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THE EMERGENCE OF GROUPS IN THE
EVOLUTION OF FRIENDSHIP NETWORKS

EVELIEN P. H. ZEGGELINK, FRANS N. STOKMAN and
GERHARD G. VAN DE BUNT*

ICS, University of Groningen, Gr. Rozenstraat 31, 9712 TG Groningen,
The Netherlands

Friendship networks usually show a certain degree of segmentation: subgroups of friends. The explanation
of the emergence of such groups from initially dyadic pair friendships is a difficult but important problem.
In this paper we attempt to provide a first contribution to the explanation of subgroup formation in
friendship networks by using the LS set as a definition for a friendship group. We construct a dynamic
individual oriented model of friendship formation and provide preliminary simulation results that give an
idea of how to continue the process of explaining group formation.

1. INTRODUCTION

It is general knowledge that friendship groups are very important aggregations from
the view of many of its members. The group of which an individual is a member
influences his behavior and attitudes.! How such groups emerge, from individual
behavior and attitudes on the other hand, is a completely different, but at least as
important, process. It is a difficult process however.

In a population of individuals who have to interact with each other for a longer
period of time within a certain context, it is not solely dyadic friendships that are
developed. Once individuals deepen and strengthen their dyadic friendship relation-
ships, they influence each other’s personal lives, thoughts and actions. As a result
of restricted time, effort and from emotional motives, they bring their friends to-
gether because when one’s friends know one another, it is easier to relate closely
and frequently with each of them (Feld, 1981). It is clear that the larger the num-
ber of friends that two individuals have in common, the higher the probability that
these two will be introduced to each other and the more encouragement (con-
scious or unconscious) there will be for them to become friends (Hammer, 1979,
1980; Salzinger, 1982). Chances increase that these individuals get to like each other
because they have common friends and consequently have a higher probability to
have common interests. This positively valued interaction through common friends
and frequent interaction leads to an increasing degree of overlap in friendships of

*We are indebted to Tom Snijders, Tom Fararo, and Patrick Doreian for fruitful comments on earlier
versions of this manuscript.

In the following, whenever we use the male form to refer to an individual, we mean the female reference
as well.
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the individuals concerned (among others, Freemar, 1992; Homans, 1950; Ridgeway,
1983; Romney and Faust, 1982). As such, the ‘friends’ go through a process from
mainly togetherness to a higher level of ‘groupness’ (Sherif and Sherif, 1964). If
the size of network is sufficiently large, recognizable groups of friends can then
be distinguished in friendship networks (Bernard and Killworth, 1973). In general,
these friendship groups are very homogeneous. The most important source of this is
the initial selection of friends that is based on similarity (see also Leenders, 1996).
Group homogeneity is further increased by conformity pressures and homophilic
selection of new members (Cohen, 1977).

A group is however more than just an arbitrary, but homogeneous, aggregate of
friendships. In the first place there is an observable difference between the density
of friendships within the group as compared to the sparse number of friendships
between group members and non-group members (Reitz, 1988). As such, it is im-
portant to realize that a three-person group of individuals #, j, and &k has a different
sociological meaning than a triad consisting of the dyadic pairs i and j i and k, and
J and k, who all interact with each other but never interact simultaneously (Wil-
son, 1982). The former ‘real’ groups structure may however, and usually does, result
from the latter,

Moreaver, groups are of limited size, and there is ‘more’ than just structure and
homogeneity. This ‘more’ results from the fact that more internal friendships (greater
density within the group) lead to a higher degree of closeness, i.e. the overall extent
to which ‘deep’ feelings exists between group members. Members are more commit-
ted, care more about the group, and develop specialized group cultures, inside jokes,
rituals, and norms to regulate important activities frequently engaged in (Ridge-
way, 1983). Norms are also established to set bounds for treatment of members and
maintenance of the group as a unit. This relates to the fact that the group is more
discernable, the less external friendships. This character as a unit is also recognized
explicitly in the sense of “we” and “they”, “the club in the back”,

Although much global facts and intuitive notions are known about friendship
groups in general, it may have become clear that a definition of friendship group is
extremely difficult to give. There seems to be no generally acknowledged definition
of a group. One of the most enduring concerns of social network scholars has been
the attempt to discover the subgroups into which a network can be divided. Differ-
ent concepts have been developed to define these subgroups as there are cliques,
clusters, clubs, clans, cores, circles, and components (among others, Alba, 1973;
Alba and Moore, 1978; Luce and Perry, 1949; Mokken, 1979; Seidman, 1983). All
definitions have their specific advantages and disadvantages depending on the re-
search purpose. Researchers in social psychology also apply many different (but less
mathematical and strict) definitions of groups. Nevertheless, there seems to be some
overlap in the use of one or more of the following elements (Shaw, 1983): Within

groups there are interactions between the group members, members perceive the
aothers (the members are aware of the existence of the group), members develop
shared perceptions, affective ties and (consciously or unconsciously) organize the
group with regard to roles, statuses, and norms.

The definition of a group is already difficult, let alone the attempt to explain
the emergence of such groups. It is a fundamental problem for which no satisfying
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detailed explanation and models are present (see e.g. Fararo and Doreian, 1996):
Research has rather been focused on the maintenance of existing. group structures,
(the emergence of) behavioral patterns, like norms and values, within groups, than
on the first emergence of them (Mullen and Goethals, 1987; Shaw, 1983; R1dgcway,
1983). In this paper we attempt to provide a first contributign to the explanaﬂgn of
emergence of groups by the construction of an individual oriented model] of frlenc}-
ship network evolution by focusing on the structural gspects of groups only. This
means that we will pay neither attention to homogeneity aspects of groups nor pay
attention to aspects related to norm emergence anq so on (e.g. P.‘le}c.he and Macy,
1996). Before doing so, we both need an appropriate group de?fmltlon and some
knowledge of the sparse sociological and social psychological lltf:raturq on group
emergence and dynamics. We focus on the development of a frler}d§l}1p network
in a relatively small and closed population of individuals .whg are mltlally' r'nutual
strangers and who will interact with each other for a certain time in a specific con-
te);tr; Section 2 we present a summary of the most common 'Ehf:ories on group emer-
gence and dynamics. In Section 3, the idea of dynamic 1nd1y1dual orlent§d rnod'els
of network evolution is introduced. A definition of group is pre,‘,sented in Sectfon
4 followed by its incorporation in the individual oriented ‘group rgodcl in Section
5. Section 6 deals with the simulation results of this model and in Section 7 we
conclude and provide some suggestions for future developments.

