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Abstract. A representative model of a return map near homoclinic bifurcation is studied. This
model is the so-called fattened Arnold map, a diffeomorphism of the annulus. The dynamics is
extremely rich, involving periodicity, quasiperiodicity and chaos.

The method of study is a mixture of analytic perturbation theory, numerical continuation,
iteration to an attractor and experiments, in which the guesses are inspired by the theory. In
turn the results lead to fine-tuning of the theory. This approach is a natural paradigm for the
study of complicated dynamical systems.

By following generic bifurcations, both local and homoclinic, various routes to chaos and
strange attractors are detected. Here, particularly, the ‘large’ strange attractors which wind
around the annulus are of interest. Furthermore, a global phenomenon regarding Arnold tongues
is important. This concerns the accumulation of tongues on lines of homoclinic bifurcation.
This phenomenon sheds some new light on the occurrence of infinitely many sinks in certain
cases, as predicted by the theory.
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1. Introduction

1.1. Motivation

This paper involves a dissipative family of diffeomorphisms of the annulus, the so-called
fattened Arnold family, which can be regarded as a perturbation of the Arnold family
of circle maps. It turns out that in a certain setting, the fattened Arnold family can be
regarded as a simplified global model for the return map of a dissipative diffeomorphism
near homoclinic bifurcation. This implies that its dynamics has a universal character in the
world of two-dimensional (2D) maps. This dynamics itself turns out to involve periodicity,
guasiperiodicity and chaos, between which there are various transitions (bifurcations). In
this respect it can be compared with classical examples such aséienHnap and the
standard map (cf Broest al [54, 10, 11], Roussaine and Sinj48]).

We study the fattened Arnold family in dependence of three parameters, using both
analytic perturbation theory and numerical methods. In certain parameter regimes, our
family is quite near the Arnold family of circle maps. Perturbation theory here reveals
periodicity and quasiperiodicity, parametrically organized by Arnold (resonance) tongues.
Outside these parameter regimes the perturbation becomes larger and bifurcations complicate
the dynamics, often involving chaos. On the one hand, this concerns local bifurcations, e.g.
cascades of flips (period doublings) and of cusp bifurcations. On the other hand, we have
to deal with homoclinic bifurcations. Here the dynamical features are further explored by
numerical methods, with an emphasis on numerical continuation of the bifurcations such
as the boundaries of the Arnold tongues. Also, we often just iterate to a periodic attractor.
The numerical search is then guided by the corresponding theory. This approach seems a
natural paradigm for the study of complicated systems.

The dynamics of the model expectedly is extremely rich. In several cases we find
interesting dynamical objects as predicted by the theory, such as ‘large’ strange attractors
that wind around the entire annulus (cfa2 et al [19] and Viana [60]). Also we discover
an interesting global phenomenon in the parameter plane. This concerns the accumulation
of the boundaries of certain Arnold tongues on lines of homoclinic bifurcations. This sheds
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some new light on the existence of infinitely many periodic attractors (sinks) near such a
tangency (cf Newhouse [38] or Palis and Takens [45]).

1.2. Object of study

To fix thoughts, we first introduce the fattened Arnold family of annulus diffeomorphisms
by
Fowp: StxR — S'xR )
x,y) = (x+o+a(y+sinx)(mod2r), B(y + Sinx)),

wherew € S' = R/277Z, « € R and 8 € R are parameters. The ma@w,ﬂ has
constant Jacobian JBg,, s = . Moreover, if 8 # 0, by using the change of coordinates
x o —x+wt+afly, y < By we Obtainff“o;:)ﬂ = _aﬁ—lyw_ﬁ—l, Whereﬁa,w,}g is the family
(1) in the new coordinates. Hence, without loss of generality we can asgijmel.

Instead ofF, ., s we may consider a lifF, , s : R2 — R2. The only difference with
(1) is that in thex-direction we refrain from counting mock2 Also, the parametap now
varies overR. Notice that in this setting a periodic poift, y) of rotation numberp/q is
determined by the equatioﬁj’w(x, y) = (x +2pm, y). We recall the simple fact that, for
any k € Z, the mapF, .2 is also a lift of Fy, ,, 4.

Note that for3 = 0 the circley = 0 is invariant. Inside this circle we have
Fuwox,0 = (fuo),0), where f, ,(x) = x + w + asinx (mod2r) is the classical
Arnold family of circle maps, see Arnold [1], which explains the name of this object
of study. We recall that the Arnold maf,,, is a diffeomorphism forie| < 1, only a
homeomorphism fote| = 1 and an endomorphism fde| > 1. For|a| > 1 it is, for
example, known that there are at most two attracting periodic orbits (see Boyland [8]).

This paper deals mainly with the dissipative c§8p< 1. Some facts about the (near)
conservative cases are further elaborated in section 5.3.4 and appendices C and D. In most
of the sections, we shall fig and study the bifurcation set in the, w)-plane. However,
sometimes we also vary the paramegein order to see transitions between several of these
two-parameter scenarios. F| < 1, the set

18] Bl }
1-18I" 1~ 1Bl

satisfiesFa,w,,g(T) C T. Therefore there exists a global (or universal) attrac®or=

Mhen F;’w,ﬂ(T), of zero Lebesgue measure. One of our interests is to understand the
structure of this sef2. For many values of the parametersand g the attractor is just

an invariant circle, displaying either periodic or quasiperiodic dynamics. The question then
becomes: How is this ‘simple’ structure destroyed when changing the parameters?

T::Slx|:—

Remarks.

(i) Note thatF, , s for g = 1 coincides with the standard map. For general p < 1
we have a shifted dissipative standard map. Fdr < 8 < 0 the map is similar, but
orientation reversing. This property has important qualitative implications for the dynamics.
Some other interesting families of maps are also particular cases or limit cases of (1), such
as the Hnon and logistic maps, the so-called ‘twist map’. An extension introduced in
appendix A (given by (6)) also contains the whisker map as a particular case.

(i) We observe that the transformatioris, y, @, w, 8) < (—x, —y,a, —», 8) and
x,y,a,w,B) < (x + 7, —y, —a, , B) again give the initial family. Therefore, we can
restrict ourselves to the casee [0, 7], « > 0.
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1.3. Outline, sketch of some results

The analytic study of the dynamical behaviour of the fanfilygiven by (1), in general is

not easy. However, there are two regions in the parameter space, givigh &y 1 and

lo| < 1 respectively, in which some information can be obtained using perturbation theory.
Here the main conclusion is that the attrac@biis an invariant circle.

In fact, as said before, fof8|] <« 1 our family (1) is a perturbation of the one-
dimensional (1D) Arnold family. A similar relationship exists between thenéh map,
given by H, ,(x,y) = (1 + y — ax? bx) and the 1D logistic map. In the latter case a
perturbation analysis allows us to obtain many details about the dynamigs gfx, y)
for |b| <« 1 (see Holmes and Whitley [30], Benedicks and Carleson [5], Mora and Viana
[36], Tatjer [57, 56]). It is our aim to use similar techniques in the present Arnold case.
In section 2 we shall see, that here inde&eds a globally attracting invariant circle. In
the case wheréx| <« 1, our family (1) cannot always be viewed as a perturbation of
a 1D map. Here, however, using normal hyperbolicity directly, we still obtain the same
conclusion regardin@. Another conclusion of section 2 will be that this invariant circle is
quasiperiodic and hence of cla€$°, or evenC®, for a subset of théw, w)-plane of large
Lebesgue measure.

We also have to consider periodic attractors, which for small valuge|odie inside
the invariant circle2. In the («, w)-plane periodic attractors are organized by Arnold
tongues, the properties of which will be treated systematically. Near0 a normal-form
approach gives all the information needed, as will also be seen in section 2. Relevant
generic conditions have been checked with suitable computer programs, both symbolically
and numerically. Some new material concerning the resonant normal form can be found in
appendix B.

The perturbation theory also gives an important contribution to the theory of homoclinic
bifurcation (again cf [30, 56]). It turns out to be useful to explicitly regard the unperturbed
Arnold family of circle maps as the ‘trivial’ annulus map:

Fa,w(xa y) = (X +w +0[Sinx, O)

In this way a good perturbation theory for smil is particularly possible, so we can keep
track of the winding of the unstable manifold around the annulus and a good description of
homoclinic tangencies can be given, also with respect to the strong stable foliation. Since
we are dealing with more than one parameter, combinations of homoclinic and fold (saddle-
node) bifurcations also have to be considered. Furthermore, we briefly touch upon primary
homo- and heteroclinic tangencies in this ‘trivial’ case.

Section 2 gives the starting point for the numerical exploration of section 5. What is
new in it is theapplication of the theory (generally known, however see appendix B) to
our fattened Arnold model.

In section 3 we briefly discuss the present knowledge of the possible transitions to
complicated and chaotic dynamics as the parameters move. One element concerns the loss
of smoothness of the invariant circle as well as its destruction. The second element is the
birth and death of chaos. Here we just briefly introduce the elements of local and homoclinic
bifurcation involved. It is to be noted that all scenarios sketched in this section indeed seem
to occur in the fattened Arnold example.

Section 4 contains an extensive theoretical review of generic possibilities concerning
bifurcations of periodic points and homoclinic bifurcations. This material is of basic
importance for the numerical continuation starting from the perturbative situation in
section 2, in search of the scenarios of section 3. Notably, all the possibilities mentioned
seem to appear in our fattened Arnold family.
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We will restrict ourselves mainly to bifurcations of codimension 2. However, in the
semiglobal organisation of these phenomena also codimension 3 phenomena necessarily
come into play, since our example depends on three parameters. As mentioned earlier, also
infinite cascades of some bifurcations (flips and cusps) are relevant. Another part of this
survey concerns codimension 1 and 2 homoclinic bifurcations, so related to both saddle and
fold points.

This section is closed with some remarks regarding the role of heteroclinic intersections
and the differences between the orientation-preserving and reversing cases. A further
guestion is how to deal with genericity. Indeed, our numerical search in section 5 is
theory guided, but often genericity can only be checked partially. Our solution to this
predicament is simply to assume genericity and to interpret the numerical output from this,
until absurdities arise.

Section 5 then, contains the numerical exploration of the fattened Arnold model, starting
from the results of section 2. As earlier stated, all the scenarios and bifurcations sketched
so far are relevant for the model. Detailed graphics and other data can be found below,
including tests for the generic differentiability of circle attractors. Instead of summing up
many details, let us here restrict ourselves to sketching a few of the objectives.

In figure 1 the(w, @)-plane is depicted, fog fixed atg = 0.1. Each point (pixel) in the
plane is given a grey tone, encoding the existence of a periodic attractor, different periods
giving rise to different grey tones. A black parameter point indicates an invariant circle
(close to the bottom of the figure) or a strange attractor (further upward). The organization
of the parameter points with periodic attractors in overlapping Arnold tongues is immanent
from the picture. Often, several attractors can coexist for the same value of the parameters.

Figure 1 certainly indicates that the model displays a great richness, which we attempt
to understand better in this paper. Let us single out two aspects. One of these concerns the
accumulation of Arnold tongues. To indicate what we mean by this we refer to figures 2
and 3, where the latter is a magnification of the former. These figures show that the Arnold
tongues accumulate on lines of homoclinic tangency, indicateﬂfoz‘d%ﬁ and 3. This is
an experimental fact with a partial theoretical explanation. One thing it helps to understand
is the occurrence of infinitely many periodic attractors (sinks) in this situation (see again
Newhouse [38], Palis and Takens [45]).

Remark. Accumulation or ‘trend’ of resonance tongues is sometimes met in applications
(cf van der Heijden [28]). Also see Broer, Roussarie and&S[dD, 54] regarding the
Bogdanov-Takens bifurcation for diffeomorphisms.

Another aspect is the occurrence of ‘large’ strange attractors, for examples see figures 4
and 5. Such attractors occur near homoclinic tangency, as theoretically predictegdzdy D
et al [19] and Viana [60]. Compare with the ‘small’ attractors as predicted by Newhouse
[38], Palis and Takens [45], Benedicks and Carleson [5], Mora and Viana [36] and Tatjer
[57, 56], and which show up also abundantly in our model. This remark is of special
importance when viewing the fattened Arnold family as modelling the return map near
homoclinic tangency. This is used to try to capture the full dynamics on a fundamental
domain (for details also see appendix A).

Furthermore, in section 5.3.4 some open problems are mentioned, while in section 5.5
we invite the reader to join us in a computer experiment. This verbal ‘movie’ concludes
the paper, illustrating the claim that 2D maps should no longer have any secrets.

An essential tool for the numerical computations is continuation. It has been used for
most of the bifurcation diagrams, to trace curves of: folds, flips, constant trace, double
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Figure 1. Arnold tongues:8 = 0.1, w € [0, 7] and« € [0, 10].

eigenvalues, homoclinic and heteroclinic tangencies (both to saddles and folds) and cubic
tangencies to strong stable foliations. When required, several symbolic computations have
been carried out to high order, for example to obtain good starting approximations of
invariant manifolds or to have local approximations of tongues. Typically, truncated power
series in one or several variables, with numerical coefficients, have been used. For details
we refer to [51].

2. Perturbation properties of the fattened Arnold family

We consider the fattened Arnold famil, ., s given by (1). The properties presented here

are mainly based on a perturbation analysis of 1D maps. Our results concern the existence
and differentiability of the invariant circl€, using normal hyperbolicity. The dynamics
inside this circle can then be either periodic or quasiperiodic. (&he)-plane is organized

by Arnold tongues, which will also be defined here. Moreover, we discuss homoclinic
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Figure 2. Arnold tongues for8 = 0.3 up to period 10. We include two homoclinic bifurcation
curves at which the tongues accumulate.
Rectangle A Rectangle B
18
1/9 7 |16 1/5
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03 s03 8 /17 16 15
o

Figure 3. Magnifications of the rectangles in the previous figure. The number indicates the
rotation number associated to each invariant circle. Windowg5[1.6] x [1.4, 1.6] (left) and
[1.9,2.1] x [1.4, 1.6] (right).

bifurcations from the perturbative point of view.
First, however, we briefly review some generalities about circle maps and about the
perturbation relation between 1D and certain 2D maps.
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Figure 4. ‘Large’ strange attractor fox = 1.1, 8 = 0.1 andw = 1.3, outside (but near) the
tonguelf, consideringx as the angle and = y + 8/(1 — B) + 0.1 as the radius in polar
coordinates, and displaying it in Cartesian coordinates.
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Figure 5 ‘Large’ strange attractor for = 4.5, 8 = 0.55 andw = 10 (on the boundary of the
tonguelo) The polar coordinates are the same as in figure 4.

2.1. Circle maps

We commence by recalling some general facts about circle maps.
R/27R can be lifted to a homeomorphisni of

preserving homeomorphism &

Every orientation-
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R where f(x + 27) = f(x) 4+ 2r. This is equivalent to saying thgt = Id + ¢, whereg
is a 2r-periodic map. Let us introduce the following notation. Fo= 0, r > 1, r = oo
or r = w by D" (S) we denote the set af” diffeomorphisms{ > 0) or homeomorphisms
(r =0) f onR, with f = Id 4+ ¢ andg a 2r-periodicC" map.

The rotation number of any map € D°(S?) is defined by
f'(x) —x

nmw
This limit exists independent of. Also it is independent of the lift, if defined modufo.
Note that in the case of the rigid rotatioR,,(x) = x + 27w , one hasp(R,,) = .

We list some well known properties pf(see, e.g. Nitecki [41]). Lef € D(SY). Then
there existsc € R such thatf?(x) = x+2rp if and only if o(f) = p/q € Q. The rotation
number depends continuously ghin the C%topology. Conjugate homeomorphisms have
the same rotation number. In general the converse is not true. Howeyeis iff classC?,
with p(f) € R\ Q and logf’ of bounded variation therf is C°-conjugate toR,(y; this
it the content of the Denjoy theorem. For such diffeomorphisms every orbit is dense. In
such a case one says that the dynamics of the map is quasiperiodic. Finally, an orientation-
preserving diffeomorphism of the circle is structurally stable if and only if the rotation
number is rational and all its periodic points are hyperbolic. Moreover, the set of structurally
stable diffeomorphisms is open and dense in the sp&¢B!).

In the following propositions, we quote some other properties related to the maps under
consideration. Proofs of these results can be found in Herman [27] and Yoccoz [61]. First,
however, we need the following definition.

Definition 2.1. Let { f;},cr be a family of maps inD%(S?).

(1) We say that f;},cr is positiveif: (a) fi11 =27+ f;, forallt e R and (b) Ifry < 2
then f, (x) < f,(x), for all x e R;

(2) We say that the family f;};cr satisfies propertyd if f? £ R, forallt e R, p € Z
andqg € Z \ {0}.

We observe that iff, = R, o f, then{f,};cr is a positive family. If, moreoverf
is a non-affine entire function, thefy;},cr satisfies propertyd, see [47]. In particular
the Arnold family is both positive and satisfies propeddy if we taker = /27 and
0 < |e| < 1. Finally we note that4 is a generic property.

The two results we wish to consider are now formulated as propositions.

Proposition 2.2.1f f;, = R, o f and p(¢t) = p(f;) then:

(D) pt+1) = p);

(2) p is a continuous increasing map. It is strictly increasingaif p (7o) € R\ Q;

(3) if {f,}:cr satisfies the hypothesid, then for all p/q € Q, the setp~%(p/q) is an
interval with non-empty interior. Moreove® \ int (p~%(Q)) is a Cantor set.

p(f) = lim

Proposition 2.3.For r > 2, let f € D"(SY) and p(f) = po. Then there exists a set
A C [0, 1]\ Q of Lebesge measute such that ifog € A then f is C’~2 conjugate toR,,,.
(Hereco —2 =00 andw — 2 = w.)

2.2. Normally hyperbolic invariant circles

We show that both for smalle| and also for smallg|, the attractorQ2 is a normally
hyperbolic invariant circle. A definition of normal hyperbolicity can be found in Hirsh
et al [29] or in Palis and Takens [45]. Indeed, for a smooth diffeomorphisnM — M,
where M is a compact manifold, consider an invariant submanifgld- M. One says
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that V is normally hyperbolic if for eaclx € V there is a continuous, invariant splitting
T.(M) = T, (V) @ N} @ N! with the following properties. There exist constafdts> 0,
o > 1,r > 1, such for every triple of unit vectors e 7,(V), n* € N}, andn* € N* and
for anyk e N

I (dg*)n" || > cot and I (dg")n’| < Clot,

l(de*)vll” (de*)vll”
where the norms are taken with respect to some Riemannian metric. In this case one calls
V r-normally hyperbolic.

It is known [29,theorem 4.1], that-normal hyperbolicity ofV implies thatV is of

classC”. If we apply this to the fattened Arnold famil¥, . g, with |¢| < 1, we obtain
the following.

Proposition 2.4. Let us fix0 < |8] < 1 andr > 1. Then, there exists, > 0 such that for
lo| < a,:

(1) for all w € R there exists an-normally hyperbolicF-invariant circle C, ., s and,
hence, it is of clasg”";

(2) Co,.p = 2 is a global attractor.

For fixed g and r let a,. be the supremum of the values|af such thatC, s is r-
normally hyperbolic for alkw € R. If we allowr or 8 to vary, one has:

(3) @, —» 0asr — oo, for fixedB, while for fixedr one hasy, — 0 as|B8| — 1.

Proof. We perturb from the case = 0. It is easy to see thd , g has a globally attracting,
hyperbolic invariant circleCo, g given by the equatiory = y,, g(x), where
B sin(x — w) — p?sinx

1 — 2B cosw + B2
Moreover, this circle is--normally hyperbolic for any- > 1. Therefore, the items (1) and
(2) follow from [29, theorem 4.1].

In order to prove (3), consider a value of for which F, , g has a fixed point with
eigenvaluesi;, A,, such that|ii] < |Az|. That this is possible follows from a direct
study of Fa,w,,g (see below). If there exists mnormally hyperbolic invariant circle, then
|A1]/]A2]" < 1. An easy calculation now shows that < N, (8) = min,cr N, ,(8), where

N, (B) i= (L= B[V (1 — sign(B) 617",
and N, ,(B) = (a)Z(l_ ,3)2 + Nr(ﬂ)Z)l/Z_ This proves (3) .

ya),ﬂ(x) =

Remarks.

(i) For |B] < 1 and|a| « 1 the invariant circleC,, g is the graph of a 2-periodic
C"-map g4, . Moreover, by the unicity o’ ., g, One hasgy w1278 = a,0.8-

(if) One may ask whethe€f, ., 4 is of classC” even if it is notr-normally hyperbolic.
If p(Cuwp) € Q then it is an open property that, . s contains two periodic orbits,
one consisting of sinks, the other of saddles. The invariant curve itself then consists of
branches of the unstable manifolds of the saddles which meet at the sinks. Within this
setting, generically the matching of the branches at the sinks is not betteCthavhere
r :=logij/logx, 1 > A5 > A} > O being the eigenvalues at the sinks iz N. This
differentiability is not higher tharC"~< for any e > 0 if »r € N. Numerical evidence that
our family (1) has these generic properties will be given in section 5.3.1.

For 8 = 0 the mapF degenerates to an endomorphism with a critically attracting
invariant circle. We want to perturb from = 0, investigating the persistence of this circle.
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Figure 6. The curvesx = =N, (B), forr =1,2,3.

Proposition 2.5.Letr > 1 be given. Then for anj| < 1 and |8] sufficiently small (the
smallness depending ¢|) and for all , there exists an invariant circl€,,, g of classC”.
Moreover,C, g is r-normally hyperbolic.

Proof. We use a graph transform as in the proof of the stable manifold theorem (cf Shub
[49]), only explaining the Lipschitz case. Indeed, I&t be the set of 2-periodic maps in

R with a Lipschitz constant less than or equalko Then define the mag : Lx — Lk

by F(g)(x) = B(g(G1(x)) + sin(G~1(x))), whereG (x) = x + w + a(g(x) + sinx)). Let

K > 0 be such thatk + 1)|«| < 1 and|8] < KLH(l— |a|(K +1)). One can show that

has a unique fixed poirg. By definition, the graph of is an invariant circle. In the case

r > 1, we have to take smaller values |off and |8|. The normal hyperbolicity is due to

the persistence of the invariant circle if the map is perturbed. The final statement follows
applying Mdié [33]. O

Remark. Let M, be the subset of ther, 8)-plane bounded by, and—N, and containing

(0, 0) (cf the proof of proposition 2.4 and figure 6). By proposition 2.4(dif 8) & M,,

there exists a value @ for which F, ,, g does not have arr-normally hyperbolic invariant
circle. Generically one expects that the cur#ed, are the boundary of the sét, of

(o, B)-values, for whichF, ., g hasr-normally hyperbolic invariant circles for ad-values.

Also it seems thatr = £N,,(8) form the boundary, for any given value af, of the

« values for which there exists mnormally hyperbolic invariant circle. As we shall see
below, these expectations can be frustrated by different mechanisms. Note that the two
previous propositions only ensure thi}. contains a neighbourhood of the union of the

and g axes. Moreover, from the proof of proposition 2.5, it follows that, for a fixed value
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of |a|, the optimal choice oK is K = |«|~¥? — 1 and then the bound ojB| is given by
la| =2 + |82 < 1. This bound coincides wittv; *(|«|) for positive values of8.

