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Segmentation by watersheds: de�nition and parallelimplementationJos B.T.M. Roerdink and Arnold MeijsterInstitute for Mathematics and Computing ScienceUniversity of GroningenP.O. Box 800, 9700 AV Groningen, The NetherlandsEmail: roe@cs.rug.nl,arnold@cs.rug.nlAbstract. The watershed algorithm is a method for image segmentation widely used inthe area of mathematical morphology. In this paper we �rst address the problem of howto de�ne watersheds. It is pointed out that various existing de�nitions are not equivalent.In particular we explain the di�erences between the recursive de�nition, a modi�cation ofthis de�nition necessary to avoid relabelling of watershed pixels, and the de�nition basedon shortest paths with respect to a certain grey-value distance function. The sequentialimplementation of both algorithms is discussed. Finally we sketch parallel implementationsof the two watershed algorithms on a MIMD ring-architecture, and a Cray J932 sharedmemory computer, respectively.1 IntroductionIn the �eld of grey scale mathematical morphology the watershed transform, origi-nally proposed by Digabel and Lantu�ejoul, is frequently used for image segmenta-tion [1, 9, 11]. It can be classi�ed as a region-based segmentation approach. Theintuitive idea underlying this method is that of ooding a landscape or topographicrelief with water. Basins will �ll up with water starting at local minima, andat points where water coming from di�erent basins would meet, dams are built.When the water level has reached the highest peak in the landscape, the processis stopped. The set of dams thus obtained partitions the landscape into regions or`catchment basins' separated by dams. These dams are called watershed lines orsimply watersheds. A sketch is given in Fig. 1.2 Watersheds by immersionAlthough a de�nition for the continuous case is possible [6,8], we restrict ourselveshere to discrete images. First an algorithmic de�nition of the watershed is presentedfollowing Vincent & Soille [11].Consider a digital grey scale image f : D �! N, where D � Z2 is the domain ofthe image and f(p) denotes the grey value of pixel p 2 D. Let G denote the pixelgrid, i.e. G is a subset of Z2� Z2. A path P of length l between two pixels p andq is an l + 1-tuple (p0; p1; : : : ; pl�1; pl) such that p0 = p, pl = q and 8i 2 [0; l) :(pi; pi+1) 2 G. A set of pixels M is called connected if and only if for every pair ofpixels p; q 2M there exists a path between p and q which only passes through pixelsof M . A connected component is a nonempty connected set of pixels of maximalsize. A regional minimum (minimum, for short) of f at altitude h is a connected1
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Figure 1: Minima, catchment basins, and watersheds.component of pixels p with f(p) = h from which it is impossible to reach a point oflower altitude without having to climb.Before going to the algorithm for computing watersheds, we need a few morede�nitions.De�nition 1 Let A � Z2, and a; b two points in A. The geodesic distance dA(a; b)within A is the minimum of the lengths of all paths from a to b in A. If B is asubset of A, de�ne dA(a;B) = MINb2B(dA(a; b)).De�nition 2 Let A � Z2. Let B � A be partitioned in k connected componentsBi; i = 1; : : : ; k. The geodesic inuence zone of the set Bi within A is de�ned asizA(Bi) = fp 2 A j 8j 2 [1::k]nfig : dA(p;Bi) < dA(p;Bj)gDe�nition 3 Let A � Z2, B � A. The set IZA(B) is de�ned as the union of thegeodesic inuence zones of the connected components of B, i.e.,IZA(B) = k[i=1 izA(Bi)The complement of the set IZA(B) within A is called the SKIZ (`skeleton by inu-ence zones ') of A: SKIZA(B) = AnIZA(B)So the SKIZ consists of all points which are equidistant (in the sense of the geodesicdistance) to at least two connected components.2.1 Recursive algorithmA recursive algorithm for computing the watershed transform was given by Vincentand Soille [10, 11].The set Th = fp 2 D j f(p) � hg is called the threshold set of f at level h. Lethmin and hmax respectively be the minimum and maximum grey level of the digitalimage. Let Minh denote the union of all regional minima at altitude h.De�nition 4 (Recursive watershed) De�ne the following recurrence:Xhmin = fp 2 D j f(p) = hming2



