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Abstract

The performanceof two well-knowntexture operators
(basedon Gabor-energy and the cooccurrencematrix) is
comparedwith theperformanceof a new, biologically mo-
tivated texture operator, the grating cell operator, which
wasproposedelsewhere by theauthors. Thecomparisonis
madeusinga new quantitativemethod,basedon theFisher
criterion. Togetherwith someclassificationresultscompar-
isonexperimentsthecomparisonshowsa clear superiority
of thenew operator in orientedtexture problems.

1. Introduction

Texture is an importantpart of the visual world of an-
imals and men and their visual systemssuccessfullyde-
tect,discriminateandsegmenttexture. Relatively recently
progresswasmadeconcerningstructuresin thebrainwhich
arepresumablyresponsiblefor textureprocessing.Von der
Heydt etal. [19] reportedon thediscoveryof a new typeof
orientationselectiveneuronin areasV1 andV2 of thevisual
cortex of monkeys which they calledgrating cell. Grating
cells respondvigorouslyto gratingsof barsof appropriate
orientation,positionandperiodicity. In contrasttootherori-
entationselective cells, gratingcells respondvery weakly
or notatall to singlebarswhichdonotmakepartof a grat-
ing. This behaviour of gratingcellscannotbeexplainedby
linearfiltering followedby half-wave rectificationasin the
caseof simplecells, neithercan it be explainedby three-
stagemodelsof thetypeusedfor complex cells.Elsewhere
we proposeda modelof this typeof cell anddemonstrated
theadvantagesof gratingcellswith respectto theseparation
of textureandform information[9, 16].

In this paperwe usetheoutputof gratingcell operators
astexturefeaturesandcomparethemwith commonlyused
texture featuresascooccurrencematrix andGabor-energy
features. For this comparisona new methodis proposed

which enablesa quantitative evaluationof the texture dis-
criminationpropertiesof featureextractionoperators.The
methoddiffersfrom thecommonlyusedtexturefeatureper-
formanceevaluationmethodwhich is basedonthecompar-
isonof classificationresults[1, 3, 13, 17, 20].

Theproblemwith the traditionalcomparisonmethodis
that it mixestogetherthe performanceof a classifierwith
the discriminationpropertiesof the featureoperator. Fur-
thermore,it doesnot give an estimationof the reliability
of classification:for instance,two differentoperatorscan
give rise to the samenumberof misclassifiedpixelswhen
appliedto two different texture images,but this doesnot
meanthat they will performequallyin futureclassification
taskswith otherimagesof thesametextures.Consequently,
a methodis neededin which the performanceof a classi-
fier canbeseparatedfrom thediscriminationpropertiesof
thefeatureoperatorandin which thespreadin thediscrim-
inationpropertiescanbequantifiedin orderto estimatethe
reliability of classification.

2. Grating cell model

Our modelof gratingcells consistsof two stages[16].
In the first stage,the responsesof so-calledgrating sub-
unitsarecomputedusingasinput thecomputedresponses
of centre-onandcentre-off simplecells with symmetrical
receptivefields(for a computationalmodelof simplecells,
see[15]). The modelof a gratingsubunit is conceived in
sucha way that the unit is activatedby a setof threebars
with appropriateperiodicity, orientationandposition.In the
secondstage,the responsesof gratingsubunits of a given
preferredorientationandperiodicity aresummedtogether
within a certainareato computethe responseof a grating
cell. Thismodelis next explainedin moredetail:

A quantity ����� ��� ��� 	 , calledtheactivity of a gratingsub-
unit with position 
������� , preferredorientation ��
�� �� � ������ andpreferredgratingperiodicity � , is computedas
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and 0 is a thresholdparameterwith avaluesmallerthanbut
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whereH ��J�� ��J�� ��� 	,� LNM is theoutputof asimplecell operator1 of
preferredorientation� andperiodicity � atposition 
c� Q �� Q �
and 2 ��� ��� ��� 	'�\E7FIG :�* ��� ��� ��� 	,� - O ( � <?>k@�@h@�A3B (3)

Thequantities* ��� ��� ��� 	,� -  ( � <?>?@�@�@�A� arerelatedto the
activities of simple cells with symmetricreceptive fields
along a line segmentof length >N� passingthroughpoint
c������ in orientation � . This segmentis divided in inter-
vals of length

	 l
andthe maximumactivity of onesort of

simplecells, centre-on
 f - � � � or centre-off 
 f - � ��� ,
is determinedin eachinterval. * ��� �I� ��� 	,�nm)o , for instance,is
themaximumactivity of centre-onsimplecellsin thecorre-
spondinginterval of length

	 l
; * ��� ��� �5� 	D�nm l is themaximum

activity of centre-off simplecells in the adjacentinterval,
etc.Centre-onandcentre-off simplecell activitiesarealter-
natelyusedin consecutive intervals. 2 ��� ��� ��� 	 is themaxi-
mumamongtheabove interval maxima.