We complete these general considerations by deriving a normal form for théynap
restricted to the invariant circl€, , g.

Proposition 2.6. Fixing |8] < 1andr > 1, leta, > 0 be as in proposition 2.4. Then, for
la| sufficiently small and, in any case, less than the restrictionf, ., gc,., is smoothly
conjugate to a normal form

h.wp(X) = % + o + @ sinx + O@?),

wherea = o H (w), x = x + G(w), for some functiorH (w) # Ofor all w € R, H and G
being 2 -periodic functions. Moreove; ,, g iS a positive family with respect .

Proof. First, we parametriz€, ., g by thex variable. It follows directly that
Bsinw 1— Bcosw . 2
— cosx sin O(a®).
1— 2B cosw + B2 +1—2ﬂc05a)+,32 ¥ )+ O

Let G(w) = arctaf—pBsinw/(1 — Bcosw)) (in the suitable quadrant) and (w) =
(1 —2Bcosw + B2~Y2. Then

hwp(X) = x + @+ aH (o) Sinx + G(w)) + O(?).

hewpx) =x+w+o (

Using the mapsG and H we obtain the normal form fok as desired. The second part of
the proposition is a consequence of the remark following proposition 2.4 and the fact that
G is 2r-periodic. O

2.3. Quasiperiodicity, smooth invariant circles

In this section we consider the case in whijeh is sufficiently small to ensure, by normal
hyperbolicity, the existence of a smooth invariant circle. kgf, s denote the mag, ., s
restricted to the circle, ., g. First, we present a result concerning to the measure of the
values of the parameter for which the map, ., g is Smoothly conjugate to a rigid rotation.
As we shall see, this is a way of obtaining values of the paraméters) for which the
invariant circle is of clas€>.

Proposition 2.7. Fix |8| < 1 andr > 2, whilea, > 0 is as in proposition 2.6. Also fix|
sufficiently small (less thad,). Then:

(1) there exists a se¥ C [0, 2], of non-zero Lebesgue measure, such thatfer M
the restrictions, ., g is smoothly conjugate to an irrational rigid rotation;

(2) for all w € M, the invariant circleC, , g is of classC*;

(3) for « — 0, the measure o#/ tends to2r.

Proof. The starting point here is the normal form , g, obtained in proposition 2.6. Here
we take|«| < @,, for r sufficiently large, say = 12. For simplicity we omit all bars.

The first step of this proof is to obtain a further normal form fipmssuming thad /2w
is a diophantine number. This means that for same > 0, for all p/¢ one has
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Indeed, provided this condition ap, by successive changes of variables one obtains
hawp(¥) =X + o+ f(a, B, w) + Oa" ).

The idea is to expand into powersofind to average away thedependence in an inductive
process. Compare with Broet al [9], or Broer and Takens [12].

The second step applies a finite differentiable version of the KAM theorem for families
of diffeomorphisms, see e.g. [9, section 8d]. Therefore werfix 3 andy > 0 in the
above diophantine condition. The corresponding set»dhen contains a Cantor set of
positive measure. The conclusion is that the family, 4, with « fixed sufficiently small,
is conjugate to a family of irrational rotations. Here the conjugacy has lost some smoothness,
but is still of classC®. In the w-direction this smoothness is understood in the sense of
Whitney.

Since the perturbation term in the above normal form is of oedét it now follows
that we can taker = «". The setM obtained in this way is larger than the one obtained
so far with a fixed value of . Indeed, locally the measure of its complement in29] is
of ordera” asa — 0. This proves the items (1) and (3) of our proposition.

In order to show the second item, we prove tldat, s is I-normally hyperbolic for
any!. Indeed, just apply the definition of normal hyperbolicityWo= Cy.,,. 5, ¢ = Fu.00.8
N¥ = 0. One then has to prove that

kY,
II(dwk)n |z| < Cclot,
[(deF)vll

However, this is trivial, sincéi, s is at leastC!-conjugate to a rigid rotation, whence
l(de*)v|| > D > 0, for someD that does not depend an Another application of
[29, theorem 4.1] gives that the unique cirdg, s must be of clas€*. (]

Remark. Our example is real analytic and one may ask whether some of the above
quasiperiodic circles are also analytic. It turns out that, for sneglithese correspond

to a similar setV, the measure of which again tends to full measurexfes 0. Indeed, for

a = 0 the invariant circleCy, g is real analytic, while here we havg , g(x) = x + o for

the restriction. Moreover, if we write = y, g + z, at Co ., g We obtain the normal linear
form Fo .. g(x,2) = (x + w, Bz). We now proceed similarly to in the above proof, applying
the analogue of [9,theorem 4.1] for diffeomorphisms. Up to diophantine conditions with
r = 3 andy > 0, this yields a conjugacy with the family, , s, again witha fixed
sufficiently small. This conjugacy is of class (Whitney=)° and even analytic i, z, 8
anda. Finally, by takingy = 2«, one obtains a se¥ as desired, such that measure of
[0, 27] \ M is of ordera.

2.4. Periodicity, Arnold tongues

In this section we consider the periodic points of our fardily, g, in particular studying
the corresponding organization of tfwe w)-parameter plane. Recall thgt| < 1 was fixed.
Given p/q € Q, we now define the Arnold tongul%"/q C R? as follows

(w,a) € If/q <~ Fg!wyﬂ(x, y) = (x4 2rp,y), for some(x, y) € R2.

As stated earlier, this condition means thaty) corresponds to a periodic point of rotation
numberp/qg. Note that this definition does not need the existence of an invariant circle. Our
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(p/q,0)
w/2TT

Figure 7. The structure oﬂpﬁ/q: Cuy.01.6 is less differentiable tha@y, ., 4.

first concern is with the geometry of the tonglfgq, related to some dynamical properties.
The situation is illustrated in figure 7.

We first need more detailed information abauyt, s than given in propositions 2.6 and
2.7. To this end we formally expand, ., s and the invariant circle = g(x) to powers of
«. Indeed, let

hawp() =x+o+ Y a/hi(x),  gx) =) a"gn),
j=1 m>=0

where the coefficient functions; andg,, are trigonometrical polynomials also depending
on the parameterg and w.
The invariance requires

x~|—a)+Zajhj(x) :x—{—a)—{—a(Za"’gm(x)—l—Sinx),

j=1 m=0
ﬁ(Zamgm(x) + Sinx) = Za”gn (x + o+ Zajhj(x)>.
m=0 n=0 j=1

From the first relation it follows immediately thai(x) = go(x)+sinx andh;(x) = g;_1(x)
(j > 1). Inserting this into the second relation we obtain

B Zajilhj(x) = —sin (x +w+ Zajhj(x)> + Zakilhk <x + o+ Zajhj(x)).
i>1 j>1 k>1 j>1
Comparing powers of we recurrently obtairky, 4o, ... which are all of the form

hix)y = Y e,

k|<j k—j=2
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whereh; take real values wheneveris real and2 denotes a multiple of 2.
Next we further simplify., ,, g, reducing it to normal form. Indeed, let

hewp(x)=x+21p/q+8+ Zaj Z cj 1€,

izl kg k—j=2
whereé is small. We perform successive changes of variables of the form

z=x+a’ Z dj,keikx if j <gq,
Ik|<j k—j=2k#0

z=x+af Z dq,keik" if j=q.
|k|<q.k—q=2,ks£0

Keeping the names andx for the new function and variable, we obtain a normal form

h(x) =x+21p/q + 8 + c1(8)a® + - - + cpg /2 ()®?/2
+a®A,,(8) sin(gx + ¢p4) + O(a?th),

wherecy, ..., cjg/2; and A,,, > 0 are analytic ins arounds = 0. The Q™) terms are
also analytic in5. The anglep,,, is a suitable phase, depending&nBy shifting the origin
of x we can takep,,, = 0.

Before stating the next results we make the following conjecture.

Conjecture 2.8.Given0 < p/q <1, (p,q) = 1,9 > 0, considerA,,, (8 = 0) as a function
of B: A= A(p, ¢, B). Then for allp/q as before andg| < 1 we haveA(p, q, B) # 0.

Appendix B gives support for this conjecture.

Proposition 2.9. Assumgg| < landp/q € Q, ¢ > 1 (p,q) = 1, and that conjecture 2.8
holds true. Then there exists a positive constanidepending org and p/q, such that
there exist two analytic curvdsﬁ/qyi, of the formew = y;(a), i = 1, 2, with the following
properties:

(1) yi(@) = 2w p/q+c10?+- - +¢, 20?1+ 0; (), for suitable constants,, . .., ¢,—»
and|a| < ao;

(2) for |a| < ag, bothyy (o) < y2(a) and if (a, w) € 1°

£ 4 thenyi(@) < o < ya(@).

Proof. By demanding that theth power ofi has a double fixed point we obtain
8+ c1(8)a® + ca(®)a* 4 - - - + ¢y /()N £ A, (8) + Oty = 0.

From this the proposition follows becaudg,, # 0 by conjecture 2.8. O

Remarks.

(i) Note that from this proposition it follows that the order of contact of the tongue
boundaries at the resonanpggq is of g. Even for the familiar casg = 0 (i.e. the Arnold
family of circle maps) we did not find a complete proof anywhere in the literature. See also
appendix B where, in particular, conjecture 2.8 is provenget 0.

(i) If A,,, = 0 the normal form must be computed to higher order. Eventually, some
coefficient ofa™ sin(ngx + ¢,») for n > 1, m > nq, is different from zero. Then a similar
formula holds. If all of these are zero then(a) = y»(«) or the difference is infinitely flat.

(iii) Compare with item (3) of proposition 2.7. The fact that the measure of the
quasiperiodico-domain M increases to full measure as — O, is in accordance with
the sharpness of the Arnold tongues.
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We are now interested in the smoothness of the invariant circle, in particular how this
smoothness decreasescaicreases. It turns out that this occurs on cur¥esnside the
tongues.

Proposition 2.10.Assumdg| < 1, p/q € Q and that conjecture 2.8 holds true. Then for
all |a| < ag, a positive constant depending grand p/q, we have:

(1) the curvel“l’f/q’i is a line of generic fold bifurcations of the corresponding periodic
orbit.

Moreover, if0 < |8| < 1, let p,., be ap/q-periodic sink with(x, ) € 1, . Given

rla’
teR, letX, C If/q be given by the equatian DFy ,(ps..) = t. Then:
(2) X, is an analytic curve, defined farin a punctured left-hand neighbourhood of

1+ 9, fort = 1+ 7 degenerating ta’ , UT? ;

(3) these curveX, analytically foliate the interior of the sergf/q N {le] < aol;
(4) the r-normally hyperbolic invariant circleC, ., g exists for all|¢| < «p, andr
increases too ast 1+ 1+ p9.

Proof. The genericity of the fold bifurcation is ensured by the fact that at the saddle-nodes
(folds) the second derivative @f equalstq3a?A,,, + O(at?).

As detDF; ,(p«..) = B4, the trace of the sink;, ranges below % g9. Let 1, be the
eigenvalue of the sink along the curve akhgdthe one transversal to it. For the boundary
of the domain ofr-normally hyperbolic invariant circles, we must have| = |1,|",

Ar2 = B4. Hencerp = [B|¥/U+D. Let§ = a 98 + c1(8)a? + -+ + cfg/2(8)?l4/2),
Let g&¢ € [7/2, 37/2) be the approximate location of the sink (up t6eQ). Then we have
g8 +qA,, Singg = O(e) and i, = 1+ ¢4, ,a? cosgé + O(a?*t) = |B|9/7+D. Hence,
we obtain forx, , with 1, = |B]%/C*D + sign(B)|p|"?/+V, the expression

2
_ 1— |,3|q/(r+1)
82 + (QZT = Ai/q + O(Ol)

This curve is analytic because of the non-degeneracy and because it is obtained as a solution
of the analytic system

ngw’ﬂ(x, y) =(x,y), tI’DFg!wﬁ(x, y) =t.

Figure 8 illustrates the behaviour of thE, curves, in the(s,«) parameters, when
changingr for fixed values of8 andg. Along X, the minimum value ofw is given
by o, = (1 — B9/ ) /(g%A,,,) anda/, | O if r 1 co. This completes the proof of

(2)—(4). O

Remarks.

(i) The assumption in proposition 2.10, for small valuesxofelies on conjecture 2.8.
We shall show that the hypothesi$ also plays a role in this. For the cage= 0 (the
Arnold family) it is generally only known thatg/q ={(w,a) € R? : y1(ar) < w < p2(a)},
for continuous functiong; andy, with y;(0) = y2(0) = 27 p/q. However, these functions
are analytic forje| small. See Herman [26] for the cakel < 1 and Boyland [8] for the
general non-invertible case. Moreover, by proposition 2.2, since the Arnold family satisfies
the hypothesis4, the setllg’/q has non-empty interior. The hypothesis for small values
of «, is equivalent to either that,,, > O or that some coefficient af” sin(ng&), n > 1,
m > ngq, iS non-zero. Hence, conjecture 2.8 implies that the hypothésis true ‘at the
first opportunity’, when just considering the termsaif.
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Figure 8. Some curves, in the coordinategs, o).

(i) In view of the dynamics of the Arnold familyf, . inside the tongues, the
following is known (again see [8]). For any given value pfqg € [0, 1], there exist
two smooth curves, o, : [1,00) — R such that the following holds. (a) Fer > 1,
() < o1(@) < o2(a) < yo(a) while (b) y1(1) < 01(1) = 02(1) < y2(1), moreover (c)
for w € (y1(a), o1()) U (02(ax), y2()), « > 1, the Arnold family f, , has an attracting
p/q-periodic point.

(iii) Next we consider the casg # 0. First, it is easy to check the assumption made
in proposition 2.10 for the first tonguP{f. For a general tongue, i and « satisfy the
hypotheses of proposition 2.4 or 2.5, there exists a globally attracting invariant€irgle.
Moreover, by proposition 2.6 it follows thaf, ., g restricted toC, . g is conjugate to a
positive family, which is a perturbation of the Arnold family.

The results of propositions 2.7, 2.9 and 2.10 are a starting point of our numerical
continuation programme. As already stated, our main interest is how the structure of the
tongues develops ag| increases and how bifurcations of the periodic points and their
invariant manifolds play a role in this.

2.5. On homoclinic bifurcations

The fattened Arnold family fits in a quite general perturbation programme for small values
of B, the unperturbed casgé = O corresponding to the Arnold family of circle maps. In
this section we shall see how homoclinic phenomena for the 1D case translate to the 2D
case.
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2.5.1. Preliminaries. We explain this in a general setting. Given any one-parameter family
of 1D mapsy,, we define the two-parameter family of 2D diffeomorphishs, by

Fap(x,y) = (fa(x) + ¥, bga(x, ).

It is easily verified that iff, is the logistic family andg,(x,y) = x, then F,, is the
Hénon family. Presently our interest is in the case whete (a, w) (meaning that is a
parameter-vector with two components) and whgras the Arnold family of circle maps
given by £, (x) = x + w 4+« sinx. If we introducey = ay, we setg,(x, ) = y +a~tsinx
and b = B, in which case the corresponding family, , is exactly our fattened Arnold
family.

Thus, here the interest is in small values|bf. In the ‘unperturbed’ casé = 0, the
2D family readsF, o(x, y) := (f.(x) + y,0). For geometric reasons, however, it is often
useful not actually to reduce to dimension 1. Compare the approach of Tatjer [57] studying
the Henon map, and of Bosch [7] in a more general case. At the level of periodic points,
there is an obvious relationship betwegn F, o and F, ,, for small|b|, but for the moment
we shall focus on the homoclinic phenomena.

So suppose thaf is a 1D map with a repelling fixed poini. We say thatp has a
homoclinic tangency if there exists andn such thatf’(x) = 0 and f"(x) = p. This
situation can be seen as the limiting case of a homoclinic tangency for a one-parameter
family of dissipative 2D diffeomorphisms, as the dissipation tends to infinity, i.6.-as0
(see e.g. Tatjer [57]).

Under suitable assumptions the following result holds, see Holmes-Whitley [30]. If for
a = ag the mapf, has a homoclinic tangency of some saddle point, then iri¢hg)-plane,
originating from the pointlag, 0), there exists a countable infinite number of homoclinic
bifurcation curvesy,, n € N. We shall explain this now.

2.5.2. Homoclinic tangencies coming from 1DMe first explore the various effects of
tangencies in a 1D map = f,(x) on its ‘trivial’ 2D extensionF, o(x, y) = (f.(x) +y, 0),
that is, when the parameteéris set to zero.

Although the idea of this is quite general, for simplicity we restrict ourselves to the case
of the Arnold family F,, ., o(x, y) = (x + w + a(y + sinx), 0), to be regarded as a 2D map.
In view of the relevance of the fold bifurcation, we restrict the parameters to the right-hand
boundary curvel“g,z, given by the equation = w. This leads to the one-parameter family

Fowolx,y) =@ +w@+y+sinx),0).

Let p, = (x,, 0) be the fold fixed point ofF,, , o, recalling from section 1 thaF is a lift
of F. Also write x,, ; := x,, + 2rk. We study this lift in order to keep track of the winding
of the unstable manifold around the annulus (cylinder).

For ¢ > 0, sufficiently small, the intervalx},, x,, + €] is entirely contained in the
unstable manifoldW*(x,) of the ‘ordinary’ Arnold mapf,.,(x) = x + o (1 + sinx).
Hereafter, we shall abbreviatg, := f,, .. If  parametrizes this interval, then the iterates
Snow() = fa’)'(t) fill up the whole of this manifold¥*(x,). The graph of the map, ., gives
much information on the dynamics df,.

The translation of all this for the 2D ma#, ., o is immediate. Indeed, for the unstable
manifold W*(p,,) we haveW*(p,) = W"(x,) x {0}, with the interval k,, x,, + €] x {0}
contained in it. Moreover, foG, ,,(t) = F;, , o(t,0) we haveG, , = (g1.0, 0).

We continue by listing the various possibilities for the mgp,, thereby following the
same scheme as in section 4.3 below, indicating the parameter values in the corresponding
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Figure 9. The map g2 for several values otw. The horizontal lines are given by
x =3n/24+2kn, k=1, 2,3. (a) Fold cycle: g20.0.7, (b) cubic critical cycle:gz0.1, (C) quadratic
critical cycles: g20,1.2, (d) fold homoclinic tangencyg2o.1.38005014 (€) quadratic critical cycles:
82014 and () quadratic critical cyclesg2g 16.

plots, as displayed in figure 9. The whole scenario, in the transfer fot£) « 1, certainly
promises a complicated geometric structure of the unstable manifold!

(1) Fold cycle By definition, for all the points € (x,, x,, + €], one hasg, () 1 x,.1
asn — o0o. AS a consequence, o < gn.o(t) < x,1 for all » and allz € (x,, x,, + €.
Moreover, since the cycle is non-critical, we hayg, (1) # 0 for all n» and allz €
(xy, X, + €] In particular this implies that the mapfw is invertible, and, thererefore,
this situation is only possible fgw| < 1.
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(2) Quadratic critical cycle The strong stable foliatio** (p,,) intersects the ling = 0
transversally. In order to have quadratic tangencWdf(p,,) with F**(p,,) it is necessary
to have some poing and some: € N such thatg, ,(t0) = 0 andg, ,(t0) # 0. Furthermore,
we require thatg, ., (f0) = x. .k, for somek, asn — oco. Since here we are not in the case
of a fold homoclinic bifurcation, see below, we also hayg,(t0) # x,r. We call this
situation ak-quadratic critical cycle. Its occurrence necessarily reqyipgs- 1.

(3) Cubic critical cycle This case is much like the previous one. Indeed, now
&n.o(t0) = g, ,(to) = 0, while g (to) # 0. Observe that this can only occur fes| = 1.

(4) Fold homoclinic bifurcation In order to have a quadratic tangency with*(p,,),

a pointzo is needed and some > 0, satisfyingg, .(to) = x,x, While g, (o) = 0 and
gn »(t0) # 0. We call this situation a homoclinic bifurcation of type

In figure 9 we show the graph of the map, for several, increasing values of.
Moreover, in each case the corresponding type of homoclinic behaviour is indicated. For the
domain of definition ofg, ., we took a large interval = [3x/2, 337/20], with x,, = 37/2
as its left endpoint. In figure 8] one sees that there are poinjsthat, by iteration under
f.,, accumulate at the fixed points, x = 37/2 + 2kw fork =1,2, 3.

What does this mean for the invariant manifoldsf? As we have seen before, for
0 < w < 1 the mapf,, has a fold cycle, and fap = 1 a cubic critical cycle. As is suggested
by figure 9¢1), there exists a value; ~ 1.380050 14 such tha.\fw1 has a fold homoclinic
tangency. Moreover, iy > w1, then for anyk > 0 the mapf,, has ak-quadratic critical
cycle.

2.5.3. Primary homo- and heteroclinic tangencies in 1[Bor the sake of completeness and
for later use we look in greater detail at some other facts concerning homoclinic tangencies
for the Arnold family of circle maps. Given the value of the parametersv), to have a
homoclinic tangency a point. should exist, such that:

(1) £, (x) =0;

(2) fu.w(xc) is a fixed point whilex, is not fixed;

(3) fu.w(xc) is a repellor or a fold fixed point.

Using the explicit expression fof, ., the first two conditions lead to the following
parametric representation of the, ) couple. Letr be a real parameter ranging over
R\ {27k, k € Z}. Let y(¢) be defined as

t — sint

y(t) = m (2
Then one has
a(t) = 1+ yHY?, w(t)=1—y(@. ®)

Note that the excluded set in the range roftorresponds to unbounded values of the
parameters (except for the trivial case= 0, = 1,w = 0). Different ¢-intervals of
the form (2kr, 2(k + 1)7) correspond to different fixed points. The valuest gbr which
one has a homoclinic tangency to a fold fixed point are obtained by sétting «. This
gives forr the very simple conditiom = 2 arctarr.

Figure 10 shows the values &f, ) obtained by using (2) and (3). Note that not all
of these values satisfy the third condition abovek I 0 in the range(2kn, 2(k + 1))
the valuer; leads to a homoclinic tangency of a fold fixed point. Foz (#, 2(k + 1)7)
one has a homoclinic tangency of a saddle, whilerfar(2kr, #,) a heteroclinic tangency
occurs, since a branch of the unstable manifold of the saddle is tangent to the strong stable
manifold of the node. Different values &fproduce unstable manifolds which perform a
different number of windings before tangency. It is similarly true for negative valués of
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Figure 10. Curves of primary homo- and heteroclinic tangency in theao) plane for the
Arnold circle map.

This whole discussion refers to ‘primary’ tangencies, in the sense that the image of the
critical pointx, of f,,, is a fixed point.

