate of the structural parameter is severely biased. Table 2 shows
that this parameter is underestimated by about 13% on average, and that its RMSE
increases by 64% (Table 3). The likelihood-ratio test rejects the null-hypothesis that
the estimates are equal to the true values in the majority (85% of the cases). This is
due to the measurement errors introduced by the time-aggregation and the likelihood
test statistic at the “true” parameter values not being distributed as Chi-square. The
log-likelihood (Table 4) has decreased further relative to the weekly data.

[Insert Figure 2 here]
The estimates of the discrete-time model seem to be affected much more by the

aggregation of durations into weeks, as compared to those of the continuous-time
model. The RMSE’s of the estimates of the baseline hazard increase by 125%, 155%
and 240% respectively. However, Fig. 2 shows that the effect on the error in the
baseline hazard itself is modest. Due to the discrete nature of the estimated hazard,
the curves of the percentiles show a spiked pattern. For shorter durations the bias
within the weekly intervals decreases, whereas for longer durations it increases. In
contrast to the continuous data, here one observes the tendency to overestimate the
true hazard at the lower end of the duration range. Since the discrete model accounts
for multiple events within one time-period, shorter spells are not discarded, and the
negative bias does not occur for the  shorter durations. The estimate of the structural
parameter is affected by grouping the observations into weeks: Table 2 shows that on
average the true value is underestimated by about 10%, Table 3 shows that the
RMSE increases by 34% relative to the ungrouped data. The average value of the LR
test increases substantially relative to that for the daily data, and the null-hypothesis
that the estimated parameters are equal to the true parameters is rejected in more than
half of the runs. As compared to the continuous-time models, the log-likelihood has
increased relative to the daily data (Table 4), which is attributable to a large decrease
in the number of spells due to aggregation which in this case apparently dominates te
effect of measurement error induced by time aggregation (in the discrete-time models
data records do not pertain to spells, but one data record is created per subject for
each observation period).

For the discrete data grouped into monthly periods, the situation becomes
progressively worse. Tables 2 and 3 show that the baseline hazard parameters are
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quite far off, and the RMSE’s increase by 3.6, 6.0 and 12.0 times relative to the
ungrouped situation. Similar to the continuous-time model on average (  and (  are0 2

negatively biased, and (  positively. Fig. 2 shows that the bias in the baseline hazard1

is also large. As with the weekly data, the median error is positive at low and
negative at high durations, but the effect is much stronger. Underestimation of the
hazard of long durations is caused by the effects of censoring in combination with the
rounding errors of time-aggregation, which are compounded in such situations.
Additionally, the 95% coverage interval is quite wide, which is caused by a
substantial reduction in the number of observations due to aggregation into months.
Table 2 shows that the regression parameter is underestimated by 38% on average,
the RMSE of this parameter increases 3.5 times relative to the ungrouped data. The
LR statistic is very large indeed, and in all of the cases the null hypothesis is
rejected. Due to a substantial reduction in the number of spells, the log-likelihood has
increased dramatically relative to the weekly data (Table 4).

[Insert Figure 3 here]

3.2. Results when the underlying process is misspecified
Tables 2, 3 and 4, and Figures 3 and 4 show the results when the model is

incorrectly specified, i.e. when a discrete-time model is used, but the underlying
process is continuous, and visa versa. When discrete-time models are used, but the
underlying process is continuous, the average estimates in Table 2, the error in the
hazard (Fig 3) and the RMSE’s in Table 3, indicate that for daily data the discrete-
time models perform comparable to the continuous-time models. The LR tests in
Table 4 show that the hypothesis that the estimated parameters equal their true values
is rejected in 9% of the replications. Note again that the LR test statistic is not
distributed as chi-square at the “true” parameter values. The Tables and Figure show,
that when the continuous data are aggregated into weeks or months, the performance
of discrete-time models deteriorates rapidly. The 95% coverage intervals of the error
in the baseline hazard are comparable to those when the underlying process is
discrete, but the median bias seems to increase slightly due to the assumption of
continuous data. The RMSE’s for the parameters increase strongly, and the
hypothesis that the parameters equal their true values is rejected in 72% and 100% of
the cases, respectively for weekly and monthly data. The log-likelihood increases
substantially due to the reduction in the number of spells.