3 2 23 1 10 1 0(a)3 2 23 1 1A 1 B(b) h = 0 3 2 23 W BA W B(c) h = 1 3 B B3 W BA W B(d) h = 2 B B BA W BA W B(e) h = 33 2 23 1 1A 1 B(f) h = 0 3 2 23 W BA W B(g) h = 1 3 B B3 B BA W B(h) h = 2 B B BW B BA W B(i) h = 3Figure 2: Watershed on the 4-connected grid. (a): Original image; (b)-(e): labellingsteps based on Eq. 1; (f)-(i): labelling steps based on Eq. 2.Xh+1 = Xh [Minh+1 [ (IZTh+1(Xh)nTh); h 2 [hmin; hmax) (1)The watershed transform Wshed(f) of f is the complement of Xhmax in D:Wshed(f) = D \ (Xhmax)cThe recursion (1) is based upon the relation betweenXh and Xh+1. A connectedcomponent of Th+1 can be either a new minimum, or an extension of the basin Xh:in the latter case one computes the geodesic inuence zone of Xh within Th+1.By adding the `nTh' term in (1), we make sure that at level h + 1 only pixelswith grey value h + 1 are added to existing basins. It should be noted that theSKIZ is not necessarily connected, and that a set of pixels equally distant fromtwo connected components may be thicker than one pixel. Most algorithms forcomputing watersheds are direct translations of the recursive relation (1).Remark 5 In the original de�nition of Vincent & Soille [11], Eq. 1 has the formXh+1 = Xh [Minh+1 [ IZTh+1(Xh); h 2 [hmin; hmax) (2)This allows that pixels which at earlier levels h0 < h+1 are equidistant to at least twoconnected components of the set of basins, and thus are provisionally classi�ed aswatershed pixels, are relabelled as belonging to some basin. In (1) this is preventedby the `nTh' term. In fact, the implementation described in [11] based on queuedata structures actually corresponds to (1), not to (2) (at step h+1 only pixels withgrey value h + 1 are put in the queue). A simple example is given in Fig. 2, for a3�3 discrete image on the square grid with 4-connectivity. The labelling accordingto (1) is shown in Fig. 2(b)-(e). There are two local minima (the zeroes), so there3



will be two basins whose pixels are labelled A;B. Watershed pixels are labelled byW . Figure 2(f)-(i) shows the phenomenon of relabelling of watershed pixels whenusing (2): the pixel in the second row, second column is �rst labelled W , then B.When using the modi�ed de�nition (1) this pixel remains labelled as W .2.2 Sequential implementation of the recursive algorithmConsider the discrete image as a graph (F;E) with nonnegative vertex values, whereF is a subset of the square grid, with the set of edges E de�ned by the connectivityof the grid. The grey value at a node v is denoted by f(v). Also, assume forthe moment that all neighbouring pixels in the image have di�erent grey values.The implementation of the recursive de�nition can be easily formulated on such agraph [4,11]. The algorithm assigns a label lab to each minimum and its associatedbasin by iteratively ooding the grid using a breadth �rst algorithm. Initially, allnodes with grey level h are given the label mask. If some node v is adjacent to twoor more di�erent basins, it is marked a watershed node by the label wshed. If thenode can only be reached from nodes which have the same label the node is mergedwith the corresponding basin. Nodes which at the end still have the value mask arenew minima, and get a new label. If the restriction of distinct neighbouring greyvalues does not hold, additional processing is necessary to partition the plateaus(regions of constant grey value) into regions belonging to di�erent minima. Thiscorresponds to the computation of inuence zones during every iteration of thealgorithm.2.3 Alternative algorithmA straightforward parallel implementation of the above algorithm is diÆcult whenplateaus occur. Therefore, an alternative approach was developed, in which theimage is �rst transformed to a graph with distinct neighbour values. Then thegraph