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Abstract 

An explicit multi-time-stepping algorithm with applications to aerodynamic flows is presented. In the algorithm, in 
different parts of the computational domain different time steps are taken, and the flow is synchronized at the so-called 
synchronization levels. The algorithm is validated for aerodynamic turbulent flows. For two-dimensional flows speedups 
in the order of five with respect to single time stepping are obtained. 
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1. Introduction 

For time-accurate simulations stability restrictions on the time step in finely resolved parts o f  the 
computational domain decrease the performance of  explicit methods applying one uniform time step 
in the entire domain. Multi-time-stepping methods, where in different parts of  the domain different 
time steps are taken, are more efficient. 

Crucial to multi-time-stepping methods is the information exchange between the different parts o f  
the domain. For an overview of  previous work in the field o f  linear structural dynamics we refer 
to Belytschko and Lu [1]. For convection-dominated flow problems, Maurits et al. [4] considered 
the one-dimensional convection-diffusion equation as a model problem. Maurits et al. exchanged 
information only at synchronization levels, i.e., at the largest time step. Time-accurate simulations 
were performed with a ratio of  400 between the different time steps. Kleb et al. [3] considered 
pointwise multi-time stepping: each grid point is advanced using its own time step which fits a 
power o f  two times in the largest time step. The larger time steps are advanced earlier, in order 
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to generate necessary results at intermediate levels. The results at intermediate levels are obtained 
using linear interpolation. Kleb et al. report speedups between 4 and 10 for oscillating aerofoils. 

The present investigation extends the multi-time-stepping method of Maurits et al. to three- 
dimensional aerodynamic simulations. 

Apart from their efficiency, explicit multi-time-stepping algorithms are easy to implement in ex- 
isting explicit steady-state solvers. Moreover, they have an inherent parallelism and their simplicity 
leads one to expect excellent parallel efficiency. 

The contents of  the paper is as follows. In Section 2 the multi-time-stepping algorithm used in this 
paper is described. Two algorithms are described, the basic algorithm and a simplified algorithm with 
less information exchange. In Section 3 the algorithms are validated. In the final section conclusions 
are drawn. 

2. The multi-time-stepping algorithm 

Basically, any algorithm in which different time steps are taken in different parts of  the grid will 
be called a multi-time-stepping algorithm. Crucial are time levels at which (part of) the flow is 
synchronized to obtain time-accurate behaviour. Only at these synchronization levels information 
between the different parts is exchanged. 

Two algorithms are tested in the present paper. In the first algorithm, the basic algorithm, the 
information exchange is such that at all block boundaries the local stability conditions are satisfied. 
In the second algorithm, which is a simplification of the first, information exchange takes place only 
after the largest time step has been performed. The motivation to also consider the second algorithm 
is its simplicity: it requires less organization and is easier to implement. 

The spatial discretization of the solver to which multi-time stepping is added, is a cell-vertex 
Jameson scheme and block boundaries are part of  both blocks they bound. Around each block two 
layers of dummy cells are added which contain the flow status in the bounding blocks (if any). 
Since the block boundaries belong to both blocks they bound, the block boundaries are multivalued 
after an integration pass. After the integration pass the multivaluedness is removed by averaging the 
different values. Moreover, the dummy cells at the internal block boundaries are refreshed. 

The time-integration scheme is the standard Runge-Kutta 4 algorithm. For linear problems this 
scheme is third-order-accurate over a fixed time interval. The accuracy of the multi-block imple- 
mentation of this scheme has been measured for turbulent flows to be between second and third 
order. 

2.1. The basic algorithm 

In the description of the algorithms it is assumed that the computational domain is subdivided into 
blocks. The time step that is taken in one block will be called a block time step. The block time 
steps Atb are calculated in the following way. First the locally stable time steps are determined. Let 
Atc b be the locally stable time step in cell c of  block b. Let At~i n be the minimum of  At b over the 
cells in block b. The synchronization time step Atsyn is defined as the largest of  these time steps. 
Finally, the time steps Atbmin for all blocks are decreased as to fit in the synchronization time step 
an integer number of times. The decreased time steps are the block time steps. 
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In each block, the flow is advanced over as many block time steps that fit in the synchronization 
time step. At each synchronization level the block time steps are determined again. 