[Insert Figure 4 here]
When the true underlying process is discrete and the data are not aggregated (i.e.

daily data), the performance of continuous-time models is comparable to that of the
discrete-time models (see Tables 2 and 3, and Fig. 4). The hypothesis that the
estimates equal their true values is rejected in 4% of the replications. For weekly or
monthly data, the performance of the continuous-time model deteriorates, as
indicated by the RMSE’s, and the LR-test statistics. Note that in these situations the
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RMSE’s of the estimates of the continuous-time models are lower than those of the
corresponding discrete-time models (Table 3), while Table 2 shows that the estimates
of the parameters are on average closer to their true values. Compared to the
continuous data, the median error in the baseline as well as the 95% coverage interval
increases dramatically when data are aggregated to months. Note that the log-
likelihood for the continuous-time models does not decrease as strongly as that for
the discrete-time models if the data are aggregated. As outlined before, this is the
result of the dramatic decrease in observations when applying the discrete model. 

3.3. Mean duration effects
In order to investigate the influence of the mean duration on the performance of

the hazard models, Table 5 presents the coefficients of the regression of the
dependent measures on mean duration for continuous-time and discrete-time models.
The coefficients shown are adjusted for the effects of the other factors and their
interactions. First, the results show -what was already apparent from Table 3 - that
the squared errors of the parameter estimates increase when the level of aggregation
increases from days to months, for both discrete and continuous-time models. Except
for the squared error in $ and (  for discrete-time models, the difference between2

weekly and daily data is not significant. Correspondingly, the LR-chi square value as
well as the probability of rejection increase for higher levels of aggregation.

For daily data and for both model specifications, longer average durations tend
to lead to larger squared errors of the parameter estimates (however, longer durations
tend to improve the estimates of ( , which is significant in discrete-time models.2 

This effect may be caused by increases in the range of durations, which improves the
conditions for identification of ( ). For discrete-time models longer durations tend2 

to be associated with lower LR statistics and lower probabilities of rejecting the true
model. Longer durations lead to less spells being observed, with negative
consequences for the precision in the estimates and the power of the LR-tests. For
weekly data, the same pattern is observed, be it that the relations of mean duration
and the dependent measures are stronger than for daily data. Again, this may be
caused by the reduction in the number of observed spells. For monthly data, the
relationship of mean duration and the squared error of the parameter estimates is
mixed, but it is negative for the regression parameter in both model specifications.
The results imply that longer durations in the data positively influence the estimates
of the structural coefficients Apparently the effects of measurement error here
dominate the sample-size effect: for data with longer durations on average, the
measurement errors due to rounding are less important as compared to short
durations. This is consistent with the findings of Peterson (1992), who demonstrated
that for simple models this situation should occur. Correspondingly, the LR statistics
and probability of rejection of the null-hypothesis are lower for longer durations..
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4. Conclusions

The purpose of this paper was to investigate empirically the effects of the data
generating process time-aggregation on hazard model estimates. A flexible
specification of the baseline hazard, based on a Box-Cox formulation, nesting a
variety of commonly used duration distributions was employed. The same flexible
specification of the baseline hazard was used in the continuous and discrete-time
models. By doing this the effects of the distributional assumptions per se could be
investigated. 

A first conclusion of the study is that both the estimates of the regression
parameter and baseline hazard, as well as the baseline hazard predicted by those
estimates, seem robust to the actual data generation process when the time-
aggregation window is small. When continuous or discrete daily data are used, both
continuous-time and discrete-time models yield estimates that are close to the true
parameter values. (The error in the estimates of the parameters of the baseline hazard
is partly caused by the collinearity of terms in  t and ln(t) in the baseline.) Our
findings support Kiefer (1990) and Lindsey (1995): the estimates of a continuous-
time hazard can be approximated accurately by a discrete-time model, by taking the
size of the time window to be small. This enables the estimation of hazard models
using Poisson regression models, with the advantages of simple formulations in
which time-varying covariates, multiple events within spells and censoring are easy
to deal with. 