algorithm described above is directly applicable. This observation leads usto a three-stage watershed algorithm [4].Step 1. Transform the image f to a directed valued graph f� = (F;E), calledthe components graph of f . The vertex set F represents maximal connected sets ofpixels with the same grey values, called `level components' or `at zones'. A pair oflevel components (v; w) is an element of the edge set E if and only if 9(p 2 v; q 2w : (p; q) 2 G ^ f(p) < f(q)), cf. Fig. 3.Step 2. Compute the watershed of the directed graph, resulting in a graph withlabelled vertices.Step 3. Transform the labelled graph back to an image. Pixels corresponding toa watershed node are coloured white, the other pixels black. This yields a binaryimage with plateaus representing watersheds of the original image. Thin watershedscan be obtained by computing a skeleton of this image, for which di�erent skeletonalgorithms can be used.2.4 Parallelization of the alternative algorithmThe runtime performance of the sequential algorithm proposed in the previous sub-section turns out to be approximately the same as that of the algorithm describedin [11]. However, since all pixels which are in the same level component are clus-tered in one single node of the components graph, we can decide locally whether a4
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Figure 3: (a) input image. (b) labelled level sets. (c) components graph.node is a watershed node by looking at the adjacent nodes. In contrast to the tradi-tional algorithm, the graph algorithm can be parallelized rather easily, see Meijster& Roerdink [3, 4]. Assume a ring network of N processors, where each processorcan communicate directly with both neighbouring processors. The programmingstyle we use is called SPMD (single program multiple data), meaning that everyprocessor runs exactly the same program, performing operations on its own dataspace.Level components labelling. Labelling of level components is performed bya single processor on the entire image. After labelling, this processor distributesthe input image and the labelled image over the processors in the network. Toeach processor is assigned an (approximately) equal slice of consecutive scanlines.Consecutive slices are assigned to neighbouring processors, with one scanline overlapso that it can be decided whether level components are shared with neighbouringprocessors.Parallel watershed of a graph. After labelling every processor builds a localcomponents graph for its own slice of the image. Since some level components areshared between several processors the graphs on the processors are not disjoint.Next every processor performs an adapted version of the ooding algorithm, takingspecial care of vertices which are shared between two or more processors. At theend of the ooding process each processor transforms its local components graphback to an image slice, as in the sequential case.3 Watershed de�nition by shortest pathsMeyer [6] gives a de�nition of the watershed of a continuous (see also [8]) or digi-tal grey value image in terms of shortest paths with respect to a certain distancefunction. We con�ne ourselves here to the digital case.The lower slope of a grey value image f , which is the maximal slope linking apixel p to any of its neighbours of lower altitude, is de�ned asLS(p) = MAXq2fpg[NE(p)(f(p)� f(q));where NE(p) is the set of neighbours of pixel p on the grid E. Here we restrictourselves to the case where distances between neighbours all equal 1. This can begeneralized, e.g. to chamfer distances [6]. The cost for walking from pixel p to a5



