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Abstract

This paper presents an unifyingapproach to the theory of degeneracy of basic
feasible solutions, vertices, faces, and all subsets of polyhedra. We use the
concept of degeneracy degree for arbitrary subsets of IRn with respect to linear
constraint collections. We discuss the connection with the usual definitions,
and establish the relationship between minimal representations of polyhedra
and the degeneracy of their faces. We also consider a number of complexity
aspects of the problem of determining degeneracy degrees.
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1. Introduction

For a long time, degeneracy was considered something of theoretical value, that
appeared only very seldom in practice. This situation changed since the time it occurs
more frequently, among that in many combinatorial optimization problems such as
crew scheduling. A recent survey about degeneracy in optimization problems can
be found in Gal[3]. However, the theory on degeneracy shows not much agreement
about the definitions and starting points. In case of linear programming, degeneracy
is usually only defined for basic feasible solutions and vertices. A basic feasible
solution is then called degenerate if at least one of the basic variables has a zero
value. However, in Nering & Tucker[5], an LP-model is called degenerate if it has
at least one degenerate basic solution (not necessarily feasible). In G¨uler et al.[4], an
LP-model is called degenerate if there is at least one feasible point that has less than
m positive coordinate entries, withm the number of equality constraints in the primal
standard model. These definitions are all based on the existence of a degenerate
point. In Roos et al.[6], an LP-model is called degenerate if either the primal problem
or its dual has multiple optimal solutions. This definition relates the degeneracy of
an LP-model to the degeneracy of the optimal faces. Degeneracy sometimes plays
an important role in the proofs of the convergence of algorithms; for instance in the
convergence of the affine scaling methods; for an overview see e.g. G¨uler et al.[4]. On
the other hand, degeneracy may cause numerical problems in interior point methods,
by making the linear systems, that are solved close to the optimum, ill-conditioned;
see e.g. G¨uler et al.[4].

In the underlying paper we provide a unifying approach, in which we define the
degree of degeneracy of arbitrary subsets of IRn with respect to a given constraint
collection that defines a polyhedron.

2. Degeneracy of sets

Let P be a collection ofm linear constraints in IRn, called aconstraint collection,
consisting ofm1 equalities andm �m1 inequalities in the variablesx1, . . . , xn; say:

P D f

n∑

jD1

aijxj D bi, i D 1, . . . , m1I

n∑

jD1

aijxj � bi, i D m1 C 1, . . . , mg. (1)

We denote bypol(P ) the set of points in IRn for which all constraints ofP are
satisfied, i.e.pol(P ) is the polyhedron represented by the constraint collectionP .
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LetS be a subset of IRn. A constraint ofP is calledbindingonS, if it is satisfied with
equality for every point ofS. Note that the empty set is binding on all constraints of
P , since the empty set is contained in the intersection of any collection of equality
constraints. Denote the number of constraints ofP that are binding onS bybnd(S, P ),
and the dimension of the polyhedron represented by the binding constraints onS by
dimbnd(S, P ). Thedegeneracy degreeof a subsetS � IRn w.r.t. P , is denoted and
defined by

σ(S, P ) D bnd(S, P )C dimbnd(S, P )� nI

see Tijssen & Sierksma[9]. The definition can be motivated as follows. The number
of hyperplanes that determine the intersection of the binding constraints onS is
at least equal ton � dimbnd(S, P ), and this lower bound is sharp. If the number
of constraints ofP that are binding onS is larger thann � dimbnd(S, P ), then
there is ‘redundancy’ in the collection of hyperplanes that defines the affine hull of
S. Therefore,σ(S, P ) � 0 for everyS andP . S is calleddegeneratew.r.t. P iff
σ(S, P ) > 0, andS is callednon-degeneratew.r.t. P iff σ(S, P ) D 0. In Gal et
al.[2] a definition for “degeneracy degree” is introduced for vertices, in which case
dimbnd(S, P ) D 0.