Roughly speaking,the concernedgrating cell subunit
will beactivatedif centre-onandcentre-off cellsof thesame
preferredorientation � andspatialfrequency p	 arealter-
natelyactivatedin intervalsof length

	 l
alongalinesegment

of length >N� centredonpoint 
������� andpassingin direction� . This will, for instance,bethecaseif threeparallelbars
with spacing� andorientation� of thenormalto themare
encountered(Fig.1). In contrast,the condition is not ful-
filled by thesimplecell activity patterncausedby a single
baror two bars,only.

In the next, secondstageof the model, the responseqr��� ��� ��� 	 of a gratingcell is computedby weightedsumma-
tion of the responsesof the gratingsubunits. At the same

1Halfwave rectifiedconvolutionof theimagewith a2D Gaborfunction
(see[15, 16] for furtherdetails).
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Figure 1. Luminance distribution along a nor-
mal to a set of three square bars (a), and
the distribution of the computed responses
of centre-on (b) and centre-off (c) simple cells
along this line.

time themodelis madesymmetricalfor oppositedirections
by taking the sumof gratingsubunits with orientations�
and � Z � .q ��� ��� ��� 	 �s3tvu m?wnx�y,x J{z}|j~ w}��y,� Jez{|| w ��� z | 
 � ��J�� ��J�� ��� 	 Z � ��J�� ��J�� �����3� 	 �5��� Q ��� Q �a� � � ���� (4)

Theweightedsummationis a provision madeto modelthe
spatialsummationpropertiesof gratingcellswith respectto
thenumberof barsandtheir lengthaswell astheirunmod-
ulatedresponseswith respectto the exactposition(phase)
of a grating. The parameter� determinesthe size of the
areaover which effective summationtakesplace. A value
of � ��� resultsin a good approximationof the spatial
summationpropertiesof gratingcells. For further details
we refer to [16]. The gratingcell operatoris availableon
theinternet[10].

3. Texture features and the Fisher criterion

Thequantitiescomputedwith thegratingcell operators
canbe usedastexture features.We next comparethe fol-
lowing setof features:� Grating cell operator features: A setof gratingcell

operatorswith eight different preferredorientations
andthreepreferredspatial-frequenciesis appliedto an
image,yieldinga vectorof 24 featuresin eachpoint.� Gabor-energy features: A popularsetof texturefea-
tures is basedon the use of Gabor filters [7]. In



T1 T2 T3 T4 T5 T6 T7 T8 T9
T1 - 4.36 9.61 9.23 4.77 8.33 9.91 13.47 13.99
T2 - 7.51 6.35 4.79 5.65 6.24 10.96 9.31
T3 - 14.62 9.60 6.24 3.84 6.72 20.40
T4 - 8.24 15.60 10.09 18.67 24.36
T5 - 7.72 9.38 13.06 11.20
T6 - 4.53 6.83 11.96
T7 - 6.14 15.33
T8 - 39.71
T9 -

Table 1. The Fisher criterion for pairs of texture images calculated on the basis of feature vectors
obtained with the grating cell operator.

this case,an imageis filtered with a setof Gaborfil-
terswith differentorientations,spatialfrequenciesand
phases.Using eight orientationsand threepreferred
spatial-frequenciesandcombiningtheresultsof sym-
metric and anti-symmetricfilters, this multi-channel
filtering schemeyields a featurevectorof 24 Gabor-
energy quantities.Thesamepreferredorientationsand
spatial-frequenciesareusedastheonesof thegrating
cell operators.� Cooccurrence matrix features: A classicmethodfor
texturesegmentationis basedon the gray-level cooc-
currencematrices[6]. In eachpoint of a texture im-
age,a setof gray-level cooccurrencematricesis cal-
culatedfor different orientationsand inter-pixel dis-
tances.From thesematrices,a numberof featuresis
extractedwhichcharacterisetheneighbourhoodof the
concernedpixel. In our experimentseight gray-level
cooccurrencematriceswere calculatedin eachpoint
using a neighbourhoodof size  A��  A . From each
of the matricesthreefeatures(energy, inertia anden-
tropy) wereextractedresultingin a vectorof 24 fea-
turesin eachimagepoint.

The featurevectorscomputedat differentpointsof a tex-
ture usinga given operatorarenot identical. They rather
form a clusterin themulti-dimensionalfeaturespace.The
larger thedistancebetweentwo clusterswhich correspond
to two differenttypesof texture, thebetterthediscrimina-
tion propertiesof the texture operatorwhich producedthe
featurevectors. The distancehas,of course,to be related
to the size of the clusters. In order to determinethe dis-
tancebetweentwo clustersof featurevectors,it is sufficient
to look at theprojectionof the � -dimensionalfeaturespace
onto a one-dimensionalspace,underthe assumptionthat
this projectionmaximisestheseparabilityof theclustersin
theone-dimensionalspace.A lineartransformationthatre-
alizesthis projectionwasfirst introducedby Fisher[4] and

is called Fisher’s linear discriminantfunction. It hasthe
following form: � � 
��� p <��� l �%�8� m p �� , where �� p and �� l
arethemeansof thetwo clustersand � m p is the inverseof
the pooledcovariancematrix. Fisher’s linear discriminant
function is invariantunderany nonsingularlinear transfor-
mation.