Hereafter, we shall confine our attention to the first component of the curve displayed
in figure 10, that is, we restrietto the interval(—2m, 27). Fort = 0 one obtains the point
a =1, w = 0. The values corresponding tee (—2mr, —to) will be denoted a§ol’°. Those
for t € (tp, 2r) will be denoted a§02"°. Finally, fort € (—1g, tp), excluding the degenerate
caser = 0, we shall use the notatich. .

In figure 11 we depict the curve®), and7;°. The broken curvdy is the continuation
of the curvesTé"0 when the fixed point is attracting. Moreover, we have drawn the curve
Cy of values of the parameters for which the unstable invariant manifold of the repellor has
a cubic tangency with the strong stable foliation.

The idea behind this is that, when transferring from the ‘trivial’ 2D situation to the
‘perturbed’ case withg| small, we remain on a fold line throughout.

To this end we have to (re-)introduce the paramgter our considerations, so obtaining
maps which can be denoted 6%, , s. Several remarks are now in order. First, this map
is differentiable with respect to the parameters. Second, e.g. see [39], there exists a strong
stable foliationF**(p,, g) with leaves that are at least!. We note that we do not need
more differentiability in order to define quadratic and cubic tangency, with respect to the
foliation, at least in the topological sense. Third, bd®’ (p, ) and the strong stable
invariant manifold W*s(p,, 5) depend continuously og in the C* topology. The latter
statement follows from Perron’s existence proof (cf [44]).
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Figure 11. Homoclinic bifurcation curves irig.

3. Scenarios to complicated dynamics

We discuss various theoretical mechanisms by which the dynamics gets more complicated
when the parameter becomes larger. At first we are concerned with the destruction of the
invariant circle. For related numerical studies, see Aroretal [3], Feigenbaunet al [20]

and Ostlundet al [43] (also cf Broeret al [10]). The second subject deals with the onset

of chaos. (For bibliographical references see below.) We also note that all the possibilities
sketched in this section occur in our example of the fattened Arnold family.

3.1. Loss of smoothness and destruction of invariant circles

In view of the destruction of the invariant circle, several theoretical scenarios are possible.
One scenario involves the transition, on the circle, from a node to a focus. At this moment
the circle only persists as a continuous curve. Briefly before the focus comes into existence,
the eigenvalues of the node approach each other, until they coincide at the moment of
transition. Let us discuss the differentiability of the invariant circle at the node. Generically
this order is given by

log ||/ log|ul,

wherei and u denote the minimum and maximum eigenvalues (in absolute values) at the
node. An exception occurs when the quotient is an integerpsaihe resonance between
the eigenvalues gives rise to logarithmic terms in the local equation of the invariant circle,
implying that this curve is onlyn — ¢)-times differentiable for any positive value ef
Hence, variation of a parameter will induce a gradual loss of differentiability.

After creation of the focus, the invariant circle is just continuous (note that the length is
finite). In this form it can persist until a period-doubling bifurcation occurs (then the length
would be infinite). However, in principle, up to the value of the parameter for which the
flip occurs (with this value include) it can be homeomorphicSto Before that it could



Global models of dissipative diffeomorphisms 689

Figure 12. Typical transition inC of the eigenvalues at an attracting point in the orientation-
preserving (left) and reversing (right) cases. The transition is from the fold to the flip, following
the arrows.

already be destroyed by heteroclinic tangencies. Figure 12 displays the transition from fold
to flip regarding the eigenvalues in the complex plane. The orientation-reversing case is
simpler, since then the eigenvalues are always real.

Another possible scenario involves the occurrence of a cubic tangency between an
unstable manifold with the strong stable foliation of a node or fold (saddle node), again
yielding an invariant circle that is only continuous (see, e.g. figura@)l3¢hich refers to
the fattened Arnold family).

In this case, at the moment of bifurcation, there is a sudden loss of differentiability, from
C” to C°. It may even occur that, if the invariant circle consists of two branches of periodic
saddles, both of these enter the node from the same side. Now we refer to figures 13(
and @d). The reader can easily imagine intermediate cases. For instance consider figure 13,
in which there is an occurrence of transversal intersections of the unstable manifold of the
saddle and the strong stable manifold of the node (betweeand €) above), quadratic
tangencies with the strong stable foliation of the node (betwegrafd @) above) or
without any tangency with the mentioned foliation (betwedh &nd €)). After such a
cubic tangency, a homoclinic tangency may occur. In that case, the circle, which up to then
persisted only as a continuous curve, is destroyed.

Depending on the region of the parameters these scenarios all seem to show up in this
problem of the fattened Arnold family, as can be seen from figures) ¥(d ), also see
section 5.3. Similar situations are found in the c@se: 0 as displayed in figure 14. In
figures 15 and 16 similar pictures are given for the fold cases.

Another important point is what happens after flast homoclinic tangency. This
behaviour is displayed in figure 1&( for the fold case. In this problem such a tangency
only occurs for positives. Indeed, after the tangency the whole scenario is in some sense
reversed. We mean that the unstable manifold of the saddle can, in turn, have a cubic
tangency to the stable foliation of the same saddle. In that case a smooth invariant circle
may be born (see the passage in figure 17 from the @ge (d)). The difference with the
above scenario is that the rotation number of this curve changes with the parameter, while
in the earlier case it had a fixed rational value. This curve can again be destroyed in various
ways. Between théirst andlast homoclinic tangencies several interesting phenomena occur,
with creation and destruction of sinks and the subsequent accumulation of ‘secondary’ fold
curves. Also see the end of sections 4.3 and 5.3.2.

From proposition 2.7 and the previous considerations, we expect that the subset of the
(o, w)-plane, where the circl€,, g is of classC”, but not of clasg"*1, has a complicated
geometry. This also holds for the boundary of the total parameter domain of invariant circles.

A matter which is not quite understood is how the quasiperiodic circles disappear into
Denjoy or Aubry—Mather sets. It is suspected that samstruction phenomenoas in the
conservative case (see [42]) plays an important role.
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Figure 13. Some configuration of the invariant manifolds of a saddle for values of the parameters
near a fold bifurcation. Casg > 0. (a) Left cubic tangency to~**, (b) left quadratic tangency

to W**, (c) right quadratic tangency t&/**, (d) right cubic tangency to=**, (e) left quadratic
tangency toWw* and €) cubic tangency tav*.

3.2. Birth and death of chaos

Consider again the above scenarios by which the invariant circle loses differentiability. We
claim that in both cases strange attractors (and chaos) can be brought about.

In the first scenario a node turns into a focus. After this the eigenvalues can go to the
negative half-plane, where one of them can ‘cause’ a flip bifurcation (see figure 12). After
this bifurcation the invariant circle, should have ‘infinite length’ and, furthermore, it is not
homeomorphic tast. Then, repetition of a flip may lead to a cascade: a familiar method
for obtaining chaos. This is exactly the mechanism that createséhertHattractor (cf Si
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Figure 14. Some configurations of the invariant manifolds of a saddle for values of the
parameters near a fold bifurcation. Cg8e< 0. (a) Cubic tangency taF**, (b) quadratic
tangency tow**, (c) quadratic tangency t&#* and @) cubic tangency tav*.

[50], Benedicks and Carleson [5], Palis and Takens [45], Mora and Viana [36] and Tatjer
[57, 56]).

In the second scenario, involving the behaviour of the unstable manifold of the saddle
and tangencies to stable manifolds or foliations, different kinds of attractors can occur. After
a quadratic homoclinic tangency related to the saddle (that, for definiteness, we assume
takes place to the left of the stable manifold), if one has transversality, a small piece of the
unstable manifold goes to the right of the stable manifold. The situation is similar to the
Hénon case. Theoretically one can expect creation of periodic orbits and then again the flip
cascade and a usual road to chaos (see figureg dnd p)). But the strange attractors
created in this way should be named ‘small’ attractors. Suppose, however, that the ‘last
homoclinic tangency’ occurs, i.e. that the unstable manifold completely goes to the right of
the stable manifold of the saddle (or the fold), two quadratic tangencies occur with the stable
foliation, see figure 17). This can again give rise to periodic orbits, but also to ‘large’
strange attractors. There is no way to avoid the ‘folds’ of the unstable manifold, and if this
one accumulates to some invariant set, this set will inherit a similar ‘folding’. It is only after
a possible cubic tangency to the stable foliation when one can recover a smooth invariant
curve (see figure 1d)). Both types of phenomena occur inside an Arnold tongue. Another
possible situation appears when one has quadratic tangencies to the strong stable foliation
in the saddle-node case (to the left of the stable manifold) and a perturbation destroys the
periodic orbit. Then again ‘large’ attractors may occur, but the parameters are outside the
Arnold tongue (cf Dazet al [19], Viana [60]). An illustration of this last situation is shown
in figure 4, section 1.



692 H Broer et al

Wss(po) Wss(po)
W o) - W)
Po Po
@ (b)
w 4)ﬁ
Wss(po) Wss(po)
W o) W e o)
Po Po
© (d)

Figure 15. Several configurations of the invariant manifolds of a saddle-node fixed point. Case
B > 0. (@) Fold cycle, b) quadratic critical cycle,d) cubic critical cycle, €) fold homoclinic
tangency ands) fold homoclinic tangency from outside.

There is a simple way to see why in our case ‘small’ strange attractors do occur in some
extreme situation. Indeed, we carry out the following change of variables and parameters
on the mapF, ., g:

1 3 1._ B Y
x:;x-i—zﬂ, y:Ey+m’ 01:60(1—,3)"';,

where we transforngx, y) into (x, y) and(«, 8) into (y, 8). The new map reads

(i) . (i + 31— B) + (1= cos¥/w)w?(1 - B) + y (§/w? — cosi/w) + B/(B — 1))) _
y

B + (1 — cosx/w))w?)
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Figure 16. Several configurations of the invariant manifolds of a saddle-node fixed point.
Casep < 0. (a) Fold cycle, b) quadratic critical cycle,d) cubic critical cycle andd) fold
homoclinic tangency.

It is easy to see that fap — oo this map tends to
(x) N (Hy(l—ﬂ) +31- P -y +1)>
y BG + 3x?) '
So, the map under study can also be related to theold map in a limit case. Then, using
the results of Benedicks and Carleson [5] and Mora and Viana [36], we obtain the following.

Proposition 3.1. There exis{8; > 0 andwp > 0 such that ifg and w satisfy|8| < Bo and
|w| > wp, then there is a subset C R of positive measure such that, for alle A the map
F,.» g has a strange attractor. Moreover,df € A thena = O(w) and |A| = O(1/w).

Remark. Note that the ‘small’ strange attractors as found in [45] occur in a different
parameter domain.

3.3. On genericity

At this point it is appropriate to add some remarks on genericity. When dealing with
a concrete example, one can always ask whether it has a given generic property or not.
As an example consider the Kupka—Smale property, requiring that all periodic points are
hyperbolic, while their stable and unstable manifolds meet only transversallyC Fieory

(r > 1) is reviewed in Palis and de Melo [44]. For a real analytic analogue see Broer and
Tangerman [13].
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Figure 17. Several configurations of the unstable manifold of a saddle fixed point with respect
to the stable manifold. Case > 0. (The case3 < 0 is not given.) &) Just after inner (first)
tangency, f) just after external or outer (last) tangenay), €ubic external tangency and)(after

the cubic external tangency.

It may be clear that for any given system such a property is almost impossible to verify.
A similar situation to that which we met when considering the generic propéfty circle
maps. In general, the problem is that an infinitude of checks has to be made. However,
note that in both of the above properties, any reasonable, finite amount of such checks in
principle can be made with the help of a computer (cf appendix B).

In this predicament our approach is simply to assume ‘genericity’, or rather ‘persistence’,
of the example in some wide sense, and to interpret the numeric evidence from this. Below,
in some cases symbolic and numeric checks for such assumptions are made.

In view of the generic phenomena mentioned in this paper, in particular bifurcations and
scenarios for transition to chaos, we repeat that all of these seem to occur in the fattened
Arnold family under consideration.

We recall that our examplé, , g, for « = g = 0, boils down to the family of rigid
rotationsx — x +w (cf the original Arnold family). This degeneracy even has codimension
oo. Nevertheless, as we saw above, the property that quasiperiodic dynamics occurs with
positive measure in the parameter space, is persistent. Another special feature of our example
is thaty only occurs in a linear way. At the moment, beyond simplifying the normal-form
computations, are not clear to us the consequences of this fact.

We close this section by listing a few other properties that play a role in this respect.

(1) Consider the normally hyperbolic invariant cirdlg , s as before. Generically-
normal hyperbolicity implies that the circle only is of clags, but in exceptional cases the
circle may beC*, or even analytic. These exceptions are again degenerate of codimension
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oo. Also in this case certain numerical checks can be made, at least partially, see below.
(2) Our example depends on the parameters and 8. As said earlier, we mostly keep

B fixed, unfolding with the paife, w). Apart from the degeneracies occurringvat 0, see

above, one expects that our map is ‘Kupka—Smale as a family’. Among other things this

means that only generic codimension 2 bifurcations occur. In section 4 we shall explore

various theoretical possibilities of this.

4. A theoretical survey of bifurcations

In this section we briefly review some generic bifurcation theory as far as relevant for
our purposes, namely for interpreting the numerical output concerning the fattened Arnold
family. We consider elements from the local theory and from the global theory of homoclinic
bifurcations.

4.1. Local bifurcations

We start with the bifurcations of periodic points in 2D maps, looking for codimension 1 and
2 phenomena, where a restriction is given by the dissipation. This leaves us with the fold,
the flip, the cusp and the codimension two flip, while, for example, Hopf bifurcations are
excluded. Particularly various semiglobal scenarios near the cusp will have our attention.
For simplicity, all considerations will be held only for the case of fixed points.

So let f,, : M — M be a general two-parameter family of diffeomorphisms of a
surfaceM. Assume that foKa, b) = (ag, bg) the map has a fixed poinpty € M. Since our
interests are local, we may assume that= R?, for simplicity putting (ao, bg) = 0 = po.

Let A andu be the eigenvalues dd f,(0). By dissipation at least one of the eigenvalues is
inside the complex unit disk. Hereafter we may assume [#fjat 1, non-hyperbolicity of
the fixed point then meaning thgi| = 1, and hencey =1 or u = —1.

4.1.1. The cases of codimension not exceeding=&st we consider the generic codimension

1 bifurcations. The corresponding cases are the well known(folg 1) and flip(x = —1).

For a description of fold and flip, see, for example, Guckenheimer and Holmes [25], Devaney
[18] or Newhouseet al [39]. We only recall that there are two possible classes of flip
bifurcations: (a) subcritical, where one node of period 1 becomes a saddle and there appear
two nodes of double period, and (b) supercritical where one saddle of period 1 becomes a
node and there appear two saddles of period 2. Explicit necessary and sufficient conditions
for their occurrence in this 2D case can be found in Tatjer [57] and Casatsal [16].

We recall that in the 2D parameter space these cases correspond to smooth curves, while
the bifurcations occur upon transversal crossing of these.

Next we turn to the less well known, generic codimension 2 cases. These bifurcations
occur in isolated points of the parameter plane. The only possibilities now are the so-called
cusp (u = 1) and the codimension 2 fligu = —1). Here dissipation excludes, among
other things, the Bogdanov—-Takens bifurcation.

We shall now give a brief outline of the two cases. For details, also concerning the
explicit conditions for occurrence in 2D maps, we refer to [57, 16].

(1) The cusp bifurcation As a representative example we considér,(x, y) =
(Ax,b+ 1+ a)y £ y3), for somer € R, 0 < |A| < 1, either positive or negative. The
bifurcation diagram is given in figure 18. Here we exhibit the fixed points and their invariant
manifolds, where arrows indicate the sense of the dynamics: more arrows signifying stronger
attraction, namely repulsion.
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Figure 18. Bifurcation diagram of the cusp. More arrows indicate a stronger eigenvalue. The
horizontal (vertical) axis corresponds to variabléb). The cusp is at the origin and C denotes
the saddle-node locus.

pP1
——— <4< P3
Ci
# Po
po
f - .
l PO +—>—Eﬂp—2<—¢
T T 1I I Po
C
p3 I l p3
p2
Po Po
P4 P4 P4

Figure 19. Bifurcation diagram of the codimension 2 flip. The popy is fixed, whereap,

P2, p3, pa are 2-periodic: f, »(p3) = pa and f, »(p1) = p2. More arrows indicate a stronger
eigenvalue. The: andb axes are as in the previous figure. The codimension 2 flip is located
at the origin.

(2) The codimension-2 flip bifurcation Here a representative example is given by
far(x,y) = (Ax, (L +a)y + by® £ y®). For a bifurcation diagram, see figure 19. Upon
crossing of the curv€; into region Il, the 2-periodic orbits disappear by a fold bifurcation
of period 2. Therefore in region Il only the sink remains. The crossing from region
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| into region Il over the curveC, gives a collapse opg, p1 and p, into the fixed point
saddlepg. This happens in a flip bifurcation of fixed points.

Remark. The equations for the periodic point in the product of phase space and parameter
space, with coordinates, y, a, b), determine a submanifold of codimension 2. In Careass
etal [16, 17] the geometry of this submanifold is shown near a cusp and a codimension 2 flip.

4.1.2. Organization of the parameter plane near a cuspne natural question arising from
the previous section is as follows. How is the organization of the bifurcation curves near a
cusp? Below we shall see how to obtain several possibilities for this.

Hereafter, we assume that we have a two-parameter family of smooth fngps’ C
R¥ — RK, wherek = 1 ork = 2, andV is an open set, wherg:, b) € U C R? also
open. First, we need to introduce the concept of generalized eigenvalue and of the level
sets associated to such an eigenvalue.

Definition 4.1. Suppose thaf Cc U x V is a regular surface, such that far, b, x) € S,
far(x) = x holds, wherex € R¥, Given € R, the level set of. with respect the surface
S is:

Ly(f,S) ={(a,b,x) € S|A(a, b, x) =1},

where
__Dfas0) fork =2
A(a, b, x) = detha,;,(x) +1
fap @) for k = 1.

A(a, b, x) is called the generalized eigenvalue ff, at x.

If (a,b,x) e Lii(f,S), x € Rorx e R? thenx is a fixed point off,.» with one eigenvalue
equal to+1. Moreover, ifk = 1 the generalized eigenvalue is exactly the derivative of the
map in this fixed point.

Using this concept there is a simple way of building various examples of configurations
of bifurcation curves near a cusp. For= 2 or 3, consider 1D families ofn + 1)-degree
polynomial maps, having a codimensiarbifurcation of eigenvalue 1.

First, let us consider the following two two-parameter families of 1D cubic maps that
unfold the cusp bifurcation:

gy =A+a)y+y> +b.

We call the cusp bifurcation corresponding ggb a cusp of saddle typeind the one
corresponding tag, , a cusp of spring typgthese names are suggested by the patterns
of the bifurcation locus in the parameter plane). Conditions for the existence of such types
of cusps for a general 2D family of 1D or 2D maps having a cusp bifurcation were given
in [6] and [57].

For these examples one easily identifies the fixed-point suaceR?, in thea, b, y
variables. Indeed, we obtain

S={(a,b,y) eR:b=—ayFy%,

where the plus sign correspondsgp, and the minus sign correspondsg@b. So, in this
case, the level sets of (generalized) eigenvaleeR are given by

Li(g5,8) ={(a,b,y) € S: 1+ a£3y? =} = {(ax(y, A), b= (y, 1), y), y € R},
(ax(y, A), ba(y, 1) = (. — 1F 3y, £2y3 + (1 - 1)y).
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Figure 20. The cusp of saddle type correspondin%g.

In figures 20 and 21, for several values)gfwe depict the projection on the, b)-plane
of some of these level curvds,. In figure 21 there are two parameter points on the curve
L_,, indicating the occurrence of codimension 2 flip bifurcations.

For any family of maps having a cusp bifurcation, a similar level set can be identified
if |» — 1] is small enough.

Next we define the following configurations of bifurcation curves near a cusp.

Definition 4.2. Let (f,.5)w.nev be as before, having a cusp bifurcationxat= xo € RF
(k = 1 or 2) for (a, b) = (ag, bg). Suppose that the fixed-point surfagan the (a, b, x)-
space hasgag, b, xo) as a regular point. We say that, displays asaddle arearespectively
a spring areg near (a,b) = (ao, bg) if there exists a connected neighbourhond of
(ao, bo, xo) In § such that:

(1) the cusp inxg is of saddle type (resp. spring type).

(2) The set of fixed pointdV satisfies:

W = {(a, b, x) € R¥"2: (a, b, x) = (a(t, 1), b(t, 1), x(t, 1)), (t, 1) € T},

whereT is an open and connected setRA.
(3) There exist an open intervalC R containing -1, 1], such that for allh € I, the
level setL, (f, W) of the generalized eigenvaluesatisfies:

L, (f, W) = {(a, b, x) € R¥?|(a, b, x) = (a(t, 1), b(t, 1), x(t, 1)), t € Tp},

whereT, = {r e R|(t, 1) € T}.

(4) Letr : W c R¥2 — R? be the natural projection on the two first components.
Thenz (W) is an open neighbourhood Gfg, bg), andr (W) = Wy U WoU L1(f, W), where
L1(f, W) = (L1(f, W)), such that:

(a) W, and W, are open and connected, aid, W, and L1(f, W) are disjoint,
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Figure 21. The cusp of spring type correspondinggp,.

(b) if (a,b) € L1i(f, W) there exists exactly oné, 1) € T such thath # 1 and
(a,b) = (a(t, 1), b(t, 1)),

(c) if (a,b) € W, there exist exactly three valués, 1;,) € T, i = 1,2, 3, such that
(a,b) = (a(ti, A), b(t;, Ap))

(d) if (a,b) € W, there exists exactly one valug, 1) € T such that(a,b) =
(a(t, 1), b(t, 1))

(e) for all » € I such thath > 1 (resp.A < 1) there are exactly two values, 1, € T;
such that(a(ty, 1), b(t1, 1)) = (a(t2, 1), b(t2, 1)).

It turns out that the global organization around a cusp point can be different from the
saddleandspring areas just defined. To see this, we consider the following three-parameter
family of quartic 1D maps

Gane(X) = A+ a)x +bx?>+x*+ ¢,

which is a local model of a codimension 3 cusp. Following the previous notation, the
hypersurface of fixed points is given by

S ={(a,b,c,y) € RYec=—ay — by? — y*},
while the level sets of the eigenvaliieare
Ly={(a.b.c.y) eRYa=—2by —4y3+ 1 —1,c=(1— 1)y +by> + 3y*.
Then the projection of this set on tlie, b, c)-space is
S, ={(a,b,c) eR3a=—-2by —4y>+r—1,c=(1—A)y+by>+3y* yeR}.