Secondly, both continuous-time models and discrete-time models suffer from
time-aggregation. The effect of time aggregation is twofold: it reduces the number of
observed spells -an effect that is much larger in discrete-time models- and it
introduces measurement errors that are negatively correlated with observed durations.
In both discrete and continuous-time models the estimates of the baseline hazard
become progressively biased when the level of aggregation increases. On average, the
bias in the intercept and in the terms involving ln(t) was negative and that in t
positive. The results support the findings of Bergström and Edin (1992), that in
complex hazard models time aggregation produces dramatic changes in the baseline
parameters. However, the results showed that the effects on the predicted baseline
hazard itself were much less severe. Apparently, the reduction in the number of
spells due to aggregation induces collinearity in the estimates.  When data are
aggregated into weeks or months discrete time-models overestimate the baseline
hazard for short durations, while the hazard is underestimated for continuous-time
models. Whereas the latter may be attributed to the exclusion of short spells, the
discrete models, which do not suffer from this problem, seem to overestimate the
effect of these short durations because they incorrectly assume them to occur
randomly in the intervals.

Time-aggregation causes the estimate of the structural parameter to be biased
towards zero. This confirms previous results of and Petersen and Koput (1992). Note
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that their results were derived from one synthetic dataset, while the results in this
study are obtained from a large number of datasets with a large variety of different
forms of the baseline hazard. For monthly data the aggregation effects are quite
dramatic: the bias is around 13% for the continuous-time models, and around 38%
for the discrete-time models, on average. Overall, the estimates of the discrete-time
model are more sensitive to time-aggregation than those of the continuous-time
model. Bergström and Edin (1992) found a discrete model to be less sensitive to
aggregation than a continuous-time model. However they used parametric
formulations of the baseline for the continuous-time model, and a semi-parametric
formulation for the discrete-time model. Their result is potentially due to the more
flexible formulation of the discrete-time vis-à-vis the continuous-time model. They
also did not use an adjustment for the time-aggregation in the continuous-time model.
In part, the relative robustness of the continuous-time models to time-aggregation in
our study may be caused by the use of the mid-point adjustment suggested by
Petersen (1992). 

Our study revealed that if the mean duration of the data increases, the estimates
for daily and weekly data (and both model specifications) become less precise.
However, for monthly data the precision of most estimates, but especially those of
the structural parameter, increases with mean duration. This may be explained from
the counteracting effects of the reduction of sample size with aggregation, and the
negative correlation of measurement errors and mean durations. When time
aggregation windows are relatively small (days/weeks) the error in the parameter
estimates increases with duration, because the effects of the reduction in the number
of data points dominates the effect of the measurement error. When the time window
is large (months) the effect of the measurement errors dominates, and longer average
duration is associated with smaller biases in the parameters. Thus, our results
supplement the analytical results from Petersen (1991) and Petersen and Koput
(1992), who demonstrated analytically for simple models that the estimation bias
should decrease with time-aggregation.

Finally, LR tests seem inappropriate when data are aggregated. The log-
likelihood, even at the “true” parameter values, is not distributed as Chi-square,
invalidating the use of LR tests to investigate nested models.
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Table 1
Deviance ratio’s of mean duration (Dur), aggregation level (Agg), data generating

process (Data) and  the model (mod), from the regressions of six dependent
measures  

Term Df SE(( ) SE(( ) SE(( ) SE($) LR-P   r0 1 2

Data 1 69.63* 34.81* 5.50 0.01 0.54 28.81*

Mod 1 101.20* 264.57* 502.72* 490.85* 5699.35* 129.49*

Aggr 2 294.84* 747.12* 1716.62* 708.89* 11324.93* 3001.87*

Data.Mod 1 5.51 0.06 15.78* 5.35 156.37* 442.34*

Data.Agg 2 10.56* 3.11 3.39 1.35 38.87* 32.23*

Mod.Agg 2 47.15* 74.47* 132.63* 70.33* 562.22* 33.04*

Data.Mod.Agg 2 29.38* 13.93* 2.85 4.35 62.67* 9.47*

Dur 1 216.39* 56.69* 124.44* 6.08 558.08* 82.37*

Dur.Data 1 1.56 3.53 2.60 0.96 10.53* 40.41*

Dur.Mod 1 12.51* 2.00 1.14 2.82 50.33* 0.47

Dur.Agg 2 83.31* 55.71* 13.91* 23.63* 270.36* 37.01*

Dur.Agg.Dat 2 2.35 5.24* 6.11* 1.05 10.89* 0.27

Dur.Mod.Dat 1 5.42 5.43 3.20 0.65 4.55 0.34

Dur.Agg.Mod 2 32.04* 14.81* 14.42* 5.09* 29.69* 0.10
 * = p<0.01, residual df: 4783
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Table 2. 
Average parameter estimates for discrete and continuous data,

and aggregation into daily, weekly and monthly periods.