neighbouring pixel q is de�ned ascost(p; q) = 8<: LS(p) if f(p) > f(q)LS(q) if f(p) < f(q)LS(p)+LS(q)2 if f(p) = f(q)Denote the set of all paths from p to q by p q. The topographical distance betweenp and q along a path P = (p0; : : : ; pl(P )) of length l(P ) is de�ned asTPf (p; q) = l(P )�1Xi=0 cost(pi; pi+1):The topographical distance between points p and q is the minimum of the topo-graphical distances along all paths between p and q:Tf (p; q) = MINP2p q TPf (p; q):The topographical distance between a point p 2 D and a set A � D is de�nedas Tf (p;A) = MINa2A Tf (p; a). It is assumed that values of pixels in all the localminima of f have been reset to 0.The set of lower neighbours p0 of p (i.e. f(p) � f(p0)), for which the slopef(p)� f(p0) is maximal is denoted by �(p). We call � = (p0 = p; p1; : : : ; pn = q) apath of steepest descent from p to q if, for each i = 0; : : : ; n� 1, pi+1 2 �(pi). Thetopographical distance has the following property, on which the watershed de�nitioncrucially depends.Proposition 6 There exists a path � of steepest descent from p to q if and only ifTf (p; q) = f(p)� f(q). In all other cases, Tf (p; q) > f(p)� f(q).This proposition implies that lines of steepest descent are the geodesics (shortestpaths) of the topographical distance function. In fact, Tf is not exactly a distance,since for pixels p; q in the interior of a plateau Tf (p; q) = 0. So an auxiliary orderrelation is necessary to separate them.Let (mi)i2I be the collection of minima of f . The catchment basin of a min-imum mi, denoted by CB(mi), is de�ned as the set of points p 2 D that aretopographically closer to mi than to any other minimum mj :CB(mi) = fp 2 D j 8j 2 Infig : Tf (p;mi) < Tf (p;mj)g:The watershed of a function f is the set of points of its domain which do not belongto any catchment basin: Wshed(f) = D \ ([i2ICB(mi))c3.1 Computation of the watershed based on Dijkstra's algo-rithmIn order to obtain the watershed of an image, the distance of each pixel to eachminimum has to be computed. Using the function cost as the weight functionassociated with the edges of the grid, Dijkstra's algorithm [2] for �nding shortestpaths in a graph can be used to compute the topographical distances.Given an undirected graph G = (V;E), and a weight function w : E ! N, thatassigns a length to each edge of the graph, the goal is to �nd for each v 2 V thelength of the shortest path from a source node s to v. In Dijkstra's algorithm, oneinitializes for each node v 2 V nfsg the distance d[v] between v and s to in�nity,6



while the distance d[s] between s and itself is set to zero. Next, a wavefront startingin s is propagated through the graph along the edges. During the propagation onekeeps track of the distance the wavefront has travelled so far. When a node isreached by the wavefront and the distance travelled is smaller than the currentvalue stored in this node, this value is updated. Propagation stops when all nodesof the graph have been reached.Instead of applying this algorithm separately for each minimum, one may modifythe function d in Dijkstra's algorithm as follows [5]. Store for each v 2 D in the �rstcoordinate of d[v] the index of the nearest minimum, and in the second coordinatethe distance to this minimum. The range of the function d isR = (I[fwshedg)�N.This leads to the implementation in Algorithm 1. In each minimum a wavefrontis initiated, labelled with the index of the minimum it started in. If wavefront ireaches a node v after it has propagated over a distance l, and l is less then thevalue of the second coordinate of d[v] (denoted by snd(d[v])), the value l is placedin the second coordinate of d[v], while the �rst coordinate fst(d[v]) is set to i. If anode v is reached by another wavefront that has propagated over the same distance,the �rst coordinate of v is set to the arti�cial value wshed, designating that v is awatershed pixel.Algorithm 1 Sequential watershed algorithm based on shortest pathsprocedure SeqWshed (E : D �D; cost : E ! N; var d : D ! R);var u : D;begin forall v 2 D do d[v] := (0;1);forall i 2 I doforall v 2 mi do d[v] := (i; 0);while D 6= ; dobegin u := GetMinDist(D); (� �nd u 2 V with smallest d-value �)D := Dnfug;forall v 2 D with (u; v) 2 E doif snd(d[u]) + cost[u; v] < snd(d[v])then d[v] := (fst(d[u]); snd(d[u]) + cost[u; v]);else if snd(d[u]) + cost[u; v] = snd(d[v])then d[v] := (wshed; snd(d[v]));endend;In Fig. 4 an example is given of the computation of the