In figures 22 and 23 we depicted the surfadgscorresponding to fold, and_; to flip
bifurcation. In the fold surface;, we have two important curves, namejy,: R — R®
corresponding to codimension 2 cusps of period 1, such that

y(s) = (a(s), b(s), c(s)) = (853, —6s%, —3s%),
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Figure 23. The S_; surface of flip bifurcation for the quartic map.

and the self-intersection curvg, defined by:
7(s) = (0, =25%,5%).
In the flip surface there is also the curve of self-intersectignslefined by

1 5 2 1
= — 6 4 8 2
(p(s) = <—8S s —GS — _2’ —3S + ES — s_z + ﬁ> s
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while the curve
(a,b,c,y) = (—8s6 + 453 — 2, —65% + 25, —3s8 + 255 — 252, —s2)

corresponds to points with a codimension 2 flip bifurcation. Moreover, there are two
points with codimension 3 flip bifurcations, namely, b, ¢) = (-2, 0, 0), for y = 0, and
(@b, c) = (-2, (L SY3, (5 (%3 for the pointy = —3%/3/28/3,

In order to create other configurations of bifurcation curves near a codimension 2 cusp,
we only have to consider two-parameter families lke, = g4w.v).b(.v).cu.v)» SUCh that for
some(uo, vo), the mapf,, ., has a codimension 2 cusp. The simplest case occurs when the
mapsa, b andc are affine. Below, we need some of these configurations.

We do not know whether this procedure exhausts all possibilities, but it seems that it
does for the more ‘frequent’ ones. A heuristic argument for this runs as follows. It is well
known that, given any one-parameter family of 2D mafyshaving a dissipative saddle
with a quadratic homoclinic tangency, the family of iteratg¢g, for n sufficiently large
and after a change of scale, behaves, near the tangency, as a one-parameter family of 1D
guadratic maps. The same is true for a two-parameter family with a cubic tangency: a high
iterate behaves like a cubic family (see Tatjer [58]). It is plausible that the same is true
when considering three parameters, a quartic tangency and a quartic family.

This would mean that, at least if the considered family is near a family having a
homoclinic tangency of order 2 or 3, the expectedly most frequent configurations of the
bifurcation curves of periodic points near a cusp, are those obtained before using the cubic
and quartic families of maps. This may even be true if the family is near, but not too near,
a family having a quartic homoclinic tangency.

We now proceed by giving two more definitions, that may involve many subcases.

Definition 4.3. Let (f..,)w.nev b€ as before, having a cusp bifurcationxat= xg € R*
(k = 1 or 2) at(ap, bo). Suppose that the fixed-point surfagdn the (a, b, x)-space has
(ao, bo, xp) € S as a regular point.

(1) We say thatf, , displays across-road areanear(ag, bo, xo) if:

(a) the cusp bifurcation ing is of spring type;

(b) there exist a connected neighbourhdd®dof (ag, bg, x0) in S such that the map
A : W c § — R has one and only one non-degenerate critical point of saddle type
(a1,b1,x1) e W such that-1 < A(aq, b1, x1) < 1;

(c) there is only one cusp bifurcatiding, bg, xg) in W.

(2) Suppose that there is another cusp bifurcationffog, in x; € R¥. We say thatf,
displays adovetail areanear the two cusps if there exists an openWgein S such that:

@) (a;, bi, x;) € W fori =0, 1;

(b) the projection of the level sét; (f, W) on the(a, b)-plane can be parametrized by a
differentiable mapy : [—3, 3] — R? such that it has points of self-intersection foe —1
andt = 1. Furthermore, the two cusps occur foe= —3 andt = 3;

(c) one cusp is of saddle type and the other is of spring type;

(d) the curvey_1 1 is a Jordan curve such that the region bounded by it does not
contain any point of the curve.

Finally, we present some examples of the configurations described above. Here we use the
following notation for the bifurcation curves: foindicates a fold of period:, fI* a flip

of periodn, ¢* a cusp of perioc: andfl" a codimension 2 flip of period. Moreover,
subscripts are used in order to distinguish different curves of the same type, and the broken
lines indicate level set&, corresponding to various values of
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Figure 24. Cross-road area. The dotted curves correspond to level linas of

So, as before, leff,, be a two-parameter family of diffeomorphisms having a cusp
bifurcation for (a, b) = (ag, bg). Then we have the following configurations of bifurcation
curves near the origin of the parameter plane.

(1) Cross-road area In figure 24 the configuration is depicted for the model>
bx? + x* + ¢, where we consider the fixed-point case= 1. The flip curves f, fi
approach different fold curves in different regions of {ec)-plane.

(2) Spring area In figure 25 we show the configuration for the model map—

—2x + bx? + x* + ¢. Again we tookn = 1. The curve f| loops aroundt”. On this curve
the points betweelﬁz andﬁg are supercritical flips, the remaining ones being subcritical.
At the codimension 2 flips, folds of double period are born.

(3) Saddle area Figure 26 shows the configuration for the model map- 2x + bx? +
x% + c in the casen = 1. The reader may observe that in some part a cross-road area
structure shows up.

(4) Dovetail area In figure 27 we can see that this family displays a spring area near
one cusp and a saddle area near the other. The model map-i$1+a)x — 3x?+x*+¢,
while n = 1.

Most of the terminology has been introduced by Mira and co workers (see, e.g., Mira
[34])

In figure 28 we display some cases of relative positions of the fold and flip curves.
They are obtained by intersection of the surfaces displayed in figures 22 and 23 with some
suitable planes. From cases A—C the fold and flip curves have only one component, from
D-F they have two, and the remaining ones have three. Case A shows a dovetail area with
self-intersections of both the fold and flip curves. Case B is obtained by evolution of A,
and the fold curve contains two cusps associated to spring and saddle areas, respectively.
Case C shows no cusps but self-intersections. Cases D and E illustrate a transition from
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Figure 25. Spring area. The dotted curves correspond to level lines.of

spring area to cross-road area. Case F is, in fact, a cross-road area example, but shortly
after a dovetail area meets a spring area. Cases G and H, with three components, have no
cusps and they illustrate a transition from no changes to a cross-road area situation. In case
| a saddle area, a spring area and a fold curve without cusp, appear simultaneously, which
evolve to a saddle area plus a cross-road area in case J. Case K displays a triple exchange
of the flip curves with respect to the fold ones. Finally, case L is similar to case J but with
four cusps in all, two of them associated to a small dovetail area.

4.2. Cascades of bifurcations

We close this section with a sketch of a cascade of bifurcations, associated to the cusp,
in particular a cross-road area. In figure 29 we display the corresponding organization of
the parameter plane by bifurcation curves, using the same convention as before. Figure 30
enlarges the rectangle A in figure 29. The behaviour of the bifurcation curves in the
rectangle B is similar. In these figures we observe that associated to the main [usp, c
two more cusps of periodi2appear (& in B and &" in A). These, in turn, are centres of
cross-road areas of double period. This doubling repeats itself, giving cusps of period 4,
8, 16 etc, all these cusps being centres of cross-road areas. The model map used here is
x = bx?2 + x* + ¢, and agaim = 1.

Remarks.
(i) When following the broken line | in figure 29, we undergo an ordinary Feigenbaum
cascade of flips.
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Figure 26. Saddle area. The dotted curves correspond to level lings. of

(ii) The occurrence of cusp cascades in the Arnold family was studiedébgirBand
Glass [4].

(iii) The concept of generalized eigenvalue has been used before in Gar§hsk(where
it is called reduced multiplier) to obtain information on the configuration of bifurcation
curves near a cusp.

(iv) In Carcaséset al [16] the concept of cross-road area is more restrictive than here
and corresponds to the example we have described above.

(v) The name dovetail area was first used in Mataal [35]. There one considers,
moreover, other possibilities of dovetail areas, some of these with more cusps.

(vi) The dovetail area can appear when the two-parameter family is near a codimension
3 fold bifurcation (see section 5.1.1).

4.3. Homoclinic bifurcations related to saddles and folds

In this section we treat homoclinic phenomena, as far as relevant to us, both related to
saddle points and to fold points (saddle nodes). Apart from transverse homoclinic points
we also have to consider homoclinic tangencies. As before, we simply restrict ourselves to
the case of fixed points. Reference will be made to some figures (mainly figures 13-17)
from section 3. We recall that these illustrations are taken from the fattened Arnold family.
Hence, the plots are on a cylinder (one should identify the left- and right-hand sides) and
that the caseg > 0 andp < O are orientation preserving and reversing, respectively.
So we again consider a general two-parameter faffjilyof 2D diffeomorphisms having
a fixed point, pg, for (a, b) = (0, 0). We distinguish between the following two cases.
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Figure 27. Dovetail area.

(1) pois a saddle pointHomoclinic dynamics then means tH&t (po) "W* (po) # {po}-

Since the saddle is persistent, for parameter valugh) ~ (0, 0) the mapf, , has a nearby
saddle, say, », together with its stable and unstable manifold$(p, ,) andW*(p,). In

the corresponding figures denotes the companion node, created together with the saddle
at a fold bifurcation.

There are several possibilities for the generic behaviouétp, ,) and W*(p,.p).

First, they can intersect transversally. This case is well known and will not be discussed
here. In our two-parameter context there are two further generic cases to consider.

(a) Quadratic tangency oW*(pg) and W*(pg). This is a codimension 1 phenomenon,
so generically taking place along a curvén the parameter plane. This case has also been
widely studied, e.g. see Newhouse [38], Palis and Takens [45], Tatjer arid [5@j, Mora
and Viana [36].

Among other things, it can be proven that, for any sufficiently largéhere exists an
n-periodic fold curvel',, wherel'’, — I' asn — oo. Moreover, for suitable values of
(a, b) nearT there are infinitely many periodic attractors. Finally, for appropriate values of
(a, b) nearl", strange attractors exist. According to Mora and Viana [36], the corresponding
set of parameter values has positive measure.

(b) Cubic tangency o#W*(pg) and W(pg). This is a codimension 2 bifurcation and
therefore generically taking place only in isolated points of the parameter plane. In this
case, it has been shown that for amythere exist parameter values for whigkperiodic
cusps and codimension 2 flips occur, where these parameter values tendte= (0, 0)
asn — oo (see Tatjer [58]).

Furthermore, we consider the position of the manifdtl(po) with respect to the stable
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Figure 28. Some configurations of fold (lines) and flip (dots) bifurcations curves obtained by
intersection of the corresponding surfaces by planes. See additional explanation in the text.

and strongly stable manifold&* (ng) and W** (ng) of the companion nodey (think of the
saddle-node bifurcation). Codimension 1 bifurcations appear at the homoclinic quadratic
tangencies ofW"(pg) with some of the manifolds ofip and at the cubic tangencies of
W"(po) with the strong stable foliatiotF** associated tag (see later). Figures 13 and 14
display some of these possibilities, both for the- 0 andg < 0 cases. Some of these
situations can coexist, giving phenomena of higher codimension. For instance, an ‘external’
heteroclinic tangency betweéh” (pg) and W** (ng) (as in figure 13¢)) can coexist with an
‘internal’ homoclinic tangency betweeW" (pg) and W*(po) (as in figure 13¢)), giving a
codimension 2 case.
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Figure 29. First steps of a cascade of cusp bifurcations.

(2) po is a fold point First, we note that associated to this fold we have a weak
unstable invariant manifoldv*(pg), a strong stable invariant manifold**(py) and an
invariant strong stable foliatiotF** (cf Newhouseet al [39]). See figure 15, wherg>*
is represented by vertical lines. A weak (and non-unique) stable manifoidpo), also
appears. BottW"(pg) and W*(pg) are on the centre manifolé/“(po) and both consist of
only one branch. In this case we have four possibilities, two of codimension 1 and two of
codimension 2.

(a) Fold cycle This is a codimension 1 case. As we can guess from figura),15(
W"(po) is a smooth invariant circle. This case has been studied in [39].

(b) Quadratic critical cycle This is again a codimension 1 case, occurring whenever
there are points irfW"(pg) belonging to the basin of attraction g, that have quadratic
tangency with7**. It has been proved byiBz et al [19] that for values of the parameter
near (0, 0) there exist strange attractors, again for a parameter set of positive measure [36]
(see figure 151)).

(c) Cubic critical cycle This case is like the previous one but now the tangency is
cubic. Therefore, it is a codimension 2 bifurcation (see figure}5(

(d) Fold homoclinic tangency This bifurcation occurs whef“(py) has a quadratic
tangency withw**. This is again a codimension 2 bifurcation (see figuresllafad €)).

Note that, despite the length of the unstable branch of the fold is infinite, this branch is still
homeomorphic to a circle.

We note that the casgbspositive and8 negative are different as is shown in the figures.

In figure 15 we haves > 0 and in figure 163 < O.

As far as we know, cases (c) and (d) have not been studied theoretically. In particular

one would like to know the structure of the codimension 1 and 2 bifurcations of periodic
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Figure 30. Amplification of rectangle A of figure 29.

points neana, b) = (0, 0).

When considering a one-parameter family having a fold point, the four possibilities are
found in the following order: fold cycle, cubic tangency #*, quadratic tangencies to
F*¢ and then a quadratic homoclinic tangency. After the quadratic homoclinic tangency,
generically, transversal homoclinic intersections appear. Later, another quadratic homoclinic
tangency can occur and then the homoclinic points disappear. This happens in our problem
for B positive when increasing the parameier We refer to these tangencies as inner and
outer. In the cas@ < 0 outer tangencies cannot appear, because the change of orientation
forces us to have homoclinic points in both branchesVéf(po), forcing W*(po) to have
points in W*(pg). Cubic homoclinic tangencies to the fold can also occur, but this is a
codimension 3 phenomenon (see the next section).

Remark. We give some additional explanation related to section 3.1. Assume that in the
case of figure 14) we take a small ‘vertical’ rectanglé®, to the right of W (po) and
with left boundary rather close t&* (pg) (‘parallel’ to it). After, say,n iterates the image
of R intersectsR, giving rise to a horseshoe-like behaviour. In the horseshoe we find two
fixed points of the return mam{periodic points of the initial mag). In our geometrical
situation one of these is a saddle and the other is a saddle with reflection. By moving
parameters we can go back to the ‘first’ homoclinic tangency and even before this occurs.
At some momentf”(R) has no intersection witfR (say, f"(R) is confined to the left of
W* (o).

Between these values of the parameters and those of the previously described horseshoe
a fold bifurcation occurs. Typically the saddle created at the fold bifurcation remains a
saddle all the time, while the node goes to a flip (see figure 12) and then to a saddle with
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reflection. In the(a, b) space there will be a line close to (and ‘after’) the line of first
homoclinic tangency for which an-fold bifurcation is produced. Takin@ closer and
closer toW?*(po) the value ofn increases, because the iterates spend more time clgse to
and a sequence of fold bifurcation curves, with increasing period, accumulates to the first
homoclinic tangency in the parameter space (to the ‘right’).

Similar to the case of the line of ‘last’ homoclinic tangency. Consider the situation
shown in figure 174f). If R is close toW*(pg) it cannot intersect any of its iterates. By
moving R to the right a sufficiently large amount we may again have some horseshoe.
Hence a fold curve will be created. Then, by letting the parameters approach the line of
the last homoclinic tangency, the periods of the folds will increase, as before, and that
line will be accumulated, by a sequence of fold bifurcation curves (to the ‘right’ of it).
The behaviour just described appears in the case of the fattened Arnold family, and further
numerical evidence will be presented in section 5.3.2.

4.4. General remarks

We conclude this section on bifurcations by a few remarks.

4.4.1. Transversality. Transversal intersection of all stable and unstable manifolds of fixed
and periodic saddles is an open property. As observed before it may be hard to know (and
difficult to prove) in which cases our family of maps has this property and what can be said
about the set of parameter values where transversality does not hold.

A typical numerical computation of a homoclinic tangency starts at a fold point (saddle
node), after which the line of tangencies is obtained by a continuation method. As usual we
fix 8. Along the continuation checks are made for extra degeneracies. The only extra cases
we detected correspond ponegative and are geometrically related to cubic tangencies. At
these tangencies new lines of tangencial homoclinics are born, which can be followed as in
the previous case. The full tools to develop and implement this methodology are given in
[51].

4.4.2. The role of heteroclinic intersectionHeteroclinic intersection plays an important
role, since it couples dynamics arising from different saddles. Let us consider the case where
a saddle has a transversal homoclinic point. In that case the closure of the unstable invariant
manifold is a good candidate to be a strange attractor [50, 5]. Heteroclinic tangencies can
destroy such an attractor by ‘pulling out’ points. Indeed, it may well be callpdtantial
strange attractor

Also a ‘coupling’ of two strange attractors may occur. IndeedSetand S, be two
different strange attractors, occurring as the closure of the unstable manifaidand
Wy, If the related stable manifold$y,® and W>* intersectW,* and W1, respectively, a
larger potential attractor will be born. In the process of changing parameters to obtain these
transversalities, periodic sinks will certainly appear and will destroy, locally in parameter
space, the strange attractors.

4.4.3. Preservation versus reversion of orientatiofhe original motivation for the study

of our family is its occurrence as a model of the return map of a near-the-identity map. Since
the initial map preserves orientation, so does the return map. However, in some cases, due
to the special geometry of the problem, the initial map can be seen as the composition of a
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near-the-identity map with a symmetry. In this case the return map is orientation reversing,
and should also be considered. This motivates our interest for thefcased. Main
differences with the casg > 0 are the non-existence of foci (see section 3.1), that, as said
before, dast homoclinic tangency never occurs (see, for instance, section 3.1), and the very
wild character of the ‘last’ invariant curves in the anticonservative case (see appendix C).
This is reflected in some attractors of the fattened Arnold family (see section 5.3.4).

5. Numerical study of the fattened Arnold family

In this section we return once more to the fattened Arnold farRilygiven by (1):
Fa,w,‘g:SlxR - S'xR
(x,y) = (x + o+ a(y + sinx)(mod 2t), B(y + Sinx)).

As announced several times, we now perform perturbations corresponding to larger values
of the parametew. Our results are partly conjectural and based on numerical computation
which are interpreted against the theoretical background of the previous sections. The results
mostly concern the bifurcation set in tlie, »)-plane but also aspects of the corresponding
dynamics are shown. As before we mostly f&{ < 1, but sometimes a codimension 3
phenomenon is observed, in which cgbsés taken into account as an extra parameter. Our
exposition chiefly restricts us to the main tongl@ but almost all our statements and
speculations directly translate to the other tongues.

We divide this section into four parts. The first part deals with bifurcations of periodic
points, mainly restricting us to one Arnold tongue. In this exploration we find all the
phenomena described in section 4.1, including strong evidence of infinite cascades of cusp
(cf section 4.2). Another aspect is the geometry of the tongue boundary. We shall see that
for B < 0 this boundary no longer needs to consist of two smooth curves. In section 5.2
homoclinic bifurcations are studied, again using the main torlém a representative case.

Our special interest is with homoclinic bifurcations near the tongue boundary. It appears
that all the complexity of section 4.3 is met. The third part is concerned with global aspects
of the dynamics. As announced before, we study the accumulation of tongue boundaries on
certain curves of homoclinic tangency. We also consider the invariant circle, certain types
of strange attractors and the coexistence of attractors. Finally, in a conclusive section, we
present a sample of attractors, some bifurcation diagrams and the corresponding dynamical
scenarios, as observed numerically.

5.1. Local bifurcations

First we obtain the different structures of bifurcation curves, analysed in section 4. However,
there is one difference, namely that in the diagrams the role of the fold curves is played by the
boundary curveﬂ;“f/qql., i =1, 2, the ‘cusp’ then being the tongue tip, @) = (27p/q, 0).

We shall conclude that it is easy to detect many examples of saddle area, spring area and

cross-road area. Second the boundary of the tonq@gsis studied further. We shall see

that this boundary is not always the union of tﬁﬁ/q’i, i = 1,2. Finally an example is
given of (the beginning of a) cascade of cusp bifurcations (cf section 4.2).

5.1.1. Cusps inside one tongueWe found all three: the saddle, the cross-road and
the spring area associated to the fold cur\v‘(%q’i, i = 1,2, but with the tongue tip
(w, ) = (27p/q, 0) replacing the cusp point.
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Figure 31. Saddle area irf{).

(1) Saddle area We find this type of behaviour for a# > 0, and also for8 < 0 not
too close to—1. Admittedly this does not exactly correspond to the definition of section 4,
since in thew-axis no cusp bifurcation takes place. Nevertheless, the pattern of bifurcation
curves is strikingly similar.

In this case we have only level sets of a generalized eigenvalue less than 1, which
means that there are at most two periodic points inside one tongue. However, by analogy
we also call this type of behaviour a saddle area. In figure 31 we show an example for
B=0,p/qg = % displaying bifurcation curves corresponding to periods 3 and 6 (cf the
above figure 26).

(2) Cross-road area We have found this phenomenon only f8r< 0. Again, the
difference with its analogue in section 4 is that now there does not exist a fold curve of
periodg without cusps. We detected three different cases:

(a) without codimension 2 flips. In figure 32 we depict the bifurcation curves of period
4 (cf figure 24, above);

(b) with two codimension 2 flips in one of the flip curves of period 4, see figure 35.
We show the same curves as in case (a) and also fold curves of period 8 leaving from the
codimension 2 flips;

(c) with two codimension 2 flips in each flip bifurcation curve of period 4 (cf figure 36).

(3) Spring area This is again similar to the case studied in section 4, with the same
difference as noted before. Moreover, in the case presented in figure 37, there are two
codimension 2 flips in each of the flip curves of period 4.

(4) Transition cross-road area—saddle arealhe transition we find from cross-road
area to saddle area occurs through codimension 3 bifurcations (see figures 32—-34). The
behaviour of the bifurcation curves is as follows. There exist two negative valugsf
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Figure 32. Cross-road area i § *°.

and By < B1, where the following properties hold.

(@) ForB < B there is a cross-road area with centre-jn(cf figure 32).

(b) For 8 = Bo a ‘double’ cusp point appears on a fold line (this is the codimension
3 cusp bifurcation) and, then, the two cusp points go away from the fold line creating a
dovetail area. In our example this occurs between figures 32 and 33.

(c) For B € (Bo, B1) the dovetail area becomes apparent (see the magnification in
figure 33). The cusps in the dovetail are namgdndc], and they are of saddle and spring
type, respectively. The other cusg], already present in figure 32 as the organizer of the
cross-road area, approachds

(d) For 8 = B, there is another codimension 3 fold bifurcation (different from the
previous one). It is produced by the coincidence of the two cu§pand c¢i. In our
example this occurs between figures 33 and 34. The two fold curves that at the moment of
the bifurcation become tangent, go away from each other. This produces a global change
in the fold curve which connects with one of the curveﬁ‘ﬁyq,i, i = 1,2, of the tongue

boundary for small values ai. In this example, this happens fﬁtf/u, and then, instead

of going quickly to the left, as in figure 32, it continues as the previous left branch%f fol

(e) ForpB > B; there exist two saddle areas, one associated to the tongue boundary, as
in the item 1, and the other in a neighbourhood of the cusp that was denatgd Hisis is
displayed in figure 34.

We note that in the process just described, one of the braﬂt}‘f)% has undergone a
strong modification. Moreover, it is possible to find a model of this type of transition using
the quartic model of the codimension 3 fold that we presented in section 3, taking planes
in the space of parameteasb, ¢ parallel to a plané = aa + B¢ through(a, b, ¢) = 0.
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Figure 33. Transition cross-road area—saddle area. Between the two codimension 3 bifurcations
(Bo < B < B1). The horizontal window is [F5/7, 1/x]. The small rectangle, whose window
is [1.77,1.795] x [1.3, 1.44], is enlarged in the lower right corner of the figure.