The degeneracy degree of the empty set is well defined, and depends on the constraint
collection in the following way. LetP be a collection ofm constraints inRn. Since
the empty set belongs to allm affine subspaces that are the boundaries of them

constraints, it follows thatbnd(;, P ) D m. The dimension of this intersection is at
least equal to the dimension of the empty set, which is defined to be�1. Therefore,
σ(;, P ) � mC (�1)� n D m� n� 1. If, with an arbitraryS 2 IRn no constraint of
P is binding onS, thenσ(S, P ) D 0C n� n D 0.

Theorem 2.1 Let P be a constraint collection on IRn, and letS1 andS2 be subsets
of IRn with S1 � S2, thenσ(S1, P ) � σ(S2, P ).

(1) The degeneracy degree ofS2 satisfiesσ(S2, P ) D bnd(S2, P )C

dimbnd(F2, P )� n. Hence,bnd(S2, P ) D n� dimbnd(S2, P )C σ(S2, P ). Let S1

be a subset ofS2. Then,dimbnd(S1, P ) � dimbnd(S2, P ). The number of binding
constraints ofP onS1 is at leastbnd(S2, P )C (dimbnd(S2, P )� dimbnd(S1, P )),
and we have thatσ(S1, P ) D bnd(S1, P ) C dimbnd(S1, P ) � n � bnd(S2, P ) C

(dimbnd(S2, P )� dimbnd(S1, P ))C dimbnd(S1, P )� n D bnd(S2, P )C

dimbnd(S2, P )� n D σ(S2, P ). 2

If for two setsS1 andS2 the same constraints inP are binding, thenσ(S1, P ) D

σ(S2, P ). The polyhedronQ represented by these binding constraints is the largest
polyhedron for whichS1 2 Q, andσ(S1, P ) D σ(Q, P ).
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Figure 3.1: Example of a face.

3. Degeneracy on polyhedra

In this section we assume that the constraint collectionP represents a nonempty
polyhedron, i.e.pol(P ) 6D ;. A constraintH of a constraint collectionP is called
redundantif its deletion results in a constraint collection representing the same
polyhedron asP , i.e.

pol(P n fH g) D pol(P ).

Note that the deletion of one redundant constraint may change another redundant
constraint into a non-redundant one. An inequality of a constraint collectionP is
called animplicit equality ofP if that inequality is satisfied with equality for every
point ofpol(P ). A minimal representationof a polyhedron is a constraint collection
with a minimal number of constraints; i.e. the deletion of any constraint results in a
different polyhedron. A thorough survey of the properties of redundant constraints,
implicit equalities, and minimal representations can be found in Telgen[7], where
it is shown among others that a minimal representation contains neither redundant
constraints nor implicit equalities. LetF be a face of the polyhedronpol(P ). A
constraint collection that representsF can be obtained fromP by replacing an appro-
priate collection of inequalities ofP by equalities. However, such representations
are not unique in general; they may contain redundant constraints. This may be clear
from the following example.

Let P D fx1 � x2 � 0I x1 � 0I x2 � 0g. The polyhedron represented byP is
depicted as the shaded area of Figure 3.1. The faceF D f(0, 0)g (with dimension 0)
can be represented in different ways using the constraints ofP by changing a number
of inequalities into equalities. For instance, bothfx1 � x2 D 0I x1 D 0I x2 � 0g and
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fx1 � x2 � 0I x1 D 0I x2 D 0g representF . All three constraints ofP are binding
onF . Clearly,bnd(F, P ) D 3 anddimbnd(F) D 0.
Even if P is a minimal representation, the representation of a faceF of pol(P )

need not be unique; if, for example, the octahedron of Figure 3.3 is represented by a
minimal representation, then any vertex can be represented by replacing three of the
four binding inequalities by equalities.