2. THEORIES OF GROUP FORMATION

Most theories on group formation can be found in thg social psychologica! litera-
ture on group dynamics. However, usually these theories are concerned with fask
oriented groups: small sets of people that come together to solw‘a a problem, take a
decision, are a therapeutic group and so on. The group dynan}lcs.research usually
is concerned with the evolution of relationships, and the organization that fievelops
within such a single small group (Mullen and Goethgls, 1987; Shaw, 1983; Rldge‘way,
1983). These processes differ from the ones of our interest. We 'want to addrgss the
process of friendship group formation within a larger Populatlop (frlend.shlp net-
works). Such groups may define a group goal after a while (anq will t‘esta_bhs.h group
norms), but the pure coming into existence of such groups is thf: intriguning phe-
nomenon. Therefore theories on why people would attempt to get into a group, why
people feel attracted to a group, are only of secondary importance, because s‘uch
groups first have to be established. There has been hardly any study that examines
e58es. .
Sui?’enggehowever use the following. Initiating the first friendship with an individual
outside the group can be quite risky for a group rnem.ber' Vyhen his group 'has strong
norms regarding ‘out group behavior’. Therefore, an mdlv%d}lal takes the judgments
of his group subconsciously into consideration when deciding “{hether to pecome
friends with a non-group member. If group members dc? succeed in e.stabhshmg new
friendships outside of the group, these new friends w1‘11 not selt-e':wdently'r become
members of the group, but will be more easily accessible potentlal_candldates for
friendship for other group members and later on group membership. Newcomers
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to a ‘nearly saturated’ group are accepted only if they were already friends with a
group member in some other context (Freeman, Freeman, and Michaelson, 1988).
It is also imaginable that the internal ‘outseeker’ is isolated from the group.

In the literature, groups are often referred to as self-regulating entities. The view
and the behavior of the individual with respect to his group or other groups is usu-
ally of minor importance. We argue that it is the individual who decides whether he
wants to belong to a group, individuals build and constitute the group, and the indi-
viduals have internal and external friendships. In short, a group does not behave, an
individual does. A member of one group might, however, behave differently from
a member of another group, and probably even more differently from an individ-
ual who does not belong to any group at all. To illustrate some important elements
we give the following findings: New relations tend to develop within the existing
group and access to different groups is limited (Granovetter, 1982). Group members
make more choices within the group than out of it and as a result, new friendships
that group members develop remain within the group (Salzinger, 1982). Groups in-
fluence and constrain individual behavior but the reverse direction is at least as
important: Individual behavior has an impact on group structure and composition.
This proposition again underlines the importance of micro-macro approaches (Dor-
eian et al., 1996, Leenders, 1995) and the focus on the link between local and global
properties (Skvoretz et al., 1996).

3. INDIVIDUAL ORIENTED MODELS OF NETWORK EVOLUTION

The question addressed in this paper is how to explain the emergence of groups in
friendship networks. The attempt to answer this question is part of an extended goat
to predict structure in friendship networks in general. Within the scope of this larger
goal, previous models have already been developed (Zeggelink, 1993, 1994, 1995).
The general approach constructing these models is that networks are conceived as
the macro level and individuals and their behavior as the micro level. The intriguing
aspect is to predict network structure from individual behavior regarding relation-
ship formation and dissolution. This is particularly important when relationships are
not formed in view of some goal at the macro level (or are not predetermined), but
emerge from individual choice: individuals initiate, build, maintain, and break up
friendships and thereby determine the overall structure of the friendship network.
This emphasis on the mechanisms underlying the existence of groups in larger so-
cial structures resembles the reflections on the generative approach (dynamics or
microanalysis) of tripartite structures and the idea of action structure as the content
of social structure (Fararo and Doreian, 1984).

The models that have been developed and the one to be developed here all “start
from scratch” in the sense that the initial situation of the network evolution is a pop-
ulation of unrelated individuals as in Skvoretz et al. (1996). The individuals are mu-
tual strangers. Also we consider closed populations: no individual enters or leaves
the population.? As such we try to capture the main determining mechanisms of
network evolution. Thus, in the case of the goal of the model developed here, no

2Allowing individuals to leave or to enter the population would lead to models in the direction of the
most ambitious dynamic theories, according to Dorefan et al, (1996).
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subgroups are present in the beginning of the process. This situation, as well as
the situation of an ‘open’ population, can however be incorporated easily with the
approach we take.

The models are based on the approach of methodological individualism. We cap-
ture the basic principles of this approach, in our framework of evolving friendship
networks, in three components. The first component concerns the rational behavior
of an individual with respect to initiating, maintaining, and breaking off friendships.
Simple individual behavioral rules can be extracted from the literature: goals of
the individual can be defined in terms of the need for social contact (basic model:
Zeggelink, 1993, 1994), the preference for similarity (similarity model: Zeggelink,
1993, 1995), and the structure of his friendship relationships (present group model).
The latter refers to preferences with regard to within group orientation versus out
group friendships and so on. The individual is however hampered by several as-
pects like his amount of information and his capability of imagination. This leads to
bounded rationality: the individuals use simple heuristics to choose such that they
expect that their goals will be approaches as close as possible (Snijders, 1996).

The second component in the prediction involves the constraints from the net-
work on the individual orientations: the network as it is constructed influences the
individual choices. It is clear that the composition of the population already de-
termines the availability of desired friends, but the structure of the network also
determines, among other things, the possible availability of individnals as friends,
their positions in the network, number and sizes of friendship groups (and thereby
availability). N

The third component, the transformation rule, subsequently shows how individ-
ual choices interact and jointly determine the structure of the emergent friendship
network. The appropriate transition is not necessarily the simple aggregation of in-
dividual preferences, but is a complex combination of interdependent individual be-
haviors. .

These basic principles of methodological individualism have been 1mpleme_nted
in dynamic individual oriented models in an object oriented programming. environ-
ment (among others, Stokman and Van Oosten, 1994; Stokman and Zeggelink, 1996;
Rumbaugh et al., 1991). Object oriented programming or modelling is_ a n'atural_way
to approach and model phenomena by basing the model on commumcatmg Ob‘]C.CtS
that act and react to each other. By considering individuals (but also relationships
and networks) as objects, such models take into account the differences in attributes

and behavior of individuals and furthermore explicitly consider the influence of the
network on the individual. Moreover, the dependence between relationships of dif-
ferent individuals and the fact that individuals may act simultaneously are taken into
account (see also Skvoretz et al., 1996). Details of this kind of modelling are pre-
sented in Section 5 when we introduce the group aspect in individuals’ behavior.
First we need an appropriate group definition.

4. DEFINITION OF A GROUP

[t is difficult to strictly define the concept of friendship group verbally (Sectiqn 1),
let alone in a technical way. One may therefore argue that it is useless to define a
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group in a strict sense when it is not even possible to define it verbally. Nonetheless,
an explicit group definition which best fits the properties described in Section 1 is
needed for constructing the individual oriented model. In this view of the individual
oriented model, the intuitive definition should represent how people observe groups.
This implies that it should capture the contrast between the structural character of
the group itself and the structure between itself and other groups or individuals.
It appears that the rule people use is approximately the following. An individual
is assigned to group J if he interacts, on the average, more with others in J than
with others not in J. It is the large number of friendships within as well as the small
number of friendships outside the group that is distinctive (Freeman, Freeman and
Michaelson, 1988, 1989; Sailer and Gaulin, 1984).

Numerous representations of groups (subgroups, subnetworks, or subsets) exist
that attempt to represent the characteristics mentioned in Section 1. Before we
present some of these definitions, we introduce some graph theoretical definitions.

Let G = (V,E) be an undirected graph with vertex set V' and edge set E. G' =
(V',E") is a subgraph of G if its vertex set V' is a subset of ¥, and E' consists of
all edges of E that are incident with vertices in /. G is called a supergraph of G'.
The number of vertices in a subset V" of V' is denoted |V'| and is called its size. A
subgraph G' of G is maximal with respect to some property if that property holds
for the subgraph G’ but is not valid anymore for any other subgraph of G that is a
supergraph of G'.