The values of8y and g, in the example shown fop/q = % are—0.6176 and—0.6046,
approximately.

(5) Transition cross-road area—spring areaThis transition is due to a transversal
intersection between the two flip curves of peripd

Let B = Bo ~ —0.888638 3860 be the value for which this intersection occurs. In
figure 37 we show the bifurcation curves fér< By, and in figure 36 foB > Bo. In other
words, whens = S, the generalized eigenvalue map as defined in section 3 has a critical
point of saddle type of critical valuel. Wheng > Sy the corresponding critical point is
larger than—1 and smaller than 1, so there is a cross-road area. \Wherg, the critical
value is less than-1 and therefore we have a spring area. We note that in this case there
are four codimension 2 flips. By further increasifigve have a case like figure 35, where

=4 =4 .
fl, andfl; have collapsed and disappear.

As before we can obtain a similar behaviour for the quartic map cited before. For
example, we can take in the parameter spade c, the planesh = a + y. Then if we
perturby from 1.5 we obtain the same situation of our example, by changing the parameter
B by y and o by 1.5

All examples presented here seem to be persistent. According to our numerical
simulations, the case & B8 < 1 is quite simple, since only the saddle area seems to
occur. The case-1 < 8 < 0, however, is a lot more complicated, while this complexity
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Figure 34. Transition cross-road area—saddle area. After the codimension 3 bifurcations
(B > B1). Same window as previous figure.

increases rapidly with decreasifg We are not sure whether in this case all tongues display
the three areas we have described.

5.1.2. The tongue boundaryln section 2 we studied the Arnold tongug‘j;q for |B| < 1,
conjecturing that for sufficiently smadly, the straight linesx = «ag intersectlf/q in an

interval, with endpoints in the curvd%ﬁ/q!i, i =1,2. We shall see that for largéw|, the
tongue boundary may be not so simple.

It seems that the boundary a)f/q is most complicated fop < 0. Indeed, figure 34

already suggests that the curves;>?, i = 1,2, are not the boundary of; 3°°. This

boundary seems even very complicated fonear—1. In figure 38 some 4-periodic fold
curves are depicted, corresponding to the tongi§°. Beyond the curves; 5%, i = 1,2,

one observes several additional fold curves, each containing a cusp point crq#‘??cand

a ‘near cusp’ close to?;/%%g_i. Here ‘near cusp’ indicates a point in the fold curve where

the cusp condition (some function equal to zero) is not satisfied, but the related function has

an extremum close to zero. The cusp point in a given curve is also close to the ‘near cusp’

point of the preceding one (going from bottom to top). See the magnifications in figure 39.
One complicating factor concerning the boundarylgf, is related to codimension 3

bifurcations in the curvefp’g/w., i = 1,2, as described before (again see figure 33). The
0.99

behaviour of the mag, ., s for values of the parameters I ,~ seems very complicated.
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Figure 35. Cross-road area with two codimension 2 flipsrif .

As we will see in section 5.3, it is possible to obtain coexistence of a quasiperiodic attractor
and several attracting periodic orbits of period 4, and also coexistence of a ‘large’ strange
attractor and attracting periodic orbits. We note that at least for values of the parameters

(@, ) in 1729 N {(, ) 1 0 < a < 1.2} there exists some attracting periodic orbit.

However, there are also many cases in which the cuﬁfg;,i do seem to be the
boundary oflf/q. We expect this to be the case anyway for alK08 < 1, and for all

8] < 1 only in the special case!f and If/2+p, for p € Z.

5.1.3. Cascades of bifurcationsWe have detected cascades of cusp bifurcations as
described in section 4. In figures 40 and 41 there is an example in]%jeshowing
bifurcation curves of periods 3, 6, 12, 24 and 48. It was conjectured by Tatjer [57], that in
any parameter region with cross-road areas, saddle areas or spring areas, subregions exist
with a cusp cascade. In particular, it seems that there is always a cusp cascade associated
to the saddle area. From all this we now conjecture that the corresponding behaviour is the
same as above for all tongues wjgh> 0 and also for8 < 0 with |8] <« 1.

5.2. Homoclinic bifurcations and cubic tangencies to the strong stable foliation

As we saw in the theoretical considerations of sections 2—4, the behaviour of the stable and
unstable manifolds is of importance for the global geometry of the Arnold tongues of our
family F, . g. As stated there, we first consider the simpler géise 0, and present some
conjectures in the case® |8| < 1, based on numerical simulations.

We now divide into two sections. First, the homoclinic bifurcations in the boundary
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Figure 36. Cross-road area with four codimension 2 flipslpg‘ssg.

of the tonguelg are considered. When perturbing from the cAse 0, we conjecture all
homoclinic phenomena listed in section 4 to be persistent. As a remarkable fact, however,
we here announce that f@r> 0 a fold homoclinic bifurcation seems to occur, which is not
persistent for @ g > —1. See conjecture 5.1, below, in what refers to the ‘last’ tangency.
In a second section we shall find two curves of homoclinic bifurcation inside the taijgue
symmetric with respect t@ = 0. These curves emanate from the boundd?@;s probably
with a quadratic order of contact. We expect this phenomenon also to be persistent for
|B] < 1. Moreover, as said before, we found the main tonﬁmquite representative for
the others.

Hereafter, we restrict ourselves é0> 0, the case» < 0 being similar. The following
will be necessary throughout both sections.

The fold curvesl“gl., i = 1,2 are given bye = (1 — B)w. As before, we have to
distinguish betweerF and its lift F. Indeed, we study the family, 1—p).»,5, associated
to the right-hand tongue boundary. Let sx = (xe gk, Yo.pk): kK € Z be the fold fixed
points of this. It is easy to see thaf g = xu g0+ 27k and y, gx = Y g0, all these
points being representatives of one fixed pgipts of Fw(l,,g),w,,s.

5.2.1. Homoclinic bifurcations and cubic tangencies to the strong stable foliation on the
tongue boundary. In the previous section we described the perturbation programme from
the case8 = 0, i.e. from the unperturbed map, , o(x, ) = (x + w(1+sinx+y), 0) on the
tongue boundary“g,z. Based on the results described in section 4 (see also appendix D) and
on our numerical computations (mainly figure 42), we now formulate for the |gds€ 1

and the saddle-node fixed poir, g.
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Figure 37. Spring area with four codimension 2 flips i,

Conjecture 5.1. Figure 42 displays an accurate configuration of the global bifurcation
curves where the following properties hold.

(1) For parameter valuesw, 8) inside the regionA no critical cycle exists, while the
curvewg corresponds to the first or inner (cubic) tangency to the strong stable foliation.

(2) All the homoclinic bifurcations are quadratic, except at the point of contact between
the curvesws and w4, Which is a cusp point of cubic tangency.

(3) The parts of the curves, and w3 in the border of the regioB U C correspond to
the first homoclinic tangency, while at the cumwethe last homoclinic tangency occurs (as
w increases frond to co).

(4) For B < 1 and close tal, all the differences betweeny(8), w3(8) and w,(B) are
exponentially small irl — .

(5) For 8 > —1 and close to-1, the functionsvg(8) +1 andw,(8) + 1 are exponentially
smallinl+ 8.

(6) w1(B) 1 o0 asB | 0 andwz(B), wa(B) + oo asp 1 0.

The numerical values of the cusp point in item 1 and the point of intersection of the
curvesw; and w, are, respecively(ws(Bo), Bo) = (1.511Q —0.3907) and (w2(B1), B1) =
(1.5301 —0.2832.

In figures 43 and 44 one can see the behaviour of the unstable invariant manifold of the
saddle-node point near values corresponding to a cubic critical cycle. Finally, in figure 45
pictures are shown of the invariant manifolds of the saddle-node fixed point corresponding
to several zones in thev, 8) plane.

The computation of the curvey has been carried out in a simple way. Starting with a
local approximation of the unstable branch of the fold, it has been globalized numerically,
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Figure 38. Some 4-periodic fold curves of the tongigg®°.

until it is close enough to the ‘node part’ of the fold. A change of variables puts the
invariant manifolds as the horizontal and vertical axes, locally. Assume the vertical axis
corresponds to the strong stable manifold. Then, points on a fundamental domain have been
taken, and the projection on the horizontal axis of the return close to the node part of the
fold has to preserve the order before the cubic tangency, while after this tangency there are
points whose projections have reversed order. It is easy to implement routines detecting the
critical situation, but one should be very careful with the arithmetic error.

The following question is also of interest. The cure@sandw,; correspond to first (or
inner) and last (or outer) homoclinic tangencies, respectively. The augveorresponds
to the inner cubic tangency to the strong stable foliation of the saddle node. What about
an outer cubic tangency to this foliation? The experimental results are shown in figure 46,
where for completeness, we also include the parts ofdfiew;, and ws curves in the
window (w, 8) € [0, 7] x [0, 1]. The new curve is denoted hys, despite the fact that it
cannot be represented as the graph of a single-valued functign Bbr the computations
around the saddle node it is convenient to use a different representation of the map (1),

namely
u u\ u+ %+ 2sirf(%)) )
(v) ~ <v> - (ﬂ<v+2sirF<g» +2sif(5)) ) )

wherea = w(1 — 8). Now the saddle node is at the origin and the centre manifold has a
representatiom = g(u) = _,-, gru®, where the coefficients, depend onw andg.

Before going into detail we must clarify the exact meaning ofdlgecurve. For small
values ofw it is certainly related to cubic tangency to the strong stable foliatiop.0f.
Between the outer homoclinic tangency and the outer cubic tangency to this foliation, the
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Figure 39. Magnification of the rectangle of the previous figure. As the arrow shows,
in the lower right corner there is a magnification of the small rectangle, using the window
[1.6971 1.6973] x [1.0228 1.0234].

branchW* (p.g) (W* for short) is ‘folded’, and the ‘folds’ are preserved under iteration.
What we have followed, to obtain the curae, is the boundary of the set in thie, 8)-plane

for which there are ‘folds’ inW*. To detect the ‘folds’, afteW* has been approximated

in a fundamental domain using it has been continuated with controlled distance between
any two consecutive points and controlled angle between any three consecutive points. The
‘folds’ show up if two points, having:; < uy in the fundamental domain, have iterates
under (4) such that the order of the first components is reversed (mpdTais has been
checked allowing for some tolerance to account for the rounding errors.

As can be seen in figure 46, for small valuesuwothe curvews seems to also have a
exponentially flat contact witky; and the other two curves. Far > 1 it goes away from
w1 and several ‘soft’ peaks appear, related to resonances. The sources of the existence of
‘folds’ in W* can be of different kinds. The following points have been observed.

e A guadratic tangency to the strong stable foliation at the saddle node.

e W* spirals approaching an invariant curve with rational rotation number. The
attracting periodic orbit inside this curve goes from a node to a focus.

e The same as in the previous case, the periodic attractor being still a node, but the
points of W* approach the node entering close to only one of the branches of the unstable
manifold of the node (see figure 13J.

e W spirals approaching a periodic saddle and becomes tangent to the stable foliation
of that saddle. Eventually, by moving parametdis; has points going to the saddle and
later they go to an attracting focus. This seems to be the main mechanism for vajgies of
close to 1.



720 H Broer et al

l - -
o
08 | B
06 B
0.2 0.2 A
04 - Tzl | /Tuz2 iy
12
02 6 12 7
0
13
w/ 21
Figure 40. First steps of a cusp cascade l@ 3. Inthe lower right corner there is a magnification
of the rectangle [23, 2.31] x [1.4.1.55] marked in the upper part.
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Figure 41. Cusp cascade (details). On the left we show a magnification of the rectangle A of
the previous figure. This figure includes cusps of period 12 and 24. The small rectangle of this
picture is magnified on the right. The right picture includes cusps of periods 24 and 48.

It is clear that the source of ‘folds’, in the first case, is due to the proximity of a
homoclinic situation and, in the other cases, to the proximity to a heteroclinic one.

5.2.2. Homoclinic bifurcations originating from a tongue boundarplthough one can find

many curves of homoclinic bifurcation inside the tong’ﬁ@ (for example, cf Ostlunet al

[43]), our main interest is with curves originating from a fold point on the boundary. This is
concerned with our preoccupation with the tongue boundaries and the accumulation property
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Figure 42. Curves of cubic critical cyclesef) and saddle-node homoclinic bifurcations
(01, .-, wy), corresponding to the saddle-node fixed point in the parameter plans).

Figure 43. wg for p = —0.7, o = 0547341. The origin is at then and the

axes are eigenspaces. Near the the foliation 7*¢ is almost vertical. Left: the full
manifold in the window {3.2,3.2] x [-0.5,0.75]. Right: magnification using the window
[—0.08, —0.075]x [0.0044 0.0005], containing two complete fundamental domains; the vertical
tangencies are easily seen.

to be illustrated in section 5.3.2 and which was sketched at the end of section 4.3. In this
respect the two curves of homoclinic bifurcation, to be presented here, also are of special
interest. In fact, again we restrict ourselves to considering the main td@g@eneralizing
from this. ‘ ‘

The new curves are denoté@’/’z, so presently we shall deal Witm"é”s, i =12
Their definition is by continuation, indeed, they represent homoclinic bifurcation curves
of rotation numberp/g originating from a fold homoclinic bifurcation. The case with
B = 0 was displayed in section 2. In figures 47-51 we give several configurations of
the homoclinic bifurcation curves, in th@v, @)-plane, that are born in the saddle-node
bifurcation curvel*g’z. Moreover, in each picture there are the curves corresponding to the
cubic tangency of the unstable invariant manifold of the saddle fixed point to the strong
stable foliation of its corresponding node (born by saddle-node bifurcation). Also, we depict
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(©

Figure 44. The unstable manifoldW}, of the saddle-nodesg) for 8 = 03, w =
0.7188724 (slightly after the cubic tangency #°*). Origin and axes as in figure 43.

(a) The full manifold. Window: [3.2,3.2] x [-0.2,3.45]. (b) Magnification of window
[—-0.052 —0.05] x [0.0015 0.0035] using 100 points per fundamental domain. Roughly two
fundamental domains are displayed. One can see an accumulation of points where the tangencies
with % occur. €) Figure ) enlarged, using Fpoints per fundamental domain, to the window
[—0.0513437 —0.051 3436]x [0.00251260.0025127]. The value of the regression line has
been substracted from the ordinates and the difference is displayed. The vertical windgw in (

is [-3x 10715, 3 x 10715]. One can see the effect of the rounding errors and the shap&! of

near a cubic tangency to the (vertica}*.
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Figure 45. Configuration of the invariant manifolds of the saddle-node fixed point in the regions

indicated in figure 41.
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Figure 46. The curves of innerdp) and outer ¢s) cubic tangency to the strong stable foliation
at the saddle node, together with the curves of inag) énd outer 1) homoclinic tangency.
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Figure 47. Several bifurcation curves fg# = —0.35.

the curves corresponding to equal absolute value of the eigenvaldgs (n the notation
of section 2.4 forg > 0 and X, for 8 < 0) and the curves_;_g corresponding to the
flip bifurcation of the fixed points. Apparently the behaviour of the curves is similar for
B > 0 and there are several possible configurationgfer 0. This will be important when
determining the smoothness and the destruction of the invariant circle.

To be more concrete, in figures 47-51 the lines labelled and ¢ correspond to
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Figure 48. Several bifurcation curves fgg = —0.3.
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Figure 49. Several bifurcation curves fg# = —0.25.

fold, equal eigenvalues (in absolute value) and flip bifurcations, respectively. That is, for
simplicity, a stands forl"gz, b stands forX,s2 (if B > 0) and forX, (if B < 0), andc
stands for=_;_g. Linesd, e and f (the latter displayed only in figure 47) denote quadratic
homoclinic tangencies. F@ > 0 the lineg corresponds to the last homoclinic tangency.
The linek denotes a cubic tangency to the strong stable foliation. In figure 48 consider lines
d', ¢ and f’. They correspond to heteroclinic tangencies between the unstable manifold
of the saddle and the strong stable one of the node. We note’'tleatd /' meet in a
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Figure 50. Several bifurcation curves fg¢ = 0.1.
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Figure 51. Several bifurcation curves fg¢ = 0.3.

cusp point, corresponding to a cubic heteroclinic tangency. In figure 50dirmsd g’ are
shown, which correspond to a first and last heteroclinic tangency of the type described in
figure 48.

In view of the invariant circle, if it is not destroyed by phenomena related to other fixed
or periodic points, we have the following scenario. Let us begin with figure 47. In the
interior of the region bounded hy, » and/ the circles are smooth curves, the degree of
differentiability decreasing when going fromto b (see sections 2.4 and 5.3.1). When either
b or h are reached, the invariant curve is j@8t(with a sudden jump of differentiability if
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h is reached). The curve persists while remaining in the region bounded bandd. In
figure 48 a part of the role af is taken bye, whichever is reached first, and in figure 49
it is fully taken bye.

For 8 > 0, in figures 50 and 51, lines, b andh have the same role as before, but the
boundary of existence @ invariant curves is now made by the corresponding parts of the
linesa, c ande.

On the fold the curveg, g, d, e and f begin atwo(B), ..., ws(B), respectively. See
conjecture 5.1.

5.3. Global aspects

We now come to deal with several global phenomena appearing in the fattened Arnold
family F = F, ., . We consider the loss of smoothness, namely the destruction of the
invariant circle, accumulation of the tongues, the occurrence of strange attractors and the
coexistence of various types of attractors.

5.3.1. The invariant circle. Two numerical tests have been (repeatedly) carried out
involving the genericity property on the differentiability of the invariant circle when the
rotation number is rational, that is, inside the Arnold tongue.

Both tests use the fact that the invariant circle exactly consists of the closure of the
unstable manifoldWg of a periodic saddle§. Indeed, this is a piecewise analytic curve,
where the smoothness is only lowered at the nearby periodic nodes, where different branches
of W¢ enter. LetN be such a node, with eigenvalues<Oh; < A < 1. By W3’, W3, we
denote the strongly stable and the (weakly) stable invariant manifolds, @fssociated to
A1 andi,. According to the results of [14], if := log(11)/10g(A2) ¢ N then there exists
an unique analytidvy,. Generically this does not coincide with the cirélg, which is one
of the things checked by the tests. Nevertheless we camijsas a local reference for the
branches ofW¢ to be compared.

For both tests we select parameters such thafN and we start as follows.

e First S is computed andV¢ is obtained by means of local (Taylor) expansions.

e The manifolds (branches) are globalized by taking a suitable number of points in a
fundamental domain and iterating under our nfap

Now we describe the first test. Up to an affine change of variables, we may assume
N at the origin and the coordinate axes such that the tangerif&tand to W', at N,
are in thex andy directions, respectively. The manifol; can either be generated as
the graph of an analytic function, = g(x), or by means of a parametric representation
p() = (x(¢), y(t)) such thatF(p(t)) = p(r2t). An advantage of the latter representation
is that, asF' is an entire function, the analyticity d¥}, implies thatp is entire.

Consider points iV close toN with coordinatesx, y). There is a valuer, of ¢ in
the parametric representation, such thatc(r) = x and now we consider and compute the
error iny:

Ay =y —y(0).
When genericity holds,Ay| must behave ad|x|"(1+ o(1)) asx — 0. Taking logarithms
yields z := % =r+ %. Therefore, by plotting versusii for the unstable

branches o#v§ enteringN from the right and from the left, one must see lines tendingde
1/log(|x|) tends to zero. Furthermore, if the limit slopes, (ag) and log A;) are different,
the invariant curves are just”. This is illustrated in figure 52 fow = 7 /10,8 = 0.1
anda taking the values 0.54 and 0.545. In these caéeand S are fixed points. We note
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Figure 52. Genericity test using the order of contact between the invariant circlé¥gpat the
node.w = 7/10,8 = 0.1. (@) @ = 0.54; (b) @ = 0.545. See the text for additional explanation.

that the rounding errors prevent taking too small. The horizontal lines correspond to the
limit value r.

The second test concerns the Fourier expansion of the invariant @iftle {N}. As
before it is analytic except at a finite number of points (the periodic nodes) where we test
whether it is exactly of clas€”,r ¢ N. Let W¢ be represented as = i(x), i being
a 2r-periodic function. Leth>0 hyn..c0Snx) + h, s sin(nx) be the Fourier series df,

and defineh, = (h2_ + h2 )Y2. Then one hag, = 245D whenn — co. By taking

n,c
logarithms one hag := '29Uw — . 4 14 "’9%%(1). Therefore, the representation of

log(n)

versuslogﬁ must tend to- + 1 aslog+n) goes to zero. The steps to follow are as follows.

e It is convenient to have poinis, y) on the invariant circle for equally spaced values
of x. This is obtained by interpolation from a suitable set of points produced by iteration
from a fundamental domain d¥s.

e Then a Fourier analysis is carried out using a standard FFT procedure. The moduli
of successive harmonics are obtained. The computations are stopped whgnisvieelow
10714, to prevent the effect of rounding errors. Otherwise, up¥bHarmonics have been
computed.

A small sample of results is displayed in figure 53 o= /10, 8 = 0.1 andw taking
on the values 0.45, 0.50, 0.54 and 0.5463. The latter is rather close to the value of
giving A1 = A2 (¢ = 0.546 389627 623..). As in the previous figure, the horizontal lines
correspond to the limit value + 1.

In all the cases we obtained results as to be expected. Hence, there is strong evidence
for generic behaviour of the smoothness of the invariant circle.

On the other hand, if we take a fixed valuefgfthere is a way to obtain an approximation
of the set of parameter valu€s, o) for which anr-normally hyperbolic invariant circle
exists.

Indeed, letp, ., be ap/g-periodic attractor with(c, ) € 1?, and leti; and 1, be
its eigenvalues, such that;| < |A2] < 1. We know thatiid, = B9. If there exists
an r-normally hyperbolic invariant circle thefk;|/|A2]" < 1. So, let us consider the set
Spjqr C 15, defined as

(@, ®) € Zpqr & DFL | (Paw) < SIGNB|BI"/HD  |BI4/0HD,

for the relatedp/q-periodic point. So for allw, o) ¢ ip/q,, the global attractof2 is not
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Figure 53. Genericity test using the asymptotic behaviour of the coefficients of the Fourier
expansion of the invariant circlew = 7/10, 8 = 0.1. (@) « = 0.45; b) « = 0.50; (c)
a = 0.54; d) @ = 0.5463. See the text for additional explanation.

anr-normally hyperbolic invariant circle. Therefore the set of parameter vatues) for
which @ is anr-normally hyperbolic invariant circle is contained i), /,cq2,/4.r-

In order to compute the sét,,c0%,,,., it is sufficient to compute for every tonguﬁ/q

the curvess, C If/q, as defined in proposition 2.10. We have performed these computations
for all tongues of period less than or equal to 17. In figure 54 there is a representation
in the (w, «) plane of the sen,,/, j0-4<17.0< p<qg/2%p/4.1 TOr the values off 0.9, 0.3,—0.3

and —0.9. The curves are approximations of the upper boundary of the sets for which
the global attractor can be just a continuous invariant circle. (These are obtained by first
computing the corresponding flip curves.) However, the reader should be aware that for
some regions below these curves, other mechanisms, such as homo/heteroclinic tangencies,

can also destroy the invariant circle.