The definition of the concepts “degenerate face” and “degenerate vertex” of a poly-
hedron represented by a constraint collectionP can be obtained from the definition
by lettingS being a face or a vertex ofpol(P ), respectively. Since the intersection of
the constraints that are binding on the faceF is the affine hull of that face, it follows
thatdimbnd(F, P ) D dim(F). Note that the definition of “degenerate face” gener-
alizes the usual definition of “degenerate vertex”, becausebnd(v, P )C dim(v) > n

reduces in case of a vertex tobnd(v, P ) > n, which is in fact the usual definition
of “degenerate vertex”. The definition of “degenerate face” includes the definition of
“degenerate polyhedron”, sincepol(P ) is a face ofpol(P ) itself. In terms of linear
programming, this means that the concept of “degenerate feasible region” is now
well defined as well. In the following theorem we collect a number of properties of
degeneracy degrees of faces.

Theorem 3.1 LetP be a constraint collection representing a nonempty polyhedron
in IRn. Then the following assertions hold.

1. If F1 andF2 are faces ofpol(P ) with F1 � F2, thenσ(F1, P ) � σ(F2, P ).

2. A faceF of pol(P ) with dimension at least1 is degenerate with respect toP
iff all proper nonempty subsets ofF are degenerate w.r.t.P .

3. If pol(P ) degenerate w.r.t.P , thenP contains either a redundant constraint
or an implicit equality.

4. A faceF of pol(P ) with dimension at least1 is non-degenerate w.r.t.P iff F

contains a proper nonempty subset that is non-degenerate w.r.t.P .

(1) This proof is equivalent to the proof of Theorem 2.1 by takingF1 and
F2 for S1 andS2, respectively.

(2) Let F be a face ofpol(P ) with dimension at least 1. We first prove the ‘only
if’ part. Let σ(F, P ) > 0. Then, according to Theorem 3.1(1), all subfaces ofF

have a positive degeneracy degree. Hence, all nonempty subsets ofF have a positive
degeneracy degree w.r.t.P . The proof of the ‘if’ part can be given as follows. If all
proper nonempty subsets ofF are degenerate w.r.t.P , then also the relative interior
of F is degenerate w.r.t.P . SinceF has dimension at least 1, the relative interior
of F is a proper subset ofF . BecauseF is the smallest face containing the relative
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interior ofF , F is degenerate with respect toP .

(3) Let pol(P ) be degenerate w.r.tP . Then,σ(pol(P ), P ) > 0. Let e denote the
number of equalities inP . If e > n � dim(pol(P )), thenP contains at least one
redundant equality. Ife � n�dim(pol(P )), thenbnd(pol(P ), P )�e inequalities are
binding onpol(P ). Sincebnd(pol(P ), P )�e D n�dim(pol(P ))Cσ(pol(P ), P )�

e � n � dim(pol(P )) C σ(pol(P ), P ) � n C dim(pol(P )) D σ(pol(P ), P ) > 0,
P contains at least one implicit equality.

(4) This is the logical reversal of (2). 2

The following examples illustrate the degeneracy degree of a setS that is not a face
of pol(P ).

Let P D fx1 C x2 � 2I x1 � 1I x2 � 1I x1, x2 � 0g, F D pol(fx1 C x2 �

2I x1 � 1I x2 D 1I x1, x2 � 0g), andS D f(0.2, 1), (0.4, 1)g; see Figure 3.2.F
is the line segment [(0, 1), (1, 1)]. Note thatdim(F) D 1, and thatx2 � 1 is the
only inequality ofP that is binding onF . F is non-degenerate w.r.tP , because
σ(F, P ) D bnd(F, P ) C dim(F) � n D 1C 1� 2 D 0. The degeneracy degree
w.r.t. P of the face consisting of the single vertexv D (1, 1) satisfiesσ(v, P ) D

bnd(v, P ) C dim(v) � n D 3 C 0 � 2 D 1. The only binding constraint onS
is the constraintx2 � 1. The dimension ofx2 D 1 is 1. Therefore,bnd(S) D 1,
dimbnd(S) D 1, andσ(S, P ) D 1C 1� 2D 0.