In order to satisfy the local stability conditions at the block boundaries the block time steps are 
performed in a certain order. The dummy variables are refreshed after each block time step. The 
order of  the time-step computations is roughly determined by the elapsed physical time, which is 
measured by the so-called master clock. The master clock is advanced in time with steps equal to 
the smallest block time step Atmin, that is, Atmin = minb/ktb. Below is a description of the part of  
the algorithm that advances the flow one synchronization time step. 

repeat 
do for all blocks 

if time step should be set 
integrate flow in block one block time step 

endif 
enddo 
refresh dummies for all blocks 
apply boundary conditions 
advance time of  master clock with Attain 

until one synchronization time step is elapsed at the master clock 

The condition 'time step should be set' is true if the elapsed time Tb in block b lags too fax 
behind with respect to the elapsed time on the master clock. Here we define Tb as the time on the 
master clock at which the latest time step in block b has been set. This implies that the next time 
step in this block should be set no later than Tb + Atb. Let T denote the elapsed physical time on 
the master clock, then we update block b at the time T for which 

T < T b + Atb <~ T + Attain, 

i.e., the block update is made at the latest possible moment. Using this strategy it follows that for 
any two blocks b and b' 

lib - Tb,[ <<, max(Atb,  Atb,). 

This means that at each loop index the elapsed time difference between two blocks is less than 
the maximum of the block time steps in the two blocks. This implies that at the block boundaries 
the local stability conditions are always satisfied. 

Notice that in between synchronization levels the flow in the different blocks is not synchronized 
as it is at the synchronization levels: the block time steps do not necessarily fit an integer time in 
each other. Hence, the exchanged information in between synchronization levels is not necessarily 
at the same time level. There is, however, information exchange in between synchronization levels: 
the 'refresh dummies' command exchanges information between bounding blocks. An example of 
the order of  the time steps is given in Fig. 1. 

Finally, note that in the above algorithm no averaging takes place at the multi-valued block 
boundaries. Since the boundaries should be accurately integrated in time, averaging is felt to be 
unnecessary. Moreover, averaging is an acceleration technique for steady-flow computations, and as 
such, obsolete for unsteady computations. 
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Fig. 1. Order of the block time-step integration. The numbers refer to the order of  the block time integration. 

2.2. The simplified algorithm 

In the simplified algorithm the information exchange in the loop over the block time steps is 
moved outside the repeat-until loop. Hence, in between synchronization time steps, the information 
at the block boundaries is frozen. 

The above algorithm applied to arbitrary block decompositions may cause violation of local sta- 
bility conditions at block boundaries bounding blocks with block time steps strictly smaller than the 
synchronization time step. 

3. Experiments and validation 

The algorithm described in Section 2 is implemented in the structured, multi-block solver EDDS, 
developed at NLR [5]. 

3.1. Stability 

3.1.1. The basic algorithm 
Turbulent flow is simulated around the RAE2822 aerofoil under the flow conditions of Case 10 

of  [2]. The nonuniform grid that is used is divided in 18 blocks, in three layers normal to the solid, 
each layer consisting of  six blocks. The flow conditions are Re = 6.2 x 106, 0~ = 2.8 °, and the Mach 
number M = 0.75. The transition points are located at the 3% chord. An initial (nonconverged) 
solution was made with local time stepping. Then 10 multi-time steps using the simplified algorithm 
were taken. 
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Fig. 2. Pressure distribution after 10 multi-time steps with elapsed physical time 0.11. 

Table 1 
Synchronization time steps and ratios for 
RAE2822 

Atsyn Ratio r Stable 

112.6× 10 -4 915 No 
40.8 × 10 -4 332 Maybe 
20.4 × 10 -4 166 Yes 
2.1 × 10 -4 18 Yes 

The ratio r between the synchronization time step and the smallest block time step is 915. The 
flow remains stable for 10 multi-time steps (elapsed nondimensional time: 0.11); flow results are 
displayed in Fig. 2. 

3.1.2. The simplified algorithm 
The same case as in the previous section is simulated using the simplified algorithm. Purpose of  

this simulation was to examine to what extent information exchange can be postponed. Unfortunately, 
judging from the wiggles in the shock region, the flow becomes instable. 

To investigate the instability, the synchronization level is decreased without affecting the smallest 
block time steps. Consequently, the ratio r between the synchronization time step and the small- 
est block time step decreases. Tested cases are shown in Table 1. All computations with smaller 
synchronization time steps are stable. 
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Fig. 3. Time evolution of the aerodynamic coefficients for the experiment in which the synchronization time step has been 
halved successively. Solid line: single time stepping; ~: Atsyn; A: iAtsyn,] ' [7: ¼Atsyn. 