5.3.2. Accumulation of tonguesOne of the interesting global phenomena is the
accumulation of tongues on curves of homoclinic bifurcation. This accumulation
phenomenon seems to take place for|A|l < 1.

Again, we present most of the results for the main tongue. The cmﬁ//gg, i=12
with p = 1 or at leastp fixed, originating at(e, w) = (0, 27p/q), seem to accumulate
on two different curves: the left-hand curves=£ 1) accumulate on one curve and the
right-hand ones on another. For this it is required that co. We only considep/g > 0,
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Figure 54. Existence of invariant circles. The curves shown are approximations of the upper
boundary of the sets for which invariant circles exist. Top: et 0.9, right 8 = 0.3. Bottom:

left 8 = —0.3, right 8 = —0.9. In the horizontal and vertical directions the variablesau@nd

a, respectively.

the other case being obtained by symmetry. We distinguish between the thre¢g casks
B < 0andpg > 0. There is an increasing complexity of the tongues wheapproaches-1.

(1) Casep = 0. Here the behaviour of the tongues seems very simple. One of the
branches of the boundary,g/qvl, accumulates on the homoclinic bifurcation curve called
Toz*0 in figure 11. The other branches accumulate at the boundary of the (main) Arnold
tongue corresponding to fixed points, that isi“@tz. In figure 55 we show all the tongues
corresponding to periods less than or equal to 10, as well as the flip bifurcation curves inside
these tongues. Moreover, we give the curve of homoclinic tangency, denotf—{ﬂoby

(2) Cases > 0. This case is more involved. As in the previous case, the CUTf/)g:sl

appear to accumulate 3’52"3, the curve of first homoclinic tangency. However, the other
curvest 4.2 NOW seem to accumulate at a homoclinic bifurcation curve starting at another
fold homoclinic bifurcation, namely at the last homoclinic tangency. Following the notation
of conjecture 5.1, the latter curve seems to begiwat) = ((1 — B)w1(B), w1(B)) € ng.
We shall denote this curve byf In figure 2 the casg = 0.3 is shown, see section 1.
One can recognize the curvég®® and $92 in figure 2 as the curvesandg in figure 51.
In figure 3, also in section 1, two magnifications are presented of the rectangles in figure 2.
Here the accumulation of the tongues is demonstrated more clearly.

(3) CaseB < 0. We distinguish two casegiy < 8 < 0 andB < Bo. The valuepgy is
as defined in the previous section.
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Figure 55. Arnold tongues for8 = 0 and the curve of homoclinic tangencilsé’o.

For 8 > Bo (but not too close to 0) we computed tongues corresponding to rotation
numbers 1i fromi = 1 toi = 11. The boundaries of these tongues have full curves in
figure 56. Inside every tongue of perigd4 a fold (saddle-node) bifurcation curve appears
of the same rotation number with an ‘inner’ cusp. We show these curves as broken curves.
Moreover, three homoclinic bifurcation curves show up, that we Eaff, 72 and 777
Compare these curves with e and f in figure 47 for a nearby value &. These curves
are born at the saddle-node cuﬂ?@z respectively in the pointg; = ((1— B)w2(B), w2(B)),

70 = (1 — Pws(B), ws(B)) and > = ((1 — Bwa(B), wa(B)). We note thatw, < w3 < wa.

In this case the branchdy,, , tend tol;, asq — oco. The left fold curvesl”l’g/q’1

seem to approximate to the curV§"3 as in the cas@ > 0, for ¢ not too large 4 < 7),

while for g large enough it seems that they tend to the homoclinic bifurcation d)f\?e

For the other saddle-node bifurcation curves, born at the inner cusp, the left branches tend
to Tf”s asqg — oo and the right branches tend 1?5”9. In figures 57 and 58 one sees details

of figure 56.

It is important to note that the first periagl for which the left branch of the tongue
boundary,l“‘f/q’l, is near the curv@ll”S increases ag decreases. The behaviour of these
curves is related to the existence of two codimension 3 bifurcations of fold type for any
branchT,,, 1. We described these types of bifurcations in section 5.1 in the item about
the transition of saddle-area to cross-road area. The fold bifurcation curve with a cusp that
played a role there, is the same we have considered here for every tongue. In table 1 we
give the value of for which the bifurcation corresponding to the tangency of the branches
emanating from the cusps occurs. From table 1 it seems to follow that these values increase,
asq tends tooo, like —cy — con™ with constants; > 0. One can estimate the values of
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Figure 56. Arnold tongues for8 = —0.3365. Also three homoclinic bifurcation curves are

shown, all of these beginning in the saddle-node bifurcation curve.

Table 1. Values of 8 for which a codimension three cusp exist for rotation numbéts 1

9 B 9 B g B q B

50 -0.2580 24 -0.2640 17 —0.2719 10 -0.3018
30 -0.2611 23 -0.2646 16 —0.2739 9 —0.3128
29 -0.2614 22 -0.2655 15 -0.2764 8 —0.3285
28 —-0.2618 21 —-0.2664 14 —0.2794 7 —0.3518
27 —0.2622 20 -0.2675 13 —0.2831 6 —0.3899
26 —-0.2627 19 —-0.2688 12 —0.2878 5 —0.4592
25 -0.2634 18 —0.2702 11 —0.2938 4 —0.6046

¢; as 0.2562, 4.5 and 2, respectively. We have no explanation for this phenomenon.

The behaviour of the tongues f@r< By, and at least fop nearBy, seems to be quite
similar. The main difference is that the curv&$” and 77* collide in a point inT,,
for B = Bo. (Recall that this value of corresponds to a cubic tangency of the invariant
manifolds of the saddle node.) FBr< By these two curves form one unigue curve with a
cusp point. The latter point corresponds to a cubic tangency of the saddle fixed point. If
again Toz’ﬁ denotes the left branch of the new curve a&’ﬁjﬁ the right branch, then they
play the same role as in the previous case.

Finally, we wish to emphasize that all these phenomena can also be observed for tongues
of another rotation number. Figure 59, for example, shows tongues of rotation numbers
n/(@Bn—1) andn/(3Bn+1) forn =1, ..., 10, in the cas@ = 0. These exhibit accumulation
of boundaries with respect to the tongue of rotation numberﬂf@, similar to what we
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Figure 57. Magnification of rectangle A in figure 56. The rotation number associated to every
bifurcation curve is shown. Window: [2, 2.0] x [1.6, 2.8].

described before regarding the tongife Now the symmetries of thé) case disappear,
but the meaning of ‘right’ and ‘left’ curves of homoclinic tangencies is still clear.

5.3.3. ‘Large’ attractors. In this global model, next to ‘small’ strange attractors also ‘large’
attractors show up. We now discuss their occurrence. First, we define an at§aotte
‘large’, if for eachx e S! there exists ary € R such that(x, y) € S, so if it winds around
the entire annulus.

One example of a ‘large’ attractor is the circle attraafgr, s of section 2. In view of
the creation of ‘large’ strange attractors we met several theoretical scenarios in section 3.
The most familiar of these involves the transition of a node into a focus. At that moment
the circle is only of clas€®. After that the eigenvalues can go to the negative half-plane,
leading to a cascade of flips. We will not pursue this at this moment, but we shall return to
it in section 5.4.1.

Another scenario develops near a quadratic critical cycle. Referring to section 4 for
theoretical considerations and references, we here claim to have found such a ‘large’ strange
attractor, see figure 4, section 1. We note that this attractor occurs for a parameter point
near, but still outside, the tongug.

In some scenarios strange attractors seem to exist close to the boundary of the parameter
domain with invariant circles, perhaps even in its closure. This seems reasonable in several
cases. Indeed, if the destruction of an invariant curve with rational rotation number is due
to a homoclinic tangency, just after the tangency strange attractors should appear (cf the
end of section 4.3). If, on the one hand, its occurrence is due to the leaving of a tongue,
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1/6

Figure 58. Magnification of rectangle B in figure 56. Window:.[55.75] x [7.45, 7.75].

its shape can be as in figure 4. If, on the other hand, the invariant curve has an irrational
rotation number and is destroyed by an obstruction phenomenon (cf the end of section 3.1),
the periodic orbits involved in the destruction can give rise to a homoclinic tangle creating
a strange attractor.

It is also easy to find ‘large’ strange attractors that are in the tongue boundary
corresponding to period 1 that display many ‘turns’ in termsxofs an angle variable.
To obtain these we only have to consider larger values.té\s an example, see figure 5,
section 1.

5.3.4. Coexistence of attractorsBy the work of Newhouse [38], also see Palis and Takens
[45], it is known that for certain parameter values there is coexistence of infinitely many
periodic attractors (sinks). Numerically one can see as many of these as the precision of
the computer allows. An example of this in our map can be found near the homoclinic
bifurcation line where tongues accumulate, see section 5.3.2. For the case of coexistence
of infinitely many strange attractors see the nice results of [46] in a quite different context.
For the coexistence of invariant circles and periodic attractors, or strange attractors and
periodic attractors fop > 0, we consider values of the parameters inside the toﬂéumd
beyond theSf curve of outer homoclinic tangencies. Here the invariant manifolds of the
saddle fixed point can behave as those of figure 17 in c&degcf or (d). In a case like
figure 17p) we have found coexistence of a ‘large’ strange attractor and an attracting fixed
point for 8 = 0.1, « = 2.34 andw = 2.57. In figure 60 we depict this strange attractor and,
with broken curves, the invariant manifolds of the saddle fixed point. The corresponding
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Figure 59. Accumulation of tongues in the tongu§/3.

node is at the end of the left branch of the unstable manifold. The right branch of the
unstable manifold is in the basin of attraction of the strange attractor.

In a case like figure 1d( we detected coexistence of an invariant circle and an attracting
fixed point forg = 0.9, « = 0.12 andw = 0.7 (see figure 61). Here an invariant curve
is shown, and in broken curves also the invariant manifolds of the saddle fixed point. The
left branch of the unstable manifold tends to the focus and the other branch is in the basin
of attraction of the invariant circle.

We note that the strange attractor of figure 60 is destroyed when the parameters move
to the other side of the curv@f and that the invariant circle of figure 61 will be destroyed
for parameters corresponding to a cubic external tangency as in figurp 17(

There is an easy way to see coexistence of quasiperiodic or strange attractors and
periodic attractors, namely by taking values@®fear the anticonservative cage= —1
(see appendix C). In the first picture (case 1) of figure 62 we show the orbits of 10
points: (0, —2), (0, —4), (3.8579 —4.3082, (5.67, —1.97), (0.95, —1.44), (1.75, —4.48),
(1.82, —4.35), (1.61, —4.57), (0, 0.893 04, (0, 0.82). We distinguish two 4-periodic elliptic
islands (one with three invariant circles displayed and the other with two), an invariant
circle (of, say, ‘snake’ type) and a 24-periodic elliptic island near the invariant circle in the
middle of the picture. Moreover, there are 24-periodic elliptic points in the two borders of
the external chaotic region. In the next picture we see the invariant circle in more detail as
well as the small invariant circles that surround the 24-periodic elliptic orbit. We remark
that the chaotic zones generated frogdp—2) and (0, —4), as well as the two families of
large islands and the period 24 small external islands, go up and down jumping over the
shake curve because of the reversion of orientation. A ‘period two’ very wild invariant
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Figure 60. Coexistence of a ‘large’ strange attractor and an attracting fixed poirg fer0.1,
o = 2.34 andw = 2.57.

circle seems to exist between the two chaotic zones (in the narrow white area in between,
not included in the figure). The snake curve is invariant under the map, but as noted in
appendix C (see, e.g. figure 79) these invariant circles are far from Lipschitz graphs. For
an analysis of the generic existence of non-Lipschitz invariant curves for perturbations of
integrable non-twist maps we refer to [53].

In case 2, where the map is weakly dissipatige{ —0.999), the invariant circle almost
coincides with the previous one and the elliptic orbit has been transformed in an attracting
periodic orbit. In cases 3 and 4 the invariant circle has been destroyed and instead there is
a large strange attractor. In case 4 there is also a period 24 attracting periodic orbit. The
numbers presented on top of every picture are, respectively, the valugsxadind 8. All
values are inside the Arnold tongue of period 4.

If we take 8 = 1 infinitely many elliptic periodic orbits exist. By taking =1 — AB,

AB > 0 and sufficiently small, as many as desired (but a finitely many!) of these periodic
orbits should persist as sinks. One open problem is whether for the present family it is
possible to have coexistence of as many strange attractors as desiteglisifsufficiently

small, a large number of the infinitely many periodic hyperbolic points preserg ferl,

will persist as saddles. Another open problem is whether, under the perturbation, these
will give rise to strange attractors (eventually, to small attractors) or whether their unstable
manifolds will be captured by nearby periodic attractors (sinks).

In figures 60—62 we discovered periodic attractors coexisting with an invariant circle or
with a strange attractor. An open question is whether a strange attractor and an invariant
circle can coexist.
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Figure 61. Coexistence of an invariant circle and an attracting fixed poingfer 0.9, « = 0.12
andw = 0.7.

5.4. Additional facts

We end this section with some additional material found in the numerical exploration of the
fattened Arnold family. This exposition certainly again stresses the dynamical richness of

this map.

5.4.1. A sample of attractors.We begin with a sample of the attractors as they occur in
our example. Figures 63—65 display several types of attractors as observed, most of which
are strange attractors (SA). In each case four numerical values are displayed. The first three
are 8, w/(2r) and«, so indicating how we move through the parameter space. The last
number is the vertical semiamplitude of the window. The horizontal scale is alwa®s ][0

the horizontal axis is also displayed for reference.

Case 1 shows a 6-pieces SA (much like this could appear in #midfamily) which
globalizes in case 2. Cases 3 and 4 show the fusion of a 2-pieces SA into one single piece.
Case 5 shows a large SA shortly after some heteroclinic tangency has globalized it. By a
stronger density of points, one may still detect the shape of the previous SA. Case 6 shows
a SA which can be considered as a typical ‘folded’ curve, produced after the last homoclinic
tangency of a saddle. Case 7 is similar to case 5, but for a larger valgeanfl a much
larger vertical window. Some concentrations of points also give evidence of a ‘previous’,
smaller, SA.

The remaining cases correspond to negative value8. ofrom case 8 to 9 one sees
a globalization produced by heteroclinic tangency, case 8 originating by repeated period
doubling of an attracting fixed point. It looks like a parabola. Shortly after, the lower
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Figure 62. Several orbits (attractors in case 2—4). See explanations in the text.

branch of the parabola becomes as large as the upper one: it has an heteroclinic tangency
with the stable manifold of the saddle point created at the same time as the sink. Case 9
frequently suffers destruction to (periodic) sinks, which again become an SA. A figure like
case 9 (but slightly larger) reappears when we incregskeeping the other parameters

fixed. Observe that case 9 is quite similar to figure 5, section 1.

Inspired by the logistic family (and also by theehbn case), we believe that for fixed
o and g, the set ofx-values for which a sink exists, is dense. However, in certain regions,

this set can have very small relative measure.
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Figure 63. Some attractors. See explanations in the text.

Cases 10-13 show the fate of an invariant circle when it is folded. It may give rise to
a large SA, as in cases 12 and 13, or be broken into pieces as in case 11. Case 13 shows
an ‘onion’-like structure, reminiscent of figure 85 (see appendix D). This kind of structure
systematically appears also in attractors of three-dimensional (3D) diffeomorphisms (see
[32]). Cases 14 and 15 display a globalization of a 3-pieces SA. Case 16 (symmetric since
o = 0) shows just one SA, but most of the iterates are still located near what, previously,
was a 4-pieces SA.

For values ofg closer to—1, very wild patterns appear. Case 17 shows a wild invariant
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Figure 64. Continuation of the previous figure.

curve, becoming an SA in case 18, starting to display an onion-like character, to be thickened
in case 19. In case 20 we see a multipieces SA (58 pieces!). A small variatioryiefds

case 21, where a stronger density is seen close to a ‘curve’ obtained by joining the previous
pieces. Case 22 is similar to 17 but even wilder. However, in this case, we have preferred
to show an SA, coming from an invariant curve which looks quite similar. Case 23 is again
a very thick onion-like structure (maybe even closer to an artichoke!). Finally, case 24

displays a connected chain of five onion-like structures. Some of the pictures also have a
nice artistic component!
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Figure 65. Continuation of the previous figures.

5.4.2. Basins of attraction. We briefly discuss and illustrate some principles regarding
basins of attraction and their numerical detection. By hetero- and homoclinic bifurcation
these basins can change dramatically.

Keeping 8, w and « fixed we start our iterations in various initial points. Figure 66
shows thgx, y)-plane with several basins of attraction of periodic attractors. For this choice
of parameter values, the periods are 1, 2, 3, 4, 5, 7, 8, 11, 13, 14 and 24. Each grey tone

corresponds to exactly one basin of attraction.
The principle for production of the different basins is as follows. Assume that, by some
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B3

Figure 66. Basins of attraction of the fattened Arnold family far = 1, § = 0.99 and
w = 0.38 x 2. The values ofx, y) are in the rectangle [@7] x [-3, 3].

fold bifurcation, a node and a saddle are created. The node then becomes a local attractor
which may bifurcate further (e.g. by a cascade of flips giving a strange attractor). The basin
of this local attractor is bounded by the stable manifold of the companion saddle (at least
close enough to the bifurcation). One branch of the unstable manifold of this saddle is
attracted by the local attractor, while the other may go to another attractor. If this happens
to be the same, we should look for other unstable manifolds as boundaries of the basin.
When several sinks and their companion saddles are interacting, different basins can appear,
as shown in figure 66.

By moving parameters, all invariant manifolds change and may give rise to hetero- and
homoclinic bifurcations. This causes changes of basins, destruction or fusion of attractors,
etc. The pictures can look extremely different, but the mechanims are quite simple.

5.4.3. Lyapunov exponentsimportant for the detection of (quasi)periodicity and chaos are
the Lyapunov exponents and it is interesting to see how they behave in the fattened Arnold
family.

Here we report on a sample of computations, where as an ‘arbitrary’ initial point we took
(x,y) = (0.123456 7890.987 654 32]. The maximal Lyapunov exponent was obtained by
iteration of the differential (derivative) map. The computation is typically stopped when,
after obtaining some estimate, for®18dditional iterates the variation of the estimate is less
than 10°3. Initially some transient regime (of %Qterates, unless we ended on a periodic
orbit) was used.

Figures 67 and 68 display some results,foe 0.5, w € [0, 7] and« € [0, 4]. The first
figure shows the parameter valugs «) for which the maximal Lyapunov exponent seems
to be zero. Numerically these values obtained range-ib0f°, 10-°] and, therefore, it is
reasonable to assume that they correspond to a quasiperiodic circle-attractor. In figure 68
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Figure 67. Values of(w, «) for B = 0.5, for which the maximal Lyapunov exponent seems to
be zero. They correspond to quasiperiodic attractors. Window][& [0, 4].

Figure 68. Values of (w, o) for 8 = 0.5, for which the maximal Lyapunov exponent seems to
be positive. They correspond to strange attractors. Window][& [0, 4].

we display the values ofw, @) for which the maximal Lyapunov exponent seems to be
positive, using the bound 18. They should correspond to strange attractors. Also compare
a global figure, like figure 1, as it occurs for a smaller valug aind for a larger range of

o.
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Figure 69. The maximal Lyapunov exponent fgr= 0.5, « = 4 andw € [7/8, 7 /4], showing
windows which frequently seem to interrupt the parameter domain of strange attractors.

In figure 68 it seems that whole segments exist with positive maximal Lyapunov
exponent. To check this phenomenon we selected the segrﬂae%l Bs a range of»/(2r).
In this interval 160 000 equispaced valuesugi27) were taken and the Lyapunov exponent
was recomputed with this small step size. The result appears in figure 69, where the
Lyapunov exponent is plotted against Indeed, there are still ranges where the exponent
is positive for almost all values in the lattice, but they are also interrupted by parameter
values with negative exponent, corresponding to periodic attractors (sinks).

Points appearing neither in the first figure nor in the second, correspond to values of
(w, @) for which our initial point evolves to a periodic attractor.

5.5. A summarizing ‘movie’.

Many readers often find themselves looking at a computer screen displaying dynamics,
particularly concerning a family of 2D maps. As said in the introduction (also see
appendix A), the present, fattened Arnold family, is not ‘just another dynamical system’,
but extremely representative for the case of 2D maps. We claim that, in view of this paper,
the corresponding phenomenology should contain no further secrets. Indeed, the reader is
invited to sit in front of his computer screen and join us in the following experiment. |If
necessary the appropriate software can be obtained from the authors.

We follow the fate of attractor(s) for different values @, ») and @ ranging in a
suitable interval, so moving along a number of representative paths. The attractor(s) are
obtained as follows by iteration of the map. If for given parameter values a saddle point
occurs, we start the iterations at two different initial points located in the corresponding
unstable manifold. In all other cases we take our favourite ‘arbitrary’ initial point
(x,y) = (0.123 456 7890.987 654 321. We first perform a transient of ¥Qterates, and
then observe the attractor(s) obtained b§ d@nsecutive iterates. The valuesoofor which
a bifurcation is produced are only given approximately.
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1)B=02,0=04x 27.

(@) a € [0, 0.9]. In these cases the attractor is an invariant circle (IC) with either rational
or irrational rotation number. i is small we can only observe the IC with irrational rotation
number. If the rotation number is rational the minimal attractor is periodic and it occurs
inside an Arnold tongue. This periodic attractor starts at a fold (saddle-node) bifurcation.
Later the node can become a focus if the width of the tongue is large enough, but this has
not been observed in the present exploration. The saddle created at the fold bifurcation
persists as a saddle until, when leaving the Arnold tongue, it again joins the node in another
fold bifurcation.

(b) @ € [1,1.23]. Whenao ~ 1 we enter a 5-periodic Arnold tongue. The 5-
periodic node turns into a focus, later a node with negative eigenvalues and then a saddle
with reflection. Increasinge further leads to a typical cascade of flip (period doubling)
bifurcations. The IC is preserved until the first flip bifurcation.

(c) ¢ € [1.23,1.25]. After the cascade of flips there is an inverse cascade of fusions of
SA. In this cascade’ 5 pieces merge t0"2* x 5 pieces, finally arriving at a 5-pieces SA.
This attractor is the closure of the unstable invariant manifold of the saddle with reflection
as mentioned in item (b).

(d) @ € [1.26,1.4]. Fora = 1.26 a heteroclinic tangency occurs of the unstable
manifold of the 5-periodic saddles mentioned under (b) and the stable manifold of the
5-periodic saddles which appeared under (a). This produces the birth of a large SA, the
invariant measure of which, is concentrated mainly near the ‘old’ 5-pieces SA. Values of
a inside the interval [6, 1.4] exist, for which periodic attractors or SA, consisting of
several pieces, occur. This phenomenon is due to heteroclinic intersections associated to
other periodic points (cf [50] in the case of th&kbn map).