For the translation to sociological terms, graph corresponds with (friendship) net-
work, edge corresponds with friendship, and vertex with individual. Subnetwork is
the sociological counterpart of subgraph.

A clique is a maximal complete subnetwork of three or more individuals: every
individual in the clique is friends with every other individual in it (Harary, Norman,
and Cartwright, 1965; Luce and Perry, 1949). The clique definition is very strict.
Friendships between the individuals in the clique are relevant in the first place. Ex-
ternal friendships are considered implicitly because the definition of clique involves
the aspect of maximality. A drawback of the clique definition is that one individual
may be contained in many different cliques.

Alba and Moore (1978) propose a combination process for cliques to identify
larger, less restrictive, subnetworks in the network: social circles. Since, in general,
many small overlapping cliques exist in a friendship network, they suggest to merge
these cliques into large subnetworks when they overlap sufficiently according to
some threshold.

Various other technical generalizations of the clique exist which are less restric-
tive and are all concerned only with friendships within the groups. An n-cligue is
a maximal subset of individuals such that the largest geodesic® between any two
individuals in it is not longer than n (Alba, 1973; Luce, 1950). Limitations of the
n-clique are that its diameter® may be larger than n because the geodesics do not

3A geodesic is a shortest path between two vertices, if connected, in a graph.
#*The diameter of a graph is the length of any longest geodesic.
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necessarily have to be contained in the subnetwork. As an extreme instance, an
n-clique can be disconnected.®

The definitions of n-cliques, n-clubs and n-clans focus only on distances. An n-
clan is an n-clique in which the distance between all individuals in the subnetwork
is not larger than n for paths within the subnetwork. An n-club is a maximal sub-
network of diameter n. The distance between all individuals in the subgraph is less
than or equal to n (Mokken, 1979).

Definitions of k-degree sets, k-cores, and k-plexes focus on numbers of friend-
ships (Seidman, 1983; Seidman and Foster, 1978). The definition of k-degree set
requires that members of the subset have at least k friends within the subset. k-
degree sets are numerous and can be overlapping A k-core is a maximal k-degree
set. k-cores do not partially overlap and form a hierarchical ordering of disjoint
subsets of individuals. A k-plex is a maximal subnetwork ¥’ in which every individ-
ual is friends with at least |V/| — k individuals in the subnetwork. A k-plex is robust
to the departure of individuals (in contrast to an n-clique), and furthermore has
limited diameter.

All these definitions of groups focus on different properties like the minimum
number of internal friendships, the maximum number of external friendships, the
maximum distance between members of the group, the relative number of friend-
ships in a group, et cetera. Some definitions are related to each other by being more
or less restrictive than the other. The main shortcoming in these definitions is that
they all lack a simultaneous consideration of both the internal and external friend-
ships of the group members. The definition of LS set does however take both into
account (Luccio and Sami, 1969; Seidman, 1983; Borgatti et al., 1990).

DEFINITION 1 A cutset S of a connected graph is a set of edges of G such that ifs
removal from G disconnects G : G — S is disconnected. The number of edges in a
cutset that has the minimum number of edges, is called the edge connectivity A(G)
of G.

fThe edge connectivity M(v,w) of the pair of vertices v, w is the minimum number
of edges that must be removed to disconnect them. M(V'") = min{{A(v,w) lv,weV'})
is the edge connectivity of V', where V' is a subset of V.

DEFINITION 2 The number of edges joining two subsets Vi and V3 of V' is d.enoted
o(V1,V). The external edges of a subset V' of V are the edges joining vertices of
V' with vertices of V —V'. The number of external edges of a subset V' is denoted
alVhYy=al',V-V").

DEFINITION 3 A subset L of the vertex set V of a graph G is an LS set if and only
if for any proper subset K of L, a(K,L—K) > a(K,V — L).

Thus, an LS set is a set of vertices L in which each proper subset has more e.dges
to its complement within L than to the outside of L. An alternative definition is:

DEFINITION 4 A subset L of V of a graph G is an LS set if for any proper subset K
of L, a(K) > a(L).

SA graph is connected if every single vertex in it can be reached (by a path) from every other vertex. As
s00m as two vertices are not reachable from each other, the graph is called disconnected.
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According to Definition 4, an LS set with A = 1 can exist only if it is disconnected
from the rest of the graph.® At least one vertex of such an LS set can become
disconnected if just one edge would be removed. Therefore we consider only LS
sets with A > 1 for an LS set to have any meaning as a ‘group’.

Every individual vertex and V itself are trivial LS sets. All other LS sets are
called nontrivial LS sets. For what follows, we pay special attention to the following
properties of LS sets.

THEOREM 1 Let L and M be LS subsets of V (G). Then if LNM # @, either M >
LorLoM.

Thus, LS sets cannot, in contrast to most other definitions of subnetworks, partially
overlap but they can contain each other. The fact that LS sets cannot overlap is not
problematic because we consider prespecified closed contexts in which the individ-
uals interact. Usually in such environments, relatively small, informal groups based
on positive close personal relationships, seldom overlap (Freeman, 1992). Another
important property is described in Proposition 1.

PROPOSITION 1 Suppose L is an LS set of a graph G = (V,E). Then for all u,v,w €
L,and x € V — L, M(u,v) > A(w, x).

Thus in order to disconnect two vertices, the number of edges to be removed for
vertices in an LS set is always larger than that for a vertex within the LS set and
a vertex outside the LS set. LS sets are difficult to disconnect by removing edges:
there is relatively high density within the LS set as compared to the loose connect-
edness to the outside.®

In sociological terms, the relatively high value of A represents the close internal
structure of the group: members have many direct or indirect friends (at distance
two) in common which contributes to the reinforcement of every friendship. (Since
we assumed A > 1, group members have at least two friends within the group).
Consequently, the dissolution of a friendship will be more negative (than outside a
group) because two individuals who used to be friends will, at least indirectly, re-
main confronted with each other. Thus a high value of A does not only mean that
more friendships should dissolve for the group to fall apart, but it is also more diffi-
cult to dissolve a friendship. Thus the higher the value of A in a group, the stronger
the ‘group feelings’ of its members. In general, LS sets cannot be characterized by

Note that we do not say that all LS sets disconnected from the rest of the graph have edge connectivity
A=1

?Consequently, LS sets can be partitioned in a nested way. The minimal LS sets have high cdge connec-
tivity. Every pair of vertices within the LS set is connected by a relatively large number of independent
paths. Independent paths have no edges in common, so when one edge is removed the two vertices are
always connected through at least one other path. The higher the edge connectivity, the more difficult it
is to disconnect two vertices in the LS set and the more robust it is with regard to the removal of edges.
The maximal LS sets have lower edge connectivity and are less connected.

§ Although LS sets are quite insensitive to the removal of edges, they can be sensitive to the removal of
vertices. In our sociological translation, these vertices are individual group members, Since we assume
closed populations, this is not too big a problem. Moreover, it is known from reality that a group may
fall apart as one of its members leaves.

——
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edge conmectivity alone. LS sets with equal edge connectivity can have different
sizes and different structures when of equal size.