Figure 2. The nine test images of oriented tex-
tures, enumerated T1 through T9 left to right
and top to bottom.

Theprojectionof thefeaturevectorsontotheprojection
line maximisestheso-calledFishercriterion[5] ���!�����)�j�� ��� � �where ¢¡ and  ¤£ arethestandarddeviationsof thedistribu-
tionsof theprojectedfeaturevectorsof therespectiveclus-
tersand ¥�¡ and ¥,£ aretheprojectionsof themeans¦8¡ and¦�£ . Sincethematrix § � ¡ is positivedefinite,thedifference¥ ¡,¨ ¥ £ is alwayspositive.TheFishercriterionexpressesthe
distancebetweentwo clustersrelative to their compactness



T1 T2 T3 T4 T5 T6 T7 T8 T9
T1 - 4.17 4.90 5.66 3.39 4.99 4.95 4.15 6.29
T2 - 2.86 4.45 2.65 3.02 3.04 3.05 5.70
T3 - 6.38 3.64 1.80 3.19 3.25 5.96
T4 - 5.24 7.06 4.96 7.09 9.24
T5 - 3.35 3.18 3.45 5.15
T6 - 2.90 2.61 6.54
T7 - 3.31 6.46
T8 - 5.53
T9 -

Table 2. The Fisher criterion for pairs of texture images calculated on the basis of feature vectors
obtained with the Gabor-energy operator.

in onesinglequantity.

4. Performance evaluation and comparison

The performanceof the grating cell operatoris evalu-
atedaccordingto theFishercriterionby theseparabilityof
nine test images,eachcontaininga singleorientedtexture
(Fig.2). Theseparabilityis measuredin thefollowing way:
asetof 24differentgratingcell operatorsis appliedto each
image. In this way eachimagepoint is assigneda feature
vectorof 24 gratingcell operatorcoefficients. Thepooled
covariancematrix is calculatedfor eachpair of imagesus-
ing 1000samplefeaturevectorsfrom eachimage.Thenthe
featurevectorsareprojectedon a line usingFisher’s linear
discriminantfunction andthe Fishercriterion is evaluated
in theprojectionspace.

Table1 shows thevaluesof theFishercriterionfor each
pair of the test images. The minimum valuelisted is >�@ © ,
which meansthat for all imagepairs,theprojectedfeature
vectordistributionswill at mostoverlapfor about

� @ �  Iª .
Thereforeall clustersof featurevectorscan be separated
linearly. Note that the featurevectorsof eachclusterare
takenfrom animagethatcontainsmerelyonetexture.This
meansthat it is a priori known to which clusterthefeature
vectorsamplesbelongto, resultingin agoodestimateof the
covariancematrix.

The values obtainedwith the Gabor-energy features
(listedin Table2) areall smallerthantheonesobtainedwith
thegratingcell features.OnaveragetheFishercriterionfor
the Gabor-energy featuresis morethantwo timessmaller
thanfor the gratingcell features.Anyhow, the Fishercri-
terion is still largeenoughto distinguishthe clusters.The
Gabor-energy featuresarethereforesuitablefor theclassi-
ficationof a textureimagesasa whole,i.e. classificationof
anentiretextureimagebasedon thedistribution of a large
numberof projectedfeaturevectors.For thesegmentation
of a textureimageinto regionscontainingthesametexture,

i.e. for theclassificationof the individual pixels,the inter-
clusterdistanceis notsufficiently largeascanbeseenfrom
Figure3. The quality of the cooccurrencematrix features
is evenworsein comparisonto theGabor-energy features.
Thoughtheinter-clusterdistanceis largeenoughfor classi-
ficationof textureimagesasa whole(Table3), thefeatures
areinappropriatefor classificationof singlepixels.

Figure3 shows the resultsof pixel classificationusing
K-meansclusteringof thegeneratedfeaturevectors.It fur-
ther demonstratesthe superiorityof grating cell operator
featuresto Gabor-energy andcooccurrencematrix features.

In a future work, the authorswill comparethe grating
cell operatorwith the operatorsandmethodsproposedby
Unser [18], Laws [11] and Mitchell [12], the fractal di-
mensionapproach[14], a methodbasedon GOP(General
OperationProcessor)operations[8], graylevel differences,
centre-symmetriccovariancefeatures,local binarypatterns
[17] andMarkov randomfields[2].
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