(e) « € [1.41,1.65]. The same phenomenon as described in the two previous items
occurs for other periods.

() « € [1.66, 2.18]. We again see the birth of a periodic attractor of period 2 undergoing
a cascade of flips, followed by an inverse cascade of SA. However, there is a difference in
this case. Fow = 2.01061. .. we enter the Arnold tongue of period 1. Then we observe a
2-pieces SA and, after the fold bifurcation, a fixed point attractor. Moreover, the branch of
the unstable manifold of the companion saddle (see (a)) that does not tend to the node is in
the basin of attraction of the SA. In this case, the invariant manifolds of this point behave
as in figure 17§) (after the last homoclinic tangency). Again, the existence of heteroclinic
intersections produces a large SA that, in this case, coexists with an attracting fixed point.
The large SA is destroyed far = 2.185 by an outer homoclinic intersection of the fixed
point.

(g)a > 2.186. The same phenomena occur for fixed and other periodic points: existence
of cascade of bifurcations, inverse cascades of a SA and creation or destruction of a large
SA.

(2) =09, w=0.25x 2.

(a) @ € [0, 0.156]. One sees an IC of rational or irrational rotation number.

(b) @ € [0.157,0.86]. The parametes enters the Arnold tongue of period 1 and an
attracting fixed point coexists with an IC. The unstable manifold of the saddle which appears
at the fold bifurcation has a transversal intersection with the strong stable foliation of the
saddle, as in figure 1dj.

(c) @ € [0.87,0.93]. A periodic attractor of period 13 shows up that undergoes a cascade
of period-doubling bifurcations followed by an inverse cascade of SA. Finally there appears
a large SA. For these values afthe unstable manifold mentioned in the previous item
has quadratic tangencies with the strong stable foliation. We note that apart from these
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attractors, a 4-periodic attractor exists.

(d) « > 0.94. There appear more periodic attractors and SA, as in thefasé.2.

(3)B=-02,w=0.05x 27.

(&) « € [0,0.377]. A quasiperiodic attractor exists for most of the values checked,
which is in accordance with the very small size of the Arnold tongues in this zone of the
parameter space.

(b) a € [0.378 3.594]. Whena = 0.378 the parameters enter the 1-periodic Arnold
tongue. Then, ag increases, the IC loses differentiability. Fer= 1.65 there is a flip
bifurcation and the IC is destroyed. Then the typical flip cascade occurs and finally a 1-
piece SA appears. For larger valuesaothis SA is destroyed by other attractors, as usual,
or it coexists with other periodic or strange attractors. For exampleg fer 3.52 there
simultaneously are a 1-piece and a 2-pieces SA.

(c) @ > 3.594. For this value of the first homoclinic bifurcation occurs for the saddle
that first appears at the fold. Then the 1-piece SA becomes a large SA. After this we find
strange or periodic attractors.

(4)B=-09,0=0.05x 27.

(@) @ € [0,0.59]. There is a globally attracting IC.

(b) @ € [0.6, 0.6925]. The parameters enter the 1-periodic Arnold tongue. The invariant
curve loses differentiability as explained before, until it is only continuous.

(c) @ € [0.6926 2.195456]. There is a flip bifurcation at the first valuecohfter which
the IC disappears. For this range of the parameter one finds many ‘windows’ of different
periodic attractors (with quite varying periods) coexisting with the 2-periodic attractor, 4-
periodic attractor, etc which appear in the usual cascade of flipse E0R.194 the cascade
finishes and an SA of several pieces appears. For instance,dq2.1954 2.195 455] we
find a 8-pieces SA. This attractor becomes a large SA via a heteroclinic bifurcation with
the stable invariant manifold of the saddle created at the fold bifurcation of period 1. This
occurs, approximately, far = 2.195 455.

(d) @ > 2.195455. For values near 2.195455, the invariant measure of the SA seems
to be concentrated mainly near the ‘old’ 8-pieces SA. Increagiggain, the distribution
on the SA is more ‘homogeneous’. (The measure is quite well distributed on the related
unstable manifold.) After this, more periodic and (both small and and large) SA show up.
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Appendix A. Modelling the return map near homoclinic tangency

We give a heuristic derivation of the fattened Arnold family as a return map near homoclinic
bifurcation, in an appropriate setting. Let a diffeomorphignon the plane be given with
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Figure 70. Non-conservative perturbation of a symplectic mam} The timee mapg/Z, of a
Hamiltonian vector field,If) a conservative perturbatiopf’, + O(€?), (c) a non-conservative
perturbation which ‘pulls up’ the unstable manifold.

a hyperbolic fixed point such that the corresponding stable and unstable manifolds are near
a homoclinic tangency. Furthermore, for simplicity, assume & near the identity and
relatively near conservative. This means that the map is close to thectiiogv (for ¢

small) of a vector field on the plane, and this vector field is nearly Hamiltonian. In summary
this means that

F =g +0(?,

for a HamiltonianH. All elements are assumed to be real analytic. We shall consider the
following three steps to construct the diffeomorphism.

(1) We start with the time flow of a Hamiltonianp ., with a homoclinic loop.

(2) This ‘integrable map’ first is perturbed by adding are® terms maintaining
the conservative character. This generically gives an exponentially small splitting of
the separatrices (see [21]) such that, in a suitable parametrization, the unstable manifold
with respect to the stable manifold, is locally given by an expression of the form
Zn>1a,l sin(nz + ¢,), wherea, = O(exp(—nce~?)) for some positive constants and
d. Generically the first coefficient is bounded from below by @x@(1 + §)e~¢) with
8§ =38(e), § \y 0 ase \( 0. Theg, are suitable phases.

(3) Second we perturb in a non-conservative way, assuming that the main effect of this
perturbation is to ‘pull up’ the unstable manifold with respect to the stable manifold (see
figure 70).

To model a return map we split the diffeomorphism as the composition of two maps,
one near the saddle, the other being the reinjection (figure 71).

Let u parametrize the stable manifold. Insteaduofve shall usez = 2 logu/log ;.
Hencez € [0, 27] asu moves on a fundamental domain. Near the saddle, for simplicity,
we assume that our map is linear. Let= (a — bCOSz)AZi/Zﬂ be the local expression of
the unstable manifoldv*. This is compatible with the linear behaviour of the map. The
parametez measures the distance betwer and an ‘averagedW,, while b measures
the size of the oscillations ov* with respect tow}, due to the splitting. A pointP is
determined by the coordinatés, w) and thenu = )fz'/z”, v=(w+a— bCOSz)AZi/zn.

After a suitable number of iterateg, is mapped taP with « small andv e [)ql, 1]. In
view of the reinjection, a region Ilik& is sent toR* and then shifted t&R’. A point like



748 H Broer et al

=
+0l

S

wY

Figure 71. A sketch of the derivation of the return map.

A is moved toA*, with u coordinatem € [A2, 1) and then toA’. Again assuming linearity
in the passage from B to A*B*, a vector(s, 0) is mapped tas(p, ¢). In this set-up the
quantitiesi1, Az, a, b, m, p, g, completely describe the geometry of the return map.

An additional simplification is obtained by neglecting the effecpofit affects the final
value ofz only in a mild way. Then, an elementary computation gives the return map. We
assume> > 0 and scalav by w = bn. We obtain, by changing the origin ef

(Z> (ljg—alogm +z+ 2 log(a + b(n + sinz)) modZT)
— 2 9M i
n %mflog)\l/logxz(a +b(77 +sz))flogxz/log)\1

®)

After some rearrangement (5) can be written as

z 2+ &+ Alog@+ b +sinz)\ _ (7
(n)H( @+ b(n +sinz)? )‘(ﬂ)’ (©)

depending on five parametess 4, b, & andy = — log i,/ logAs.
The above hypotheses imply that= 1+ p, with © small. Hence

n' = (a+ by +sinz)" (@ + b(n + sinz)).
If &> b andn is not too large b < a), the first factor iny’ is almost constant:
n' ~ a"@a+ b(n + sinz)).

As this is linear iny, if a“b # 1 we can shift the origin of; to cancel the independent
term, obtaining in this way a new vertical variale and (6), withg = a*b, becomes of
the form

z 724w+ Alog(1+ b(p + sinz))
(5)~( Blp +sinz) ) "

a map which depends only on the four parameigrd, b andB. Finally, we again use the
fact thatb (= b/a) is small to expand the logarithmic term in (7). Keeping the first term
in the expansion and introducirg= Ab, we have the simplified final form given by

z z+ o+ a(p + sinzg)
(P) "~ ( B(p + sinz) ) ®)

This exactly is the fattened Arnold family of maps we consider in this paper.
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Remarks.
(i) We assumed that + b sinz gives the typical behaviour ov* with respect tow*
with the generic assumptian> 0. A complete expression would be of the type

a+bsinz+ Y Ob))sin(jz + ¢)).

i>2

Dividing by a leads to the form

b . , AARE
1+ —sinz+ Za’_lO (—) sin(jz + ¢;).
a = a
Hence, thejth order harmonic has a coefficient not only smallp itz is small, but even
small compared withb/a)’ if a is small. That is, the coefficient of gijx + ¢;) is small
compared with theith power of the one of sin

(i) In contrast, going from (7) to (8), and assumipg= 0 to make this consideration,

log(1+ bsinz) = bsinz — 3b°siP z + 3b%sinPz — -+ -,

and the coefficient of thgth harmonic has a size comparable with tite power of the
one of sirg. This difference with the behaviour of the first item will have effects to be
considered in appendix B.

(iii) However, if we considerA large in (7) (which holds true if the map is close to the
identity, since therA = 2r/logi; andx; > 1 is close to 1) then the first harmonic has
coefficienta = Ab and thejth one has Q4b/) = O(a’//A’~1), again small with respect
to o/.

Figure 72 displays the bifurcation diagram of (7) for= 5, 8§ = 0.3, as a function of»
(the horizontal coordinate ranging from 0 te Randb (the vertical coordinate ranging from
O0to %). The initial conditions are taken ‘arbitrarily’ &3, p) = (0.123 456 7890) and the
transient is 19 iterates. Periods up to 34 have been recorded. The black part corresponds
to some iterate with negative argument in the logarithmic term in (7). The white region
in the lower part of the tongues, corresponds to quasiperiodic invariant circles. The upper
white region to strange attractors. Different grey tones correspond to attractors of different
periods.

The main idea of this approach is as follows. To study the return map near homoclinic
tangency (see [36, 38, 45]) captures just a small part of the dynamics. This approach,
certainly restricted with some limitations concerning the nonlinearities, tries to capture the
full dynamics on a fundamental domain and furthermore to make clear that, modulo some
deformations, there are relatively few parameters to describe the typical behaviour of a large
class of systems close to homoclinic tangency.

We note that if the initial diffeomorphism (as in figure ¢f)(has a negative compressing
eigenvalue—1 < A < 0, the computations can be carried out in a similar way. After suitable
identifications the only difference in equation (8) is that new 0. This justifies why we
are also interested in the case of negafive

Appendix B. Effective computation of the dominant coefficient in the Arnold tongue

In this section we reconsider the resonant normal form coeffieigptof the fattened Arnold
family (cf section 2.4). Indeed, the dynamical properties heavily depend on conjecture 2.8,
saying thatd,,(0) # 0. Here we shall give strong evidence in favour of this.
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Figure 72. Bifurcation diagram for the map (8).

To compute4,,, (0) (or for shortness4,,,,) we can parametrize the invariant circle by

X = s + Z()ljuj(é), y = Zoemvm(é),

j=1 m=0

wherew; (€) = Yy <iuj—sinzowik€ ANd v, () = X 4 ci1somes 1 Vn i€, in sUCh &
way that the map restricted to the invariant curve is given by

Er> h(E) =&+ w+caa®+-- +a’(By, €7 + B_,,,e7%) + O@!*h),

with B,p/q = Bp/q. ThenAp/q = 2|Bp/q|.
To ask for invariance we write

hE) +Y auph@) =6+ aluj¢) + o

izl j=1

+O{(Z(vam(é) +sin (E + Zajuj@.)))’

m=>0 j>1
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> v (h(€) = ﬂ(Za’"vm@ + sin(s + Zoﬂuj(é))).
m=0 m=0 j=1
By equating the coefficients af/~! in the second relation and of in the first one, for
j =12..., we obtain, recurrentlyyg, u1, v1, c1, uz, vo, u3, v3, ¢z, us, .... Due to the
special structure of the,, andx; functions, to obtainB,,, we proceed as follows.

Let w = 2np/q, (p.q) = 1,9 >1,0< p < gq, fj = (€7 - gl —e/*) =
(1+pB)(cox2rpj/q)—D)+i(1—B)sin(2rpj/q), zj = 2iu; ; f;. Then, determiney, ..., z,
by equating powers ob in the relation

q q—1

-1 Zj .
‘E_ zip! = eXP( ‘E_ 2—pr> + O(p?),
j=1 j=1 =

that is,
1 4 ZkZj—k
71=1, i=——) (j—hkZ=E, for j=2,...,q.
-1 k; 2fix
We obtain in this way
1 1 1 n 1 1 n 1 n 1 n 1
=1 =7, B3=——+ -5, U=
2f1 4frfr  Bf2 8fif2fs  16f(fs  8fPf2 48
The value ofA,, coincides with|z,|/(1 — ), computed withw = 27p/q. For instance,
1 1 (74138 +78%)Y2
Arp = 5, Az = 737
41— 89 241-B) A+ p+pH¥
1 (41+ 188 + 418212
Ayg =

96(1 - B) 1+ p?)?

These coefficients can be considered, in particular, for Arnold’s circle map, wkef.
A comparison with the formulae given in [1,p 274] shows the agreement. In [25,p 304]
there is an obvioug factor missing. This has been propagated to several textbooks.

It is immediate that, is of the formY", yi/ 1=y fi,n and (i, 1) € {1,...,q — 1},
the sum being finite ang;, € Q. It is also easy to check, by induction on that
z4 can be expressed as the quotient of two polynomia)s= P(8)/Q(B), where P,
0 € Q(ep), e, being apth primitive root of the unity. More concretely, fop(8) one
has Q(B) = [T¢_1 1"/, whee [ ] denotes the integer part. For a fixgdq one has
to seeA,,, # 0 as a function ofg Vg € (-1,1). For g = 1 we havef; < 0, and,
hence,z,,, # 0, and, therefored, ,(8) becomes unbounded whgh ~ 1. Hence, given
p/q, conjecture 2.8 is true fog € (8*, 1), wheres* depends orp andg. A direct check
suggests tha#t,,, # 0 for all 8 € (-1, 1) and all p/q such that(p,q) =1, 0< p < g,
g < 250. For some selectetl and p the checks have been done upgte= 50 000.

The numerical experiments seem to suggest that

log(Apse) 1_ C(p.q.B)
qlogq logq

where for fixedp and 8, C(p, ¢, B) seems to have a finite limit fof — oco. Figure 73
displaysC(p, q, B) versusp/q for several values o8 and O0< p < ¢/2, (p,q) = 1,
g < 250. However, if we allowp andgq to vary, C(p, ¢, 8) seems to increase, at most, as
logg.

Table 2 gives, fop = £0.3, the values of4,, for several values op/q and the values
oy, such that up to this value the width (i) of the corresponding tongue, differs from
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B=-09 R=-0.3

B=0.3 B=0.9

0 4 172 0 14 172

Figure 73. Behaviour ofC,/,. See the text for additional explanation.

Table 2. Values ofA,,.

=03 f=-03

rla  Apy a10%  Ap/g a10%

1/2 0.2747253800 >1 0.2747253800 0.864
1/3 0.1233341E00 0.931 0.8815748E01 0.929
1/4 0.8864480E01 0.564 0.4227401E01 0.493
1/5 0.8765090E01 0.374 0.2348492E01 0.341
2/5 0.3996585E01 0.985 0.2972281E01 =>1

1/6 0.1102128800 0.269 0.1657611E01 0.267
1/7 0.1681969E00 0.204 0.1436092E01 0.221
217 0.2779286E01 0.784 0.9482976E02 0.493
317 0.2116816E01 0.866 0.1548412E01 0.967
1/8 0.3021543E00 0.161 0.1492875E01 0.187
3/8 0.1536294E01 0.985 0.8197756E02 >1

1/9 0.6252427800 0.131 0.1802122E01 0.162
2/9 0.3391009E01 0.462 0.4155330E02 0.284
4/9 0.1523261E01 0.722 0.1087782E01 0.836
1/10 0.1466228E01 0.109 0.2472099E01 0.142
3/10 0.1429592E01 0.839 0.3384015E02 0.467

the theoretical value, £2,,,?, by less than 10%. Figure 74 displays the corresponding
tongues up tax = 1. We also note that fog = —1, if ¢ is even andj = ¢g/2 then
fi = 0. Hence, in principle, if8 \, —1 andg is even, we shall haved,,,| / co. The
only exception seems to occur when= 4 (p = 1 or 3), because the termg 811 f> f3)
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Figure 74. First Arnold tongues for the casgs= 0.3 (top) andg = —0.3 (bottom).

and /(872 f,) almost cancel and lig1,_1 Ay4 exists & &). For period two,p/q = 1,

it is easy to see that the saddle-node bifurcations (or, better, elliptic-hyperbolic) occur for
w=7m=* %(x, displaying a linear, instead of a quadratic, character.iWhena N\ 0 then

the y coordinates of the 2-periodic points become unbounded.

To haveA,,, > 0 for all B € (—1,1) can seem also natural because of the following
consideration. As said before, to hav,, = 0 one must haveP(8) = 0 (using the
representation, = P(8)/Q(B)). For 8 € R we can writeP(8) = P1(8) +iP»(8), P1 and
P> having real coefficients. Thea,,, = 0 requiresP1(8) = P»(8) = 0, two conditions to
be satisfied.



754 H Broer et al

In the caseB = 0, the conjecture can be proved. We have the following.

Proposition B.1. Letg =0, w = 27p/q, (p,q) =1, 9 >1,0< p <q. Then4i,,, > 0.

Proof. First we note that in this casgé = 1/ —1, whereh = exp(2rip/q). Letz; be defined
as above, introduce auxiliar variablegs = 2¢~'z;, and letr = p/2. The previous relation
between the; is expressed a3 f_, ust*~! = exp(Z]q.;ll u;t! /f;) + O(t). Expanding the
exponential we gety, = Y W -wn/l)™ “\yhere the sum is over all finite sequences

rilo.ry!
ri, ..., rn, Of non-negative integers WitE;"zl jrj = k — 1. This can be used to compute
recurrentlyu,, k =1, ..., g, with u; = 1. It follows
P())

Ug = 1 s
(g—DIQa1—-1)...(x—1)
where P is a polynomial with integer coefficients. This implies that, in this case the
expression ofy, is simpler than the one given before fgras quotient of two polynomials.
This fact can be easily seen by introducing = fi1... fj_iu;. Then, the quadratic
j-1,. fiofi- .
recurrence reads as = " Zj:.lg —$)vsv;M(2), WhereM (1) = 7=zt is
a polynomial with integer coefficients. Moreover, noting that for any sequence with
> jrj =g —1other thary — 1,0, ... we have that the produet! ... divides (g — 2)!, we
can write

PX)=X+DX?+X+D...(X9 24+ + 1)+ (g —DOX),

where Q(X) is a polynomial with integer coefficients.

We have to showP (1) # 0. Suppose, in contragt(x) = 0. ThenP is divisible over
the integers by the cyclotomic polynomi@l, = X¢~*+...+1. Letr be a prime factor of
g — 1. Then®, divides (X? — 1)(X®—1)... (X771 — 1) over the fieldZ,. But then some
rooto of @, in a splitting field overZ, must satisfyo/ = 1 for some 2< j < ¢, which is
impossible by the theory of cyclotomic extensions, sinds prime tog. d

Now we go back to a map like (7)

(x) (x/) <x+w+ylog(l+a(y+sinx))>
— — . .
y Y B(y + sinx)

Let us introduce a new variable;, given byw = «a(y + sinx). Then the map (7) reads

(x) (x/) <x+w+ylog(1+w))

— , )= h .

y y B(y + sinx)

As we did before for the case of the fattened Arnold family, we look for an invariant curve
of the form

x=E+) du®), w=E+) o"w(®),

j=1 m=1

whereu;, w,, are trigonometric polynomials (depending an g, y) whose highest-order
harmonic isj (or m). The parametef of the invariant curve goes, under the map, to

Ers h(E) =&+ 0+ c1a?+ -+ cgza? + a?(By, €9 + ) + O,

Letw = 2np/q +4. As before, asking for invariance, one can compute the coefficients
u1, wy, uz, etc recurrently. To obtai,,,, let a; be the coefficient o&/€/¢ in u;, andb;
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the one inw;. Letb; = ic;. Then the coefficients;, ¢; and, finally, B, ,, are obtained by
equating powers ofs in the formulae

Bpig¥? + Y ajypé’” = a9/ +y log (1+ i Zc,fwf>,

j>1 izl j=1
|ch¢fe'-’ =|ﬁzcjw./+zé ¢exp(|Zakw )
j=>1 j=1 k>1
where one has to use = 2np/q. Let
exp(iZakw"> =Y My, Iog<1+ich¢f) =Y Nyl
k=1 j=0 izl j=1

One derives immediately the recurrence

1/2 . i =2
Mo =1, Cj = ﬂe_ij—w—leil’ N; =lc; — ;;(] - k)CkNjfk,
CZJ‘:“LNJ', szl_Z]:kaij,k, ]21,
gio —1 =

and thenB,,, = yN,, and the desired coefficiemt,,, = A(p,q,B8,v) = 2|By;,|. We
note that now the symmetry is broken and one has to consider all the vaites/'§ < 1.
First we have sey = 1. The minimum value of 2,,, as a function ofg, for g € [-1, 1]
has been computed fagr < 125. The value ofC(p, g, Bmin(p, q), v = 1) is displayed in
figure 75, whereC(p, ¢, B, y) is defined in an analogous way to the previdly, q, 8),

as a function ofp/q. Figure 76 display®min(p, ¢) as a function ofp/q, showing nice
features and interesting scaling properties. Agaimyfoe 1 it seems thatd(p,q, 8, 1) is
non-zero for all O< p/q < 1, |8] < 1. Allowing now y to change, it is easy to see that
B, = P(B,y)/Q(B), Q being the same polynomial we had fgrbefore. As an example
we displayAs/,, Ayys:

y(1— B2+ 21+ pHY?
41— B)(1+ p)?
Y
48(1— B)(1+ B + p?)?
x{[y2(—B2 + 58 +5) + V3y (=562 + B + 1) + 282 + 28 — 47
+[V3y2(387 + 58 + 1) + v (=367 + 38 — 9) + 2V3(-p° + )T},
the value ofA,/3 being obtained by replacing’3 by —/3. The only zeros ofA,,3 occur
for the values of(8, y): (1,0), (1, %), (-1, 3(=v75+ V/59)), (-1, 1(—V/75— V/59)).
Those of Ay/3 are obtained by changing the sign pf But none of them occur in the
domain of interest:|8| < 1, y > 0. When we increase it is easy to obtain many zeros
of A,,, for suitable values ofg, y). Now we have two parameters at our disposal! For
instance, forp/q = % B ~ 0.40140637,y ~ 0.81289041 a zero is found. We have
numerically checked the behaviour of the width of the corresponding Arnold tongue. It is
of the form width~ 0.010%’ for « small. The term inx® sin(5¢) is zero, and the next term
with sin(5) is of ordera’. No terms ina®sin(5¢) appear due to the symmetries of sin.
Hence, when a degeneracy occurs, the tongue seems to be ‘as generic as possible’.
Table 3 displays some zeros &fp, ¢, 8, y) for different values ofp/q (up tog = 10).
In agreement with the comments at the end of appendix A and with conjecture 2.8, it seems
that the zeros are confined to moderate valueg.of

Ayp =

’

Az =
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Figure 75. Value of C, for y = 1, at the value of8 which makesC minimum. See text for
additional explanation.
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Appendix C. Conservative cases

Figure 76. Value of 8 where the minimum o€ is attained. See text for additional explanation.