Data: Continuous Discrete Continuous Discrete 

Parameter Model: Continuous Discrete Discrete Continuous

( Actual -7.076 -6.790 -7.076 -6.790 0 

None -7.236 - -  - 

Days -7.259 -6.705 -7.233 -6.789

Weeks -7.424 -7.367 -8.062 -6.921

Months -8.594 -8.480 -8.631 -7.329

( Actual  0.018 -0.023  0.018 -0.0231

None  0.064 -  -  -

Days  0.075 -0.054  0.095 -0.025

Weeks  0.151  0.300  0.529  0.087

Months  0.731  1.093  1.183  0.610

( Actual  0.052  0.047  0.052  0.0472

None  0.052  -  -  -

Days  0.051 0.048  0.050  0.047

Weeks  0.049 0.035  0.034  0.044

Months  0.028 0.000 -0.003  0.020

$ Actual  1.000  1.000  1.000  1.000

None  1.014  -  -  -

Days  1.013 0.992  0.998  0.991

Weeks  1.001 0.899  0.889  0.975

Months  0.866  0.621  0.594  0.800
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Table 3. 
RMSE’s of parameter estimates for discrete and continuous data,

 and aggregation into daily, weekly and monthly periods. 

Measure Data: Continuous Discrete Continuous Discrete 

Model: Continuous Discrete Discrete Continuous

RMSE(( ) None 0.922 -   -  -0

Days 0.921 0.730 0.842 0.866

Weeks 1.017 1.641 2.175 0.973

Months 2.920 2.633 2.628 1.221

RMSE(( ) None 0.294 -  -  -1

Days 0.294 0.246 0.287 0.280

Weeks 0.334 0.627 0.859 0.326

Months 1.187 1.476 1.525 0.748 

RMSE(( ) None 0.005 -  -   -2

Days 0.005 0.005 0.006 0.005

Weeks 0.007 0.017 0.025 0.006

Months 0.037 0.060 0.068 0.033

RMSE($) None 0.129 -  -  -

Days 0.129 0.126 0.126 0.127

Weeks 0.129 0.169 0.180 0.132

Months 0.212 0.441 0.470 0.269



l ($̂, (̂)
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Table 4. 
Average log-likelihoods and likelihood ratio-tests for discrete and continuous data,

and aggregation into daily, weekly and monthly periods. 

Data: Continuous Discrete Continuous  Discrete 

Statistic: Model: Continuous Discrete Discrete Continuous

None -2605     -     -   - 

Days -2607 -2597 -2620 -2550

Weeks -2615 -1549 -1563 -2512

Months -2678  -888  -909 -2431

LR (df=4) None     3.86     -     -     -

Days     3.94     3.50     4.25     3.62

Weeks     6.91    15.91    28.05    15.12

Months   111.54   922.25  1004.77   179.84

r: % reject None     5     -     -     -

Days     5     2     9     4

Weeks    12    54    72    59

Months    85   100   100   100



20

Table 5.
Coefficients of the regression of six dependent measures on mean duration and its interaction with the level of aggregation, for discrete and continuous time models 

Term  SE(( ) SE(( ) SE(( ) SE($) LR-P    r0 1 2

Continuous-time model

   -3.645 -4.808* -10.094* -5.424* 1.521* -2.085*

Weeks -3.536 -4.942 -10.363 -5.212 4.555* 2.806*

Months -0.181* 0.046* -3.794* -2.462* 8.183* 9.619*

Dur.Days 0.046* 0.032 -0.006 0.019* -0.004 -0.019

Dur.Weeks 0.329* 0.256* 0.019 0.117* -0.194* -0.250*

Dur.Months 0.009* -0.010* -0.053* -0.003* -0.053* -0.057*

Discrete-time model

Days -2.721* -3.839* -9.162* -5.376* 1.689* -2.044*

Weeks -4.593 -4.146 -7.318* -3.459* 4.515* 2.531*

Months -2.609 -0.770* -4.272* -0.936* 8.202* 10.200*

Dur.Days 0.029* 0.015* -0.021* 0.018* -0.007* -0.027*

Dur.Weeks 0.520* 0.306* -0.086 -0.010 -0.182 * -0.242

Dur.Months 0.072* 0.026 -0.024 -0.012* -0.024* 0.000

 * = p<0.01 , relative to the estimate for days, the estimates for daily data are tested for differences from zero
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