Corollary 3.1 The degeneracy degree of a nonempty subsetS of a polyhedronQ
represented by the constraint collectionP is equal to the degeneracy degree of the
smallest faceF of Q that containsS.

The faces of a polyhedron together with the empty set form a lattice under
inclusion. Therefore, there exists a unique smallest faceF with S � F . The con-
straints that are binding onF are also binding onS. If there is a constraint that is
bindingonS that is not binding onF , thenF is not the smallest face ofQ that contains
S. Therefore, the same collection of constraints is binding both onF andS. Hence,
bnd(F) D bnd(S), dimbnd(F) D dimbnd(S), andσ(S, P ) D σ(F, P ). 2

As an example, letP D f0x � 0 j x 2 IRng. For anyS 2 IRn there is exactly
one binding constraint, and the smallest face containingS is IRn itself. Therefore,
σ(S, P ) D σ(IRn, P ) D bnd(IRn, P )C dim(IRn)� n D 1C n� n D 1.

In general, it is not true that all subfaces of a non-degenerate face are non-degenerate.
In the example preceding Corollary 3.1, the vertex (1,1) is a degenerate subface
of the non-degenerate faceF . Another example is the regular octahedron in IR3
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Figure 3.2: Degeneracy degree of a subset.

depicted in Figure 3.3. Each vertex of this octahedron is degenerate, since each
vertex has four binding facets. This fact is independent of the representation of this
octahedron by a constraint collection. If this octahedron is represented by a minimal
representation with 8 inequality constraints (without redundant constraints or implicit
equalities), then the edges, the facets, and the polyhedron itself are non-degenerate.
In fact this is the smallest example of a polytope that has only degenerate vertices.
The following example shows how representations of polyhedra may influence its
degeneracy degrees.

LetP D fx1Cx2 D 1I x1, x2 � 0g andP 0 D fx1Cx2 � 1I x1Cx2 � 1I x1, x2 � 0g.
P andP 0 are two different representations of the same polyhedron in IR2 namely, the
line segment between (0,1) and (1,0).pol(P ) is non-degenerate with respect toP ,
since every point in the relative interior ofpol(P ) is binding on one constraint, and
dim(pol(P )) D 1, so thatσ(pol(P ), P ) D 1C 1� 2 D 0. However,pol(P 0) is
degenerate with respect toP 0, since every point ofpol(P 0) is binding on at least two
constraints.P 0 contains two implicit equalities. If these inequalities are replaced by
its two corresponding equalities they become redundant constraints, and one of the
two can be removed.

The definitions of degeneracy given above are dependent on the way the polyhedron
is represented by a constraint collection. However, it is possible to define degeneracy
degrees of subsets of polyhedra independent of constraint collection, namely in the
following way.

Thedegeneracy degree of a subsetS of a polyhedronQ in IRn, denoted byσ(S, Q)
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Figure 3.3: Octahedron; all vertices degenerate.

is defined asσ(S, Q) D σ(S, P ), whereP is a minimal representation ofQ.

Theorem 3.2 The degeneracy degree of a subsetS of a polyhedronQ is minimal if
the degeneracy degree is determined with respect to a constraint collectionP that is
a minimal representation ofQ.

Every minimal representationP of Q contains the same number of equal-
itiesn � dim(Q), and precisely one inequality for every facet. Letk be the number
of facets fromQ that are binding onS, and letF be the smallest face ofQ that
containsS. Then,bnd(S, P ) D n � dim(Q) C k, and σ(S, P ) D σ(F, P ) D

bnd(F, P )Cdim(F)�n D dim(F)�dim(Q)Ck. This degeneracy degree is min-
imal, since the dimensions ofF andQ are not dependent of the constraint collection
P that representsQ, and none of thek inequality constraints is redundant. 2

If a polyhedron is represented by a constraint collection that is a minimal represen-
tation, we can be more precise about the degeneracy of the faces of that polyhedron.