The low value of a represents that an LS set does not contain any individual
or subgroup with more ‘linkage’ outside the group than within the group. LS sets
can therefore be assumed to be stable. Moreover, the value of « is a measure of
distinctiveness: the smaller o the more distinct the group. These and other aspects
are illustrated in Figure 1. We present all possible LS sets of size 3 and size 4, and
examples of no LS sets, in graphs of size g > 6. We present only graphs of size
g = 6, but any number of vertices can be added, while the LS set remains an LS
set, as long as there are no edges between these added vertices and the vertices in
the LS set. Different values of o and A are possible. Black vertices represent LS
set members. Different individuals in the same LS set can have different positions,
e.g. central or peripheral. For central individuals, the ratio of internal friendships
to external friendships exceeds that of peripheral individuals. Figure 1 shows how
these different situations can be distinguished according to the individual that has
external friendships. E.g. in Figure 1(f), the individual with relatively many internal
friendships also has the external friendship, whereas in Figure 1(g), the individual
with relatively few internal friendships has the external friendship.

We now briefly examine the presence and detection of LS sets in a larger net-
work. Consider graph G with V' = {v1,v,v3,v4,Vs, V6, V7, V8, V9, V10, V11; V12, V13, V14 }
in Figure 2. G contains 2 LS sets: L = {v{,v,,v3} and M = {vqy, vy, v13,v14}. Table
1 shows why M is an LS set (see Definition 4). {v4,vs,V6} is not an LS set because
e.g. a({vs}) = a({va,vs,vs}) = 2, while it should be a({vs}) > a({vs,vs,vs}) for an
LS set. {v7,vs,vo,vi0} neither is an LS set because a({vo}) = a({vs,vs,vo,v10})-

With the choice of the LS set as a definition for a social group, we implicitly
assume that the structural difference between internal and external friendships is
sufficient to detect ‘real’ friendship groups. Three individuals may therefore consti-
tute an LS set while they never interact simultaneously. Since the very nature of
groups depends in the first place on the friendships between the individuals com-
prising them (Breiger, 1974), the definition seems reasonable. A disadvantage of LS
sets however is that they do not or rarely appear in empirical data sets because they
cover just so many aspects of the intuitive notion of a sociological group. Neverthe-
less, it is the best definition to be used in our individual oriented models, because it
is so relevant for the aspect how individuals observe groups and because no better
definition is available.

Another important aspect that deserves more attention is that individuals cannot
belong to several groups simultaneously because LS sets cannot partially overlap.
As a first start, it is plausible to assume that individuals do not belong to more than
one group if the only relationship of interest is the friendship relationship in small
closed populations. However, in the future we would want to be able to consider
the situation of individuals belonging to several groups, and as a consequence, occu-
pying different roles in different groups. Bipartite and tripartite structural analyses
become relevant (Breiger, 1974; Wilson, 1982; Fararo and Doreian, 1984) to exam-
ine the duality between individuals and groups: groups are defined by its members,
and at the same time, an individual’s individuality is determined by the different
groups he belongs to.
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All possible LS sets of size |L| = 3 and |L| = 4 in graphs of size g > 6.
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Vi v2 V4 vs v7 vg Vil V12

v3 vé vi0 Vg V14 v13
FIGURE 2. Two different LS sets L = {v{,vy,v3} and M = {v11,v12,V13, 14}

TABLE 1
All Proper Subsets of LS Set M = {vq1,v12,v13,v14} in Figure 2 and Corresponding Values of o

Subset K M-K a(K,M - K) oK,V — M)
{11} {12 13 14} 3 1
{12} {11 13 14} 2 0
{13} {11 12 14} 2 0
{14} {11 12 13} 3 0
{1112} {13 14} 3 1
{11 13} {12 14} 3 1
{11 14} {12 13} 4 1
{12 13} {11 14} 4 0
{12 14} {1113} 3 0
{13 14} {11 12} 3 0
{11'1213} {14} 3 1
{11 12 14} {13} 2 1
{11 13 14} {12} 2 1
{12 13 14} {11} 3 0

5. MODEL OF GROUP FORMATION

Individuals can be seen as goal directed in pursuing friendships (Miell and Duck,
1986). Therefore, behavioral rules of individuals are based on tension minimization
with respect to so-called issues. An issue being any kind of dimension with respect
to friendships one has an opinion about, and one thinks is changeable by one’s own
actions (Hoede, 1990). Depending on the number and kind of issues, the interre-
latedness between these issues and the set of allowable individual actions, different
models of individual behavior can be specified. The general behavior is concerned
with establishing friendships. An individual’s state with regard to the presence and
configuration of friendships is summarized in his tension. Every individual aims to
achieve a tension O (ideal states on all issues), and consequently always tries to
reduce his tension with respect to the issues.

DEFINITION 5 Let z be the number of issues, let A;;(t) be the ith actor’s tension with
respect Lo the jth issue at time t, and let w;; be the importance of the jth issue (o the
ith actor. Then the general form of the multidimensional tension function for the ith
actor at time t is given by:

Ai(t) = wiij (). (M

j=1
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where w;; of each issue and the A;j functions are chosen to be nonnegative. Usually
tension [\ is given by some function of the difference between the evaluation of an
ideal (preferred) state and the evaluation of the current state, according to actor i, on
dimension or issue j.

This attempt to reduce tension motivates the individual’s behavior. How he attempts
this depends on the following three aspects (see also Snijders’ approach (1996)).

1. The ‘capability of imagination’ refers to several elements. The first element is
that he applies so-called myopic behavioral rules, meaning that he can only imagine
what happens at the next point in time as a result of his own actions in attempting
to minimize tension. This capability of imagination is, however, further limited. The
actual result of his own actions depends on the unknown actions of the other in-
dividuals. The individual therefore assumes that the actions of the others are such
that his own actions will lead to minimally attainable tension values.

2. The set of allowable actions consists in the first place of ‘extending’ and with-
drawing’ friendship choices towards other individuals. In principle, only positive
choices, representing the willingness to establish a friendship with the individual
to whom the choice is directed, are considered. An individual may make as many
choices as he would like to make in accordance with the issues that are relevant. An
individual is allowed to send negative messages to represent that he does not want
to be friends with an individual that chooses him. This does not necessarily mean
that he has a negative attitude towards that individual, but represents that he is not
open to form another friendship.’

3. The amount of information of the individual is limited. We assume that ev-
ery individual at least perceives all positive choices and negative messages that are
directed towards him. He also knows the total number of individuals in the popula-
tion and is able to observe whether he is a group member or not. If so, he knows
who are group members and who their friends are.