In the case of Atsyn = 2.1 x 10  - 4  the block time steps in the blocks in the two outer lay- 
ers are all equal to the synchronization time step. Hence, in this case, the local stability condi- 
tions at the block boundaries in the normal direction are satisfied. In all other cases, the syn- 
chronization level is larger than the locally stable time steps at one or more block boundaries. 
Apparently, the flow in the block can damp instabilities at block boundaries to a certain degree, 
for a certain time. If the information exchange is postponed too long, the computation becomes 
instable. 

3.2. Accuracy 

Because of  the results of  the stability tests, the accuracy is tested using the basic algorithm. 
The flow obtained in Section 3.1.1 with multi-time stepping is used for restarts using multi-time 

stepping with different time steps. Two experiments are performed. 
In the first experiment, the block time steps in the outer blocks are decreased in such a way that 

the synchronization time step is halved, and successively quartered. The block time steps in the inner 
blocks near the solid are unaltered. Hence, this experiment tests the dependence of the accuracy on 
the synchronization level. 

In the second experiment, the block time steps in all blocks are halved, and successively quartered. 
Hence, this experiment tests the dependence of  the accuracy on the block time steps. 

In all the experiments the flow is integrated from the nondimensional time 0.113 to 0.117, which 
corresponds with one multi-time step with unaltered block time step, or with 1000 single time steps. 
The flow results of  the numerical experiments are compared to the flow results using single time 
stepping. 

In Fig. 3 and 4, the time evolution of  the aerodynamic coefficients for the different experiments 
is monitored. The agreement for both coeffÉcients is excellent. 

In order to determine the formal accuracy of  the multi-time stepping method the following 
quotient was computed: (u~ -Ul/z)/(Ul/2- Ul/4). Here, ul refers to the solution with the default 
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Fig. 4. Time evolution of the aerodynamic coefficients for the experiment in which all block time steps have been halved 
successively. Solid line: single time stepping; ~: Atsyn; A: halved block time steps; r-q: quartered block time steps. 

synchronization time step, Ul/2 with half the default synchronization time step, and accordingly half 
the block time step, and Ul/4 with quart default synchronization time step, and accordingly quart block 
time step. The 2 log of this quotient is the formal order of  the accuracy of  the multi-time-stepping 
method. 

For the successive halvenings of the synchronization time step the quotient varied between 6.4 for 
the density and 15 for the energy. For the successive halvenings of the block time steps the quotient 
varied between 1.7 for the energy and 2.1 for the x-velocity. 

Hence, the present multi-time-stepping method is first-order-accurate in the block time steps, and 
effect of  the synchronization time step is negligible. In comparison with the single-time-stepping 
integration scheme the multi-time-stepping method loses one order of accuracy. 

In principle, the multi-time-stepping method allows for accurate simulation of  physical quan- 
tities within each block with an accuracy, of  the block time step. In order to assess this ac- 
curacy, the time evolution during a synchronization time step of  the normal velocity was mon- 
itored at a point below the aerofoil and near the trailing edge. In Fig. 5 the time evolution 
of this quantity is displayed together with the time evolution as given by single time stepping. 
For multi-time stepping the velocity is printed every block time step, which is roughly a thou- 
sandth of the synchronization time step. The agreement between single and multi-time-stepping is 
excellent. 

3.3. Eff iciency 

The single-time-stepping run of  the previous section takes 3276 s, while the multi-time-stepping 
run with the default synchronization time step takes 731.2 s. Hence, a speedup of 4.5 is obtained. 

When the block layer around the aerofoil is halved in the normal direction to create a 24 blocks 
topology, the speedup with respect to single time stepping is increased to 5.5. 
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Fig. 5. Time evolution of the normal velocity at a point below the aerofoil near the trailing edge. ( ) single time 
stepping, (- - -) multi-time stepping. The size of the block time step of the block in which the point lies is roughly equal 
to the single time step. The extent of the x-axis is equal to one synchronization time step. 

4. Conclusions 

The multi-time-stepping algorithm presented in this paper has been proven to be an accurate, 
efficient and easy-to-implement algorithm. 

The algorithm is stable whenever the block time steps are determined by the local stability con- 
ditions of the time integration scheme in the block. A simplification of the algorithm where the 
information exchange is postponed to the synchronization levels proved to be unstable. 

The accuracy is determined by the block time steps and not by the synchronization time step. 
This allows for the accurate simulation of phenomena with a smaller time scale than the syn- 
chronziation time step. The accuracy of the multi-time-stepping method over a fixed time interval 
is first-order in the block time steps. The efficiency is expressed in a speedup of 5 with respect 
to single time stepping. The algorithm can be simply implemented in any block-structured flow 
solver. 
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