Theorem 3.3 Let the constraint collectionP be a minimal representation of an
n-dimensional polyhedronQ. ThenQ, and its(n � 1)- and (n � 2)-faces are non-
degenerate. All other faces ofQ are not necessarily non-degenerate.
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Take any constraint collectionP , and letQ D pol(P ). Let dim(Q) D n.
If P contains equality constraints,each of them can be eliminated by solving one
variable from it and substituting this into the other constraints. This results in an
equivalent minimal representation. So, we may assume thatQ is full dimensional,
i.e. the dimension of the underlying space isn.

Q is non-degenerate. See Theorem 3.1(3).

The(n � 1)-faces ofQ are non-degenerate. Every point in the relative interior of a
(n� 1)-face(facet)F is binding on exactly one inequality constraint; see Telgen[8],
Lemma 4.4.1. Hence,σ(F, P ) D bnd(F, P )Cdimbnd(F, P)�nD 1C(n�1)�nD

0

The (n � 2)-faces ofQ are non-degenerate. We will show that if a(n � 2)-face is
degenerate, thenP is not a minimal representation, in which case it contains implicit
equalities or redundant constraints. LetF be a degenerate(n�2)-face ofQ, and letv
be a point in the relative interior ofF . Thenσ(v, P ) D bnd(v, P )Cdimbnd(v, P )�

n D bnd(v, P )Cdim(F)�n D bnd(v, P )Cn�2�n > 0. Hence,bnd(v, P ) > 2.
SinceQ is full dimensional,P does not contain an equality constraint and can
therefore be written asP D fAx � bg. Add slack variables toP , and writeP as
an extended Simplex tableau, i.e.fAx C s D bI s � 0g, with si the basic variables
andxi the nonbasic variables. Note that the nonbasic variables are not necessarily
nonnegative. Lets1 ands2 be two slack variables corresponding to constraints that
are binding onF andv. Perform some pivots in order to makes1 ands2 nonbasic
variables. First find a nonzero coefficient in thes1 row. If this is not possible then this
row has the form 0C s1 D b1. Sincev is a feasible point,b1 must be equal to zero. But
s1 D 0 is an implicit equality which contradicts the assumption thatP is a minimal
representation. Therefore there is a nonzero coefficient in thes1 row. Perform a pivot
on this element. Now consider thes2 row. If this row has a nonzero coefficient in a
nonbasic column different from the one ofs2, then pivot on this coefficient in order
to make boths1 ands2 nonbasic variables. If, on the other hand, this row has not such
nonzero coefficient, then this row has the formas1 C s2 D 0. The right hand side is
equal to zero, becauses1 D 0, s2 D 0 has to be feasible. Clearly,a � 0 implies that
s1 D s2 D 0 for all feasible points. Hence, the constraint ofs2 in P is an implicit
equality. Moreover,a < 0 implies that the constraint ofs2 is a positive multiple of
the constraint ofs1, and therefore redundant inP .

Sincebnd(v, P ) > 2, there must be a third constraint binding onv andF . Let s3

be the slack variable of this constraint. This constraint has the forma1s1 C a2s2 C

apxp � � �aqxq C s3 D b3, in which xp, . . . , xq denote then � 2 nonbasic variables.
SinceF is (n� 2)-dimensional, we can findn� 1 affine independent points inF for
which s1 D s2 D s3 D 0. Denote these points byyi, i D 1, . . . , n � 1. Substituting
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the coordinates of theyi into the row ofs3 gives

q∑

jDp

yijaj D b3, i D 1, . . . , n� 1.

Subtracting the first equation from the othern � 2 equations gives

q∑

jDp

y1jaj D b3

q∑

jDp

(yij � y1j )aj D 0, i D 1, . . . , n� 1.