The ‘group’ model is based on two issues. The first issue is the only issue from
the basic model (Zeggelink, 1993) and represents every individual’s need for social
contact (the number of friends):

Au() = ldfi — fi®)l; @

where df; <g — 1 is I’s desired number of friends and ﬁ(t) is i’s actual number
of friends at time ¢. The individuals meet as strangers, thus f;(0) = 0 for all i and

90mne extra element needs introduction here. Individuals do not wait infinitely long for a reciprocated
choice from someone they want to be [riends with, i.c., asymmetric choices tend to be withdrawn, This
behavior can be modelled by giving all individuals a so-called ‘waiting period’: the maximum amounl
of time that they will not withdraw an unreciprocated choice. To avoid the problem of intexfpersonal
comparisons of waiting periods, we introduce a so-called ‘waiting equilibrium’. This is the situation (con-
figuration of states) that ail individuals wait for reactions of other individuals in the form of reciprocated
friendship choices or negative messages, but no individual does make such a choice or §end suf:h a neg-
ative message because he has no impetus to do so. We assume that the minimal waiting period of all
individuals is larger than the time the process needs to reach this waiting equilibrium. To keep the pro-
cess running, one randomly chosen individual (the most impatient), will withdraw (rapdomly‘on_e pf) his
unreciprocated choice(s). We perceive the act of exceeding individual s waiting period by individual
as similar to the act of individual j sending a negative to message to i, Both represent no urgent desire
of j to become friends with i,
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Aj1(0) = df;. Since tension increases if f;(¢) increases beyond df; and since an in-
dividual himself can always decide whether he wants to be friends with another
individual or not, it can be assumed that f;(¢) < df;:

An(f) =dfi—fi(1),  0<fi()<dfi. 3)

The specification of tension with respect to the second issue, the group element, is
more complicated. We assume that groups arise by accident. This is not too crude an
assumption because in real friendship formations, individuals cannot observe when
a group can readily be formed. It is only as a side effect of having friends in com-
mon that groups get a chance to develop. Once an individual is a group member, he
tries to guarantee the future of that group but also takes care of his non-group goal
(his number of friends). As such, the model remains to be an individual oriented
model in which the structure of the friendship relations within one’s group may be-
come relevant in the ‘calculation’ of one’s individual behavior, but in which groups
themselves do not have explicit preferences, and thereby do not show any particular
behavior. However, the fact that every individual group member tries to assure that
the group structures ‘strengthens’ may be considered as some form of striving for
group interest.

Moreover, we assume that non-group members do not explicitly seek group mem-
bership. Such individuals might enter a group, but the proposal to the group is al-
ways by accident. Later we will show why this assumption does not make a large
difference for the evolution of the friendship networks as it follows from the model
as specified hereafter.

We make the following distinction. Let L;(t) be the smallest, if possible, non-
trivial LS set to which i belongs at time ¢ (an individual cannot belong to two or
more disjoint LS sets simultaneously). If a non-trivial LS set exists, { is called a
group member. If no non-trivial LS set exists, L;(¢) is defined as the trivial single-
ton set containing just #, and { is a non-group member. Let A(L;(z)) be the edge
connectivity of L;(¢), and let a(L;(¢)) be the number of its external edges. For non-
trivial LS sets, the minimum group size |L;(f)|min is 3, because A(L;(t)) is assumed
to be larger than 1 (see comments following Definition 4). The maximum nontrivial
group size |L;(f)|max is & — 1. If no confusion can arise, we will omit the subscript i
and the arguments ¢ and L;(z).

If an individual is a group member, his group sense is stronger the smaller his and
the group’s total number of external friendships, and the larger his and the group’s
total number of internal friendships. The simplest definition of tension is concerned
with the total number of external friendships of all group members a(L;(¢)), and
attributes this value to every single group member. Similarly, A(L;(¢)) is an overall
representative of tension with regard to the internal structure.!® Tension should then
increase with increasing a or decreasing A. Figure 1 clarifies this derivation: the
larger A, the more outstanding the density of structure within the LS set. The smaller

WThus, for the sake of simplicity we assume that each group member has the same tension with respect
to the group element, regardless of his position in the friendship group. Since every individual in the
group also has an individual specific component in his tension function, the behavior for group members
does not have to be the same.
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a, the more outstanding the distinctive appearance of the LS set. However, LS sets
of different size can have equal values of @ and A. If a(L) = a(M) and |L| > |M]|,
L might be considered as the group with less tension because for the smaller group
M chances are higher that the group will no Jonger be an LS set if the same extra
number of external friendships is established than for the larger group L.

For equal A, it is more difficult to compare different group sizes because edge
comnectivity is not defined only with respect to friendships within the group. Since
the precise functional shape of the tension component is not so relevant for the
derivation of behavioral rules, the only specified properties of the tension compo-
nent are that it increases with increasing o, with decreasing A, and with decreasing
|L|. Moreover, the total tension should be larger for nongroup members than for
group members. Therefore, we define

A(Li(0))|Li(2) ~ 1
alLit)+1 )

where L;(¢) is the smallest, if possible non-trivial, LS set to which i belongs. Groups
arise by chance, and not until then, as |L;(¢)| > 1, is this component relevant for
group members. The value (g — 1)? assures non-negative tension values and can be
considered as the desired value (in combination with a = 0) for the group dimen-
sion. Tension values do not have to differ for different values of density within LS
sets because ¢, A, and |L| might be equal. Compare for example the LS set in
Figure 1(e) with that in Figure 1(f). Despite these restrictions, for a first attempt
to include group formation in a simple manner, (4) is an appropriate definition of
tension.

Now, let w;; and wy; be the importances for individual i of the number of friends
and the group, respectively. Since we do not compare tensions between individuals,
we can assume that w;; = 1. For simplicity we assume 7 = w;1/wip (y > 0) to be
equal for all individuals. Accordingly, the tension function becomes:

AL Li(5) =1
au0) = afi - 1) +7 (g - 1 - XEDLOZ ), ©)
The behavior that follows from the group model is different for individuals who do
and individuals who do not belong to groups (L;(t) = {i}). The general idea is that
tension will reduce if a friendship is established. For group members it is reduced
more if A or |L| increases or a decreases. The behavior of non-group members is
therefore equal to the behavior that would follow from the basic model, in which
only the first issue is relevant. The derivation of behavioral rules for group members
is difficult because it is not straightforward how A, a or |L| will be changed as a
result of one’s own actions. These values heavily depend on actions of the other in-
dividuals. Therefore, we use only the aspect that group members attempt to achieve
smaller values of a and larger values of A in the process of establishing the desired
number of friends. We assume that for every individual the number of friends is
so important (7 is so small) that he will never establish more friendships than the
desired number of friends.
The general situation of an individual i now is as follows. At a certain moment
in time, he has a number of friends (reciprocated friendship choices, f;(¢)), makes a

Ap(t) = (g —1)* -
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T fHEHdShlp
cmmeafpe- friendship choice

..... B negative message
~af———  (or exceeding of
waiting period)

FIGURE 3. Classification of all other individuals according to i.

number of unreciprocated friendship choices, receives a number of unreciprocated
friendship choices, and receives a number of negative messages. Accordingly, i di-
vides the other individuals j into six mutually exclusive classes. Except for the class
‘friends’, all other class names are only for convenience when referring to them.
They do not have any relevant sociological meaning. The division is illustrated in
Figure 3. A mutual friendship choice is represented by a solid line, an unrecipro-
cated friendship choice is represented by a thin arrow, and a negative message (or
an exceeding of waiting period) is represented by a broken arrow. Since the latter
can occur only in the presence of a positive choice in the opposite direction, this
positive choice is presented too.
Individual { ‘ego’ divides all other individuals j into six classes:

I friends = {j|j sends a positive choice towards i and
receives a positive choice from i}
I admirers = {j | j sends a positive choice to i and i does not reciprocate (yet)}
11 idols = {j|J receives a positive choice from i and
j does not reciprocate (yet)}
IV newtrals = {j| j does not choose i, and i does not choose j}
V enemies = {j | j has sent/sends a negative message to I
(or has waited too long to react on i)}
VI rejects = {j | j has received/receives a negative message from i
(or i exceeded j’s waiting period}.