watershed of a digitalimage via topographical distances. For comparison we also show the result of theVincent-Soille de�nition (2), as well as our modi�cation (1). Note that all threeresults are di�erent.Implementation using ordered queues. The function GetMinDist in Algo-rithm 1 can be implemented such that it has time complexity which is linear inthe number of pixels of the image. This can be realized with a priority queue of�fo-queues, also called a `hierarchical' or `ordered' queue [1].With each �fo-queue is associated the distance that a wavefront still has to travelbefore it will reach the pixels in this queue. These distances are used as the priorityvalues in the priority queue. Pixels which are located in the interior of a plateau areordered in this queue according to another distance function which measures howfar pixels are away from the boundary of the plateau. It is clear that, using thisdata structure, GetMinDist runs in O(1) time, since it simply returns (and removes)the pixel at the front of the �rst �fo-queue in the priority queue. Insertion in the7
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the various de�nitions in principle give di�erent answers. Of course, in practical ap-plications the di�erences may be small. For both watershed de�nitions, a sequentialand a parallel implementation was described. The original watershed algorithm [11]is very hard to parallelize because of its inherently sequential nature. A parallelimplementation of this algorithm was based upon splitting the computation in threeconsecutive stages involving the transformation to a components graph. The wa-tershed on this graph is easy to parallelize because of its local nature [4]. Thedistance-based de�nition [6] allows computing watersheds in parallel using a simpleadaptation of Dijkstra's shortest path algorithm [5]. The problem of load imbalancedue to unequal sizes of catchment basins will be the subject of future study.References[1] Beucher, S., Meyer, F.: The morphological approach to segmentation: the wa-tershed transformation. In: Dougherty E. R. (ed.): Mathematical Morphologyin Image Processing. New York: Marcel Dekker 1993 (chapter 12, pp. 433{481).[2] Dijkstra, E.W.: A note on two problems in connexion with graphs. NumerischeMathematik 1, 269{271 (1959).[3] Meijster, A., Roerdink, J. B. T. M.: The implementation of a parallel wa-tershed algorithm. In: van Vliet J.C. (ed.): Proc. Computing Science in theNetherlands, 27-28 November, Utrecht. Amsterdam: Stichting MathematischCentrum 1995 (pp. 134{142).[4] Meijster, A., Roerdink, J. B. T. M.: A proposal for the implementation of aparallel watershed algorithm. In: Hlav�a�c V., �S�ara R. (eds.): Computer Analysisof Images and Patterns. New York Heidelberg Berlin: Springer-Verlag 1995(Lecture Notes in Computer Science, vol. 970, pp. 790{795).[5] Meijster, A., Roerdink, J. B. T. M.: Computation of watersheds based onparallel graph algorithms. In: Maragos P., Shafer R. W., Butt M. A. (eds.):Mathematical Morphology and its Applications to Image and Signal Process-ing. Dordrecht: Kluwer Acad. Publ. 1996 (pp. 305{312).[6] Meyer, F.: Topographic distance and watershed lines. Signal Processing 38,113{125 (1994).[7] Moga, A.N., Viero, T., Dobrin, B.P., Gabbouj, M.: Implementation of adistributed watershed algorithm. In: Serra J., Soille P. (eds.): Mathemati-cal Morphology and its Applications to Image Processing. Dordrecht: KluwerAcad. Publ. 1994 (pp. 281{288).[8] Najman, L., Schmitt, M.: Watershed of a continuous function. Signal Process-ing 38, 99{112 (1994).[9] Serra, J.: Image Analysis and Mathematical Morphology. New York: AcademicPress 1982.[10] Vincent, L.: Algorithmes Morphologiques a Base de Files d'Attente et deLacets. Extension aux Graphes. PhD thesis. Fontainebleau: Ecole NationaleSup�erieure des Mines de Paris 1990.[11] Vincent, L., Soille, P.: Watersheds in digital spaces: an eÆcient algorithmbased on immersion simulations. IEEE Transactions on Pattern Analysis andMachine Intelligence 13(6), 583{598 (1991).9