Since then�2 vectors(y2� y1, . . . , yn�1� y1 are linear independent, it follows that
aj D 0 for j D p, . . . , q, and from the first equation follows thatb3 D 0. Therefore,
the row ofs3 has the forma1s1 C a2s2 C s3 D 0. Now we have to consider several
cases. (a).a1 anda2 are both non negative. Then the constraint ofs3 is an implicit
equality which contradicts the assumptions.
(b). a1 anda2 are both non positive. Then the constraint ofs3 is redundant which
contradicts the assumptions. (c).a1 < 0 anda2 > 0. Perform a pivot ona1 which
results in a row with slack variablea1 and two negative coefficients in the columns of
s2 ands3. Similar as in (2), it can be shown that the constraint corresponding tos1 is
redundant. (d).a1 > 0 anda2 < 0. Perform a pivot ona2 which results in a row with
slack variables2 and two negative coefficients in the columns ofs1 ands3. Similar as
in (2), it can be shown that the constraint corresponding tos2 is redundant.

All other faces may be degenerate or non-degenerate. IfP is a minimal presentation
of a simplex in IRn, then all faces ofpol(P ) are non-degenerate. LetP D fx1 �

0I x2 � 0I x3 � 0I x1 C x3 � 1I x2 C x3 � 1g. Thenpol(P ) is a pyramid in IR3

with top t D (x1 D x2 D 0, x3 D 1), that is degenerate; four inequality constraints
are binding at the top. Forn > 3, let Qn D fxi � 0, i D 4, . . . , ng, and consider
the constraint collectionP [Qn. Thenpol(P [Qn) D pol(P )Cpol(Qn). The face
ftgCpol(Qn) has dimensionn� 3 and has a degeneracy degree equal to one.2

In linear programming the optimal solutions form a face of the polyhedron represented
by the constraints of the LP-model. By using the definition of degeneracy degree for
the optimal faces of the primal LP-model and its dual, the following theorem holds.

Theorem 3.4 The degeneracy degree of the optimal face of a primal LP-model is
equal to the dimension of the optimal face of the corresponding dual LP-model.

The proof of this theorem can be found in Tijssen & Sierksma[9].
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4. Determining degeneracy degrees

Since degenerate basic solutions may cause cycling in Simplex algorithms that are
not equipped with special anti-cycling pivot selection rules, LP-models that have
at least one degenerate basic solution are called degenerate. On the other hand,
interior point algorithms may become numerically unstable in the neighborhood of a
degenerate face, and the convergence proofs of a number of interior point algorithms
are dependent of the non-degeneracy of the optimal solution; see e.g. G¨uler et al.[4].
If a degenerate basic solution is encountered during the execution of a Simplex
algorithm, it is clear that the LP-model is degenerate (has a degenerate basis). On
th other hand, it is difficult to check whether an LP-model has a degenerate basic
solution without checking all basic solutions. Actually, in Chandrasekaran et al.[1]
it is shown that the problem of checking whether an LP-model is degenerate is NP-
complete. This is done by proving that determining whether a transportation problem,
formulated as an LP-model, has a degenerate feasible basic solution is as difficult as
solving the well known ‘subset-sum problem’, which is NP-complete.

Theorem 4.1 The problem of deciding whether a nonempty polyhedron defined by
a constraint collectionP has a degenerate face is NP-complete.

If a polyhedron has a degenerate face, then all subfaces of that face are
degenerate as well (Theorem 2.1(1)). Therefore, it suffices to decide whether one
of the minimal faces is degenerate. But even in the case that the minimal faces are
vertices, this problem is already NP-complete (see Chandrasekaran et al.[1]).2

If a constraint collectionP is given, together with a pointp 2 pol(P ), it is easy
to determine the degeneracy degree of the smallest face of the polyhedron that
containsp. This can be done as follows. First, the constraints that are binding on
p are determined by substituting the values of the coordinate entries ofp into the
constraints of the polyhedron representation, and checking which constraints are
binding. The intersection of the binding constraints form a representation of the
affine hull of the smallest face that containsp. The dimension of this face can be
determined by calculating the rank of the matrix formed by the coefficients of the
binding constraints. This rank can be calculated in the usual way using Gaussian
elimination. All these calculations can be done in polynomial time.