For all i, A;(0) = df;. Depending on #’s tension value and the configuration of these
classes, ¢ will undertake action to reduce tension as much as possible. Given the ca-
pability of imagination, the set of allowable actions, and the amount of information,
i assumes that all other individuals behave ‘optimally’ in the view of his own tension
reduction such that when he behaves ‘optimally’, his tension will maximally reduce
in the next step. Consequently his total number of friendship choices (including the
reciprocated ones) is smaller than df;, he will add choices. In one step, more than
one choice may be added.

o Rejects and enemies are not potential candidates for friendship. The class of re-
jects is empty until i has the desired number of friends or once he has been
the least patient individual in the waiting equilibrium. In the former case ten-
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sion is zero, in the latter case, rejects are not considered as candidates because
they once withdrew a choice towards i or because  waited too long to react.!!
Enemies have shown, in one way or the other, not to be willing to establish a
friendship. Choices to enemies are always withdrawn and never remade because
they reacted negatively or waited too long to react to a friendship attempt.

e The attempt to maximally minimize tension thus leads to a preference ordering of
potential friends in the remaining classes 11, III, and IV. For a non-group member,
tension is reduced with certainty (and maximally) if he chooses an admirer.!% At
first sight, it seems to make sense to replace existing choices to idols with choices
to admirers in order to obtain a reciprocated choice with certainty. However, if
every individual does so, this effect is lost because in the next step an admirer
may have become a neutral. Thus, this preference for admirers holds only when
new choices have to be added. Next in the preference order are neutrals. Choices
towards idols and friends already exist. Consequently, as a result of the limited
availability of individuals in classes II and IV, at a certain moment in time, the
number of choices may be smaller than df;. If the difference between actual and
desired number of choices is larger than the number of individuals in the category
that the individual wants to choose from, he chooses randomly from this category.

¢ Both group- and non-group members, will never withdraw reciprocated choices
because tension would increase. Consequently, once established, friendships are
maintained. If f;(¢t) = df;, {’s tension is minimal, and he has no impetus to act.
However, other individuals observe that i does not need any more friendships,
therefore it is justified to assume that i will send a negative message to those in-
dividuals that still try to initiate a friendship with him. In other words, individuals
who send a superfluous friendship choice will be rebuffed.

e In a similar way, if i receives a negative message from j, he knows that his tension
will never be reduced by keeping his choice extended to j. He withdraws the
choice extended to j and places j in class V.

e If [ is a group member, he makes an extra subdivision within the classes of po-
tential friends. They are distinguished into group members, indirect external friends
and non-group members. Indirect external friends are individuals who are not i’s
friends but friends with one or more of his fellow group members. Those are
the individuals that determine the value of . Within class II an individual distin-
guishes admirers that are group members (Ila), admirers that are indirect external
friends (1Ib), and admirers that are non-group members (Ilc). A same distinction
is made in classes III and IV. Possible candidates for friendship are in classes II
and IV. A group member also takes into account that A might increase when he
establishes a friendship with a group member who was not his friend yet. This
leads to a preference for individuals in Ila over individuals in ITb and Ilc. Analo-
gously, individuals in IVa are preferred over those in IVb and IVec.

o In contrast to behavior of non-group members, a group member { will also replace
choices to idols according to the above preference order, i.e. choices towards idols
in classes IIIb or Illc will, if possible be replaced by choices towards individuals

UThis {s an assumption that may not mimic reality but suffices as a first rule of behavior.
12This preference is justified from the fact that people are attracted to those who like them.
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in Ila or IVa, and in this preference order (Ila > IVa > IIIb, IIIc). For the purpose
of increasing A, we also assume i prefers individuals in class IVa over those in ITb
and Ilc (I'Va > IIb, Ilc).

e Another way to reduce tension for a group member is by reducing c. If ; himself
would have an external friendship, he could dissolve this friendship (withdraw the
friendship choice) and try to establish a new one with a group member. Since
this seems a rather rude way of behaving, and to maintain the largest analogy
with the basic model, i does not withdraw friendship choices to friends. This
limits the way to reduce «. o might be reduced (not with certainty) with a similar
increase in group size |L| by the establishment of a friendship with an indirect
external friend (b-classes). So, these individuals are next in the preference order,
and a group member prefers them in order of the number of group members they
are friends with. The higher this number, the larger the probability that « will
decrease with a simultaneous increase in group size. Again, a group member will
also replace choices towards individuals in class Illc to indirect external friends
(I1b > IVb > IIIc).

o For the purpose of decreasing o, we assume that individuals in class IVb are
preferred over those in Ie.

¢ Summarized, the following preference order is obtained when i is a group mem-
ber: Illa > lla > IVa > IIIb > IIb > IVb > Ille > Ilc > IVe.

In actual friendship formations, non-group members probably attempt to become
group members by making friendship choices towards group members. The speci-
fication of behavior for group members shows that such non-group members will
have very small probabilities of becoming friends with group members if they are
not already linked to another group member.

In the implementation of the model, and in its illustration (Figure 4), different ac-
tions occur in different steps. Adding and removing (one or more) positive choices
take place in one step. In another step, negative messages are sent. This distinction
in alternating steps is not meant to have any correspondence with reality.

In Figure 4 we present a possible network development for this model. We con-
sider a set of g = 8 individuals who all want to establish 3 friendships. The descrip-
tion of the process is as follows:

= (: The initial situation where the tension of every individual is maximal.

t = 1: Bvery individual randomly makes as many choices as his desired number
of friends. 8 establishes the desired number of friendships. Other individuals also
establish friendships. Consequently, 1, 2, 3 and 8 constitute an LS set with A =2
and « =1 (dotted vertices),

t = 2: 8 sends a negative message to 5 because his incoming choice is superflu-
ous.

t = 3: 5 removes the corresponding choice and makes a new choice towards his
admirer 3. 1, 2, and 3 observe that they are group members and replace choices to
non-group members (IIIc) by choices to group members (IVa). As a result, 1 and
3 have the desired number of friends. Notice that 5 preferred 3 because 3 was an
admirer in the previous time step. At the same time however, 3 removes this choice
because he prefers a group member above 5.
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: desired number of friends
member of LS set L1

: member of LS set L2
: friendship choice

: friendship

: negative message

Equilibrium network
FIGURE 4. Evolution of a friendship network.
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t = 4: 8 sends a negative message to 2 (although 2 is a group member, 8's number
of friends is more important). 3 sends negative messages to 4, 5, and 7. 1 sends a
negative message to 4.

¢t =5: 4, 5, and 7 remove the corresponding choices. 7 has no admirers and ran-
domly chooses 1. 4 and 5 both received an incoming choice from 6 and both choose
him. As a result, an LS set (striped vertices) emerges containing 4, 5, and 6 with
A=72 and a=1. 2 could not choose any more group members and moved to 7
because he is an indirect external friend (IVb).

t = 6: 1 sends a negative message to 7.

t = 7. 7 removes his choice to 1 and prefers admirer 2. 7 and 2 have the desired
number of friends. A larger LS set emerges including individual 7 also: A and o
do not change. 4 and 5 observe that they are group members, they cannot replace
choices to non-group members by choices to group members. Thus, they replace
them by choices to the indirect external friend 7 (IVb).

t = 8: 7 sends negative messages to individual 4 and 5. 4 and 5 are the only
individuals who have tension with respect to the number of friends, each attempts
to establish friendships with others who have not rejected them yet. However, all
alternative individuals have the desired number of friends, send negative messages
and the network reaches equilibrium. This network consists of two LS sets: L =
{1,2,3,7,8}, (L) = 1, A(L) =2, and M = {4,5,6}, a(M) = 1, \(M) = 2.