For values of|8] close to 1 the fattened Arnold family can be considered as a perturbation
of an area-preserving map, either orientation preserving or reversing. Certainly these maps
are far from trivial, so a general perturbation scheme can not be carried out, from the



Global models of dissipative diffeomorphisms 757
Table 3. Zeros ofA,/,(B,y) in Be (=1, 1),y > 0.
p q B Y p g9 B 14
1 4 05209171523E0 0.7205523590E0 1 9 —0.9267583111E0 0.226197 8268E0
1 5 04014063687E0 0.8128904108E0 1 9 —0.4484273572E0 0.470694 3503E0
3 5 -0.8250162406E0 0.6765138685E0 1 9 0.8299923829E0 0.5834306941E0
3 5 -0.8275985143E0 0.9698313264E1 1 9 0.5816645686E0 0.7212505267E0
1 6 —0.7479601390E0 0.4836704164E0 1 9 0.2789271515E0 0.963 676855280
1 6 0.7795445817E0 0.6527589239E0 2 9 0.4735436843E0 0.7373107065E0
1 6 0.3460262395E0 0.8714689495E0 2 9 0.4161046436E0 0.8100410664E0
1 7 —0.6020182089E0 0.5349420497E0 5 9 0.6279506846E0 0.4556190918E0
1 7 0.6788823733E0 0.6802812598E0 5 9 —0.6992617653E0 0.843 644 2044E0
1 7 0.3141592592E0 0.9118108079E0 5 9 —0.7425309959E0 0.105828 18402
2 7 0.8803996530E0 0.5568151047E0 5 9 —0.9402073440E0 0.142994 9638E2
2 7 05527294751E0 0.6979396894E0 7 9 —0.9183991187E0 0.411697 9675E0
4 7 0.7240643397E0 0.4266962975E0 7 9 —0.8961589007E0  0.322034 1449E2
4 7 —0.7371881058E0 0.7882977662E0 1 10 —0.8123328485E0 0.239 091 4636E0
4 7 —0.7723042786E0 0.1033885290E2 1 10 —0.8750615100E0 0.3620518098E0
1 8 -0.5092831366E0 0.5028640631E0 1 10 —0.4087508972E0  0.439 762 6348E0
1 8 0.8943538222E0 0.5783592289E0 1 10 0.9468464224E0 0.5113052658E0
1 8 0.6201874945E0 0.7030903335E0 1 10 0.7848662948E0 0.592188 6540E0
1 8 0.2934593517E0 0.9412532552E0 1 10 0.5544272103E0 0.7358213085E0
3 8 0.7658027497E0 0.3930735769E0 1 10 0.2681596467E0 0.9813196328E0
3 8 0.8375100805E0 0.5401429290E0 3 10 0.7829170714E0 0.586548 3069E0
5 8 —0.9231109964E0 0.642662702080 3 10 0.5679730396E0 0.6915200797E0
5 8 —0.7881507906E0 0.1993776346E2 7 10 —0.9349687039E0 0.266 550 4923E0
7 10 0.8317844842E0 0.3043591977&0

conservative case, except in the case of small We refer to the conservative cases

in section 5.3.4, to make evident thg| close to 1 is a good candidate for having
several simultaneous attractors, and also in appendix D, to study the limiting behaviour
of homoclinic tangencies in the saddle node casesfes +1.

However, it is interesting to display some facts for the conservative cases. To distinguish
them hereafter, we shall reserve the name ‘conservative’ only for thegcasg, referring
to the 8 = —1 as ‘anticonservative’.

In all cases fore = 0 the maps become integrable, with the phase space foliated by
invariant curves (easy to make explicit)df £ 2k, for somek € 7Z, or with all the orbits
unbounded (except for the fixed points), otherwise. Hereafter wedtake.

In the conservative case the change of variaktkésY) = (x, w + ay) allows us to
rewrite the fattened Arnold family as

X, YY)~ (X+Y +asinX),Y + asin(X)),

the standard map in the 2-torus, independent of the value. ofhis is fairly well known
and we shall not pursue this way.
In the anticonservative case different valueswofead to different families of maps.

The change of variablegX, Y) = (x, ay) leads to
X, )~ X+w+Y +asin(X), —(Y +asin(X))), 9)

also a map irlT?. If we introduce the new variablgg, n) = (X, X + Y + w) the map can
also be written as

ACw.0)(&, n) = (n+ asiné), & + 2w),
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Figure 77. Limit flows, for « — 0, of the second and fourth power, respectively, of the
anticonservative map fap = 0 andw = 7/2.

which makes clear that it ig-periodic inw. This fact, combined with the symmetries
displayed at the end of section 1.2, implies that only the range [0, 7/2] has to be
studied. Let us consider first the extrema of that interval looking for the square (double
iterate) AC(,,.o,> Which is a conservative family of maps dependingaon

If @ =0 one has

ACow’(&, m) = (§ +asin(n + asinE)), n + asin)),

denoted as ‘twist map’ (TM) and introduced in [62]. Further information on this family
of maps can be found in [40] and in [52]. For valuescofsmall enough the map can
be approximated by the time flow of the HamiltonianH (¢, n) = cog&) — cogn). An
illustration of this flow inT? is given in figure 77. For the TM the heteroclinic connections
split for all « # 0. The special structure of these connections implies that all invariant
curves are homotopically trivial. Hence, some ‘diffusion’ can take place for all non-zero
values ofe. That is, if we do not consider in the original mayC,, the values ofY
modulus 2, there are unbounded orbits.

For w = /2 it is better to consider the fourth power of the original map. Several
cancellations occur and the map, for small valuea,ofan be approximated by the timé
flow of the HamiltonianH (&, n) = sin(&) sin(n). An illustration of this flow is also given in
figure 77. Again it seems that for all non-zero valuestdhe heteroclinic connections split
and diffusion is present. A study of this map, mainly concerning hyperbolic and statistical
properties, can be found in [24].

For values ofw not too close to 0 or 2 the phase portrait looks familiar: there
are periodic islands and also invariant curves of rotational type (in(kh&’) variables
they perform one revolution in th& direction) under the square of the map. Under
the initial map the rotational invariant curves can be 2-‘periodic’ or 1-‘periodic’. That
is, the image under the map (not the square) can give a different (‘twin’) curve or the
same initial curve. But for moderate values @fthere is no diffusion. Increasing
a sufficiently large amount, strongly depending @n diffusion is found again, after all
the rotational invariant curves have been destroyed. A big difference with the standard
map case and other well known cases is that, after losing all the invariant curves for
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Figure 78. An approximation of the set of values @b, ) for which a rotational invariant
curve exists and, hence, no diffusion occurs. The window ,i&f0 x [1, 2].

some valuee = «7, some invariant curves can reappear for= «» > «;. In fact

the set of values ofw, a) for which it seems there exists an invariant curve is rather
wild. It seems that there are values of the parametersx) for which no invariant
curve exists, completely surrounded by values for which these curves exist. A rough
picture is shown in figure 78, obtained by a combination of brute force iteration of
(9), visual inspection and some refined methods to approximate the ‘last’ invariant curve
(see [55] for a description of these methods). For completeness it is displayed ifor

[0, 27].

This irregular behaviour is easy to understand, because a main reason for destruction of
invariant curves is the appearance of relatively large chaotic zones if an invariant 1-‘periodic’
curve approaches a rational rotation number (cf appendix D in the case of period 1). This
is a ‘dangerous’ situation, because this resonance, having a big bump in the central part,
can destroy a bunch of invariant curves. Resonances at other places are not so dangerous.
By moving parameters (e.g. increasiayjthe resonance can migrate to another place and
invariant curves can reappeatr.

When the values of» approach to O orr/2 the values ofr for which diffusion starts
to appear, seem to decrease to zero. It is suspected that in the boundary of the set of
couples for which a rotational invariant curve still exists, the behavious ¢r w — 7/2)
is exponentially small with respect to.

Another characteristic fact of the map (9) is that it no longer has the ‘monotone twist’
character of the standard map. This is the source of invariant curves like the one shown
in figure 79, which are far away from Lipschitz graphs. The curve is shown together with
three successive magnifications. After the second magnification irregular behaviour is seen
with vertical oscillations of the order of 18° when 2x 10° iterations are carried out, due to
rounding errors. Using higher-precision arithmetics it is possible to see that, for the initial
condition, (0, 2.099 884 725 0y, used in figure 79, there are in fact two nearby curves, one
being the image of the other under the map. To this end it is convenient to tékietates
and use the window [484 056 171.484 056 25]x [3.946 100521 183.946 100521 22],
near the minimum of the figure displayed after the second magnification. These two curves
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Figure 79. An invariant curve foro = 0.07 x 27, = 1.39 under the map (4). As an
initial condition we took the point0, 2.099884 7250Y. In the lower right corner appears a
magnification of the small rectangle marked in the full figure, corresponding to the window
[1.46,1.49] x [3.9,4.1]. In the frame which appears on the mid lower part, there is a
magnification of the very small rectangle marked in the previous one. The corresponding
window is [14835 1.4845] x [3.946, 3.947]. Above this frame there is another one with a
extremely small window (see text).

are shown in the third magnification as upper and lower curves. The vertical distance
between them is close ta72 x 107!, The best determination of the initial condition, to
have a single invariant curve, that we have found(0is2.099 884 725066 170 395 The
corresponding curve is the middle one in the third magnification.

In many cases the last invariant curve seems to be of the type shown. This implies that
after the last curve is destroyed the diffusion is quite fast. In the standard map case it is
hard to see any diffusion if the value of the parameter is increased by 0.01 from the critical
one. In some sense, it seems ‘difficult’ to cross the Aubry—Mather sets, despite the fact that
they no longer separate the phase space. For the map (9), after the destruction of the last
invariant curve, the diffusion is very fast.

Certainly these families of anticonservative maps deserve a thorough study!

Appendix D. Perturbations of conservative cases

The conservative case and orientation-preserving gasel, is just a standard map under
a suitable change in (see appendix C). KAM theory can be applied to show the persistence
of invariant circles, filling most of the space farsmall. There also exist infinitely many
resonant zones in which very small islands exist. Furthermore, the homoclinic tangles fill
zones which are exponentially small dén

When 8 goes away from 1 at most one invariant curve can persist, but the number of
attracting periodic orbits, obtained by perturbation of the previous elliptic periodic points,
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can be as large as desired. This may require very small variatiofis of

Further variation of8 may make former elliptic points pass through a flip bifurcation.
Their invariant manifolds can have homoclinic intersections and give rise to periodic strange
(small) attractors. It is not clear to the authors if the number of coexisting strange attractors
can be arbitrary large in this family, but we conjecture that this is true. Compare the
discussion in sections 3.2 and 5.3.4 and appendix C.

We now turn to the behaviour of saddle-node homoclinic tangenciégfor’ 1. To be
precise, we analyse, for our family of maps, the behaviour of the cougple8) for which
a homoclinic tangency to a saddle node is produced, for valug8| alose to 1, but less.

We start neap = 1. Letg = 1—¢. We recall that the fold is produced fer= (1-8)w
and then the fold is at—n/2, —8/(1—B)). The change§ = x+n/2,n = 1+€(y+sinx)
lead to the map

() ()=o)
n n n+e(—n+2sirf(£/2) )

Let us look for values ofw = ae, a being a finite constant. Then the map can be
approximated by a limit flow such that, the difference between the map and the time-
flow is exponentially small. The proof of this is similar to the one used for Bogdanov—
Takens diffeomorphisms in [11]. The vector field of the limit flowXs= Xo+ X1+ -- -,

with

_ an
Xo= (—n + 25ir12(5/2)) :

Now we look for the suitable value aef to have a homoclinic connection. The fixed point
(0, 0) is a saddle node and we look farsuch that the unstable branch of the saddle node
coincides with one of the branches of the stable manifold. Due to the form of the vector
field, this must be the upper branch. Rough bounds oan be easily obtained. Due to the
form of Xo, by increasingz, the vector field rotates (and change modulus) anticlockwise.
This also shows the uniqueness of The stable manifold has a limit slopel/a. Let
us consider the line througto, 0) with slope —4/x. The segment of this line between
& = —m/2 andé = 0 is crossed by the vector field going downwards & /8.

On the other hand, along the homoclinic conection (between(say, 0) and (0, 0))
one should have

00 [eS) 0
27 =/ (€ +an)dt =2a/ s St = 2a st = ,

-0 —o0 2 —27 an Nmax
where nmax IS the maximum value ofy along the connection. Hence, one should have
nmax > 1. As the vector field is horizontal onp = 2sirf(¢/2), the unstable branch is
bounded byy = 1 if & € (—2%, —37/2). Moreover, on the lingg = —&/a the vector field
points to the upper part and the curve enterifig0) through the (strong) stable manifold
should remain below this line. Hence,df> 37 /2 we shall havejmax < 1.

Therefore we have proved the following.

Proposition D.1. The line on the(w, ) plane of internal homoclinic tangencies fg
tending to 1 is of the form = a(1 — B) + O((1 — B)?) witha € (7/8, 37/2).

Remarks.

(i) The same is true for the outer tangencies and for the cubic tangencies to the strong
stable foliation, the differences between all those lines being exponentially smal if. 1

(i) A direct numerical computation shows >~ 0.702563 658 236. The behaviour is
shown in figure 80.
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Figure 80. Limit behaviour of the homoclinic connection neér= 1.

Now we pass to the cage™ —1. This is more involved because, to have a limit flow
as a good approximation, one has to work with the square of the map. We=put1+ u,
w small, and themr = w(2 — ).

Letu =x+7m/2,v=2(y — %ﬁ + sirf(1/2)). The map is expressed as

[ANN iy u—i—a)(l—%)(v—i—Zsz)
v v) T\ Q- +22+252 )

wheres = sin(u/2), 5 = siniz/2). We shall denote alsg = sin(uz/2). For T2 we obtain
<u>}i ( ) _ ( U+ ol —pw/2)(u+ 252 + 452 >
v T\ A 02w 2)) — (L— a2+ 25 )

The mapT has a saddle node &0, 0) with stable eigenvalue-(1 — 1) and related
eigenvectonw, —2).
First we consider the conservative cage= 0. ThenT? reduces to

[SITRNT]

T2 (u, v) > (1 + 4052, v + 252 — 252 +5°)).

The origin has a centre manifold which contains an unstable and a stable braneh-(far
u < 0, respectively, locally). No other manifold enters or leaves the origin.

Assuminge < 1 the mapr’? is a perturbation of the identity. It is possible to construct
a Hamiltonian such tha£? is the time-1 flow of the Hamiltonian plus a remainder bounded
by exp—c/w) for a suitablec > 0 (cf Neishtadt [37, 11]). The Hamiltonian up to order 3
inwis

3 40
H = wls®v + 0?(2csv? — 8cs®) + o (%(1 — 259 40 <—1254 + 336)> ,

where, as befores = sin(u/2) and ¢ = coqu/2). It is necessary to use, at least,
approximations to ordes®, lower order (inw) Hamiltonians being degenerate.
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Figure 82. Magnification of the previous figure near the origin.

In fact higher-order terms (iw*, k > 4) pruduce minor qualitative and quantitative
modifications to the dynamics. Also the termwfiv can be skipped to analyse the behaviour

of H.

763

The centre manifold througtD, 0) for H has the expression = 2wcs® + O(w?). It
is a separatrix of the Hamiltonian. Along the separatrix onethas4ws?(1 + O(w?s?)).
Hence, the dominant temporal behaviour of the separatrix 45 2 arccot—2wt), having
singularities at = +i/(2w).
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Figure 83. The stable and unstable manifolds of the fixed point uﬂ{?e‘m the (u, v) variables.

Figure 81 contains a plot of the level lines &f for o = 0.02 x 27 and values of
the energy/i, between—10-8 and 108 with step 16°. All the lines are rather close to
v = 2wes® except in a neighbourhood of the origin, displayed in figure 82. Near the origin
the dominant terms are

H = ouv + o*(uv? — u®/4) + »>v%/3.

A Newton polygon analysis shows that there is only one componeliit ef 0. The flow
is vertical ¢ = 0) only atu + wv = 0, and horizontal{ = 0) near 2 + wv = 0. The
local maximum ofH = h is attained atx = —(%)¥3 + o(h) and thenv >~ 2(3n)¥/3.
Furthermore, the period on the level lines= h # 0 is of the form ctamt(wh/®), for h
andw small.

We return to the conservative diffeomorphish?. Using arguments similar to those
given in [21, 22] it is possible to show that the splitting of separatrices, that is the distance
between the stable and unstable manifolds of the origin for a fixdths an upper bound
of the form N (§) exp(—(r — §)/w) for any § > 0, uniformly in w for 0 < |w| < wp. The
existence of homaoclinic points is ensured by different considerations. The simplest one is
that, locally near the origin7, changes the sign of. Hence,W* cannot remain at one
side of W*. Another consideration is to look &} as a perturbation of the time-one flow
of H. As this last one is a twist map (singular at the leet 0) invariant curves exist for
o small enough (and not too small). Then area-preserving arguments show the existence
of homoclinic points. Generically (see again [21]) the oscillatioWof with respect tow*
is modelled by a sinusoidal function (higher-order harmonics being much less important).

Figure 83 displays a plot of¥* and W* for T2. For the centre manifold a local
expression as a graph (see [52]} g(u) = Y ;34541 au® is used up to order 29. It is
easy to derive a recurrence for thecoefficients. This approximation gives small errors for
lu| < 0.62018. A fundamental domaim € [0.597 63 0.620 18] has been chosen and the
points have been iterated for 24 001 times. Figure 84 shidWsW* on a magnification,
obtained by taking 1000 points in the fundamental domain and iterating 5000 times. Finally,
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Figure 84. Magnification of the previous figure to the left of the fixed point, showing the
oscillations of the unstable manifold.
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Figure 85. Magnification of the invariant manifolds near the origin. See the text for additional
explanation.

figure 85 showsWw"”, W* near the origin. It has been obtained with 5000 points on a
fundamental domain and 24 001 iterates, but only the iteeatésl (mod 1009 have been
displayed. Hence, it contains just one ‘wave’ every 500 ‘waves’.

The splitting can be measured as the maximum difference betWé&eand W* in one
wave. This depends on the value of the domain:ofthere this is explored. See later
for the relation between the amplitudes of the waves at diffezersnges. We know this
amplitude is exponentially small im. Guided by the results of Lazutkin [31] for similar
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Figure 86. Limit scaled behaviour of the stable manifold of the origin unfiéfor u <« v < 1,
in the (r, s) variables.

phenomena we have looked at a behaviour of the amplitudedié exp(—m/w). The
value B = —2 has been obtained experimentally, but it is possible to obtain this result
analytically (Gelfreich [23]).

Now we pass to the complete diffeomorphism# 0, assumingu « o « 1. In fact,
we shall assumg exponentially small ino. The map7? is again close to the identity and
can be written as the time-1 flow of a vector field plus a perturbation. In a vicinity of the
origin it is enough to keep, in the vector field, the terms of first and second degreea in
and the terms of first degree havipgas a factor. We obtain

i =+ ov)® + pov,
b = —2wuv — w?v? — 2uv.
Introducing? = wv, ¥ = u/w and scaling time by» we have

u' = (u+10)? —|— y0,
0 = —2ud — 0% — 2y 0.

Now we introduce new scaled variables,s, by r = —(u + 9%/2)/y, s = (v/4y)? and
scale time by—y, obtaining the vector field with componerts + 4s, 4s(1—r)), which is
parameter independent. Going back one can check that the skipped terms modify the vector
field by an Qi) perturbation wherv, s) move on any compact d@&?2, for y small enough.
We want to obtain an approximation of the unstable manifold’éfreaching the origin
with slope—2/w. This is equivalent to looking at the unstable manifold of the last vector
field, leaving (0, 0) with slope 1. The equation can be written ﬁs_ %. It is clear
that whenr goes from 0 to 1 the slope decreases monotonically from 1 to 0. Freni
on s decreases, but remaining positive foral- 0. Forr large one has = Zr>4ak/r ,
as > 0. Numerically one obtaing, ~ 37.8531794. Figure 86 displays the behavioursof

versusr for that manifold.
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Figure 87. Numerical evidence of the asymptotic behaviouruobs exponentially small with
respect taw. See the text for additional explanation.
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Figure 88. The stable manifold and some arcs of the stable one, at the homoclinic tangency.

Finally one has to derive the relation betwgemandw to have an homoclinic tangency.
Going back to the:, v variables, the expression of the stable manifold-farge (compared

1/2
with y) is v >~ 4@—’{’% This also gives how the amplitude of the waves of the unstable

branch with respect to the (weak) stable branch, behave with respect to the valye of
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u*, where they are mesured. At different pointg, u3 the respective amplitudes scale
like A1/Az = u3?/ui?. Figure 87 displays the experimental behaviour of the amplitide

reduced tou* = 1. If we measureA at u*, to have an homoclinic tangency one should
haveu2AwPe™/3 ~ 4,34;*w4, and hence
1/3
2
_ [ A" (4+B)/35—7/3w
nw= 172 w e .
day

Using B = —2 one hasy = Dw?3e /3, Forw = 0.02 x 27, for instance, one has

pn = 1.01146x 104, This allows us to obtain the approximate valDe= 1.7. It fits with

the values ofu(w) determined numerically in the range/2r € [0.014, 0.03]. Smaller

values ofw produce numerical problems working with 16 decimal digits arithmetics.
Figure 88 displays the stable manifold of the origin fer = 0.02 x 27, u =

1.01146x 104, and one every each 2500 waves of the unstable one in the window
[—0.004, 0.0008] x [—0.02, 0.02]. Again local representations as graphs to order 29 have
been used for the manifolds, starting at order 2 for the unstable branch and 1 for the stable

manifold. Summarizing, and letting aside numerical facts, the valug &r which a
homoclinic tangency to the saddle node is produced, behaveg like-1 + exponentially
small inw.
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