Calculating the degeneracy degree of a nonempty polyhedron when only a represen-
tation of the polyhedron in the form of a constraint collectionP is given is more
difficult. If a point q in the relative interior of the polyhedron is given (together with
a proof that it is indeed a point in the relative interior) the method outlined above can
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be used, since the smallest face that containsq ispol(P ) itself. Therefore, the degen-
eracy degree ofq is equal to the degeneracy degree ofpol(P ). If a pointq 2 pol(P )

is known, then the smallest face that containsq does not have to beP itself. It is
possible that the degeneracy degree of that point is larger than the degeneracy degree
of pol(P ). Therefore, a feasible point does not provide sufficient information to
determine the degeneracy degree ofpol(P ).

In order to calculate the degeneracy degree ofP it is necessary to know the number of
constraints that are binding onpol(P ). Therefore, it is necessary to find all implicit
equalities of the constraint collection. This can be done by solving the LP-model
shown in the proof of the following theorem. If all binding constraints are determined,
the dimension ofpol(P ) is calculated in the usual way.

Theorem 4.2 LetP be a constraint collection, representing a nonempty polyhedron.
All implicit equalities inP can be found in polynomial time by solving one linear
programming problem.

Let P D fA1x1 D b1IA2x1 � b2g with pol(P ) 6D ;. Consider the primal
LP-model

(P ) : maxf 0x1 j A1x1 D b1I A2x1 � b2 g

and its dual

(D) : min f bT
1 y1 C bT

2 y2 j A
T
1 y1 CAT

2 y2 D 0I y2 � 0 g.

Since the objective function in the primal model is the zero function, any feasible point
is optimal. Moreover, sincepol(P ) 6D ;, we know that both(P ) and(D) have finite
optimal solutions. For any optimal solution it holds that 0x1 D 0 D bT

1 y1 C bT
2 y2.

Furthermore, we know that both models also have one or more solutions that are
strictly complementary, and are therefore located in the relative interior of the optimal
faces (see Roos et al.[6]). After including slack variables into the inequality constraints
of the primal model, we obtain

(P 0) : maxf 0x1 j A1x1 D b1I A2x1 C x2 D b2I x2 � 0 g,

and the strictly complementarity condition can be written asx2 C y2 > 0. In order to
ensure that the sums of all the coordinate entries ofx2 andy2 are positive, we change
this condition intox2Cy2 � α1, whereα is strictly positive number, and1 an all-unit
vector. A strictly complementary pair of optimal solutions can be found by solving
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the following LP-model:

max α

s.t . A1x1 D b1

A2x1 C x2 D b2

AT
1 y1 C AT

2 y2 D 0
bT

1 y1 C bT
2 y2 D 0

x2 C y2 �α1 � 0
α � 1

x2, y2 � 0

The constraintα � 1 is used for excluding unbounded solutions. By means of interior
point methods we can solve this model in polynomial time. For any optimal solution
α has a positive value. The implicit equalities ofP can easily be determined from the
optimal values ofx2. Every entry ofx2 that is zero corresponds to a slack variable of
an inequality constraint inP that has a zero value for every point ofpol(P ). 2

Theorem 4.3 Let P be a constraint collection in IRn. The degeneracy degree of
pol(P ) can be calculated in polynomial time.

First, all implicit equalities ofP are determined using the method described
in Theorem 4.2. These calculations take polynomial time. The number of equality
constraints together with the implicit equalities inP is now equal to the number
of binding constraintsbnd(P , P ). Secondly,dim(P ) is calculated by determining
the rank of the coefficient matrix corresponding to the equality constraints together
with the implicit equalities. This can be done in polynomial time with Gaussian
elimination. Hence,σ(P , P ) D bnd(P , P ) C dim(P ) � n can be calculated in
polynomial time. 2
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