6. RESULTS

In order to extract the most important tendencies that arise from the group issue,
we consider only population sizes g = 10 and g = 15, df; = 4 or df; = 6 for all i.
With all initial situations we run 100 simulations. We investigate the emergence and
presence of LS sets in equilibrium in particular. If LS sets are present, we are
interested in their nomber and characteristics. Other results concerning the overall
structure of the friendship network and effects of mean desired number of friends
and population size are given in Zeggelink (1993).

Possible equilibrium networks for g = 10 and d = 4 are presented in Figure 5(a)
to 5(m). A summarized overview of these figures is presented in Table 2. For the
sake of comparison we also present results for the basic model, when the group
issue is irrelevant (as if every individual would behave like a non-group member). In
the first column we present the figure number of the network. The second column
contains the mean established number of friends in equilibrium. In the third column
the number of LS sets in the network is presented. The fourth column presents
characteristics of all LS sets that are present in the network. Columns five and
six show the percentage of occurrences in the basic model and the group model
respectively.

The number of LS sets in equilibrium varies between 0 and 2. Sizes of LS sets
vary between 3 and 9. Values of A vary between 2 and 4, values of a vary between
0 and 2. A closer look at Figures 5(a) to 5(m) sugests that the small values of mean
number of friends in equilibrium resulting from the group model (in comparison
with the values for the basic model) are caused by the fact that individuals start
to choose group members once they are LS set members. Consequently, non-group
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57% 8 7 4% o 8
L={1,28910a=0A=4
M= {3,456 7la=021=4

2%

3% 26% 8 7 -
L= (1,2,3,4,5})0=0A=4

M=1(6,7,8910}a=0 A=4

17% 5%

L=1{1,2,3,4,56,7,910la=2A1=4 L=1{1,239, 10

o =
M={4,567) «a=

: desired number of friends
: less friends then desired
: member of 1 LS set

: member of 2 LS sets

FIGURE 5. LS sets in equilibrium for g = 10. If LS sets are present, we present their members and
their values of &, and A, We also present the percentages of occurrence in the basic model (left) and the
group model (right).
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0% 6% 0%
L= (56,789 10 a=2A=4

M=(1,234) a=2 A=3

L=1{1,2345la=2A=4

0% 8%

L={1,223,67.809, 10} oa=2A=4
M={1,23,46,780910}) a=1A=2

2 3 2

10

0% 8 7 3% % 8 7 1%
L={1.2.3,4,56 a=2k=4

0% 8 7 1%
L={1.234567 a=0 k=4
M= (8,9, 10} a=0A=2

FIGURE 5. (Continued.)
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n TABLE 2
Characteristics of Networks in Terms of LS Sets for Basic Model and Group Model
Population Size g = 10 (100 runs)
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TABLE 3
Characteristics of Networks in Terms of LS Sets for Basic Model and Group Medel
Population Size g = 15 (100 runs)

Characteristics LS Sets

Characteristics LS Sets

Mean # Size |L|, Number of External % of % of
Friends in  # LS Friendships c, Occurrences in ~ Occurrences in
Fig. 5 Equilibrium  Sets Edge Connectivity A Basic Model Group Model
a 4.0 0 57 4
b 4.0 2 Li=5 a=0 A=4 0 2
M|=5 a=0 A=
c 4.0 2 Li=5 a=2 A=4 0 3
M|=5 a=2 A=4
d 38 0 26 7
e 38 1 LI=9 a=2 A=4 17 43
f 38 2 Li=5 a=2 A=4 0 5
M|=4 a=2 A=3
g 38 2 LI=6 a=2 A=4 0 6
M|=4 a=2 A=3
h 38 1 Li=5 a=2 X=4 0 1
i 36 2% L=8 a=2 A=4 0 14
M|=9 a=1 A=
J 36 1 Ll=7 a=2 A=4 0 8
k 36 1 Ll=6 a=2 A=4 0 3
! 34 1 Li=8 a=0 A=4 0 3
m 34 2 LI=7 a=0 Ax=4 0 1
M|=3 a=0 A=
100 100

*The smaller LS set is a subset of the larger LS set, there is one individual that does not belong to the
smaller group, but does belong to the larger group.

members have more difficulties finding the desired number of friends. The individ-
uals who do not have the desired number of friends, more often do not belong to a
group than individuals who have the desired number of friends. Nevertheless, indi-
viduals having less friends than desired can belong to LS sets (see Figures 5(f) and
5(g)). Moreover, when LS sets are present, usually all individuals with the desired
number of friends belong to LS sets (exceptions in Figures 5(f), 5(h), 5(k)). If they
do not belong to LS sets, they usually occupy a bridge function between groups and
non-group members, or simply between groups.

The equilibrium structures of the group model do not self-evidently contain LS
sets. In 89% of the runs, LS sets appear in equilibrium (in contrast to 17% for the
basic model). However, many of these LS sets are relatively ‘large’. In 60% of the
simulations, LS sets of size |L| > 8 appear. This result that 1 or 2 individuals do not
belong to an LS set occurs rarely with the basic model. The question is whether
these 8 or 9 individuals can be considered to form a group. Omitting these equilib-
rium structures, only 29% of the runs remains to be investigated. This low percent-
age can be explained by several reasons. First, the probability that a (small) LS sel
emerges based on the initial random choices of the individuals is small. Second, once
emerged LS sets may disappear during the process because for every individual, the
number of friends is more important than the age issue. As a consequence, more exter-
nal friendships can be established than ‘allowable’ for the LS set to remain an LS set.

Mean # Size |L|, Number of External % of % of
Friendsin  #LS Friendships o, Occurrences in ~ Occurrences in
Ref Equilibrium  Sets Edge Connectivity A Basic Model Group Model
a 4.0 0 68 4
b 4.0 2 Li=5 a=2 A=4 0 2
Mi=9 a=2 A=4
c 4.0 2 Li=5 a=2 =4 0 11
M|=10 a=2 A=4
d 4.0 2 LI=6 a=2 A=4 0 2
M| =8 a=2 A=4
e 4.0 2 Li=6 a=2 A=4 0 2
M|=9 a=2 r=4
f 4.0 2 Li=7 a=2 A=4 0 2
M|=7 a=2 A=4
g 4.0 2 LI=7 a=2 A=4 0 2
M|=8 a=2 r=4
h 38 0 18 2
i 38 1 L|=14 a=2 X=4 13 41
i 38 1 Ll=5 a=2 A=4 0 1
k 38 1 Li=6 a=2 M=4 0 1
l 38 2 Li=4 a=2 A=3 1 3
M|=11 a=2 A=4
m 38 3t Li=6 a=2 A=4 0 1
Mi=7 a=0 A=2
N|=8 a=0 A=4
n 3.8 3t L|=5 a=0 A=4 0 1
M|=9 a=2 A=4
N|=10 a=0 A=
0 3.6 1 L=5 a=2 A=4 0 1
P 3.6 1 Li=11 a=2 A=4 0 1
q 3.6 1 Li=12 a=2 A=4 0 6
r 3.6 1 LI=13 a=2 A=4 0 2
5 3.6 2 L=5 a=2 A=4 0 1
M|=7 a=2 A=
L 3.6 2 Ll=5 a=2 A=4 0 1
M =14 a=1 A=2
u 3.6 2 LI=13 a=2 A=4 0 11
Ml=14 a=1 A=2
v 3.6 3t Ll=5 a=0 A=4 0 1
Mi=9 a=2 A=4
N|=10 a=0 A=2
w 3.6 3 Li=5 a=0 A=4 0 1
M|=8 a=2 A=4
Nl=9 a=0 Xr=2
100 100

1The smaller LS set is a subset of the larger LS set, there is one individual that does not belong to the
smaller group, but does belong to the larger group.

This also explains why A = 4 for most larger LS sets: every individual seeks to es-
tablish 4 friendships.

Results for g = 15 and d = 4 are summarized in Table 3 (similar to Table 2). For
g = 15, LS sets appear more often than for g = 10. Omitting LS sets that contain
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smaller LS sets (m,n,v,w), the number of groups varies between 0 and 2. Sizes of
LS sets vary between 4 and 14. Values of A vary between 2 and 4, values of o vary
between 0 and 2.

For the basic model only 14% of all equilibrium networks contains LS sets. If
they are present, they are in almost all cases trivial (|[L| = 14). In the group model,
LS sets emerge in 94% of all equilibrium networks. For g = 10, we did not consider
1S sets for which |L| > 0.8¢ For g = 15, we therefore do not consider LS sets with
|L| > 12, and 34% of the equilibrium networks remains (29% for g = 10). Since
equilibrium networks hardly emerged with LS sets of size 8 < |L| < 12, this percent-
age of 34% is almost equal to the case when we omit equilibrium structures with LS
sets only of size |L| > 8. Apparently, the probability that small LS sets exist in equi-
librium for d = 4 does not significantly differ for g = 10 and g = 15. Intuitively one
could argue that the probability that a ‘small’ LS set emerges by accident is smaller
in a larger population. However, once an LS set does emerge, it can develop further
more easily in a larger population because then every individual has more options io
choose additional friends without causing his group to fall apart as a result of too
many external friendships () by a simultaneous increase in group size.

For g =15 and d = 6, equilibrium networks containing LS sets emerge in 99%
of the runs. However, only in 14% of the runs are these LS sets of size |L| < 0.8
g = 12. Again, the reason is the relatively high desired mean degree.

7. DISCUSSION:

The presented group model is a preliminary step in the direction of a model that
captures subgroup formation. In this model, groups emerge ‘accidentally’, and once
they emerged, members try to guarantee the future of their group with possibly
negative consequences for non-group members who might not succeed in establish-
ing the desired number of friends. In some cases, these initially non-group members
also succeed in ‘establishing a group’.

More extensive discussions of results with this preliminary ‘group’ model are pre-
sented in Zeggelink (1993). There we also compare the predictions of the model
with those of the basic model and the ‘similarity’ model in terms of generally ap-
plied structural characteristics that describe friendship networks.

In Zeggelink (1993) and Van dé Bunt and Zeggelink (1993), a limited confronta-
tion of the models with ‘real life’ data can be found. ‘Optimal’ testing of the mod-
els requires knowledge about a closed set of initially mutual strangers, their need
for social contact and the friendship network among these individuals (preferable
at consecutive points in time). The number of available data sets that meet these
requirements was very limited. The most appropriate data are those collected by
Hallinan and colleagues that were used in several publications (among others: Hal-
linan, 1979; Hallinan and Kubitschek, 1990; Hallinan and Sorensen, 1985; Hallinan
and Williams, 1987). The longitudinal data describe friendship reports of children
in 11 different classrooms from grades 4 to 7 in the United States. The data were
collected at six points in time at six week intervals. Unfortunately, the first point
in time is not the moment at which the individuals are mutual strangers. Other im-
portant drawbacks of the data are that the children were allowed to mention both
best friends and friends, there are no data directly referring to a variable expressing
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‘need for social contact’, and there is a large number of missing cases. Thus, the
data are not very suitable. Therefore, at the moment, we are gathering data among
first year sociology students at the University of Groningen.

With the data on classrooms, only weak and strong aspects of the models were
examined. We tested our models by comparing their predictions about several struc-
tural parameters.

No large difference exists between the predictions of the basic model and the
group mode] for these empirical data. Of all three models, the ‘similarity’ model,
not presented here, performed best. The main behavioral rule in this model is that
individuals prefer to be friends with those who are similar to them. For the classes
considered here, similarity on gender was an important constraint for friendship
choice.

The fact that LS sets are rare in empirical data was not too big a problem
for these comparisons because we could use other structural characteristics of the
friendship networks to assess the strength of predictions. However, more fruitful
comparisons between theoretically predicted and empirical networks would be pos-
sible if a means could be developed to quantify the degree to which a network
structure departs from the presence of LS sets. Or, as Borgatti et al. (1990) suggest,
to come up with a measure of the extent to which individuals depart from belonging
to an LS set. These kind of developments are of higher concerns once adaptations
have been applied to the model presented here. On the basis of simulation results
on artificial populations, and confrontations with empirical data, some shortcom-
ings of the present ‘group’ model were derived. There is too much emphasis on the
need for social contact. An individual always attempts to establish the desired num-
ber of friends and never establishes more friendships than desired. Another element
concerning this number of friends is the impossibility of friendship dissolution. As
a result, especially the group aspect does not live up to its promise because the
number of friends for an individual is always much more important than his group
‘state’. As a result, groups that emerged may disappear again because individuals
who lack friends continue looking for friends disregarding the possible collapse of
the group.

The need for social contact becomes less important by adapting appropriately the
weights of the issues in the tension functions. It may also be more appropriate to de-
fine a minimum and a maximum value for the desired number of friends. The group
aspect becomes much more interesting when individuals may dissolve friendships to
avoid the break up of the group, or to strengthen the group’s ‘state’.

The accidental arising of groups from common friendships is not too crude an
assumption when friendships are established on the basis of similarity. However,
in the present model of group formation, no such similarity aspect was taken into
account. Groups had to emerge from purely random choices. A joint model of the
similarity and group model is promising when the previous adaptations concerning,
among other things, the importance of the number of friends relative to the ‘char-
acteristics of friends’ and ‘group’, and the possible friendship dissolution, have been
elaborated (Zeggelink, 1996).

No distinction of behavior was made among different group members and be-
tween group members and non-group members. If different tension values are de-
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fined for individuals in different positions in one group, behavior with respect to
the group may differ among members of one group. As a result, the inclusion of the
aspect that non-group members purposely seek group membership becomes mean-
ingful.

Another aspect concerns the improvement of empirical testing and model devel-
opments that result from its conclusions.” The possibility of testing whether the
possible adaptations of the models improve predictions of network structure de-
pends on the availability of empirical data. In the present models, the need for
social contact played a very important role. It is however a concept that is very
difficult to operationalize, particularly with secondary data. Since in adapted ver-
sions of the model the exact determination of the need for social contact would be
less relevant, it may be less of a problem. However, it is preferable to gather data
specifically in view of the testing of these models.
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